Properties

Label 3364.2.a.p.1.4
Level $3364$
Weight $2$
Character 3364.1
Self dual yes
Analytic conductor $26.862$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3364,2,Mod(1,3364)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3364, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3364.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3364 = 2^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3364.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.8616752400\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.6456289.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 12x^{4} + 3x^{3} + 40x^{2} + 6x - 29 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 116)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.46835\) of defining polynomial
Character \(\chi\) \(=\) 3364.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.46835 q^{3} +3.45542 q^{5} -0.468352 q^{7} +3.09276 q^{9} +6.44782 q^{11} -2.67149 q^{13} +8.52918 q^{15} +3.05467 q^{17} +5.65536 q^{19} -1.15606 q^{21} -2.65625 q^{23} +6.93990 q^{25} +0.228972 q^{27} +0.162294 q^{31} +15.9155 q^{33} -1.61835 q^{35} -8.00432 q^{37} -6.59417 q^{39} -7.71247 q^{41} -6.04030 q^{43} +10.6868 q^{45} -10.2021 q^{47} -6.78065 q^{49} +7.54001 q^{51} +2.66487 q^{53} +22.2799 q^{55} +13.9594 q^{57} +3.41835 q^{59} -6.43590 q^{61} -1.44850 q^{63} -9.23110 q^{65} +2.23003 q^{67} -6.55657 q^{69} -7.96768 q^{71} -3.69941 q^{73} +17.1301 q^{75} -3.01985 q^{77} -4.67133 q^{79} -8.71311 q^{81} +8.87003 q^{83} +10.5552 q^{85} +1.02703 q^{89} +1.25120 q^{91} +0.400599 q^{93} +19.5416 q^{95} +18.5120 q^{97} +19.9416 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{3} + 10 q^{5} + 7 q^{7} + 11 q^{9} + 9 q^{11} + 14 q^{13} + 10 q^{15} + 5 q^{17} + 9 q^{19} - 19 q^{21} + 15 q^{23} + 16 q^{25} + 20 q^{27} - 11 q^{31} + 22 q^{33} + 10 q^{35} - 16 q^{37} + 22 q^{39}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.46835 1.42510 0.712552 0.701619i \(-0.247539\pi\)
0.712552 + 0.701619i \(0.247539\pi\)
\(4\) 0 0
\(5\) 3.45542 1.54531 0.772655 0.634827i \(-0.218929\pi\)
0.772655 + 0.634827i \(0.218929\pi\)
\(6\) 0 0
\(7\) −0.468352 −0.177021 −0.0885103 0.996075i \(-0.528211\pi\)
−0.0885103 + 0.996075i \(0.528211\pi\)
\(8\) 0 0
\(9\) 3.09276 1.03092
\(10\) 0 0
\(11\) 6.44782 1.94409 0.972045 0.234795i \(-0.0754418\pi\)
0.972045 + 0.234795i \(0.0754418\pi\)
\(12\) 0 0
\(13\) −2.67149 −0.740937 −0.370468 0.928845i \(-0.620803\pi\)
−0.370468 + 0.928845i \(0.620803\pi\)
\(14\) 0 0
\(15\) 8.52918 2.20223
\(16\) 0 0
\(17\) 3.05467 0.740867 0.370434 0.928859i \(-0.379209\pi\)
0.370434 + 0.928859i \(0.379209\pi\)
\(18\) 0 0
\(19\) 5.65536 1.29743 0.648714 0.761033i \(-0.275307\pi\)
0.648714 + 0.761033i \(0.275307\pi\)
\(20\) 0 0
\(21\) −1.15606 −0.252273
\(22\) 0 0
\(23\) −2.65625 −0.553867 −0.276934 0.960889i \(-0.589318\pi\)
−0.276934 + 0.960889i \(0.589318\pi\)
\(24\) 0 0
\(25\) 6.93990 1.38798
\(26\) 0 0
\(27\) 0.228972 0.0440656
\(28\) 0 0
\(29\) 0 0
\(30\) 0 0
\(31\) 0.162294 0.0291489 0.0145745 0.999894i \(-0.495361\pi\)
0.0145745 + 0.999894i \(0.495361\pi\)
\(32\) 0 0
\(33\) 15.9155 2.77053
\(34\) 0 0
\(35\) −1.61835 −0.273551
\(36\) 0 0
\(37\) −8.00432 −1.31590 −0.657951 0.753061i \(-0.728576\pi\)
−0.657951 + 0.753061i \(0.728576\pi\)
\(38\) 0 0
\(39\) −6.59417 −1.05591
\(40\) 0 0
\(41\) −7.71247 −1.20449 −0.602243 0.798313i \(-0.705726\pi\)
−0.602243 + 0.798313i \(0.705726\pi\)
\(42\) 0 0
\(43\) −6.04030 −0.921137 −0.460568 0.887624i \(-0.652354\pi\)
−0.460568 + 0.887624i \(0.652354\pi\)
\(44\) 0 0
\(45\) 10.6868 1.59309
\(46\) 0 0
\(47\) −10.2021 −1.48813 −0.744065 0.668107i \(-0.767105\pi\)
−0.744065 + 0.668107i \(0.767105\pi\)
\(48\) 0 0
\(49\) −6.78065 −0.968664
\(50\) 0 0
\(51\) 7.54001 1.05581
\(52\) 0 0
\(53\) 2.66487 0.366049 0.183024 0.983108i \(-0.441411\pi\)
0.183024 + 0.983108i \(0.441411\pi\)
\(54\) 0 0
\(55\) 22.2799 3.00422
\(56\) 0 0
\(57\) 13.9594 1.84897
\(58\) 0 0
\(59\) 3.41835 0.445031 0.222516 0.974929i \(-0.428573\pi\)
0.222516 + 0.974929i \(0.428573\pi\)
\(60\) 0 0
\(61\) −6.43590 −0.824033 −0.412016 0.911176i \(-0.635175\pi\)
−0.412016 + 0.911176i \(0.635175\pi\)
\(62\) 0 0
\(63\) −1.44850 −0.182494
\(64\) 0 0
\(65\) −9.23110 −1.14498
