Properties

Label 3364.1.h.e.2759.2
Level 33643364
Weight 11
Character 3364.2759
Analytic conductor 1.6791.679
Analytic rank 00
Dimension 1212
Projective image D7D_{7}
CM discriminant -4
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3364,1,Mod(63,3364)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3364, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 11]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3364.63");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3364=22292 3364 = 2^{2} \cdot 29^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3364.h (of order 1414, degree 66, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.678854702501.67885470250
Analytic rank: 00
Dimension: 1212
Relative dimension: 22 over Q(ζ14)\Q(\zeta_{14})
Coefficient field: Q(ζ28)\Q(\zeta_{28})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12x10+x8x6+x4x2+1 x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 116)
Projective image: D7D_{7}
Projective field: Galois closure of 7.1.38068692544.1

Embedding invariants

Embedding label 2759.2
Root 0.433884+0.900969i-0.433884 + 0.900969i of defining polynomial
Character χ\chi == 3364.2759
Dual form 3364.1.h.e.2719.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.974928+0.222521i)q2+(0.900969+0.433884i)q4+(0.2774791.21572i)q5+(0.781831+0.623490i)q8+(0.623490+0.781831i)q9+(0.5410441.12349i)q10+(1.12349+1.40881i)q13+(0.623490+0.781831i)q16+0.445042iq17+(0.781831+0.623490i)q18+(0.7774790.974928i)q20+(0.5000000.240787i)q25+(0.781831+1.62349i)q26+(0.433884+0.900969i)q32+(0.0990311+0.433884i)q34+(0.900969+0.433884i)q36+(1.408811.12349i)q37+(0.9749280.777479i)q401.80194iq41+(0.777479+0.974928i)q45+(0.6234900.781831i)q49+(0.4338840.346011i)q50+(0.400969+1.75676i)q52+(0.09903110.433884i)q53+(0.1930960.400969i)q61+(0.222521+0.974928i)q64+(2.024460.974928i)q65+(0.193096+0.400969i)q68+(0.974928+0.222521i)q72+(0.433884+0.0990311i)q73+(1.123491.40881i)q74+(1.123490.541044i)q80+(0.2225210.974928i)q81+(0.4009691.75676i)q82+(0.541044+0.123490i)q85+(1.21572+0.277479i)q89+(0.541044+1.12349i)q90+(0.781831+1.62349i)q97+(0.7818310.623490i)q98+O(q100)q+(0.974928 + 0.222521i) q^{2} +(0.900969 + 0.433884i) q^{4} +(0.277479 - 1.21572i) q^{5} +(0.781831 + 0.623490i) q^{8} +(-0.623490 + 0.781831i) q^{9} +(0.541044 - 1.12349i) q^{10} +(1.12349 + 1.40881i) q^{13} +(0.623490 + 0.781831i) q^{16} +0.445042i q^{17} +(-0.781831 + 0.623490i) q^{18} +(0.777479 - 0.974928i) q^{20} +(-0.500000 - 0.240787i) q^{25} +(0.781831 + 1.62349i) q^{26} +(0.433884 + 0.900969i) q^{32} +(-0.0990311 + 0.433884i) q^{34} +(-0.900969 + 0.433884i) q^{36} +(-1.40881 - 1.12349i) q^{37} +(0.974928 - 0.777479i) q^{40} -1.80194i q^{41} +(0.777479 + 0.974928i) q^{45} +(0.623490 - 0.781831i) q^{49} +(-0.433884 - 0.346011i) q^{50} +(0.400969 + 1.75676i) q^{52} +(0.0990311 - 0.433884i) q^{53} +(-0.193096 - 0.400969i) q^{61} +(0.222521 + 0.974928i) q^{64} +(2.02446 - 0.974928i) q^{65} +(-0.193096 + 0.400969i) q^{68} +(-0.974928 + 0.222521i) q^{72} +(-0.433884 + 0.0990311i) q^{73} +(-1.12349 - 1.40881i) q^{74} +(1.12349 - 0.541044i) q^{80} +(-0.222521 - 0.974928i) q^{81} +(0.400969 - 1.75676i) q^{82} +(0.541044 + 0.123490i) q^{85} +(1.21572 + 0.277479i) q^{89} +(0.541044 + 1.12349i) q^{90} +(-0.781831 + 1.62349i) q^{97} +(0.781831 - 0.623490i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+2q4+4q5+2q9+4q132q16+10q206q2510q342q36+10q452q494q52+10q53+2q64+6q654q74+4q802q81+4q82+O(q100) 12 q + 2 q^{4} + 4 q^{5} + 2 q^{9} + 4 q^{13} - 2 q^{16} + 10 q^{20} - 6 q^{25} - 10 q^{34} - 2 q^{36} + 10 q^{45} - 2 q^{49} - 4 q^{52} + 10 q^{53} + 2 q^{64} + 6 q^{65} - 4 q^{74} + 4 q^{80} - 2 q^{81}+ \cdots - 4 q^{82}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3364Z)×\left(\mathbb{Z}/3364\mathbb{Z}\right)^\times.

