Properties

Label 3364.1.j.c.1031.1
Level 33643364
Weight 11
Character 3364.1031
Analytic conductor 1.6791.679
Analytic rank 00
Dimension 66
Projective image D7D_{7}
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3364,1,Mod(571,3364)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3364, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 12]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3364.571");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3364=22292 3364 = 2^{2} \cdot 29^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3364.j (of order 1414, degree 66, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.678854702501.67885470250
Analytic rank: 00
Dimension: 66
Coefficient field: Q(ζ14)\Q(\zeta_{14})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x5+x4x3+x2x+1 x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 116)
Projective image: D7D_{7}
Projective field: Galois closure of 7.1.38068692544.1

Embedding invariants

Embedding label 1031.1
Root 0.9009690.433884i0.900969 - 0.433884i of defining polynomial
Character χ\chi == 3364.1031
Dual form 3364.1.j.c.571.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.900969+0.433884i)q2+(0.623490+0.781831i)q4+(1.123490.541044i)q5+(0.222521+0.974928i)q8+(0.2225210.974928i)q9+(0.7774790.974928i)q10+(0.4009691.75676i)q13+(0.222521+0.974928i)q16+0.445042q17+(0.2225210.974928i)q18+(0.2774791.21572i)q20+(0.346011+0.433884i)q25+(1.123491.40881i)q26+(0.623490+0.781831i)q32+(0.400969+0.193096i)q34+(0.6234900.781831i)q36+(0.4009691.75676i)q37+(0.2774791.21572i)q40+1.80194q41+(0.277479+1.21572i)q45+(0.2225210.974928i)q49+(0.123490+0.541044i)q50+(1.623490.781831i)q52+(0.400969+0.193096i)q53+(0.2774790.347948i)q61+(0.900969+0.433884i)q64+(1.40097+1.75676i)q65+(0.277479+0.347948i)q68+(0.9009690.433884i)q72+(0.400969+0.193096i)q73+(0.4009691.75676i)q74+(0.7774790.974928i)q80+(0.900969+0.433884i)q81+(1.62349+0.781831i)q82+(0.5000000.240787i)q85+(1.12349+0.541044i)q89+(0.777479+0.974928i)q90+(1.12349+1.40881i)q97+(0.2225210.974928i)q98+O(q100)q+(0.900969 + 0.433884i) q^{2} +(0.623490 + 0.781831i) q^{4} +(-1.12349 - 0.541044i) q^{5} +(0.222521 + 0.974928i) q^{8} +(-0.222521 - 0.974928i) q^{9} +(-0.777479 - 0.974928i) q^{10} +(0.400969 - 1.75676i) q^{13} +(-0.222521 + 0.974928i) q^{16} +0.445042 q^{17} +(0.222521 - 0.974928i) q^{18} +(-0.277479 - 1.21572i) q^{20} +(0.346011 + 0.433884i) q^{25} +(1.12349 - 1.40881i) q^{26} +(-0.623490 + 0.781831i) q^{32} +(0.400969 + 0.193096i) q^{34} +(0.623490 - 0.781831i) q^{36} +(-0.400969 - 1.75676i) q^{37} +(0.277479 - 1.21572i) q^{40} +1.80194 q^{41} +(-0.277479 + 1.21572i) q^{45} +(-0.222521 - 0.974928i) q^{49} +(0.123490 + 0.541044i) q^{50} +(1.62349 - 0.781831i) q^{52} +(0.400969 + 0.193096i) q^{53} +(0.277479 - 0.347948i) q^{61} +(-0.900969 + 0.433884i) q^{64} +(-1.40097 + 1.75676i) q^{65} +(0.277479 + 0.347948i) q^{68} +(0.900969 - 0.433884i) q^{72} +(-0.400969 + 0.193096i) q^{73} +(0.400969 - 1.75676i) q^{74} +(0.777479 - 0.974928i) q^{80} +(-0.900969 + 0.433884i) q^{81} +(1.62349 + 0.781831i) q^{82} +(-0.500000 - 0.240787i) q^{85} +(1.12349 + 0.541044i) q^{89} +(-0.777479 + 0.974928i) q^{90} +(1.12349 + 1.40881i) q^{97} +(0.222521 - 0.974928i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+q2q42q5+q8q95q102q13q16+2q17+q182q203q25+2q26+q322q34q36+2q37+2q40+2q412q45++q98+O(q100) 6 q + q^{2} - q^{4} - 2 q^{5} + q^{8} - q^{9} - 5 q^{10} - 2 q^{13} - q^{16} + 2 q^{17} + q^{18} - 2 q^{20} - 3 q^{25} + 2 q^{26} + q^{32} - 2 q^{34} - q^{36} + 2 q^{37} + 2 q^{40} + 2 q^{41} - 2 q^{45}+ \cdots + q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3364Z)×\left(\mathbb{Z}/3364\mathbb{Z}\right)^\times.