\(66\) 0 0
\(67\) 2.23003 0.272441 0.136221 0.990679i \(-0.456504\pi\)
0.136221 + 0.990679i \(0.456504\pi\)
\(68\) 0 0
\(69\) −6.55657 −0.789318
\(70\) 0 0
\(71\) −7.96768 −0.945590 −0.472795 0.881172i \(-0.656755\pi\)
−0.472795 + 0.881172i \(0.656755\pi\)
\(72\) 0 0
\(73\) −3.69941 −0.432984 −0.216492 0.976284i \(-0.569461\pi\)
−0.216492 + 0.976284i \(0.569461\pi\)
\(74\) 0 0
\(75\) 17.1301 1.97802
\(76\) 0 0
\(77\) −3.01985 −0.344144
\(78\) 0 0
\(79\) −4.67133 −0.525566 −0.262783 0.964855i \(-0.584640\pi\)
−0.262783 + 0.964855i \(0.584640\pi\)
\(80\) 0 0
\(81\) −8.71311 −0.968123
\(82\) 0 0
\(83\) 8.87003 0.973612 0.486806 0.873510i \(-0.338162\pi\)
0.486806 + 0.873510i \(0.338162\pi\)
\(84\) 0 0
\(85\) 10.5552 1.14487
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.02703 0.108865 0.0544324 0.998517i \(-0.482665\pi\)
0.0544324 + 0.998517i \(0.482665\pi\)
\(90\) 0 0
\(91\) 1.25120 0.131161
\(92\) 0 0
\(93\) 0.400599 0.0415402
\(94\) 0 0
\(95\) 19.5416 2.00493
\(96\) 0 0
\(97\) 18.5120 1.87961 0.939807 0.341706i \(-0.111005\pi\)
0.939807 + 0.341706i \(0.111005\pi\)
\(98\) 0 0
\(99\) 19.9416 2.00420
\(100\) 0 0
\(101\) −10.9463 −1.08919 −0.544597 0.838698i \(-0.683317\pi\)
−0.544597 + 0.838698i \(0.683317\pi\)
\(102\) 0 0
\(103\) 2.04246 0.201249 0.100625 0.994924i \(-0.467916\pi\)
0.100625 + 0.994924i \(0.467916\pi\)
\(104\) 0 0
\(105\) −3.99466 −0.389839
\(106\) 0 0
\(107\) 11.5539 1.11696 0.558478 0.829519i \(-0.311385\pi\)
0.558478 + 0.829519i \(0.311385\pi\)
\(108\) 0 0
\(109\) 3.58211 0.343103 0.171552 0.985175i \(-0.445122\pi\)
0.171552 + 0.985175i \(0.445122\pi\)
\(110\) 0 0
\(111\) −19.7575 −1.87530
\(112\) 0 0
\(113\) −5.62812 −0.529449 −0.264724 0.964324i \(-0.585281\pi\)
−0.264724 + 0.964324i \(0.585281\pi\)
\(114\) 0 0
\(115\) −9.17846 −0.855896
\(116\) 0 0
\(117\) −8.26227 −0.763847
\(118\) 0 0
\(119\) −1.43066 −0.131149
\(120\) 0 0
\(121\) 30.5743 2.77949
\(122\) 0 0
\(123\) −19.0371 −1.71652
\(124\) 0 0
\(125\) 6.70316 0.599549
\(126\) 0 0
\(127\) −9.38911 −0.833149 −0.416575 0.909102i \(-0.636770\pi\)
−0.416575 + 0.909102i \(0.636770\pi\)
\(128\) 0 0
\(129\) −14.9096 −1.31272
\(130\) 0 0
\(131\) −2.20199 −0.192389 −0.0961945 0.995363i \(-0.530667\pi\)
−0.0961945 + 0.995363i \(0.530667\pi\)
\(132\) 0 0
\(133\) −2.64870 −0.229671
\(134\) 0 0
\(135\) 0.791192 0.0680950
\(136\) 0 0
\(137\) 2.00184 0.171029 0.0855144 0.996337i \(-0.472747\pi\)
0.0855144 + 0.996337i \(0.472747\pi\)
\(138\) 0 0
\(139\) 9.98524 0.846937 0.423469 0.905911i \(-0.360812\pi\)
0.423469 + 0.905911i \(0.360812\pi\)
\(140\) 0 0
\(141\) −25.1824 −2.12074
\(142\) 0 0
\(143\) −17.2253 −1.44045
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −16.7370 −1.38045
\(148\) 0 0
\(149\) 8.25714 0.676451 0.338226 0.941065i \(-0.390173\pi\)
0.338226 + 0.941065i \(0.390173\pi\)
\(150\) 0 0
\(151\) 8.70287 0.708230 0.354115 0.935202i \(-0.384782\pi\)
0.354115 + 0.935202i \(0.384782\pi\)
\(152\) 0 0
\(153\) 9.44738 0.763776
\(154\) 0 0
\(155\) 0.560794 0.0450441
\(156\) 0 0
\(157\) 21.5884 1.72294 0.861472 0.507805i \(-0.169543\pi\)
0.861472 + 0.507805i \(0.169543\pi\)
\(158\) 0 0
\(159\) 6.57785 0.521657
\(160\) 0 0
\(161\) 1.24406 0.0980458
\(162\) 0 0
\(163\) −6.74986 −0.528690 −0.264345 0.964428i \(-0.585156\pi\)
−0.264345 + 0.964428i \(0.585156\pi\)
\(164\) 0 0
\(165\) 54.9946 4.28133
\(166\) 0 0
\(167\) −18.9056 −1.46296 −0.731481 0.681862i \(-0.761171\pi\)
−0.731481 + 0.681862i \(0.761171\pi\)
\(168\) 0 0
\(169\) −5.86316 −0.451012
\(170\) 0 0
\(171\) 17.4907 1.33755
\(172\) 0 0
\(173\) 4.33780 0.329797 0.164899 0.986311i \(-0.447270\pi\)
0.164899 + 0.986311i \(0.447270\pi\)
\(174\) 0 0
\(175\) −3.25032 −0.245701
\(176\) 0 0
\(177\) 8.43769 0.634216
\(178\) 0 0
\(179\) −2.40824 −0.180000 −0.0900000 0.995942i \(-0.528687\pi\)
−0.0900000 + 0.995942i \(0.528687\pi\)
\(180\) 0 0
\(181\) 22.8390 1.69761 0.848803 0.528709i \(-0.177324\pi\)
0.848803 + 0.528709i \(0.177324\pi\)
\(182\) 0 0
\(183\) −15.8861 −1.17433
\(184\) 0 0
\(185\) −27.6582 −2.03347
\(186\) 0 0
\(187\) 19.6960 1.44031
\(188\) 0 0
\(189\) −0.107239 −0.00780051
\(190\) 0 0
\(191\) 4.17124 0.301820 0.150910 0.988547i \(-0.451780\pi\)
0.150910 + 0.988547i \(0.451780\pi\)
\(192\) 0 0