nn 16831683 25252525
χ(n)\chi(n) 1-1 e(114)e\left(\frac{1}{14}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.974928 + 0.222521i 0.974928 + 0.222521i
33 0 0 −0.433884 0.900969i 0.642857π-0.642857\pi
0.433884 + 0.900969i 0.357143π0.357143\pi
44 0.900969 + 0.433884i 0.900969 + 0.433884i
55 0.277479 1.21572i 0.277479 1.21572i −0.623490 0.781831i 0.714286π-0.714286\pi
0.900969 0.433884i 0.142857π-0.142857\pi
66 0 0
77 0 0 0.900969 0.433884i 0.142857π-0.142857\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
88 0.781831 + 0.623490i 0.781831 + 0.623490i
99 −0.623490 + 0.781831i −0.623490 + 0.781831i
1010 0.541044 1.12349i 0.541044 1.12349i
1111 0 0 0.781831 0.623490i 0.214286π-0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
1212 0 0
1313 1.12349 + 1.40881i 1.12349 + 1.40881i 0.900969 + 0.433884i 0.142857π0.142857\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
1414 0 0
1515 0 0
1616 0.623490 + 0.781831i 0.623490 + 0.781831i
1717 0.445042i 0.445042i 0.974928 + 0.222521i 0.0714286π0.0714286\pi
−0.974928 + 0.222521i 0.928571π0.928571\pi
1818 −0.781831 + 0.623490i −0.781831 + 0.623490i
1919 0 0 0.433884 0.900969i 0.357143π-0.357143\pi
−0.433884 + 0.900969i 0.642857π0.642857\pi
2020 0.777479 0.974928i 0.777479 0.974928i
2121 0 0
2222 0 0
2323 0 0 −0.222521 0.974928i 0.571429π-0.571429\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
2424 0 0
2525 −0.500000 0.240787i −0.500000 0.240787i
2626 0.781831 + 1.62349i 0.781831 + 1.62349i
2727 0 0
2828 0 0
2929 0 0
3030 0 0
3131 0 0 −0.974928 0.222521i 0.928571π-0.928571\pi
0.974928 + 0.222521i 0.0714286π0.0714286\pi
3232 0.433884 + 0.900969i 0.433884 + 0.900969i
3333 0 0
3434 −0.0990311 + 0.433884i −0.0990311 + 0.433884i
3535 0 0
3636 −0.900969 + 0.433884i −0.900969 + 0.433884i
3737 −1.40881 1.12349i −1.40881 1.12349i −0.974928 0.222521i 0.928571π-0.928571\pi
−0.433884 0.900969i 0.642857π-0.642857\pi
3838 0 0
3939 0 0
4040 0.974928 0.777479i 0.974928 0.777479i
4141 1.80194i 1.80194i −0.433884 0.900969i 0.642857π-0.642857\pi
0.433884 0.900969i 0.357143π-0.357143\pi
4242 0 0
4343 0 0 0.974928 0.222521i 0.0714286π-0.0714286\pi
−0.974928 + 0.222521i 0.928571π0.928571\pi
4444 0 0
4545 0.777479 + 0.974928i 0.777479 + 0.974928i
4646 0 0
4747 0 0 0.781831 0.623490i 0.214286π-0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
4848 0 0
4949 0.623490 0.781831i 0.623490 0.781831i
5050 −0.433884 0.346011i −0.433884 0.346011i
5151 0 0
5252 0.400969 + 1.75676i 0.400969 + 1.75676i
5353 0.0990311 0.433884i 0.0990311 0.433884i −0.900969 0.433884i 0.857143π-0.857143\pi
1.00000 00
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 −0.193096 0.400969i −0.193096 0.400969i 0.781831 0.623490i 0.214286π-0.214286\pi
−0.974928 + 0.222521i 0.928571π0.928571\pi
6262 0 0
6363 0 0
6464 0.222521 + 0.974928i 0.222521 + 0.974928i
6565 2.02446 0.974928i 2.02446 0.974928i
6666 0 0
6767 0 0 0.623490 0.781831i 0.285714π-0.285714\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
6868 −0.193096 + 0.400969i −0.193096 + 0.400969i
6969 0 0
7070 0 0
7171 0 0 −0.623490 0.781831i 0.714286π-0.714286\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
7272 −0.974928 + 0.222521i −0.974928 + 0.222521i
7373 −0.433884 + 0.0990311i −0.433884 + 0.0990311i −0.433884 0.900969i 0.642857π-0.642857\pi
1.00000i 0.5π0.5\pi
7474 −1.12349 1.40881i −1.12349 1.40881i
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 −0.781831 0.623490i 0.785714π-0.785714\pi
0.781831 + 0.623490i 0.214286π0.214286\pi
8080 1.12349 0.541044i 1.12349 0.541044i
8181 −0.222521 0.974928i −0.222521 0.974928i
8282 0.400969 1.75676i 0.400969 1.75676i
8383 0 0 −0.900969 0.433884i 0.857143π-0.857143\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
8484 0 0
8585 0.541044 + 0.123490i 0.541044 + 0.123490i
8686 0 0
8787 0 0
8888 0 0
8989 1.21572 + 0.277479i 1.21572 + 0.277479i 0.781831 0.623490i 0.214286π-0.214286\pi
0.433884 + 0.900969i 0.357143π0.357143\pi
9090 0.541044 + 1.12349i 0.541044 + 1.12349i
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 −0.781831 + 1.62349i −0.781831 + 1.62349i 1.00000i 0.5π0.5\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
9898 0.781831 0.623490i 0.781831 0.623490i
9999 0 0
100100 −0.346011 0.433884i −0.346011 0.433884i
101101 −1.21572 + 0.277479i −1.21572 + 0.277479i −0.781831 0.623490i 0.785714π-0.785714\pi
−0.433884 + 0.900969i 0.642857π0.642857\pi
102102 0 0
103103 0 0 −0.623490 0.781831i 0.714286π-0.714286\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
104104 1.80194i 1.80194i
105105 0 0
106106 0.193096 0.400969i 0.193096 0.400969i
107107 0 0 0.623490 0.781831i 0.285714π-0.285714\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
108108 0 0
109109 −1.62349 + 0.781831i −1.62349 + 0.781831i −0.623490 + 0.781831i 0.714286π0.714286\pi
−1.00000 1.00000π1.00000\pi
110110 0 0
111111 0 0
112112 0 0
113113 −0.541044 1.12349i −0.541044 1.12349i −0.974928 0.222521i 0.928571π-0.928571\pi
0.433884 0.900969i 0.357143π-0.357143\pi
114114 0 0
115115 0 0
116116 0 0
117117 −1.80194 −1.80194
118118 0 0
119119 0 0
120120 0 0
121121 0.222521 0.974928i 0.222521 0.974928i
122122 −0.0990311 0.433884i −0.0990311 0.433884i
123123 0 0
124124 0 0
125125 0.346011 0.433884i 0.346011 0.433884i
126126 0 0
127127 0 0 0.781831 0.623490i 0.214286π-0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
128128 1.00000i 1.00000i
129129 0 0
130130 2.19064 0.500000i 2.19064 0.500000i
131131 0 0 0.974928 0.222521i 0.0714286π-0.0714286\pi