nn 16831683 25252525
χ(n)\chi(n) 1-1 e(17)e\left(\frac{1}{7}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.900969 + 0.433884i 0.900969 + 0.433884i
33 0 0 0.623490 0.781831i 0.285714π-0.285714\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
44 0.623490 + 0.781831i 0.623490 + 0.781831i
55 −1.12349 0.541044i −1.12349 0.541044i −0.222521 0.974928i 0.571429π-0.571429\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
66 0 0
77 0 0 0.623490 0.781831i 0.285714π-0.285714\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
88 0.222521 + 0.974928i 0.222521 + 0.974928i
99 −0.222521 0.974928i −0.222521 0.974928i
1010 −0.777479 0.974928i −0.777479 0.974928i
1111 0 0 0.222521 0.974928i 0.428571π-0.428571\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
1212 0 0
1313 0.400969 1.75676i 0.400969 1.75676i −0.222521 0.974928i 0.571429π-0.571429\pi
0.623490 0.781831i 0.285714π-0.285714\pi
1414 0 0
1515 0 0
1616 −0.222521 + 0.974928i −0.222521 + 0.974928i
1717 0.445042 0.445042 0.222521 0.974928i 0.428571π-0.428571\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
1818 0.222521 0.974928i 0.222521 0.974928i
1919 0 0 −0.623490 0.781831i 0.714286π-0.714286\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
2020 −0.277479 1.21572i −0.277479 1.21572i
2121 0 0
2222 0 0
2323 0 0 0.900969 0.433884i 0.142857π-0.142857\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
2424 0 0
2525 0.346011 + 0.433884i 0.346011 + 0.433884i
2626 1.12349 1.40881i 1.12349 1.40881i
2727 0 0
2828 0 0
2929 0 0
3030 0 0
3131 0 0 −0.900969 0.433884i 0.857143π-0.857143\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
3232 −0.623490 + 0.781831i −0.623490 + 0.781831i
3333 0 0
3434 0.400969 + 0.193096i 0.400969 + 0.193096i
3535 0 0
3636 0.623490 0.781831i 0.623490 0.781831i
3737 −0.400969 1.75676i −0.400969 1.75676i −0.623490 0.781831i 0.714286π-0.714286\pi
0.222521 0.974928i 0.428571π-0.428571\pi
3838 0 0
3939 0 0
4040 0.277479 1.21572i 0.277479 1.21572i
4141 1.80194 1.80194 0.900969 0.433884i 0.142857π-0.142857\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
4242 0 0
4343 0 0 0.900969 0.433884i 0.142857π-0.142857\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
4444 0 0
4545 −0.277479 + 1.21572i −0.277479 + 1.21572i
4646 0 0
4747 0 0 0.222521 0.974928i 0.428571π-0.428571\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
4848 0 0
4949 −0.222521 0.974928i −0.222521 0.974928i
5050 0.123490 + 0.541044i 0.123490 + 0.541044i
5151 0 0
5252 1.62349 0.781831i 1.62349 0.781831i
5353 0.400969 + 0.193096i 0.400969 + 0.193096i 0.623490 0.781831i 0.285714π-0.285714\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 0.277479 0.347948i 0.277479 0.347948i −0.623490 0.781831i 0.714286π-0.714286\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
6262 0 0
6363 0 0
6464 −0.900969 + 0.433884i −0.900969 + 0.433884i
6565 −1.40097 + 1.75676i −1.40097 + 1.75676i
6666 0 0
6767 0 0 −0.222521 0.974928i 0.571429π-0.571429\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
6868 0.277479 + 0.347948i 0.277479 + 0.347948i
6969 0 0
7070 0 0
7171 0 0 0.222521 0.974928i 0.428571π-0.428571\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
7272 0.900969 0.433884i 0.900969 0.433884i
7373 −0.400969 + 0.193096i −0.400969 + 0.193096i −0.623490 0.781831i 0.714286π-0.714286\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
7474 0.400969 1.75676i 0.400969 1.75676i
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 −0.222521 0.974928i 0.571429π-0.571429\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
8080 0.777479 0.974928i 0.777479 0.974928i
8181 −0.900969 + 0.433884i −0.900969 + 0.433884i
8282 1.62349 + 0.781831i 1.62349 + 0.781831i
8383 0 0 −0.623490 0.781831i 0.714286π-0.714286\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
8484 0 0
8585 −0.500000 0.240787i −0.500000 0.240787i
8686 0 0
8787 0 0
8888 0 0
8989 1.12349 + 0.541044i 1.12349 + 0.541044i 0.900969 0.433884i 0.142857π-0.142857\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
9090 −0.777479 + 0.974928i −0.777479 + 0.974928i
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 1.12349 + 1.40881i 1.12349 + 1.40881i 0.900969 + 0.433884i 0.142857π0.142857\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
9898 0.222521 0.974928i 0.222521 0.974928i
9999 0 0
100100 −0.123490 + 0.541044i −0.123490 + 0.541044i
101101 1.12349 0.541044i 1.12349 0.541044i 0.222521 0.974928i 0.428571π-0.428571\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
102102 0 0
103103 0 0 0.222521 0.974928i 0.428571π-0.428571\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
104104 1.80194 1.80194
105105 0 0
106106 0.277479 + 0.347948i 0.277479 + 0.347948i
107107 0 0 −0.222521 0.974928i 0.571429π-0.571429\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
108108 0 0
109109 −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i 0.571429π0.571429\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
110110 0 0
111111 0 0
112112 0 0
113113 −0.777479 + 0.974928i −0.777479 + 0.974928i 0.222521 + 0.974928i 0.428571π0.428571\pi
−1.00000 π\pi
114114 0 0
115115 0 0
116116 0 0
117117 −1.80194 −1.80194
118118 0 0
119119 0 0
120120 0 0
121121 −0.900969 0.433884i −0.900969 0.433884i
122122 0.400969 0.193096i 0.400969 0.193096i
123123 0 0
124124 0 0
125125 0.123490 + 0.541044i 0.123490 + 0.541044i
126126 0 0
127127 0 0 0.222521 0.974928i 0.428571π-0.428571\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
128128 −1.00000 −1.00000
129129 0 0