\(193\) 19.4221 1.39803 0.699017 0.715105i \(-0.253621\pi\)
0.699017 + 0.715105i \(0.253621\pi\)
\(194\) 0 0
\(195\) −22.7856 −1.63171
\(196\) 0 0
\(197\) −7.09440 −0.505455 −0.252727 0.967538i \(-0.581328\pi\)
−0.252727 + 0.967538i \(0.581328\pi\)
\(198\) 0 0
\(199\) 2.33313 0.165391 0.0826956 0.996575i \(-0.473647\pi\)
0.0826956 + 0.996575i \(0.473647\pi\)
\(200\) 0 0
\(201\) 5.50450 0.388257
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −26.6498 −1.86130
\(206\) 0 0
\(207\) −8.21516 −0.570993
\(208\) 0 0
\(209\) 36.4647 2.52232
\(210\) 0 0
\(211\) 7.19592 0.495387 0.247694 0.968838i \(-0.420327\pi\)
0.247694 + 0.968838i \(0.420327\pi\)
\(212\) 0 0
\(213\) −19.6671 −1.34756
\(214\) 0 0
\(215\) −20.8717 −1.42344
\(216\) 0 0
\(217\) −0.0760109 −0.00515995
\(218\) 0 0
\(219\) −9.13146 −0.617047
\(220\) 0 0
\(221\) −8.16052 −0.548936
\(222\) 0 0
\(223\) −7.01578 −0.469812 −0.234906 0.972018i \(-0.575478\pi\)
−0.234906 + 0.972018i \(0.575478\pi\)
\(224\) 0 0
\(225\) 21.4635 1.43090
\(226\) 0 0
\(227\) −21.3154 −1.41475 −0.707377 0.706837i \(-0.750122\pi\)
−0.707377 + 0.706837i \(0.750122\pi\)
\(228\) 0 0
\(229\) −20.5594 −1.35860 −0.679300 0.733860i \(-0.737717\pi\)
−0.679300 + 0.733860i \(0.737717\pi\)
\(230\) 0 0
\(231\) −7.45405 −0.490441
\(232\) 0 0
\(233\) −1.22159 −0.0800287 −0.0400144 0.999199i \(-0.512740\pi\)
−0.0400144 + 0.999199i \(0.512740\pi\)
\(234\) 0 0
\(235\) −35.2525 −2.29962
\(236\) 0 0
\(237\) −11.5305 −0.748986
\(238\) 0 0
\(239\) 19.4380 1.25734 0.628670 0.777673i \(-0.283600\pi\)
0.628670 + 0.777673i \(0.283600\pi\)
\(240\) 0 0
\(241\) 8.35978 0.538501 0.269250 0.963070i \(-0.413224\pi\)
0.269250 + 0.963070i \(0.413224\pi\)
\(242\) 0 0
\(243\) −22.1939 −1.42374
\(244\) 0 0
\(245\) −23.4300 −1.49688
\(246\) 0 0
\(247\) −15.1082 −0.961312
\(248\) 0 0
\(249\) 21.8944 1.38750
\(250\) 0 0
\(251\) −22.3163 −1.40859 −0.704297 0.709906i \(-0.748737\pi\)
−0.704297 + 0.709906i \(0.748737\pi\)
\(252\) 0 0
\(253\) −17.1270 −1.07677
\(254\) 0 0
\(255\) 26.0539 1.63156
\(256\) 0 0
\(257\) −16.5994 −1.03544 −0.517721 0.855549i \(-0.673220\pi\)
−0.517721 + 0.855549i \(0.673220\pi\)
\(258\) 0 0
\(259\) 3.74884 0.232942
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.46065 −0.151730 −0.0758652 0.997118i \(-0.524172\pi\)
−0.0758652 + 0.997118i \(0.524172\pi\)
\(264\) 0 0
\(265\) 9.20825 0.565658
\(266\) 0 0
\(267\) 2.53507 0.155144
\(268\) 0 0
\(269\) −5.30716 −0.323583 −0.161792 0.986825i \(-0.551727\pi\)
−0.161792 + 0.986825i \(0.551727\pi\)
\(270\) 0 0
\(271\) 2.63276 0.159929 0.0799643 0.996798i \(-0.474519\pi\)
0.0799643 + 0.996798i \(0.474519\pi\)
\(272\) 0 0
\(273\) 3.08839 0.186918
\(274\) 0 0
\(275\) 44.7472 2.69836
\(276\) 0 0
\(277\) 17.3377 1.04172 0.520861 0.853641i \(-0.325611\pi\)
0.520861 + 0.853641i \(0.325611\pi\)
\(278\) 0 0
\(279\) 0.501938 0.0300502
\(280\) 0 0
\(281\) −13.7434 −0.819863 −0.409932 0.912116i \(-0.634447\pi\)
−0.409932 + 0.912116i \(0.634447\pi\)
\(282\) 0 0
\(283\) −25.3515 −1.50699 −0.753495 0.657454i \(-0.771634\pi\)
−0.753495 + 0.657454i \(0.771634\pi\)
\(284\) 0 0
\(285\) 48.2356 2.85723
\(286\) 0 0
\(287\) 3.61215 0.213219
\(288\) 0 0
\(289\) −7.66896 −0.451116
\(290\) 0 0
\(291\) 45.6943 2.67864
\(292\) 0 0
\(293\) 7.55111 0.441140 0.220570 0.975371i \(-0.429208\pi\)
0.220570 + 0.975371i \(0.429208\pi\)
\(294\) 0 0
\(295\) 11.8118 0.687711
\(296\) 0 0
\(297\) 1.47637 0.0856675
\(298\) 0 0
\(299\) 7.09614 0.410381
\(300\) 0 0
\(301\) 2.82899 0.163060
\(302\) 0 0
\(303\) −27.0192 −1.55221
\(304\) 0 0
\(305\) −22.2387 −1.27339
\(306\) 0 0
\(307\) 4.89496 0.279370 0.139685 0.990196i \(-0.455391\pi\)
0.139685 + 0.990196i \(0.455391\pi\)
\(308\) 0 0
\(309\) 5.04151 0.286801
\(310\) 0 0
\(311\) −9.19809 −0.521576 −0.260788 0.965396i \(-0.583982\pi\)
−0.260788 + 0.965396i \(0.583982\pi\)
\(312\) 0 0
\(313\) 15.2320 0.860963 0.430481 0.902599i \(-0.358344\pi\)
0.430481 + 0.902599i \(0.358344\pi\)
\(314\) 0 0
\(315\) −5.00518 −0.282010
\(316\) 0 0
\(317\) 14.3572 0.806379 0.403190 0.915116i \(-0.367902\pi\)
0.403190 + 0.915116i \(0.367902\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 28.5191 1.59178
\(322\) 0 0
\(323\) 17.2753 0.961222
\(324\) 0 0
\(325\) −18.5398 −1.02841