−0.974928 + 0.222521i 0.928571π0.928571\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 −0.277479 + 0.347948i −0.277479 + 0.347948i
137137 −0.974928 0.777479i −0.974928 0.777479i 1.00000i 0.5π-0.5\pi
−0.974928 + 0.222521i 0.928571π0.928571\pi
138138 0 0
139139 0 0 −0.222521 0.974928i 0.571429π-0.571429\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 −1.00000 −1.00000
145145 0 0
146146 −0.445042 −0.445042
147147 0 0
148148 −0.781831 1.62349i −0.781831 1.62349i
149149 −0.400969 0.193096i −0.400969 0.193096i 0.222521 0.974928i 0.428571π-0.428571\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
150150 0 0
151151 0 0 −0.222521 0.974928i 0.571429π-0.571429\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
152152 0 0
153153 −0.347948 0.277479i −0.347948 0.277479i
154154 0 0
155155 0 0
156156 0 0
157157 1.24698i 1.24698i 0.781831 + 0.623490i 0.214286π0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
158158 0 0
159159 0 0
160160 1.21572 0.277479i 1.21572 0.277479i
161161 0 0
162162 1.00000i 1.00000i
163163 0 0 0.781831 0.623490i 0.214286π-0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
164164 0.781831 1.62349i 0.781831 1.62349i
165165 0 0
166166 0 0
167167 0 0 0.900969 0.433884i 0.142857π-0.142857\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
168168 0 0
169169 −0.500000 + 2.19064i −0.500000 + 2.19064i
170170 0.500000 + 0.240787i 0.500000 + 0.240787i
171171 0 0
172172 0 0
173173 0.445042 0.445042 0.222521 0.974928i 0.428571π-0.428571\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 1.12349 + 0.541044i 1.12349 + 0.541044i
179179 0 0 0.222521 0.974928i 0.428571π-0.428571\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
180180 0.277479 + 1.21572i 0.277479 + 1.21572i
181181 −1.12349 + 0.541044i −1.12349 + 0.541044i −0.900969 0.433884i 0.857143π-0.857143\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
182182 0 0
183183 0 0
184184 0 0
185185 −1.75676 + 1.40097i −1.75676 + 1.40097i
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 −0.541044 + 1.12349i −0.541044 + 1.12349i 0.433884 + 0.900969i 0.357143π0.357143\pi
−0.974928 + 0.222521i 0.928571π0.928571\pi
194194 −1.12349 + 1.40881i −1.12349 + 1.40881i
195195 0 0
196196 0.900969 0.433884i 0.900969 0.433884i
197197 −0.277479 1.21572i −0.277479 1.21572i −0.900969 0.433884i 0.857143π-0.857143\pi
0.623490 0.781831i 0.285714π-0.285714\pi
198198 0 0
199199 0 0 −0.900969 0.433884i 0.857143π-0.857143\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
200200 −0.240787 0.500000i −0.240787 0.500000i
201201 0 0
202202 −1.24698 −1.24698
203203 0 0
204204 0 0
205205 −2.19064 0.500000i −2.19064 0.500000i
206206 0 0
207207 0 0
208208 −0.400969 + 1.75676i −0.400969 + 1.75676i
209209 0 0
210210 0 0
211211 0 0 −0.781831 0.623490i 0.785714π-0.785714\pi
0.781831 + 0.623490i 0.214286π0.214286\pi
212212 0.277479 0.347948i 0.277479 0.347948i
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 −1.75676 + 0.400969i −1.75676 + 0.400969i
219219 0 0
220220 0 0
221221 −0.626980 + 0.500000i −0.626980 + 0.500000i
222222 0 0
223223 0 0 0.623490 0.781831i 0.285714π-0.285714\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
224224 0 0
225225 0.500000 0.240787i 0.500000 0.240787i
226226 −0.277479 1.21572i −0.277479 1.21572i
227227 0 0 0.222521 0.974928i 0.428571π-0.428571\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
228228 0 0
229229 0.193096 + 0.400969i 0.193096 + 0.400969i 0.974928 0.222521i 0.0714286π-0.0714286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
230230 0 0
231231 0 0
232232 0 0
233233 1.24698 1.24698 0.623490 0.781831i 0.285714π-0.285714\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
234234 −1.75676 0.400969i −1.75676 0.400969i
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 0.900969 0.433884i 0.142857π-0.142857\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
240240 0 0
241241 0.277479 0.347948i 0.277479 0.347948i −0.623490 0.781831i 0.714286π-0.714286\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
242242 0.433884 0.900969i 0.433884 0.900969i
243243 0 0
244244 0.445042i 0.445042i
245245 −0.777479 0.974928i −0.777479 0.974928i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0.433884 0.346011i 0.433884 0.346011i
251251 0 0 0.433884 0.900969i 0.357143π-0.357143\pi
−0.433884 + 0.900969i 0.642857π0.642857\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 −0.222521 + 0.974928i −0.222521 + 0.974928i
257257 1.62349 + 0.781831i 1.62349 + 0.781831i 1.00000 00
0.623490 + 0.781831i 0.285714π0.285714\pi
258258 0 0
259259 0 0
260260 2.24698 2.24698
261261 0 0
262262 0 0
263263 0 0 −0.974928 0.222521i 0.928571π-0.928571\pi
0.974928 + 0.222521i 0.0714286π0.0714286\pi
264264 0 0
265265 −0.500000 0.240787i −0.500000 0.240787i
266266 0 0
267267 0 0
268268 0 0
269269 0.974928 + 0.777479i 0.974928 + 0.777479i 0.974928 0.222521i 0.0714286π-0.0714286\pi
1.00000i 0.5π0.5\pi
270270 0 0
271271 0 0 0.433884 0.900969i 0.357143π-0.357143\pi
−0.433884 + 0.900969i 0.642857π0.642857\pi
272272 −0.347948 + 0.277479i −0.347948 + 0.277479i
273273 0 0
274274 −0.777479 0.974928i −0.777479 0.974928i
275275 0 0
276276 0 0
277277 −0.277479 0.347948i −0.277479 0.347948i 0.623490 0.781831i 0.285714π-0.285714\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
278278 0 0
279279 0 0
280280 0 0
281281 −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i 0.571429π0.571429\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
282282 0 0
283283 0 0 0.900969 0.433884i 0.142857π-0.142857\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 −0.974928 0.222521i −0.974928 0.222521i