130130 −2.02446 + 0.974928i −2.02446 + 0.974928i
131131 0 0 0.900969 0.433884i 0.142857π-0.142857\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0.0990311 + 0.433884i 0.0990311 + 0.433884i
137137 0.277479 + 1.21572i 0.277479 + 1.21572i 0.900969 + 0.433884i 0.142857π0.142857\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
138138 0 0
139139 0 0 0.900969 0.433884i 0.142857π-0.142857\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 1.00000 1.00000
145145 0 0
146146 −0.445042 −0.445042
147147 0 0
148148 1.12349 1.40881i 1.12349 1.40881i
149149 −0.277479 0.347948i −0.277479 0.347948i 0.623490 0.781831i 0.285714π-0.285714\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
150150 0 0
151151 0 0 0.900969 0.433884i 0.142857π-0.142857\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
152152 0 0
153153 −0.0990311 0.433884i −0.0990311 0.433884i
154154 0 0
155155 0 0
156156 0 0
157157 −1.24698 −1.24698 −0.623490 0.781831i 0.714286π-0.714286\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
158158 0 0
159159 0 0
160160 1.12349 0.541044i 1.12349 0.541044i
161161 0 0
162162 −1.00000 −1.00000
163163 0 0 0.222521 0.974928i 0.428571π-0.428571\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
164164 1.12349 + 1.40881i 1.12349 + 1.40881i
165165 0 0
166166 0 0
167167 0 0 0.623490 0.781831i 0.285714π-0.285714\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
168168 0 0
169169 −2.02446 0.974928i −2.02446 0.974928i
170170 −0.346011 0.433884i −0.346011 0.433884i
171171 0 0
172172 0 0
173173 −0.445042 −0.445042 −0.222521 0.974928i 0.571429π-0.571429\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0.777479 + 0.974928i 0.777479 + 0.974928i
179179 0 0 −0.900969 0.433884i 0.857143π-0.857143\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
180180 −1.12349 + 0.541044i −1.12349 + 0.541044i
181181 0.777479 0.974928i 0.777479 0.974928i −0.222521 0.974928i 0.571429π-0.571429\pi
1.00000 00
182182 0 0
183183 0 0
184184 0 0
185185 −0.500000 + 2.19064i −0.500000 + 2.19064i
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 −0.777479 0.974928i −0.777479 0.974928i 0.222521 0.974928i 0.428571π-0.428571\pi
−1.00000 π\pi
194194 0.400969 + 1.75676i 0.400969 + 1.75676i
195195 0 0
196196 0.623490 0.781831i 0.623490 0.781831i
197197 −1.12349 + 0.541044i −1.12349 + 0.541044i −0.900969 0.433884i 0.857143π-0.857143\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
198198 0 0
199199 0 0 −0.623490 0.781831i 0.714286π-0.714286\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
200200 −0.346011 + 0.433884i −0.346011 + 0.433884i
201201 0 0
202202 1.24698 1.24698
203203 0 0
204204 0 0
205205 −2.02446 0.974928i −2.02446 0.974928i
206206 0 0
207207 0 0
208208 1.62349 + 0.781831i 1.62349 + 0.781831i
209209 0 0
210210 0 0
211211 0 0 −0.222521 0.974928i 0.571429π-0.571429\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
212212 0.0990311 + 0.433884i 0.0990311 + 0.433884i
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 −1.62349 + 0.781831i −1.62349 + 0.781831i
219219 0 0
220220 0 0
221221 0.178448 0.781831i 0.178448 0.781831i
222222 0 0
223223 0 0 −0.222521 0.974928i 0.571429π-0.571429\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
224224 0 0
225225 0.346011 0.433884i 0.346011 0.433884i
226226 −1.12349 + 0.541044i −1.12349 + 0.541044i
227227 0 0 −0.900969 0.433884i 0.857143π-0.857143\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
228228 0 0
229229 0.277479 0.347948i 0.277479 0.347948i −0.623490 0.781831i 0.714286π-0.714286\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
230230 0 0
231231 0 0
232232 0 0
233233 1.24698 1.24698 0.623490 0.781831i 0.285714π-0.285714\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
234234 −1.62349 0.781831i −1.62349 0.781831i
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 0.623490 0.781831i 0.285714π-0.285714\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
240240 0 0
241241 0.0990311 + 0.433884i 0.0990311 + 0.433884i 1.00000 00
−0.900969 + 0.433884i 0.857143π0.857143\pi
242242 −0.623490 0.781831i −0.623490 0.781831i
243243 0 0
244244 0.445042 0.445042
245245 −0.277479 + 1.21572i −0.277479 + 1.21572i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 −0.123490 + 0.541044i −0.123490 + 0.541044i
251251 0 0 −0.623490 0.781831i 0.714286π-0.714286\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 −0.900969 0.433884i −0.900969 0.433884i
257257 −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i 0.857143π-0.857143\pi
−0.222521 0.974928i 0.571429π-0.571429\pi
258258 0 0
259259 0 0
260260 −2.24698 −2.24698
261261 0 0
262262 0 0
263263 0 0 −0.900969 0.433884i 0.857143π-0.857143\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
264264 0 0
265265 −0.346011 0.433884i −0.346011 0.433884i
266266 0 0
267267 0 0
268268 0 0
269269 0.277479 + 1.21572i 0.277479 + 1.21572i 0.900969 + 0.433884i 0.142857π0.142857\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
270270 0 0
271271 0 0 −0.623490 0.781831i 0.714286π-0.714286\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
272272 −0.0990311 + 0.433884i −0.0990311 + 0.433884i
273273 0 0
274274 −0.277479 + 1.21572i −0.277479 + 1.21572i
275275 0 0
276276 0 0
277277 0.0990311 0.433884i 0.0990311 0.433884i −0.900969 0.433884i 0.857143π-0.857143\pi
1.00000 00
278278 0 0
279279 0 0
280280 0 0
281281 0.400969 + 1.75676i 0.400969 + 1.75676i 0.623490 + 0.781831i 0.285714π0.285714\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
282282 0 0