\(326\) 0 0
\(327\) 8.84190 0.488958
\(328\) 0 0
\(329\) 4.77818 0.263430
\(330\) 0 0
\(331\) 15.3588 0.844198 0.422099 0.906550i \(-0.361293\pi\)
0.422099 + 0.906550i \(0.361293\pi\)
\(332\) 0 0
\(333\) −24.7554 −1.35659
\(334\) 0 0
\(335\) 7.70568 0.421006
\(336\) 0 0
\(337\) −0.850248 −0.0463160 −0.0231580 0.999732i \(-0.507372\pi\)
−0.0231580 + 0.999732i \(0.507372\pi\)
\(338\) 0 0
\(339\) −13.8922 −0.754520
\(340\) 0 0
\(341\) 1.04644 0.0566681
\(342\) 0 0
\(343\) 6.45420 0.348494
\(344\) 0 0
\(345\) −22.6557 −1.21974
\(346\) 0 0
\(347\) −7.35642 −0.394913 −0.197457 0.980312i \(-0.563268\pi\)
−0.197457 + 0.980312i \(0.563268\pi\)
\(348\) 0 0
\(349\) 18.9497 1.01436 0.507178 0.861841i \(-0.330689\pi\)
0.507178 + 0.861841i \(0.330689\pi\)
\(350\) 0 0
\(351\) −0.611694 −0.0326498
\(352\) 0 0
\(353\) −14.4116 −0.767051 −0.383525 0.923530i \(-0.625290\pi\)
−0.383525 + 0.923530i \(0.625290\pi\)
\(354\) 0 0
\(355\) −27.5317 −1.46123
\(356\) 0 0
\(357\) −3.53138 −0.186901
\(358\) 0 0
\(359\) 12.8159 0.676400 0.338200 0.941074i \(-0.390182\pi\)
0.338200 + 0.941074i \(0.390182\pi\)
\(360\) 0 0
\(361\) 12.9830 0.683318
\(362\) 0 0
\(363\) 75.4683 3.96106
\(364\) 0 0
\(365\) −12.7830 −0.669093
\(366\) 0 0
\(367\) −5.89514 −0.307724 −0.153862 0.988092i \(-0.549171\pi\)
−0.153862 + 0.988092i \(0.549171\pi\)
\(368\) 0 0
\(369\) −23.8528 −1.24173
\(370\) 0 0
\(371\) −1.24810 −0.0647981
\(372\) 0 0
\(373\) 12.7655 0.660975 0.330487 0.943810i \(-0.392787\pi\)
0.330487 + 0.943810i \(0.392787\pi\)
\(374\) 0 0
\(375\) 16.5458 0.854419
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −19.5994 −1.00675 −0.503377 0.864067i \(-0.667909\pi\)
−0.503377 + 0.864067i \(0.667909\pi\)
\(380\) 0 0
\(381\) −23.1756 −1.18732
\(382\) 0 0
\(383\) 22.1758 1.13313 0.566565 0.824017i \(-0.308272\pi\)
0.566565 + 0.824017i \(0.308272\pi\)
\(384\) 0 0
\(385\) −10.4348 −0.531809
\(386\) 0 0
\(387\) −18.6812 −0.949619
\(388\) 0 0
\(389\) −24.1533 −1.22462 −0.612312 0.790617i \(-0.709760\pi\)
−0.612312 + 0.790617i \(0.709760\pi\)
\(390\) 0 0
\(391\) −8.11399 −0.410342
\(392\) 0 0
\(393\) −5.43530 −0.274174
\(394\) 0 0
\(395\) −16.1414 −0.812162
\(396\) 0 0
\(397\) −15.8597 −0.795976 −0.397988 0.917391i \(-0.630291\pi\)
−0.397988 + 0.917391i \(0.630291\pi\)
\(398\) 0 0
\(399\) −6.53792 −0.327305
\(400\) 0 0
\(401\) 23.9221 1.19461 0.597307 0.802013i \(-0.296237\pi\)
0.597307 + 0.802013i \(0.296237\pi\)
\(402\) 0 0
\(403\) −0.433567 −0.0215975
\(404\) 0 0
\(405\) −30.1074 −1.49605
\(406\) 0 0
\(407\) −51.6104 −2.55823
\(408\) 0 0
\(409\) 25.4293 1.25740 0.628699 0.777649i \(-0.283588\pi\)
0.628699 + 0.777649i \(0.283588\pi\)
\(410\) 0 0
\(411\) 4.94125 0.243734
\(412\) 0 0
\(413\) −1.60099 −0.0787797
\(414\) 0 0
\(415\) 30.6496 1.50453
\(416\) 0 0
\(417\) 24.6471 1.20697
\(418\) 0 0
\(419\) 20.2925 0.991352 0.495676 0.868508i \(-0.334920\pi\)
0.495676 + 0.868508i \(0.334920\pi\)
\(420\) 0 0
\(421\) −25.7015 −1.25261 −0.626306 0.779577i \(-0.715434\pi\)
−0.626306 + 0.779577i \(0.715434\pi\)
\(422\) 0 0
\(423\) −31.5527 −1.53415
\(424\) 0 0
\(425\) 21.1991 1.02831
\(426\) 0 0
\(427\) 3.01427 0.145871
\(428\) 0 0
\(429\) −42.5180 −2.05279
\(430\) 0 0
\(431\) 29.5645 1.42407 0.712037 0.702142i \(-0.247773\pi\)
0.712037 + 0.702142i \(0.247773\pi\)
\(432\) 0 0
\(433\) −19.6937 −0.946421 −0.473211 0.880949i \(-0.656905\pi\)
−0.473211 + 0.880949i \(0.656905\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −15.0221 −0.718602
\(438\) 0 0
\(439\) 32.3494 1.54395 0.771977 0.635650i \(-0.219268\pi\)
0.771977 + 0.635650i \(0.219268\pi\)
\(440\) 0 0
\(441\) −20.9709 −0.998616
\(442\) 0 0
\(443\) −16.8125 −0.798787 −0.399394 0.916779i \(-0.630779\pi\)
−0.399394 + 0.916779i \(0.630779\pi\)
\(444\) 0 0
\(445\) 3.54881 0.168230
\(446\) 0 0
\(447\) 20.3815 0.964013
\(448\) 0 0
\(449\) 18.4958 0.872873 0.436436 0.899735i \(-0.356240\pi\)
0.436436 + 0.899735i \(0.356240\pi\)
\(450\) 0 0
\(451\) −49.7286 −2.34163
\(452\) 0 0
\(453\) 21.4818 1.00930
\(454\) 0 0
\(455\) 4.32340 0.202684
\(456\) 0 0
\(457\) 28.0543 1.31232 0.656162 0.754620i \(-0.272179\pi\)
0.656162 + 0.754620i \(0.272179\pi\)
\(458\) 0 0
\(459\) 0.699434 0.0326468
\(460\) 0 0
\(461\) 28.0684 1.30727 0.653637 0.756808i \(-0.273242\pi\)