289289 0.801938 0.801938
290290 0 0
291291 0 0
292292 −0.433884 0.0990311i −0.433884 0.0990311i
293293 −0.781831 1.62349i −0.781831 1.62349i −0.781831 0.623490i 0.785714π-0.785714\pi
1.00000i 0.5π-0.5\pi
294294 0 0
295295 0 0
296296 −0.400969 1.75676i −0.400969 1.75676i
297297 0 0
298298 −0.347948 0.277479i −0.347948 0.277479i
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 −0.541044 + 0.123490i −0.541044 + 0.123490i
306306 −0.277479 0.347948i −0.277479 0.347948i
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 −0.781831 0.623490i 0.785714π-0.785714\pi
0.781831 + 0.623490i 0.214286π0.214286\pi
312312 0 0
313313 0.0990311 + 0.433884i 0.0990311 + 0.433884i 1.00000 00
−0.900969 + 0.433884i 0.857143π0.857143\pi
314314 −0.277479 + 1.21572i −0.277479 + 1.21572i
315315 0 0
316316 0 0
317317 0.433884 + 0.0990311i 0.433884 + 0.0990311i 0.433884 0.900969i 0.357143π-0.357143\pi
1.00000i 0.5π0.5\pi
318318 0 0
319319 0 0
320320 1.24698 1.24698
321321 0 0
322322 0 0
323323 0 0
324324 0.222521 0.974928i 0.222521 0.974928i
325325 −0.222521 0.974928i −0.222521 0.974928i
326326 0 0
327327 0 0
328328 1.12349 1.40881i 1.12349 1.40881i
329329 0 0
330330 0 0
331331 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
332332 0 0
333333 1.75676 0.400969i 1.75676 0.400969i
334334 0 0
335335 0 0
336336 0 0
337337 1.40881 1.12349i 1.40881 1.12349i 0.433884 0.900969i 0.357143π-0.357143\pi
0.974928 0.222521i 0.0714286π-0.0714286\pi
338338 −0.974928 + 2.02446i −0.974928 + 2.02446i
339339 0 0
340340 0.433884 + 0.346011i 0.433884 + 0.346011i
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0.433884 + 0.0990311i 0.433884 + 0.0990311i
347347 0 0 1.00000 00
−1.00000 π\pi
348348 0 0
349349 −0.445042 −0.445042 −0.222521 0.974928i 0.571429π-0.571429\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
350350 0 0
351351 0 0
352352 0 0
353353 −0.400969 + 1.75676i −0.400969 + 1.75676i 0.222521 + 0.974928i 0.428571π0.428571\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
354354 0 0
355355 0 0
356356 0.974928 + 0.777479i 0.974928 + 0.777479i
357357 0 0
358358 0 0
359359 0 0 0.781831 0.623490i 0.214286π-0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
360360 1.24698i 1.24698i
361361 −0.623490 0.781831i −0.623490 0.781831i
362362 −1.21572 + 0.277479i −1.21572 + 0.277479i
363363 0 0
364364 0 0
365365 0.554958i 0.554958i
366366 0 0
367367 0 0 0.433884 0.900969i 0.357143π-0.357143\pi
−0.433884 + 0.900969i 0.642857π0.642857\pi
368368 0 0
369369 1.40881 + 1.12349i 1.40881 + 1.12349i
370370 −2.02446 + 0.974928i −2.02446 + 0.974928i
371371 0 0
372372 0 0
373373 −1.12349 0.541044i −1.12349 0.541044i −0.222521 0.974928i 0.571429π-0.571429\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 −0.974928 0.222521i 0.928571π-0.928571\pi
0.974928 + 0.222521i 0.0714286π0.0714286\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 −0.222521 0.974928i 0.571429π-0.571429\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
384384 0 0
385385 0 0
386386 −0.777479 + 0.974928i −0.777479 + 0.974928i
387387 0 0
388388 −1.40881 + 1.12349i −1.40881 + 1.12349i
389389 0.445042i 0.445042i −0.974928 0.222521i 0.928571π-0.928571\pi
0.974928 0.222521i 0.0714286π-0.0714286\pi
390390 0 0
391391 0 0
392392 0.974928 0.222521i 0.974928 0.222521i
393393 0 0
394394 1.24698i 1.24698i
395395 0 0
396396 0 0
397397 −0.277479 + 0.347948i −0.277479 + 0.347948i −0.900969 0.433884i 0.857143π-0.857143\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
398398 0 0
399399 0 0
400400 −0.123490 0.541044i −0.123490 0.541044i
401401 0.400969 1.75676i 0.400969 1.75676i −0.222521 0.974928i 0.571429π-0.571429\pi
0.623490 0.781831i 0.285714π-0.285714\pi
402402 0 0
403403 0 0
404404 −1.21572 0.277479i −1.21572 0.277479i
405405 −1.24698 −1.24698
406406 0 0
407407 0 0
408408 0 0
409409 0.541044 + 1.12349i 0.541044 + 1.12349i 0.974928 + 0.222521i 0.0714286π0.0714286\pi
−0.433884 + 0.900969i 0.642857π0.642857\pi
410410 −2.02446 0.974928i −2.02446 0.974928i
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 −0.781831 + 1.62349i −0.781831 + 1.62349i
417417 0 0
418418 0 0
419419 0 0 −0.623490 0.781831i 0.714286π-0.714286\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
420420 0 0
421421 1.94986 0.445042i 1.94986 0.445042i 0.974928 0.222521i 0.0714286π-0.0714286\pi
0.974928 0.222521i 0.0714286π-0.0714286\pi
422422 0 0
423423 0 0
424424 0.347948 0.277479i 0.347948 0.277479i
425425 0.107160 0.222521i 0.107160 0.222521i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 −0.900969 0.433884i 0.857143π-0.857143\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
432432 0 0
433433 −1.94986 0.445042i −1.94986 0.445042i −0.974928 0.222521i 0.928571π-0.928571\pi
−0.974928 0.222521i 0.928571π-0.928571\pi
434434 0 0
435435 0 0
436436 −1.80194 −1.80194
437437 0 0
438438 0 0
439439 0 0 −0.900969 0.433884i 0.857143π-0.857143\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
440440 0 0
441441 0.222521 + 0.974928i 0.222521 + 0.974928i
442442 −0.722521 + 0.347948i −0.722521 + 0.347948i
443443 0 0 −0.781831 0.623490i 0.785714π-0.785714\pi
0.781831 + 0.623490i 0.214286π0.214286\pi
444444 0 0
445445 0.674671 1.40097i 0.674671 1.40097i
446446 0 0
447447 0 0
448448 0 0
449449 0.433884 0.0990311i 0.433884 0.0990311i 1.00000i 0.5π-0.5\pi
0.433884 + 0.900969i 0.357143π0.357143\pi
450450 0.541044 0.123490i 0.541044 0.123490i
451451 0 0
452452 1.24698i 1.24698i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 1.12349 0.541044i 1.12349 0.541044i 0.222521 0.974928i 0.428571π-0.428571\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