283283 0 0 0.623490 0.781831i 0.285714π-0.285714\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0.900969 + 0.433884i 0.900969 + 0.433884i
289289 −0.801938 −0.801938
290290 0 0
291291 0 0
292292 −0.400969 0.193096i −0.400969 0.193096i
293293 1.12349 1.40881i 1.12349 1.40881i 0.222521 0.974928i 0.428571π-0.428571\pi
0.900969 0.433884i 0.142857π-0.142857\pi
294294 0 0
295295 0 0
296296 1.62349 0.781831i 1.62349 0.781831i
297297 0 0
298298 −0.0990311 0.433884i −0.0990311 0.433884i
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 −0.500000 + 0.240787i −0.500000 + 0.240787i
306306 0.0990311 0.433884i 0.0990311 0.433884i
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 −0.222521 0.974928i 0.571429π-0.571429\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
312312 0 0
313313 0.400969 0.193096i 0.400969 0.193096i −0.222521 0.974928i 0.571429π-0.571429\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
314314 −1.12349 0.541044i −1.12349 0.541044i
315315 0 0
316316 0 0
317317 −0.400969 0.193096i −0.400969 0.193096i 0.222521 0.974928i 0.428571π-0.428571\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
318318 0 0
319319 0 0
320320 1.24698 1.24698
321321 0 0
322322 0 0
323323 0 0
324324 −0.900969 0.433884i −0.900969 0.433884i
325325 0.900969 0.433884i 0.900969 0.433884i
326326 0 0
327327 0 0
328328 0.400969 + 1.75676i 0.400969 + 1.75676i
329329 0 0
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 −1.62349 + 0.781831i −1.62349 + 0.781831i
334334 0 0
335335 0 0
336336 0 0
337337 −0.400969 + 1.75676i −0.400969 + 1.75676i 0.222521 + 0.974928i 0.428571π0.428571\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
338338 −1.40097 1.75676i −1.40097 1.75676i
339339 0 0
340340 −0.123490 0.541044i −0.123490 0.541044i
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 −0.400969 0.193096i −0.400969 0.193096i
347347 0 0 1.00000 00
−1.00000 π\pi
348348 0 0
349349 −0.445042 −0.445042 −0.222521 0.974928i 0.571429π-0.571429\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
350350 0 0
351351 0 0
352352 0 0
353353 1.62349 + 0.781831i 1.62349 + 0.781831i 1.00000 00
0.623490 + 0.781831i 0.285714π0.285714\pi
354354 0 0
355355 0 0
356356 0.277479 + 1.21572i 0.277479 + 1.21572i
357357 0 0
358358 0 0
359359 0 0 0.222521 0.974928i 0.428571π-0.428571\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
360360 −1.24698 −1.24698
361361 −0.222521 + 0.974928i −0.222521 + 0.974928i
362362 1.12349 0.541044i 1.12349 0.541044i
363363 0 0
364364 0 0
365365 0.554958 0.554958
366366 0 0
367367 0 0 −0.623490 0.781831i 0.714286π-0.714286\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
368368 0 0
369369 −0.400969 1.75676i −0.400969 1.75676i
370370 −1.40097 + 1.75676i −1.40097 + 1.75676i
371371 0 0
372372 0 0
373373 0.777479 + 0.974928i 0.777479 + 0.974928i 1.00000 00
−0.222521 + 0.974928i 0.571429π0.571429\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 −0.900969 0.433884i 0.857143π-0.857143\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 0.900969 0.433884i 0.142857π-0.142857\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
384384 0 0
385385 0 0
386386 −0.277479 1.21572i −0.277479 1.21572i
387387 0 0
388388 −0.400969 + 1.75676i −0.400969 + 1.75676i
389389 0.445042 0.445042 0.222521 0.974928i 0.428571π-0.428571\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
390390 0 0
391391 0 0
392392 0.900969 0.433884i 0.900969 0.433884i
393393 0 0
394394 −1.24698 −1.24698
395395 0 0
396396 0 0
397397 0.0990311 + 0.433884i 0.0990311 + 0.433884i 1.00000 00
−0.900969 + 0.433884i 0.857143π0.857143\pi
398398 0 0
399399 0 0
400400 −0.500000 + 0.240787i −0.500000 + 0.240787i
401401 1.62349 + 0.781831i 1.62349 + 0.781831i 1.00000 00
0.623490 + 0.781831i 0.285714π0.285714\pi
402402 0 0
403403 0 0
404404 1.12349 + 0.541044i 1.12349 + 0.541044i
405405 1.24698 1.24698
406406 0 0
407407 0 0
408408 0 0
409409 −0.777479 + 0.974928i −0.777479 + 0.974928i 0.222521 + 0.974928i 0.428571π0.428571\pi
−1.00000 π\pi
410410 −1.40097 1.75676i −1.40097 1.75676i
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 1.12349 + 1.40881i 1.12349 + 1.40881i
417417 0 0
418418 0 0
419419 0 0 0.222521 0.974928i 0.428571π-0.428571\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
420420 0 0
421421 1.80194 0.867767i 1.80194 0.867767i 0.900969 0.433884i 0.142857π-0.142857\pi
0.900969 0.433884i 0.142857π-0.142857\pi
422422 0 0
423423 0 0
424424 −0.0990311 + 0.433884i −0.0990311 + 0.433884i
425425 0.153989 + 0.193096i 0.153989 + 0.193096i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 −0.623490 0.781831i 0.714286π-0.714286\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
432432 0 0
433433 1.80194 + 0.867767i 1.80194 + 0.867767i 0.900969 + 0.433884i 0.142857π0.142857\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
434434 0 0
435435 0 0
436436 −1.80194 −1.80194
437437 0 0
438438 0 0
439439 0 0 −0.623490 0.781831i 0.714286π-0.714286\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
440440 0 0
441441 −0.900969 + 0.433884i −0.900969 + 0.433884i
442442 0.500000 0.626980i 0.500000 0.626980i
443443 0 0 −0.222521 0.974928i 0.571429π-0.571429\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
444444 0 0
445445 −0.969501 1.21572i −0.969501 1.21572i
446446 0 0
447447 0 0
448448 0 0
449449 −0.400969 + 0.193096i −0.400969 + 0.193096i −0.623490 0.781831i 0.714286π-0.714286\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
450450 0.500000 0.240787i 0.500000 0.240787i
451451 0 0
452452 −1.24698 −1.24698