0.653637 + 0.756808i \(0.273242\pi\)
\(462\) 0 0
\(463\) 21.0969 0.980454 0.490227 0.871595i \(-0.336914\pi\)
0.490227 + 0.871595i \(0.336914\pi\)
\(464\) 0 0
\(465\) 1.38424 0.0641925
\(466\) 0 0
\(467\) 9.71569 0.449589 0.224794 0.974406i \(-0.427829\pi\)
0.224794 + 0.974406i \(0.427829\pi\)
\(468\) 0 0
\(469\) −1.04444 −0.0482277
\(470\) 0 0
\(471\) 53.2878 2.45537
\(472\) 0 0
\(473\) −38.9467 −1.79077
\(474\) 0 0
\(475\) 39.2476 1.80080
\(476\) 0 0
\(477\) 8.24182 0.377367
\(478\) 0 0
\(479\) 11.5269 0.526677 0.263339 0.964703i \(-0.415176\pi\)
0.263339 + 0.964703i \(0.415176\pi\)
\(480\) 0 0
\(481\) 21.3834 0.975000
\(482\) 0 0
\(483\) 3.07078 0.139726
\(484\) 0 0
\(485\) 63.9668 2.90458
\(486\) 0 0
\(487\) −18.4196 −0.834671 −0.417336 0.908752i \(-0.637036\pi\)
−0.417336 + 0.908752i \(0.637036\pi\)
\(488\) 0 0
\(489\) −16.6610 −0.753438
\(490\) 0 0
\(491\) −15.3585 −0.693121 −0.346560 0.938028i \(-0.612650\pi\)
−0.346560 + 0.938028i \(0.612650\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 68.9064 3.09711
\(496\) 0 0
\(497\) 3.73168 0.167389
\(498\) 0 0
\(499\) −35.0821 −1.57049 −0.785246 0.619184i \(-0.787464\pi\)
−0.785246 + 0.619184i \(0.787464\pi\)
\(500\) 0 0
\(501\) −46.6658 −2.08487
\(502\) 0 0
\(503\) −22.4221 −0.999751 −0.499875 0.866097i \(-0.666621\pi\)
−0.499875 + 0.866097i \(0.666621\pi\)
\(504\) 0 0
\(505\) −37.8239 −1.68314
\(506\) 0 0
\(507\) −14.4723 −0.642739
\(508\) 0 0
\(509\) 27.3980 1.21440 0.607198 0.794551i \(-0.292294\pi\)
0.607198 + 0.794551i \(0.292294\pi\)
\(510\) 0 0
\(511\) 1.73263 0.0766470
\(512\) 0 0
\(513\) 1.29492 0.0571719
\(514\) 0 0
\(515\) 7.05754 0.310993
\(516\) 0 0
\(517\) −65.7814 −2.89306
\(518\) 0 0
\(519\) 10.7072 0.469995
\(520\) 0 0
\(521\) 17.6915 0.775078 0.387539 0.921853i \(-0.373325\pi\)
0.387539 + 0.921853i \(0.373325\pi\)
\(522\) 0 0
\(523\) −11.8131 −0.516552 −0.258276 0.966071i \(-0.583154\pi\)
−0.258276 + 0.966071i \(0.583154\pi\)
\(524\) 0 0
\(525\) −8.02293 −0.350149
\(526\) 0 0
\(527\) 0.495756 0.0215955
\(528\) 0 0
\(529\) −15.9443 −0.693231
\(530\) 0 0
\(531\) 10.5721 0.458792
\(532\) 0 0
\(533\) 20.6038 0.892448
\(534\) 0 0
\(535\) 39.9235 1.72604
\(536\) 0 0
\(537\) −5.94437 −0.256519
\(538\) 0 0
\(539\) −43.7204 −1.88317
\(540\) 0 0
\(541\) −5.21901 −0.224383 −0.112191 0.993687i \(-0.535787\pi\)
−0.112191 + 0.993687i \(0.535787\pi\)
\(542\) 0 0
\(543\) 56.3746 2.41926
\(544\) 0 0
\(545\) 12.3777 0.530201
\(546\) 0 0
\(547\) −27.1921 −1.16265 −0.581324 0.813672i \(-0.697465\pi\)
−0.581324 + 0.813672i \(0.697465\pi\)
\(548\) 0 0
\(549\) −19.9047 −0.849513
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 2.18783 0.0930360
\(554\) 0 0
\(555\) −68.2703 −2.89791
\(556\) 0 0
\(557\) 11.1087 0.470691 0.235346 0.971912i \(-0.424378\pi\)
0.235346 + 0.971912i \(0.424378\pi\)
\(558\) 0 0
\(559\) 16.1366 0.682504
\(560\) 0 0
\(561\) 48.6166 2.05260
\(562\) 0 0
\(563\) −15.3337 −0.646237 −0.323118 0.946359i \(-0.604731\pi\)
−0.323118 + 0.946359i \(0.604731\pi\)
\(564\) 0 0
\(565\) −19.4475 −0.818162
\(566\) 0 0
\(567\) 4.08080 0.171378
\(568\) 0 0
\(569\) 8.08646 0.339002 0.169501 0.985530i \(-0.445784\pi\)
0.169501 + 0.985530i \(0.445784\pi\)
\(570\) 0 0
\(571\) −22.8857 −0.957737 −0.478869 0.877887i \(-0.658953\pi\)
−0.478869 + 0.877887i \(0.658953\pi\)
\(572\) 0 0
\(573\) 10.2961 0.430125
\(574\) 0 0
\(575\) −18.4341 −0.768756
\(576\) 0 0
\(577\) −9.49247 −0.395177 −0.197588 0.980285i \(-0.563311\pi\)
−0.197588 + 0.980285i \(0.563311\pi\)
\(578\) 0 0
\(579\) 47.9406 1.99234
\(580\) 0 0
\(581\) −4.15430 −0.172349
\(582\) 0 0
\(583\) 17.1826 0.711632
\(584\) 0 0
\(585\) −28.5496 −1.18038
\(586\) 0 0
\(587\) −20.0335 −0.826870 −0.413435 0.910534i \(-0.635671\pi\)
−0.413435 + 0.910534i \(0.635671\pi\)
\(588\) 0 0
\(589\) 0.917832 0.0378186
\(590\) 0 0
\(591\) −17.5115 −0.720326
\(592\) 0 0
\(593\) 1.35116 0.0554856 0.0277428 0.999615i \(-0.491168\pi\)
0.0277428 + 0.999615i \(0.491168\pi\)
\(594\) 0 0
\(595\) −4.94354 −0.202665
\(596\) 0 0
\(597\) 5.75899 0.235700
\(598\) 0 0
\(599\) −6.74712 −0.275680 −0.137840 0.990455i \(-0.544016\pi\)
−0.137840 + 0.990455i \(0.544016\pi\)
\(600\) 0 0
\(601\) 1.52795 0.0623264 0.0311632 0.999514i \(-0.490079\pi\)