458458 0.0990311 + 0.433884i 0.0990311 + 0.433884i
459459 0 0
460460 0 0
461461 −0.867767 1.80194i −0.867767 1.80194i −0.433884 0.900969i 0.642857π-0.642857\pi
−0.433884 0.900969i 0.642857π-0.642857\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 1.21572 + 0.277479i 1.21572 + 0.277479i
467467 0 0 −0.433884 0.900969i 0.642857π-0.642857\pi
0.433884 + 0.900969i 0.357143π0.357143\pi
468468 −1.62349 0.781831i −1.62349 0.781831i
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0.277479 + 0.347948i 0.277479 + 0.347948i
478478 0 0
479479 0 0 0.974928 0.222521i 0.0714286π-0.0714286\pi
−0.974928 + 0.222521i 0.928571π0.928571\pi
480480 0 0
481481 3.24698i 3.24698i
482482 0.347948 0.277479i 0.347948 0.277479i
483483 0 0
484484 0.623490 0.781831i 0.623490 0.781831i
485485 1.75676 + 1.40097i 1.75676 + 1.40097i
486486 0 0
487487 0 0 −0.222521 0.974928i 0.571429π-0.571429\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
488488 0.0990311 0.433884i 0.0990311 0.433884i
489489 0 0
490490 −0.541044 1.12349i −0.541044 1.12349i
491491 0 0 −0.974928 0.222521i 0.928571π-0.928571\pi
0.974928 + 0.222521i 0.0714286π0.0714286\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 −0.222521 0.974928i 0.571429π-0.571429\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
500500 0.500000 0.240787i 0.500000 0.240787i
501501 0 0
502502 0 0
503503 0 0 0.433884 0.900969i 0.357143π-0.357143\pi
−0.433884 + 0.900969i 0.642857π0.642857\pi
504504 0 0
505505 1.55496i 1.55496i
506506 0 0
507507 0 0
508508 0 0
509509 −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i 0.857143π-0.857143\pi
−0.222521 0.974928i 0.571429π-0.571429\pi
510510 0 0
511511 0 0
512512 −0.433884 + 0.900969i −0.433884 + 0.900969i
513513 0 0
514514 1.40881 + 1.12349i 1.40881 + 1.12349i
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 2.19064 + 0.500000i 2.19064 + 0.500000i
521521 −1.24698 −1.24698 −0.623490 0.781831i 0.714286π-0.714286\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −0.900969 + 0.433884i −0.900969 + 0.433884i
530530 −0.433884 0.346011i −0.433884 0.346011i
531531 0 0
532532 0 0
533533 2.53859 2.02446i 2.53859 2.02446i
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0.777479 + 0.974928i 0.777479 + 0.974928i
539539 0 0
540540 0 0
541541 0.781831 1.62349i 0.781831 1.62349i 1.00000i 0.5π-0.5\pi
0.781831 0.623490i 0.214286π-0.214286\pi
542542 0 0
543543 0 0
544544 −0.400969 + 0.193096i −0.400969 + 0.193096i
545545 0.500000 + 2.19064i 0.500000 + 2.19064i
546546 0 0
547547 0 0 −0.900969 0.433884i 0.857143π-0.857143\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
548548 −0.541044 1.12349i −0.541044 1.12349i
549549 0.433884 + 0.0990311i 0.433884 + 0.0990311i
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 −0.193096 0.400969i −0.193096 0.400969i
555555 0 0
556556 0 0
557557 −0.400969 1.75676i −0.400969 1.75676i −0.623490 0.781831i 0.714286π-0.714286\pi
0.222521 0.974928i 0.428571π-0.428571\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 −1.40881 + 1.12349i −1.40881 + 1.12349i
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 −1.51597 + 0.346011i −1.51597 + 0.346011i
566566 0 0
567567 0 0
568568 0 0
569569 1.40881 1.12349i 1.40881 1.12349i 0.433884 0.900969i 0.357143π-0.357143\pi
0.974928 0.222521i 0.0714286π-0.0714286\pi
570570 0 0
571571 0 0 0.623490 0.781831i 0.285714π-0.285714\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 −0.900969 0.433884i −0.900969 0.433884i
577577 0.781831 + 1.62349i 0.781831 + 1.62349i 0.781831 + 0.623490i 0.214286π0.214286\pi
1.00000i 0.5π0.5\pi
578578 0.781831 + 0.178448i 0.781831 + 0.178448i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 −0.400969 0.193096i −0.400969 0.193096i
585585 −0.500000 + 2.19064i −0.500000 + 2.19064i
586586 −0.400969 1.75676i −0.400969 1.75676i
587587 0 0 0.900969 0.433884i 0.142857π-0.142857\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 1.80194i 1.80194i
593593 0.277479 + 0.347948i 0.277479 + 0.347948i 0.900969 0.433884i 0.142857π-0.142857\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
594594 0 0
595595 0 0
596596 −0.277479 0.347948i −0.277479 0.347948i
597597 0 0
598598 0 0
599599 0 0 0.433884 0.900969i 0.357143π-0.357143\pi
−0.433884 + 0.900969i 0.642857π0.642857\pi
600600 0 0
601601 −1.56366 1.24698i −1.56366 1.24698i −0.781831 0.623490i 0.785714π-0.785714\pi
−0.781831 0.623490i 0.785714π-0.785714\pi
602602 0 0
603603 0 0
604604 0 0
605605 −1.12349 0.541044i −1.12349 0.541044i
606606 0 0
607607 0 0 −0.974928 0.222521i 0.928571π-0.928571\pi
0.974928 + 0.222521i 0.0714286π0.0714286\pi
608608 0 0
609609 0 0
610610 −0.554958 −0.554958
611611 0 0
612612 −0.193096 0.400969i −0.193096 0.400969i
613613 −1.62349 0.781831i −1.62349 0.781831i −0.623490 0.781831i 0.714286π-0.714286\pi
−1.00000 π\pi
614614 0 0
615615 0 0
616616 0 0
617617 0.974928 + 0.777479i 0.974928 + 0.777479i 0.974928 0.222521i 0.0714286π-0.0714286\pi
1.00000i 0.5π0.5\pi
618618 0 0
619619 0 0 0.433884 0.900969i 0.357143π-0.357143\pi
−0.433884 + 0.900969i 0.642857π0.642857\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −0.777479 0.974928i −0.777479 0.974928i
626626 0.445042i 0.445042i
627627 0 0
628628 −0.541044 + 1.12349i −0.541044 + 1.12349i
629629 0.500000 0.626980i 0.500000 0.626980i
630630 0 0
631631 0 0 0.900969 0.433884i 0.142857π-0.142857\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
632632 0 0
633633 0 0
634634 0.400969 + 0.193096i 0.400969 + 0.193096i