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0.777479 0.974928i 0.777479 0.974928i −0.222521 0.974928i 0.571429π-0.571429\pi
1.00000 00
458458 0.400969 0.193096i 0.400969 0.193096i
459459 0 0
460460 0 0
461461 −1.24698 + 1.56366i −1.24698 + 1.56366i −0.623490 + 0.781831i 0.714286π0.714286\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 1.12349 + 0.541044i 1.12349 + 0.541044i
467467 0 0 0.623490 0.781831i 0.285714π-0.285714\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
468468 −1.12349 1.40881i −1.12349 1.40881i
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0.0990311 0.433884i 0.0990311 0.433884i
478478 0 0
479479 0 0 0.900969 0.433884i 0.142857π-0.142857\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
480480 0 0
481481 −3.24698 −3.24698
482482 −0.0990311 + 0.433884i −0.0990311 + 0.433884i
483483 0 0
484484 −0.222521 0.974928i −0.222521 0.974928i
485485 −0.500000 2.19064i −0.500000 2.19064i
486486 0 0
487487 0 0 0.900969 0.433884i 0.142857π-0.142857\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
488488 0.400969 + 0.193096i 0.400969 + 0.193096i
489489 0 0
490490 −0.777479 + 0.974928i −0.777479 + 0.974928i
491491 0 0 −0.900969 0.433884i 0.857143π-0.857143\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 0.900969 0.433884i 0.142857π-0.142857\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
500500 −0.346011 + 0.433884i −0.346011 + 0.433884i
501501 0 0
502502 0 0
503503 0 0 −0.623490 0.781831i 0.714286π-0.714286\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
504504 0 0
505505 −1.55496 −1.55496
506506 0 0
507507 0 0
508508 0 0
509509 0.400969 1.75676i 0.400969 1.75676i −0.222521 0.974928i 0.571429π-0.571429\pi
0.623490 0.781831i 0.285714π-0.285714\pi
510510 0 0
511511 0 0
512512 −0.623490 0.781831i −0.623490 0.781831i
513513 0 0
514514 −0.400969 1.75676i −0.400969 1.75676i
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 −2.02446 0.974928i −2.02446 0.974928i
521521 1.24698 1.24698 0.623490 0.781831i 0.285714π-0.285714\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 0.623490 0.781831i 0.623490 0.781831i
530530 −0.123490 0.541044i −0.123490 0.541044i
531531 0 0
532532 0 0
533533 0.722521 3.16557i 0.722521 3.16557i
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 −0.277479 + 1.21572i −0.277479 + 1.21572i
539539 0 0
540540 0 0
541541 1.12349 + 1.40881i 1.12349 + 1.40881i 0.900969 + 0.433884i 0.142857π0.142857\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
542542 0 0
543543 0 0
544544 −0.277479 + 0.347948i −0.277479 + 0.347948i
545545 2.02446 0.974928i 2.02446 0.974928i
546546 0 0
547547 0 0 −0.623490 0.781831i 0.714286π-0.714286\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
548548 −0.777479 + 0.974928i −0.777479 + 0.974928i
549549 −0.400969 0.193096i −0.400969 0.193096i
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0.277479 0.347948i 0.277479 0.347948i
555555 0 0
556556 0 0
557557 1.62349 0.781831i 1.62349 0.781831i 0.623490 0.781831i 0.285714π-0.285714\pi
1.00000 00
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 −0.400969 + 1.75676i −0.400969 + 1.75676i
563563 0 0 1.00000 00
−1.00000 π\pi
564564 0 0
565565 1.40097 0.674671i 1.40097 0.674671i
566566 0 0
567567 0 0
568568 0 0
569569 −0.400969 + 1.75676i −0.400969 + 1.75676i 0.222521 + 0.974928i 0.428571π0.428571\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
570570 0 0
571571 0 0 −0.222521 0.974928i 0.571429π-0.571429\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0.623490 + 0.781831i 0.623490 + 0.781831i
577577 1.12349 1.40881i 1.12349 1.40881i 0.222521 0.974928i 0.428571π-0.428571\pi
0.900969 0.433884i 0.142857π-0.142857\pi
578578 −0.722521 0.347948i −0.722521 0.347948i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 −0.277479 0.347948i −0.277479 0.347948i
585585 2.02446 + 0.974928i 2.02446 + 0.974928i
586586 1.62349 0.781831i 1.62349 0.781831i
587587 0 0 0.623490 0.781831i 0.285714π-0.285714\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 1.80194 1.80194
593593 0.0990311 0.433884i 0.0990311 0.433884i −0.900969 0.433884i 0.857143π-0.857143\pi
1.00000 00
594594 0 0
595595 0 0
596596 0.0990311 0.433884i 0.0990311 0.433884i
597597 0 0
598598 0 0
599599 0 0 −0.623490 0.781831i 0.714286π-0.714286\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
600600 0 0
601601 0.445042 + 1.94986i 0.445042 + 1.94986i 0.222521 + 0.974928i 0.428571π0.428571\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
602602 0 0
603603 0 0
604604 0 0
605605 0.777479 + 0.974928i 0.777479 + 0.974928i
606606 0 0
607607 0 0 −0.900969 0.433884i 0.857143π-0.857143\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
608608 0 0
609609 0 0
610610 −0.554958 −0.554958
611611 0 0
612612 0.277479 0.347948i 0.277479 0.347948i
613613 −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i 0.857143π-0.857143\pi
−0.222521 0.974928i 0.571429π-0.571429\pi
614614 0 0
615615 0 0
616616 0 0
617617 0.277479 + 1.21572i 0.277479 + 1.21572i 0.900969 + 0.433884i 0.142857π0.142857\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
618618 0 0
619619 0 0 −0.623490 0.781831i 0.714286π-0.714286\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.277479 1.21572i 0.277479 1.21572i
626626 0.445042 0.445042
627627 0 0
628628 −0.777479 0.974928i −0.777479 0.974928i
629629 −0.178448 0.781831i −0.178448 0.781831i
630630 0 0
631631 0 0 0.623490 0.781831i 0.285714π-0.285714\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
632632 0 0
633633 0 0