0.0311632 + 0.999514i \(0.490079\pi\)
\(602\) 0 0
\(603\) 6.89695 0.280866
\(604\) 0 0
\(605\) 105.647 4.29516
\(606\) 0 0
\(607\) 8.34258 0.338615 0.169307 0.985563i \(-0.445847\pi\)
0.169307 + 0.985563i \(0.445847\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 27.2548 1.10261
\(612\) 0 0
\(613\) −12.5594 −0.507270 −0.253635 0.967300i \(-0.581626\pi\)
−0.253635 + 0.967300i \(0.581626\pi\)
\(614\) 0 0
\(615\) −65.7811 −2.65255
\(616\) 0 0
\(617\) 33.9771 1.36787 0.683933 0.729545i \(-0.260268\pi\)
0.683933 + 0.729545i \(0.260268\pi\)
\(618\) 0 0
\(619\) 14.9084 0.599221 0.299610 0.954062i \(-0.403143\pi\)
0.299610 + 0.954062i \(0.403143\pi\)
\(620\) 0 0
\(621\) −0.608206 −0.0244065
\(622\) 0 0
\(623\) −0.481011 −0.0192713
\(624\) 0 0
\(625\) −11.5373 −0.461492
\(626\) 0 0
\(627\) 90.0077 3.59456
\(628\) 0 0
\(629\) −24.4506 −0.974908
\(630\) 0 0
\(631\) −31.8662 −1.26857 −0.634286 0.773098i \(-0.718706\pi\)
−0.634286 + 0.773098i \(0.718706\pi\)
\(632\) 0 0
\(633\) 17.7621 0.705978
\(634\) 0 0
\(635\) −32.4433 −1.28747
\(636\) 0 0
\(637\) 18.1144 0.717719
\(638\) 0 0
\(639\) −24.6422 −0.974829
\(640\) 0 0
\(641\) −2.12216 −0.0838202 −0.0419101 0.999121i \(-0.513344\pi\)
−0.0419101 + 0.999121i \(0.513344\pi\)
\(642\) 0 0
\(643\) −25.5435 −1.00734 −0.503669 0.863897i \(-0.668017\pi\)
−0.503669 + 0.863897i \(0.668017\pi\)
\(644\) 0 0
\(645\) −51.5188 −2.02855
\(646\) 0 0
\(647\) 2.30704 0.0906993 0.0453496 0.998971i \(-0.485560\pi\)
0.0453496 + 0.998971i \(0.485560\pi\)
\(648\) 0 0
\(649\) 22.0409 0.865181
\(650\) 0 0
\(651\) −0.187622 −0.00735347
\(652\) 0 0
\(653\) −45.3683 −1.77540 −0.887699 0.460425i \(-0.847697\pi\)
−0.887699 + 0.460425i \(0.847697\pi\)
\(654\) 0 0
\(655\) −7.60880 −0.297301
\(656\) 0 0
\(657\) −11.4414 −0.446372
\(658\) 0 0
\(659\) 30.2677 1.17906 0.589531 0.807746i \(-0.299313\pi\)
0.589531 + 0.807746i \(0.299313\pi\)
\(660\) 0 0
\(661\) −17.9479 −0.698093 −0.349047 0.937105i \(-0.613494\pi\)
−0.349047 + 0.937105i \(0.613494\pi\)
\(662\) 0 0
\(663\) −20.1430 −0.782291
\(664\) 0 0
\(665\) −9.15235 −0.354913
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −17.3174 −0.669530
\(670\) 0 0
\(671\) −41.4975 −1.60199
\(672\) 0 0
\(673\) −13.9718 −0.538572 −0.269286 0.963060i \(-0.586788\pi\)
−0.269286 + 0.963060i \(0.586788\pi\)
\(674\) 0 0
\(675\) 1.58904 0.0611622
\(676\) 0 0
\(677\) 39.6603 1.52427 0.762135 0.647418i \(-0.224151\pi\)
0.762135 + 0.647418i \(0.224151\pi\)
\(678\) 0 0
\(679\) −8.67016 −0.332730
\(680\) 0 0
\(681\) −52.6140 −2.01617
\(682\) 0 0
\(683\) 33.0054 1.26291 0.631457 0.775411i \(-0.282457\pi\)
0.631457 + 0.775411i \(0.282457\pi\)
\(684\) 0 0
\(685\) 6.91720 0.264292
\(686\) 0 0
\(687\) −50.7478 −1.93615
\(688\) 0 0
\(689\) −7.11918 −0.271219
\(690\) 0 0
\(691\) 45.9365 1.74751 0.873753 0.486370i \(-0.161679\pi\)
0.873753 + 0.486370i \(0.161679\pi\)
\(692\) 0 0
\(693\) −9.33968 −0.354785
\(694\) 0 0
\(695\) 34.5032 1.30878
\(696\) 0 0
\(697\) −23.5591 −0.892364
\(698\) 0 0
\(699\) −3.01530 −0.114049
\(700\) 0 0
\(701\) 26.2314 0.990748 0.495374 0.868680i \(-0.335031\pi\)
0.495374 + 0.868680i \(0.335031\pi\)
\(702\) 0 0
\(703\) −45.2672 −1.70729
\(704\) 0 0
\(705\) −87.0157 −3.27720
\(706\) 0 0
\(707\) 5.12671 0.192810
\(708\) 0 0
\(709\) 1.09356 0.0410695 0.0205347 0.999789i \(-0.493463\pi\)
0.0205347 + 0.999789i \(0.493463\pi\)
\(710\) 0 0
\(711\) −14.4473 −0.541817
\(712\) 0 0
\(713\) −0.431095 −0.0161446
\(714\) 0 0
\(715\) −59.5204 −2.22594
\(716\) 0 0
\(717\) 47.9798 1.79184
\(718\) 0 0
\(719\) 39.4380 1.47079 0.735394 0.677639i \(-0.236997\pi\)
0.735394 + 0.677639i \(0.236997\pi\)
\(720\) 0 0
\(721\) −0.956590 −0.0356253
\(722\) 0 0
\(723\) 20.6349 0.767420
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −0.447183 −0.0165851 −0.00829255 0.999966i \(-0.502640\pi\)
−0.00829255 + 0.999966i \(0.502640\pi\)
\(728\) 0 0
\(729\) −28.6431 −1.06086
\(730\) 0 0
\(731\) −18.4511 −0.682440
\(732\) 0 0
\(733\) −28.4633 −1.05132 −0.525658 0.850696i \(-0.676181\pi\)
−0.525658 + 0.850696i \(0.676181\pi\)
\(734\) 0 0
\(735\) −57.8334 −2.13322
\(736\) 0 0
\(737\) 14.3788 0.529651
\(738\) 0 0
\(739\) −22.0518 −0.811190 −0.405595 0.914053i \(-0.632936\pi\)