635635 0 0
636636 0 0
637637 1.80194 1.80194
638638 0 0
639639 0 0
640640 1.21572 + 0.277479i 1.21572 + 0.277479i
641641 0.867767 + 1.80194i 0.867767 + 1.80194i 0.433884 + 0.900969i 0.357143π0.357143\pi
0.433884 + 0.900969i 0.357143π0.357143\pi
642642 0 0
643643 0 0 0.222521 0.974928i 0.428571π-0.428571\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 0.623490 0.781831i 0.285714π-0.285714\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
648648 0.433884 0.900969i 0.433884 0.900969i
649649 0 0
650650 1.00000i 1.00000i
651651 0 0
652652 0 0
653653 −1.75676 + 0.400969i −1.75676 + 0.400969i −0.974928 0.222521i 0.928571π-0.928571\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
654654 0 0
655655 0 0
656656 1.40881 1.12349i 1.40881 1.12349i
657657 0.193096 0.400969i 0.193096 0.400969i
658658 0 0
659659 0 0 −0.781831 0.623490i 0.785714π-0.785714\pi
0.781831 + 0.623490i 0.214286π0.214286\pi
660660 0 0
661661 0.400969 + 1.75676i 0.400969 + 1.75676i 0.623490 + 0.781831i 0.285714π0.285714\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 1.80194 1.80194
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0.277479 + 1.21572i 0.277479 + 1.21572i 0.900969 + 0.433884i 0.142857π0.142857\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
674674 1.62349 0.781831i 1.62349 0.781831i
675675 0 0
676676 −1.40097 + 1.75676i −1.40097 + 1.75676i
677677 0.541044 1.12349i 0.541044 1.12349i −0.433884 0.900969i 0.642857π-0.642857\pi
0.974928 0.222521i 0.0714286π-0.0714286\pi
678678 0 0
679679 0 0
680680 0.346011 + 0.433884i 0.346011 + 0.433884i
681681 0 0
682682 0 0
683683 0 0 −0.623490 0.781831i 0.714286π-0.714286\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
684684 0 0
685685 −1.21572 + 0.969501i −1.21572 + 0.969501i
686686 0 0
687687 0 0
688688 0 0
689689 0.722521 0.347948i 0.722521 0.347948i
690690 0 0
691691 0 0 0.222521 0.974928i 0.428571π-0.428571\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
692692 0.400969 + 0.193096i 0.400969 + 0.193096i
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0.801938 0.801938
698698 −0.433884 0.0990311i −0.433884 0.0990311i
699699 0 0
700700 0 0
701701 −0.0990311 + 0.433884i −0.0990311 + 0.433884i 0.900969 + 0.433884i 0.142857π0.142857\pi
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 −0.781831 + 1.62349i −0.781831 + 1.62349i
707707 0 0
708708 0 0
709709 −0.777479 0.974928i −0.777479 0.974928i 0.222521 0.974928i 0.428571π-0.428571\pi
−1.00000 π\pi
710710 0 0
711711 0 0
712712 0.777479 + 0.974928i 0.777479 + 0.974928i
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 −0.222521 0.974928i 0.571429π-0.571429\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
720720 −0.277479 + 1.21572i −0.277479 + 1.21572i
721721 0 0
722722 −0.433884 0.900969i −0.433884 0.900969i
723723 0 0
724724 −1.24698 −1.24698
725725 0 0
726726 0 0
727727 0 0 −0.974928 0.222521i 0.928571π-0.928571\pi
0.974928 + 0.222521i 0.0714286π0.0714286\pi
728728 0 0
729729 0.900969 + 0.433884i 0.900969 + 0.433884i
730730 −0.123490 + 0.541044i −0.123490 + 0.541044i
731731 0 0
732732 0 0
733733 1.56366 + 1.24698i 1.56366 + 1.24698i 0.781831 + 0.623490i 0.214286π0.214286\pi
0.781831 + 0.623490i 0.214286π0.214286\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 1.12349 + 1.40881i 1.12349 + 1.40881i
739739 0 0 0.974928 0.222521i 0.0714286π-0.0714286\pi
−0.974928 + 0.222521i 0.928571π0.928571\pi
740740 −2.19064 + 0.500000i −2.19064 + 0.500000i
741741 0 0
742742 0 0
743743 0 0 0.781831 0.623490i 0.214286π-0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
744744 0 0
745745 −0.346011 + 0.433884i −0.346011 + 0.433884i
746746 −0.974928 0.777479i −0.974928 0.777479i
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 −0.433884 0.900969i 0.642857π-0.642857\pi
0.433884 + 0.900969i 0.357143π0.357143\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0.541044 + 1.12349i 0.541044 + 1.12349i 0.974928 + 0.222521i 0.0714286π0.0714286\pi
−0.433884 + 0.900969i 0.642857π0.642857\pi
758758 0 0
759759 0 0
760760 0 0
761761 −1.12349 + 0.541044i −1.12349 + 0.541044i −0.900969 0.433884i 0.857143π-0.857143\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
762762 0 0
763763 0 0
764764 0 0
765765 −0.433884 + 0.346011i −0.433884 + 0.346011i
766766 0 0
767767 0 0
768768 0 0
769769 1.21572 0.277479i 1.21572 0.277479i 0.433884 0.900969i 0.357143π-0.357143\pi
0.781831 + 0.623490i 0.214286π0.214286\pi
770770 0 0
771771 0 0
772772 −0.974928 + 0.777479i −0.974928 + 0.777479i
773773 −0.541044 + 1.12349i −0.541044 + 1.12349i 0.433884 + 0.900969i 0.357143π0.357143\pi
−0.974928 + 0.222521i 0.928571π0.928571\pi
774774 0 0
775775 0 0
776776 −1.62349 + 0.781831i −1.62349 + 0.781831i
777777 0 0
778778 0.0990311 0.433884i 0.0990311 0.433884i
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 1.00000 1.00000
785785 1.51597 + 0.346011i 1.51597 + 0.346011i
786786 0 0
787787 0 0 −0.900969 0.433884i 0.857143π-0.857143\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
788788 0.277479 1.21572i 0.277479 1.21572i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0.347948 0.722521i 0.347948 0.722521i
794794 −0.347948 + 0.277479i −0.347948 + 0.277479i
795795 0 0
796796 0 0
797797 1.75676 0.400969i 1.75676 0.400969i 0.781831 0.623490i 0.214286π-0.214286\pi
0.974928 + 0.222521i 0.0714286π0.0714286\pi
798798 0 0
799799 0 0
800800 0.554958i 0.554958i
801801 −0.974928 + 0.777479i −0.974928 + 0.777479i
802802 0.781831 1.62349i 0.781831 1.62349i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 −1.12349 0.541044i −1.12349 0.541044i