634634 −0.277479 0.347948i −0.277479 0.347948i
635635 0 0
636636 0 0
637637 −1.80194 −1.80194
638638 0 0
639639 0 0
640640 1.12349 + 0.541044i 1.12349 + 0.541044i
641641 −1.24698 + 1.56366i −1.24698 + 1.56366i −0.623490 + 0.781831i 0.714286π0.714286\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
642642 0 0
643643 0 0 −0.900969 0.433884i 0.857143π-0.857143\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 −0.222521 0.974928i 0.571429π-0.571429\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
648648 −0.623490 0.781831i −0.623490 0.781831i
649649 0 0
650650 1.00000 1.00000
651651 0 0
652652 0 0
653653 −1.62349 + 0.781831i −1.62349 + 0.781831i −0.623490 + 0.781831i 0.714286π0.714286\pi
−1.00000 1.00000π1.00000\pi
654654 0 0
655655 0 0
656656 −0.400969 + 1.75676i −0.400969 + 1.75676i
657657 0.277479 + 0.347948i 0.277479 + 0.347948i
658658 0 0
659659 0 0 −0.222521 0.974928i 0.571429π-0.571429\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
660660 0 0
661661 1.62349 0.781831i 1.62349 0.781831i 0.623490 0.781831i 0.285714π-0.285714\pi
1.00000 00
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 −1.80194 −1.80194
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −1.12349 + 0.541044i −1.12349 + 0.541044i −0.900969 0.433884i 0.857143π-0.857143\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
674674 −1.12349 + 1.40881i −1.12349 + 1.40881i
675675 0 0
676676 −0.500000 2.19064i −0.500000 2.19064i
677677 −0.777479 0.974928i −0.777479 0.974928i 0.222521 0.974928i 0.428571π-0.428571\pi
−1.00000 π\pi
678678 0 0
679679 0 0
680680 0.123490 0.541044i 0.123490 0.541044i
681681 0 0
682682 0 0
683683 0 0 0.222521 0.974928i 0.428571π-0.428571\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
684684 0 0
685685 0.346011 1.51597i 0.346011 1.51597i
686686 0 0
687687 0 0
688688 0 0
689689 0.500000 0.626980i 0.500000 0.626980i
690690 0 0
691691 0 0 −0.900969 0.433884i 0.857143π-0.857143\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
692692 −0.277479 0.347948i −0.277479 0.347948i
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0.801938 0.801938
698698 −0.400969 0.193096i −0.400969 0.193096i
699699 0 0
700700 0 0
701701 0.400969 + 0.193096i 0.400969 + 0.193096i 0.623490 0.781831i 0.285714π-0.285714\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 1.12349 + 1.40881i 1.12349 + 1.40881i
707707 0 0
708708 0 0
709709 −0.277479 + 1.21572i −0.277479 + 1.21572i 0.623490 + 0.781831i 0.285714π0.285714\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
710710 0 0
711711 0 0
712712 −0.277479 + 1.21572i −0.277479 + 1.21572i
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 0.900969 0.433884i 0.142857π-0.142857\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
720720 −1.12349 0.541044i −1.12349 0.541044i
721721 0 0
722722 −0.623490 + 0.781831i −0.623490 + 0.781831i
723723 0 0
724724 1.24698 1.24698
725725 0 0
726726 0 0
727727 0 0 −0.900969 0.433884i 0.857143π-0.857143\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
728728 0 0
729729 0.623490 + 0.781831i 0.623490 + 0.781831i
730730 0.500000 + 0.240787i 0.500000 + 0.240787i
731731 0 0
732732 0 0
733733 0.445042 + 1.94986i 0.445042 + 1.94986i 0.222521 + 0.974928i 0.428571π0.428571\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0.400969 1.75676i 0.400969 1.75676i
739739 0 0 0.900969 0.433884i 0.142857π-0.142857\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
740740 −2.02446 + 0.974928i −2.02446 + 0.974928i
741741 0 0
742742 0 0
743743 0 0 0.222521 0.974928i 0.428571π-0.428571\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
744744 0 0
745745 0.123490 + 0.541044i 0.123490 + 0.541044i
746746 0.277479 + 1.21572i 0.277479 + 1.21572i
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 0.623490 0.781831i 0.285714π-0.285714\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −0.777479 + 0.974928i −0.777479 + 0.974928i 0.222521 + 0.974928i 0.428571π0.428571\pi
−1.00000 π\pi
758758 0 0
759759 0 0
760760 0 0
761761 0.777479 0.974928i 0.777479 0.974928i −0.222521 0.974928i 0.571429π-0.571429\pi
1.00000 00
762762 0 0
763763 0 0
764764 0 0
765765 −0.123490 + 0.541044i −0.123490 + 0.541044i
766766 0 0
767767 0 0
768768 0 0
769769 1.12349 0.541044i 1.12349 0.541044i 0.222521 0.974928i 0.428571π-0.428571\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
770770 0 0
771771 0 0
772772 0.277479 1.21572i 0.277479 1.21572i
773773 −0.777479 0.974928i −0.777479 0.974928i 0.222521 0.974928i 0.428571π-0.428571\pi
−1.00000 π\pi
774774 0 0
775775 0 0
776776 −1.12349 + 1.40881i −1.12349 + 1.40881i
777777 0 0
778778 0.400969 + 0.193096i 0.400969 + 0.193096i
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 1.00000 1.00000
785785 1.40097 + 0.674671i 1.40097 + 0.674671i
786786 0 0
787787 0 0 −0.623490 0.781831i 0.714286π-0.714286\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
788788 −1.12349 0.541044i −1.12349 0.541044i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 −0.500000 0.626980i −0.500000 0.626980i
794794 −0.0990311 + 0.433884i −0.0990311 + 0.433884i
795795 0 0
796796 0 0
797797 −1.62349 + 0.781831i −1.62349 + 0.781831i −0.623490 + 0.781831i 0.714286π0.714286\pi
−1.00000 1.00000π1.00000\pi
798798 0 0
799799 0 0
800800 −0.554958 −0.554958
801801 0.277479 1.21572i 0.277479 1.21572i
802802 1.12349 + 1.40881i 1.12349 + 1.40881i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0.777479 + 0.974928i 0.777479 + 0.974928i
809809 1.12349 1.40881i 1.12349 1.40881i 0.222521 0.974928i 0.428571π-0.428571\pi