−0.405595 + 0.914053i \(0.632936\pi\)
\(740\) 0 0
\(741\) −37.2924 −1.36997
\(742\) 0 0
\(743\) −25.1379 −0.922220 −0.461110 0.887343i \(-0.652549\pi\)
−0.461110 + 0.887343i \(0.652549\pi\)
\(744\) 0 0
\(745\) 28.5319 1.04533
\(746\) 0 0
\(747\) 27.4329 1.00372
\(748\) 0 0
\(749\) −5.41129 −0.197724
\(750\) 0 0
\(751\) −2.28503 −0.0833819 −0.0416909 0.999131i \(-0.513274\pi\)
−0.0416909 + 0.999131i \(0.513274\pi\)
\(752\) 0 0
\(753\) −55.0845 −2.00739
\(754\) 0 0
\(755\) 30.0721 1.09443
\(756\) 0 0
\(757\) 8.95161 0.325352 0.162676 0.986680i \(-0.447988\pi\)
0.162676 + 0.986680i \(0.447988\pi\)
\(758\) 0 0
\(759\) −42.2756 −1.53451
\(760\) 0 0
\(761\) 47.7847 1.73220 0.866098 0.499875i \(-0.166621\pi\)
0.866098 + 0.499875i \(0.166621\pi\)
\(762\) 0 0
\(763\) −1.67769 −0.0607364
\(764\) 0 0
\(765\) 32.6446 1.18027
\(766\) 0 0
\(767\) −9.13207 −0.329740
\(768\) 0 0
\(769\) 41.2072 1.48597 0.742985 0.669308i \(-0.233409\pi\)
0.742985 + 0.669308i \(0.233409\pi\)
\(770\) 0 0
\(771\) −40.9732 −1.47561
\(772\) 0 0
\(773\) −24.4331 −0.878796 −0.439398 0.898292i \(-0.644808\pi\)
−0.439398 + 0.898292i \(0.644808\pi\)
\(774\) 0 0
\(775\) 1.12631 0.0404581
\(776\) 0 0
\(777\) 9.25346 0.331966
\(778\) 0 0
\(779\) −43.6167 −1.56273
\(780\) 0 0
\(781\) −51.3742 −1.83831
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 74.5970 2.66248
\(786\) 0 0
\(787\) 35.0439 1.24918 0.624591 0.780952i \(-0.285266\pi\)
0.624591 + 0.780952i \(0.285266\pi\)
\(788\) 0 0
\(789\) −6.07376 −0.216232
\(790\) 0 0
\(791\) 2.63594 0.0937233
\(792\) 0 0
\(793\) 17.1934 0.610556
\(794\) 0 0
\(795\) 22.7292 0.806122
\(796\) 0 0
\(797\) 43.6491 1.54613 0.773066 0.634326i \(-0.218722\pi\)
0.773066 + 0.634326i \(0.218722\pi\)
\(798\) 0 0
\(799\) −31.1641 −1.10251
\(800\) 0 0
\(801\) 3.17636 0.112231
\(802\) 0 0
\(803\) −23.8531 −0.841759
\(804\) 0 0
\(805\) 4.29875 0.151511
\(806\) 0 0
\(807\) −13.0999 −0.461140
\(808\) 0 0
\(809\) 23.0748 0.811266 0.405633 0.914036i \(-0.367051\pi\)
0.405633 + 0.914036i \(0.367051\pi\)
\(810\) 0 0
\(811\) −48.5305 −1.70414 −0.852068 0.523431i \(-0.824652\pi\)
−0.852068 + 0.523431i \(0.824652\pi\)
\(812\) 0 0
\(813\) 6.49857 0.227915
\(814\) 0 0
\(815\) −23.3236 −0.816989
\(816\) 0 0
\(817\) −34.1600 −1.19511
\(818\) 0 0
\(819\) 3.86965 0.135217
\(820\) 0 0
\(821\) 46.7925 1.63307 0.816534 0.577297i \(-0.195893\pi\)
0.816534 + 0.577297i \(0.195893\pi\)
\(822\) 0 0
\(823\) −46.0330 −1.60461 −0.802305 0.596914i \(-0.796393\pi\)
−0.802305 + 0.596914i \(0.796393\pi\)
\(824\) 0 0
\(825\) 110.452 3.84544
\(826\) 0 0
\(827\) −34.5022 −1.19976 −0.599879 0.800091i \(-0.704785\pi\)
−0.599879 + 0.800091i \(0.704785\pi\)
\(828\) 0 0
\(829\) −10.1549 −0.352694 −0.176347 0.984328i \(-0.556428\pi\)
−0.176347 + 0.984328i \(0.556428\pi\)
\(830\) 0 0
\(831\) 42.7956 1.48456
\(832\) 0 0
\(833\) −20.7127 −0.717651
\(834\) 0 0
\(835\) −65.3268 −2.26073
\(836\) 0 0
\(837\) 0.0371608 0.00128446
\(838\) 0 0
\(839\) 40.1921 1.38758 0.693792 0.720176i \(-0.255939\pi\)
0.693792 + 0.720176i \(0.255939\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 0 0
\(843\) −33.9236 −1.16839
\(844\) 0 0
\(845\) −20.2597 −0.696953
\(846\) 0 0
\(847\) −14.3196 −0.492026
\(848\) 0 0
\(849\) −62.5764 −2.14762
\(850\) 0 0
\(851\) 21.2615 0.728835
\(852\) 0 0
\(853\) −31.5341 −1.07971 −0.539854 0.841759i \(-0.681521\pi\)
−0.539854 + 0.841759i \(0.681521\pi\)
\(854\) 0 0
\(855\) 60.4375 2.06692
\(856\) 0 0
\(857\) 4.79855 0.163915 0.0819576 0.996636i \(-0.473883\pi\)
0.0819576 + 0.996636i \(0.473883\pi\)
\(858\) 0 0
\(859\) 0.576452 0.0196683 0.00983415 0.999952i \(-0.496870\pi\)
0.00983415 + 0.999952i \(0.496870\pi\)
\(860\) 0 0
\(861\) 8.91606 0.303859
\(862\) 0 0
\(863\) −31.9164 −1.08645 −0.543223 0.839588i \(-0.682796\pi\)
−0.543223 + 0.839588i \(0.682796\pi\)
\(864\) 0 0
\(865\) 14.9889 0.509638
\(866\) 0 0
\(867\) −18.9297 −0.642886
\(868\) 0 0
\(869\) −30.1199 −1.02175
\(870\) 0 0
\(871\) −5.95749 −0.201862
\(872\) 0 0
\(873\) 57.2534 1.93773
\(874\) 0 0
\(875\) −3.13944 −0.106132
\(876\) 0 0
\(877\) 42.0117 1.41863 0.709317 0.704890i \(-0.249003\pi\)
0.709317 + 0.704890i \(0.249003\pi\)
\(878\) 0 0
\(879\) 18.6388 0.628671
\(880\) 0 0
\(881\) 21.9247 0.738661 0.369331 0.929298i \(-0.379587\pi\)