809809 0.781831 + 1.62349i 0.781831 + 1.62349i 0.781831 + 0.623490i 0.214286π0.214286\pi
1.00000i 0.5π0.5\pi
810810 −1.21572 0.277479i −1.21572 0.277479i
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0.277479 + 1.21572i 0.277479 + 1.21572i
819819 0 0
820820 −1.75676 1.40097i −1.75676 1.40097i
821821 0.277479 0.347948i 0.277479 0.347948i −0.623490 0.781831i 0.714286π-0.714286\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
822822 0 0
823823 0 0 0.781831 0.623490i 0.214286π-0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 0.974928 0.222521i 0.0714286π-0.0714286\pi
−0.974928 + 0.222521i 0.928571π0.928571\pi
828828 0 0
829829 1.80194i 1.80194i 0.433884 + 0.900969i 0.357143π0.357143\pi
−0.433884 + 0.900969i 0.642857π0.642857\pi
830830 0 0
831831 0 0
832832 −1.12349 + 1.40881i −1.12349 + 1.40881i
833833 0.347948 + 0.277479i 0.347948 + 0.277479i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.974928 0.222521i 0.928571π-0.928571\pi
0.974928 + 0.222521i 0.0714286π0.0714286\pi
840840 0 0
841841 0 0
842842 2.00000 2.00000
843843 0 0
844844 0 0
845845 2.52446 + 1.21572i 2.52446 + 1.21572i
846846 0 0
847847 0 0
848848 0.400969 0.193096i 0.400969 0.193096i
849849 0 0
850850 0.153989 0.193096i 0.153989 0.193096i
851851 0 0
852852 0 0
853853 1.24698i 1.24698i 0.781831 + 0.623490i 0.214286π0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
854854 0 0
855855 0 0
856856 0 0
857857 1.24698 + 1.56366i 1.24698 + 1.56366i 0.623490 + 0.781831i 0.285714π0.285714\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
858858 0 0
859859 0 0 0.781831 0.623490i 0.214286π-0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 0.900969 0.433884i 0.142857π-0.142857\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
864864 0 0
865865 0.123490 0.541044i 0.123490 0.541044i
866866 −1.80194 0.867767i −1.80194 0.867767i
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 −1.75676 0.400969i −1.75676 0.400969i
873873 −0.781831 1.62349i −0.781831 1.62349i
874874 0 0
875875 0 0
876876 0 0
877877 −1.80194 + 0.867767i −1.80194 + 0.867767i −0.900969 + 0.433884i 0.857143π0.857143\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
878878 0 0
879879 0 0
880880 0 0
881881 −0.347948 + 0.277479i −0.347948 + 0.277479i −0.781831 0.623490i 0.785714π-0.785714\pi
0.433884 + 0.900969i 0.357143π0.357143\pi
882882 1.00000i 1.00000i
883883 0 0 −0.623490 0.781831i 0.714286π-0.714286\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
884884 −0.781831 + 0.178448i −0.781831 + 0.178448i
885885 0 0
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 0.969501 1.21572i 0.969501 1.21572i
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0.445042 0.445042
899899 0 0
900900 0.554958 0.554958
901901 0.193096 + 0.0440730i 0.193096 + 0.0440730i
902902 0 0
903903 0 0
904904 0.277479 1.21572i 0.277479 1.21572i
905905 0.346011 + 1.51597i 0.346011 + 1.51597i
906906 0 0
907907 0 0 −0.781831 0.623490i 0.785714π-0.785714\pi
0.781831 + 0.623490i 0.214286π0.214286\pi
908908 0 0
909909 0.541044 1.12349i 0.541044 1.12349i
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 1.21572 0.277479i 1.21572 0.277479i
915915 0 0
916916 0.445042i 0.445042i
917917 0 0
918918 0 0
919919 0 0 0.623490 0.781831i 0.285714π-0.285714\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
920920 0 0
921921 0 0
922922 −0.445042 1.94986i −0.445042 1.94986i
923923 0 0
924924 0 0
925925 0.433884 + 0.900969i 0.433884 + 0.900969i
926926 0 0
927927 0 0
928928 0 0
929929 −1.80194 −1.80194 −0.900969 0.433884i 0.857143π-0.857143\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
930930 0 0
931931 0 0
932932 1.12349 + 0.541044i 1.12349 + 0.541044i
933933 0 0
934934 0 0
935935 0 0
936936 −1.40881 1.12349i −1.40881 1.12349i
937937 −0.777479 + 0.974928i −0.777479 + 0.974928i 0.222521 + 0.974928i 0.428571π0.428571\pi
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 −1.24698 1.56366i −1.24698 1.56366i −0.623490 0.781831i 0.714286π-0.714286\pi
−0.623490 0.781831i 0.714286π-0.714286\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 0.433884 0.900969i 0.357143π-0.357143\pi
−0.433884 + 0.900969i 0.642857π0.642857\pi
948948 0 0
949949 −0.626980 0.500000i −0.626980 0.500000i
950950 0 0
951951 0 0
952952 0 0
953953 1.62349 + 0.781831i 1.62349 + 0.781831i 1.00000 00
0.623490 + 0.781831i 0.285714π0.285714\pi
954954 0.193096 + 0.400969i 0.193096 + 0.400969i
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0.900969 + 0.433884i 0.900969 + 0.433884i
962962 0.722521 3.16557i 0.722521 3.16557i
963963 0 0
964964 0.400969 0.193096i 0.400969 0.193096i
965965 1.21572 + 0.969501i 1.21572 + 0.969501i
966966 0 0
967967 0 0 0.433884 0.900969i 0.357143π-0.357143\pi
−0.433884 + 0.900969i 0.642857π0.642857\pi
968968 0.781831 0.623490i 0.781831 0.623490i
969969 0 0
970970 1.40097 + 1.75676i 1.40097 + 1.75676i
971971 0 0 0.974928 0.222521i 0.0714286π-0.0714286\pi
−0.974928 + 0.222521i 0.928571π0.928571\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0.193096 0.400969i 0.193096 0.400969i
977977 0.777479 0.974928i 0.777479 0.974928i −0.222521 0.974928i 0.571429π-0.571429\pi
1.00000 00
978978 0 0
979979 0 0
980980 −0.277479 1.21572i −0.277479 1.21572i
981981 0.400969 1.75676i 0.400969 1.75676i
982982 0 0
983983 0 0 −0.433884 0.900969i 0.642857π-0.642857\pi
0.433884 + 0.900969i 0.357143π0.357143\pi
984984 0 0
985985 −1.55496 −1.55496