0.900969 0.433884i 0.142857π-0.142857\pi
810810 1.12349 + 0.541044i 1.12349 + 0.541044i
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 −1.12349 + 0.541044i −1.12349 + 0.541044i
819819 0 0
820820 −0.500000 2.19064i −0.500000 2.19064i
821821 0.0990311 + 0.433884i 0.0990311 + 0.433884i 1.00000 00
−0.900969 + 0.433884i 0.857143π0.857143\pi
822822 0 0
823823 0 0 0.222521 0.974928i 0.428571π-0.428571\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 0.900969 0.433884i 0.142857π-0.142857\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
828828 0 0
829829 1.80194 1.80194 0.900969 0.433884i 0.142857π-0.142857\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
830830 0 0
831831 0 0
832832 0.400969 + 1.75676i 0.400969 + 1.75676i
833833 −0.0990311 0.433884i −0.0990311 0.433884i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.900969 0.433884i 0.857143π-0.857143\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
840840 0 0
841841 0 0
842842 2.00000 2.00000
843843 0 0
844844 0 0
845845 1.74698 + 2.19064i 1.74698 + 2.19064i
846846 0 0
847847 0 0
848848 −0.277479 + 0.347948i −0.277479 + 0.347948i
849849 0 0
850850 0.0549581 + 0.240787i 0.0549581 + 0.240787i
851851 0 0
852852 0 0
853853 −1.24698 −1.24698 −0.623490 0.781831i 0.714286π-0.714286\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
854854 0 0
855855 0 0
856856 0 0
857857 −0.445042 + 1.94986i −0.445042 + 1.94986i −0.222521 + 0.974928i 0.571429π0.571429\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
858858 0 0
859859 0 0 0.222521 0.974928i 0.428571π-0.428571\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 0.623490 0.781831i 0.285714π-0.285714\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
864864 0 0
865865 0.500000 + 0.240787i 0.500000 + 0.240787i
866866 1.24698 + 1.56366i 1.24698 + 1.56366i
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 −1.62349 0.781831i −1.62349 0.781831i
873873 1.12349 1.40881i 1.12349 1.40881i
874874 0 0
875875 0 0
876876 0 0
877877 1.24698 1.56366i 1.24698 1.56366i 0.623490 0.781831i 0.285714π-0.285714\pi
0.623490 0.781831i 0.285714π-0.285714\pi
878878 0 0
879879 0 0
880880 0 0
881881 −0.0990311 + 0.433884i −0.0990311 + 0.433884i 0.900969 + 0.433884i 0.142857π0.142857\pi
−1.00000 π\pi
882882 −1.00000 −1.00000
883883 0 0 0.222521 0.974928i 0.428571π-0.428571\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
884884 0.722521 0.347948i 0.722521 0.347948i
885885 0 0
886886 0 0
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 0 0
890890 −0.346011 1.51597i −0.346011 1.51597i
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 −0.445042 −0.445042
899899 0 0
900900 0.554958 0.554958
901901 0.178448 + 0.0859360i 0.178448 + 0.0859360i
902902 0 0
903903 0 0
904904 −1.12349 0.541044i −1.12349 0.541044i
905905 −1.40097 + 0.674671i −1.40097 + 0.674671i
906906 0 0
907907 0 0 −0.222521 0.974928i 0.571429π-0.571429\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
908908 0 0
909909 −0.777479 0.974928i −0.777479 0.974928i
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 1.12349 0.541044i 1.12349 0.541044i
915915 0 0
916916 0.445042 0.445042
917917 0 0
918918 0 0
919919 0 0 −0.222521 0.974928i 0.571429π-0.571429\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
920920 0 0
921921 0 0
922922 −1.80194 + 0.867767i −1.80194 + 0.867767i
923923 0 0
924924 0 0
925925 0.623490 0.781831i 0.623490 0.781831i
926926 0 0
927927 0 0
928928 0 0
929929 −1.80194 −1.80194 −0.900969 0.433884i 0.857143π-0.857143\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
930930 0 0
931931 0 0
932932 0.777479 + 0.974928i 0.777479 + 0.974928i
933933 0 0
934934 0 0
935935 0 0
936936 −0.400969 1.75676i −0.400969 1.75676i
937937 −0.277479 1.21572i −0.277479 1.21572i −0.900969 0.433884i 0.857143π-0.857143\pi
0.623490 0.781831i 0.285714π-0.285714\pi
938938 0 0
939939 0 0
940940 0 0
941941 −0.445042 + 1.94986i −0.445042 + 1.94986i −0.222521 + 0.974928i 0.571429π0.571429\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 −0.623490 0.781831i 0.714286π-0.714286\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
948948 0 0
949949 0.178448 + 0.781831i 0.178448 + 0.781831i
950950 0 0
951951 0 0
952952 0 0
953953 −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i 0.857143π-0.857143\pi
−0.222521 0.974928i 0.571429π-0.571429\pi
954954 0.277479 0.347948i 0.277479 0.347948i
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0.623490 + 0.781831i 0.623490 + 0.781831i
962962 −2.92543 1.40881i −2.92543 1.40881i
963963 0 0
964964 −0.277479 + 0.347948i −0.277479 + 0.347948i
965965 0.346011 + 1.51597i 0.346011 + 1.51597i
966966 0 0
967967 0 0 −0.623490 0.781831i 0.714286π-0.714286\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
968968 0.222521 0.974928i 0.222521 0.974928i
969969 0 0
970970 0.500000 2.19064i 0.500000 2.19064i
971971 0 0 0.900969 0.433884i 0.142857π-0.142857\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0.277479 + 0.347948i 0.277479 + 0.347948i
977977 −0.277479 1.21572i −0.277479 1.21572i −0.900969 0.433884i 0.857143π-0.857143\pi
0.623490 0.781831i 0.285714π-0.285714\pi
978978 0 0
979979 0 0
980980 −1.12349 + 0.541044i −1.12349 + 0.541044i
981981 1.62349 + 0.781831i 1.62349 + 0.781831i
982982 0 0
983983 0 0 0.623490 0.781831i 0.285714π-0.285714\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
984984 0 0
985985 1.55496 1.55496