0.369331 + 0.929298i \(0.379587\pi\)
\(882\) 0 0
\(883\) −33.7438 −1.13557 −0.567784 0.823178i \(-0.692199\pi\)
−0.567784 + 0.823178i \(0.692199\pi\)
\(884\) 0 0
\(885\) 29.1557 0.980059
\(886\) 0 0
\(887\) −39.5840 −1.32910 −0.664550 0.747244i \(-0.731377\pi\)
−0.664550 + 0.747244i \(0.731377\pi\)
\(888\) 0 0
\(889\) 4.39741 0.147485
\(890\) 0 0
\(891\) −56.1805 −1.88212
\(892\) 0 0
\(893\) −57.6966 −1.93074
\(894\) 0 0
\(895\) −8.32146 −0.278156
\(896\) 0 0
\(897\) 17.5158 0.584835
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 8.14032 0.271194
\(902\) 0 0
\(903\) 6.98294 0.232378
\(904\) 0 0
\(905\) 78.9181 2.62333
\(906\) 0 0
\(907\) −32.1363 −1.06707 −0.533534 0.845778i \(-0.679136\pi\)
−0.533534 + 0.845778i \(0.679136\pi\)
\(908\) 0 0
\(909\) −33.8542 −1.12287
\(910\) 0 0
\(911\) −55.7892 −1.84838 −0.924189 0.381936i \(-0.875257\pi\)
−0.924189 + 0.381936i \(0.875257\pi\)
\(912\) 0 0
\(913\) 57.1923 1.89279
\(914\) 0 0
\(915\) −54.8930 −1.81471
\(916\) 0 0
\(917\) 1.03131 0.0340568
\(918\) 0 0
\(919\) −12.0026 −0.395929 −0.197965 0.980209i \(-0.563433\pi\)
−0.197965 + 0.980209i \(0.563433\pi\)
\(920\) 0 0
\(921\) 12.0825 0.398132
\(922\) 0 0
\(923\) 21.2856 0.700623
\(924\) 0 0
\(925\) −55.5491 −1.82644
\(926\) 0 0
\(927\) 6.31684 0.207472
\(928\) 0 0
\(929\) −44.1037 −1.44700 −0.723498 0.690326i \(-0.757467\pi\)
−0.723498 + 0.690326i \(0.757467\pi\)
\(930\) 0 0
\(931\) −38.3470 −1.25677
\(932\) 0 0
\(933\) −22.7041 −0.743299
\(934\) 0 0
\(935\) 68.0578 2.22573
\(936\) 0 0
\(937\) −1.83132 −0.0598265 −0.0299132 0.999552i \(-0.509523\pi\)
−0.0299132 + 0.999552i \(0.509523\pi\)
\(938\) 0 0
\(939\) 37.5979 1.22696
\(940\) 0 0
\(941\) −14.3133 −0.466599 −0.233300 0.972405i \(-0.574952\pi\)
−0.233300 + 0.972405i \(0.574952\pi\)
\(942\) 0 0
\(943\) 20.4863 0.667125
\(944\) 0 0
\(945\) −0.370557 −0.0120542
\(946\) 0 0
\(947\) 34.1252 1.10892 0.554460 0.832210i \(-0.312925\pi\)
0.554460 + 0.832210i \(0.312925\pi\)
\(948\) 0 0
\(949\) 9.88293 0.320814
\(950\) 0 0
\(951\) 35.4386 1.14917
\(952\) 0 0
\(953\) −29.6491 −0.960429 −0.480214 0.877151i \(-0.659441\pi\)
−0.480214 + 0.877151i \(0.659441\pi\)
\(954\) 0 0
\(955\) 14.4134 0.466405
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −0.937567 −0.0302756
\(960\) 0 0
\(961\) −30.9737 −0.999150
\(962\) 0 0
\(963\) 35.7334 1.15149
\(964\) 0 0
\(965\) 67.1115 2.16040
\(966\) 0 0
\(967\) −45.7185 −1.47021 −0.735104 0.677954i \(-0.762867\pi\)
−0.735104 + 0.677954i \(0.762867\pi\)
\(968\) 0 0
\(969\) 42.6414 1.36984
\(970\) 0 0
\(971\) −26.0642 −0.836441 −0.418221 0.908345i \(-0.637346\pi\)
−0.418221 + 0.908345i \(0.637346\pi\)
\(972\) 0 0
\(973\) −4.67661 −0.149925
\(974\) 0 0
\(975\) −45.7629 −1.46558
\(976\) 0 0
\(977\) 10.0813 0.322528 0.161264 0.986911i \(-0.448443\pi\)
0.161264 + 0.986911i \(0.448443\pi\)
\(978\) 0 0
\(979\) 6.62209 0.211643
\(980\) 0 0
\(981\) 11.0786 0.353713
\(982\) 0 0
\(983\) −32.0567 −1.02245 −0.511225 0.859447i \(-0.670808\pi\)
−0.511225 + 0.859447i \(0.670808\pi\)
\(984\) 0 0
\(985\) −24.5141 −0.781084
\(986\) 0 0
\(987\) 11.7942 0.375415
\(988\) 0 0
\(989\) 16.0446 0.510187
\(990\) 0 0
\(991\) 52.2812 1.66077 0.830383 0.557193i \(-0.188122\pi\)
0.830383 + 0.557193i \(0.188122\pi\)
\(992\) 0 0
\(993\) 37.9110 1.20307
\(994\) 0 0
\(995\) 8.06194 0.255581
\(996\) 0 0
\(997\) −40.0799 −1.26934 −0.634672 0.772782i \(-0.718865\pi\)
−0.634672 + 0.772782i \(0.718865\pi\)
\(998\) 0 0
\(999\) −1.83276 −0.0579860
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3364.2.a.p.1.4 6
29.5 even 14 116.2.g.b.25.2 12
29.6 even 14 116.2.g.b.65.2 yes 12
29.12 odd 4 3364.2.c.j.1681.10 12
29.17 odd 4 3364.2.c.j.1681.3 12
29.28 even 2 3364.2.a.m.1.3 6
87.5 odd 14 1044.2.u.c.721.2 12
87.35 odd 14 1044.2.u.c.181.2 12
116.35 odd 14 464.2.u.g.65.1 12
116.63 odd 14 464.2.u.g.257.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
116.2.g.b.25.2 12 29.5 even 14
116.2.g.b.65.2 yes 12 29.6 even 14
464.2.u.g.65.1 12 116.35 odd 14
464.2.u.g.257.1 12 116.63 odd 14
1044.2.u.c.181.2 12 87.35 odd 14
1044.2.u.c.721.2 12 87.5 odd 14
3364.2.a.m.1.3 6 29.28 even 2
3364.2.a.p.1.4 6 1.1 even 1 trivial
3364.2.c.j.1681.3 12 29.17 odd 4
3364.2.c.j.1681.10 12 29.12 odd 4