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 0.222521 0.974928i 0.428571π-0.428571\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0.974928 0.777479i 0.974928 0.777479i 1.00000i 0.5π-0.5\pi
0.974928 + 0.222521i 0.0714286π0.0714286\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3364.1.h.e.2759.2 12
4.3 odd 2 CM 3364.1.h.e.2759.2 12
29.2 odd 28 3364.1.j.c.1031.1 6
29.3 odd 28 3364.1.j.d.2327.1 6
29.4 even 14 3364.1.h.c.267.2 12
29.5 even 14 3364.1.h.d.651.2 12
29.6 even 14 3364.1.d.a.3363.4 6
29.7 even 7 inner 3364.1.h.e.2719.1 12
29.8 odd 28 3364.1.j.b.1619.1 6
29.9 even 14 3364.1.h.c.63.1 12
29.10 odd 28 3364.1.j.b.1415.1 6
29.11 odd 28 3364.1.j.c.571.1 6
29.12 odd 4 116.1.j.a.83.1 yes 6
29.13 even 14 3364.1.h.d.1111.1 12
29.14 odd 28 3364.1.b.b.1683.3 3
29.15 odd 28 3364.1.b.c.1683.3 3
29.16 even 7 3364.1.h.d.1111.2 12
29.17 odd 4 3364.1.j.d.2287.1 6
29.18 odd 28 3364.1.j.a.571.1 6
29.19 odd 28 3364.1.j.e.1415.1 6
29.20 even 7 3364.1.h.c.63.2 12
29.21 odd 28 3364.1.j.e.1619.1 6
29.22 even 14 inner 3364.1.h.e.2719.2 12
29.23 even 7 3364.1.d.a.3363.1 6
29.24 even 7 3364.1.h.d.651.1 12
29.25 even 7 3364.1.h.c.267.1 12
29.26 odd 28 116.1.j.a.7.1 6
29.27 odd 28 3364.1.j.a.1031.1 6
29.28 even 2 inner 3364.1.h.e.2759.1 12
87.26 even 28 1044.1.bb.a.703.1 6
87.41 even 4 1044.1.bb.a.199.1 6
116.3 even 28 3364.1.j.d.2327.1 6
116.7 odd 14 inner 3364.1.h.e.2719.1 12
116.11 even 28 3364.1.j.c.571.1 6
116.15 even 28 3364.1.b.c.1683.3 3
116.19 even 28 3364.1.j.e.1415.1 6
116.23 odd 14 3364.1.d.a.3363.1 6
116.27 even 28 3364.1.j.a.1031.1 6
116.31 even 28 3364.1.j.c.1031.1 6
116.35 odd 14 3364.1.d.a.3363.4 6
116.39 even 28 3364.1.j.b.1415.1 6
116.43 even 28 3364.1.b.b.1683.3 3
116.47 even 28 3364.1.j.a.571.1 6
116.51 odd 14 inner 3364.1.h.e.2719.2 12
116.55 even 28 116.1.j.a.7.1 6
116.63 odd 14 3364.1.h.d.651.2 12
116.67 odd 14 3364.1.h.c.63.1 12
116.71 odd 14 3364.1.h.d.1111.1 12
116.75 even 4 3364.1.j.d.2287.1 6
116.79 even 28 3364.1.j.e.1619.1 6
116.83 odd 14 3364.1.h.c.267.1 12
116.91 odd 14 3364.1.h.c.267.2 12
116.95 even 28 3364.1.j.b.1619.1 6
116.99 even 4 116.1.j.a.83.1 yes 6
116.103 odd 14 3364.1.h.d.1111.2 12
116.107 odd 14 3364.1.h.c.63.2 12
116.111 odd 14 3364.1.h.d.651.1 12
116.115 odd 2 inner 3364.1.h.e.2759.1 12
145.12 even 4 2900.1.bd.a.199.1 12
145.84 odd 28 2900.1.bj.a.1051.1 6
145.99 odd 4 2900.1.bj.a.2751.1 6
145.113 even 28 2900.1.bd.a.1399.1 12
145.128 even 4 2900.1.bd.a.199.2 12
145.142 even 28 2900.1.bd.a.1399.2 12
232.99 even 4 1856.1.bh.a.895.1 6
232.157 odd 4 1856.1.bh.a.895.1 6
232.171 even 28 1856.1.bh.a.703.1 6
232.229 odd 28 1856.1.bh.a.703.1 6
348.215 odd 4 1044.1.bb.a.199.1 6
348.287 odd 28 1044.1.bb.a.703.1 6
580.99 even 4 2900.1.bj.a.2751.1 6
580.287 odd 28 2900.1.bd.a.1399.2 12
580.403 odd 28 2900.1.bd.a.1399.1 12
580.447 odd 4 2900.1.bd.a.199.1 12
580.519 even 28 2900.1.bj.a.1051.1 6
580.563 odd 4 2900.1.bd.a.199.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
116.1.j.a.7.1 6 29.26 odd 28
116.1.j.a.7.1 6 116.55 even 28
116.1.j.a.83.1 yes 6 29.12 odd 4
116.1.j.a.83.1 yes 6 116.99 even 4
1044.1.bb.a.199.1 6 87.41 even 4
1044.1.bb.a.199.1 6 348.215 odd 4
1044.1.bb.a.703.1 6 87.26 even 28
1044.1.bb.a.703.1 6 348.287 odd 28
1856.1.bh.a.703.1 6 232.171 even 28
1856.1.bh.a.703.1 6 232.229 odd 28
1856.1.bh.a.895.1 6 232.99 even 4
1856.1.bh.a.895.1 6 232.157 odd 4
2900.1.bd.a.199.1 12 145.12 even 4
2900.1.bd.a.199.1 12 580.447 odd 4
2900.1.bd.a.199.2 12 145.128 even 4
2900.1.bd.a.199.2 12 580.563 odd 4
2900.1.bd.a.1399.1 12 145.113 even 28
2900.1.bd.a.1399.1 12 580.403 odd 28
2900.1.bd.a.1399.2 12 145.142 even 28
2900.1.bd.a.1399.2 12 580.287 odd 28
2900.1.bj.a.1051.1 6 145.84 odd 28
2900.1.bj.a.1051.1 6 580.519 even 28
2900.1.bj.a.2751.1 6 145.99 odd 4
2900.1.bj.a.2751.1 6 580.99 even 4
3364.1.b.b.1683.3 3 29.14 odd 28
3364.1.b.b.1683.3 3 116.43 even 28
3364.1.b.c.1683.3 3 29.15 odd 28
3364.1.b.c.1683.3 3 116.15 even 28
3364.1.d.a.3363.1 6 29.23 even 7
3364.1.d.a.3363.1 6 116.23 odd 14
3364.1.d.a.3363.4 6 29.6 even 14
3364.1.d.a.3363.4 6 116.35 odd 14
3364.1.h.c.63.1 12 29.9 even 14
3364.1.h.c.63.1 12 116.67 odd 14
3364.1.h.c.63.2 12 29.20 even 7
3364.1.h.c.63.2 12 116.107 odd 14
3364.1.h.c.267.1 12 29.25 even 7
3364.1.h.c.267.1 12 116.83 odd 14
3364.1.h.c.267.2 12 29.4 even 14
3364.1.h.c.267.2 12 116.91 odd 14
3364.1.h.d.651.1 12 29.24 even 7
3364.1.h.d.651.1 12 116.111 odd 14
3364.1.h.d.651.2 12 29.5 even 14
3364.1.h.d.651.2 12 116.63 odd 14
3364.1.h.d.1111.1 12 29.13 even 14
3364.1.h.d.1111.1 12 116.71 odd 14
3364.1.h.d.1111.2 12 29.16 even 7
3364.1.h.d.1111.2 12 116.103 odd 14
3364.1.h.e.2719.1 12 29.7 even 7 inner
3364.1.h.e.2719.1 12 116.7 odd 14 inner
3364.1.h.e.2719.2 12 29.22 even 14 inner
3364.1.h.e.2719.2 12 116.51 odd 14 inner
3364.1.h.e.2759.1 12 29.28 even 2 inner
3364.1.h.e.2759.1 12 116.115 odd 2 inner
3364.1.h.e.2759.2 12 1.1 even 1 trivial
3364.1.h.e.2759.2 12 4.3 odd 2 CM
3364.1.j.a.571.1 6 29.18 odd 28
3364.1.j.a.571.1 6 116.47 even 28
3364.1.j.a.1031.1 6 29.27 odd 28
3364.1.j.a.1031.1 6 116.27 even 28
3364.1.j.b.1415.1 6 29.10 odd 28
3364.1.j.b.1415.1 6 116.39 even 28
3364.1.j.b.1619.1 6 29.8 odd 28
3364.1.j.b.1619.1 6 116.95 even 28
3364.1.j.c.571.1 6 29.11 odd 28
3364.1.j.c.571.1 6 116.11 even 28
3364.1.j.c.1031.1 6 29.2 odd 28
3364.1.j.c.1031.1 6 116.31 even 28
3364.1.j.d.2287.1 6 29.17 odd 4
3364.1.j.d.2287.1 6 116.75 even 4
3364.1.j.d.2327.1 6 29.3 odd 28
3364.1.j.d.2327.1 6 116.3 even 28
3364.1.j.e.1415.1 6 29.19 odd 28
3364.1.j.e.1415.1 6 116.19 even 28
3364.1.j.e.1619.1 6 29.21 odd 28
3364.1.j.e.1619.1 6 116.79 even 28