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 −0.900969 0.433884i 0.857143π-0.857143\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0.277479 1.21572i 0.277479 1.21572i −0.623490 0.781831i 0.714286π-0.714286\pi
0.900969 0.433884i 0.142857π-0.142857\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3364.1.j.c.1031.1 6
4.3 odd 2 CM 3364.1.j.c.1031.1 6
29.2 odd 28 3364.1.h.c.267.2 12
29.3 odd 28 3364.1.d.a.3363.4 6
29.4 even 14 3364.1.j.b.1619.1 6
29.5 even 14 3364.1.j.b.1415.1 6
29.6 even 14 116.1.j.a.83.1 yes 6
29.7 even 7 3364.1.b.b.1683.3 3
29.8 odd 28 3364.1.h.d.1111.2 12
29.9 even 14 3364.1.j.a.571.1 6
29.10 odd 28 3364.1.h.c.63.2 12
29.11 odd 28 3364.1.h.e.2719.2 12
29.12 odd 4 3364.1.h.d.651.1 12
29.13 even 14 116.1.j.a.7.1 6
29.14 odd 28 3364.1.h.e.2759.1 12
29.15 odd 28 3364.1.h.e.2759.2 12
29.16 even 7 3364.1.j.d.2327.1 6
29.17 odd 4 3364.1.h.d.651.2 12
29.18 odd 28 3364.1.h.e.2719.1 12
29.19 odd 28 3364.1.h.c.63.1 12
29.20 even 7 inner 3364.1.j.c.571.1 6
29.21 odd 28 3364.1.h.d.1111.1 12
29.22 even 14 3364.1.b.c.1683.3 3
29.23 even 7 3364.1.j.d.2287.1 6
29.24 even 7 3364.1.j.e.1415.1 6
29.25 even 7 3364.1.j.e.1619.1 6
29.26 odd 28 3364.1.d.a.3363.1 6
29.27 odd 28 3364.1.h.c.267.1 12
29.28 even 2 3364.1.j.a.1031.1 6
87.35 odd 14 1044.1.bb.a.199.1 6
87.71 odd 14 1044.1.bb.a.703.1 6
116.3 even 28 3364.1.d.a.3363.4 6
116.7 odd 14 3364.1.b.b.1683.3 3
116.11 even 28 3364.1.h.e.2719.2 12
116.15 even 28 3364.1.h.e.2759.2 12
116.19 even 28 3364.1.h.c.63.1 12
116.23 odd 14 3364.1.j.d.2287.1 6
116.27 even 28 3364.1.h.c.267.1 12
116.31 even 28 3364.1.h.c.267.2 12
116.35 odd 14 116.1.j.a.83.1 yes 6
116.39 even 28 3364.1.h.c.63.2 12
116.43 even 28 3364.1.h.e.2759.1 12
116.47 even 28 3364.1.h.e.2719.1 12
116.51 odd 14 3364.1.b.c.1683.3 3
116.55 even 28 3364.1.d.a.3363.1 6
116.63 odd 14 3364.1.j.b.1415.1 6
116.67 odd 14 3364.1.j.a.571.1 6
116.71 odd 14 116.1.j.a.7.1 6
116.75 even 4 3364.1.h.d.651.2 12
116.79 even 28 3364.1.h.d.1111.1 12
116.83 odd 14 3364.1.j.e.1619.1 6
116.91 odd 14 3364.1.j.b.1619.1 6
116.95 even 28 3364.1.h.d.1111.2 12
116.99 even 4 3364.1.h.d.651.1 12
116.103 odd 14 3364.1.j.d.2327.1 6
116.107 odd 14 inner 3364.1.j.c.571.1 6
116.111 odd 14 3364.1.j.e.1415.1 6
116.115 odd 2 3364.1.j.a.1031.1 6
145.13 odd 28 2900.1.bd.a.1399.1 12
145.42 odd 28 2900.1.bd.a.1399.2 12
145.64 even 14 2900.1.bj.a.2751.1 6
145.93 odd 28 2900.1.bd.a.199.2 12
145.122 odd 28 2900.1.bd.a.199.1 12
145.129 even 14 2900.1.bj.a.1051.1 6
232.13 even 14 1856.1.bh.a.703.1 6
232.35 odd 14 1856.1.bh.a.895.1 6
232.93 even 14 1856.1.bh.a.895.1 6
232.187 odd 14 1856.1.bh.a.703.1 6
348.35 even 14 1044.1.bb.a.199.1 6
348.71 even 14 1044.1.bb.a.703.1 6
580.187 even 28 2900.1.bd.a.1399.2 12
580.267 even 28 2900.1.bd.a.199.1 12
580.303 even 28 2900.1.bd.a.1399.1 12
580.383 even 28 2900.1.bd.a.199.2 12
580.419 odd 14 2900.1.bj.a.1051.1 6
580.499 odd 14 2900.1.bj.a.2751.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
116.1.j.a.7.1 6 29.13 even 14
116.1.j.a.7.1 6 116.71 odd 14
116.1.j.a.83.1 yes 6 29.6 even 14
116.1.j.a.83.1 yes 6 116.35 odd 14
1044.1.bb.a.199.1 6 87.35 odd 14
1044.1.bb.a.199.1 6 348.35 even 14
1044.1.bb.a.703.1 6 87.71 odd 14
1044.1.bb.a.703.1 6 348.71 even 14
1856.1.bh.a.703.1 6 232.13 even 14
1856.1.bh.a.703.1 6 232.187 odd 14
1856.1.bh.a.895.1 6 232.35 odd 14
1856.1.bh.a.895.1 6 232.93 even 14
2900.1.bd.a.199.1 12 145.122 odd 28
2900.1.bd.a.199.1 12 580.267 even 28
2900.1.bd.a.199.2 12 145.93 odd 28
2900.1.bd.a.199.2 12 580.383 even 28
2900.1.bd.a.1399.1 12 145.13 odd 28
2900.1.bd.a.1399.1 12 580.303 even 28
2900.1.bd.a.1399.2 12 145.42 odd 28
2900.1.bd.a.1399.2 12 580.187 even 28
2900.1.bj.a.1051.1 6 145.129 even 14
2900.1.bj.a.1051.1 6 580.419 odd 14
2900.1.bj.a.2751.1 6 145.64 even 14
2900.1.bj.a.2751.1 6 580.499 odd 14
3364.1.b.b.1683.3 3 29.7 even 7
3364.1.b.b.1683.3 3 116.7 odd 14
3364.1.b.c.1683.3 3 29.22 even 14
3364.1.b.c.1683.3 3 116.51 odd 14
3364.1.d.a.3363.1 6 29.26 odd 28
3364.1.d.a.3363.1 6 116.55 even 28
3364.1.d.a.3363.4 6 29.3 odd 28
3364.1.d.a.3363.4 6 116.3 even 28
3364.1.h.c.63.1 12 29.19 odd 28
3364.1.h.c.63.1 12 116.19 even 28
3364.1.h.c.63.2 12 29.10 odd 28
3364.1.h.c.63.2 12 116.39 even 28
3364.1.h.c.267.1 12 29.27 odd 28
3364.1.h.c.267.1 12 116.27 even 28
3364.1.h.c.267.2 12 29.2 odd 28
3364.1.h.c.267.2 12 116.31 even 28
3364.1.h.d.651.1 12 29.12 odd 4
3364.1.h.d.651.1 12 116.99 even 4
3364.1.h.d.651.2 12 29.17 odd 4
3364.1.h.d.651.2 12 116.75 even 4
3364.1.h.d.1111.1 12 29.21 odd 28
3364.1.h.d.1111.1 12 116.79 even 28
3364.1.h.d.1111.2 12 29.8 odd 28
3364.1.h.d.1111.2 12 116.95 even 28
3364.1.h.e.2719.1 12 29.18 odd 28
3364.1.h.e.2719.1 12 116.47 even 28
3364.1.h.e.2719.2 12 29.11 odd 28
3364.1.h.e.2719.2 12 116.11 even 28
3364.1.h.e.2759.1 12 29.14 odd 28
3364.1.h.e.2759.1 12 116.43 even 28
3364.1.h.e.2759.2 12 29.15 odd 28
3364.1.h.e.2759.2 12 116.15 even 28
3364.1.j.a.571.1 6 29.9 even 14
3364.1.j.a.571.1 6 116.67 odd 14
3364.1.j.a.1031.1 6 29.28 even 2
3364.1.j.a.1031.1 6 116.115 odd 2
3364.1.j.b.1415.1 6 29.5 even 14
3364.1.j.b.1415.1 6 116.63 odd 14
3364.1.j.b.1619.1 6 29.4 even 14
3364.1.j.b.1619.1 6 116.91 odd 14
3364.1.j.c.571.1 6 29.20 even 7 inner
3364.1.j.c.571.1 6 116.107 odd 14 inner
3364.1.j.c.1031.1 6 1.1 even 1 trivial
3364.1.j.c.1031.1 6 4.3 odd 2 CM
3364.1.j.d.2287.1 6 29.23 even 7
3364.1.j.d.2287.1 6 116.23 odd 14
3364.1.j.d.2327.1 6 29.16 even 7
3364.1.j.d.2327.1 6 116.103 odd 14
3364.1.j.e.1415.1 6 29.24 even 7
3364.1.j.e.1415.1 6 116.111 odd 14
3364.1.j.e.1619.1 6 29.25 even 7
3364.1.j.e.1619.1 6 116.83 odd 14