Properties

Label 3364.2.a.q.1.7
Level $3364$
Weight $2$
Character 3364.1
Self dual yes
Analytic conductor $26.862$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3364,2,Mod(1,3364)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3364, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3364.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3364 = 2^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3364.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.8616752400\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.3266578125.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 10x^{6} + 6x^{5} + 29x^{4} - 9x^{3} - 25x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(1.58001\) of defining polynomial
Character \(\chi\) \(=\) 3364.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.729419 q^{3} +0.767443 q^{5} -2.02171 q^{7} -2.46795 q^{9} +3.70678 q^{11} -1.24494 q^{13} +0.559788 q^{15} +3.58130 q^{17} -3.29207 q^{19} -1.47467 q^{21} -2.34621 q^{23} -4.41103 q^{25} -3.98843 q^{27} -5.93955 q^{31} +2.70380 q^{33} -1.55155 q^{35} -0.856538 q^{37} -0.908085 q^{39} -7.92138 q^{41} +8.30193 q^{43} -1.89401 q^{45} -2.40165 q^{47} -2.91270 q^{49} +2.61227 q^{51} +11.7655 q^{53} +2.84474 q^{55} -2.40130 q^{57} +1.61067 q^{59} -14.4889 q^{61} +4.98947 q^{63} -0.955422 q^{65} -4.41071 q^{67} -1.71137 q^{69} +15.2115 q^{71} -0.840227 q^{73} -3.21749 q^{75} -7.49402 q^{77} -9.84833 q^{79} +4.49461 q^{81} -12.8266 q^{83} +2.74844 q^{85} +2.46866 q^{89} +2.51691 q^{91} -4.33242 q^{93} -2.52648 q^{95} -16.1133 q^{97} -9.14813 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - q^{5} - 2 q^{7} + 4 q^{9} - 5 q^{11} + 4 q^{13} + 17 q^{15} - 15 q^{17} - 11 q^{19} - 19 q^{21} - 3 q^{23} + 3 q^{25} - 16 q^{27} + 9 q^{31} - 16 q^{33} + 9 q^{35} + 2 q^{37} - 9 q^{39}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.729419 0.421130 0.210565 0.977580i \(-0.432470\pi\)
0.210565 + 0.977580i \(0.432470\pi\)
\(4\) 0 0
\(5\) 0.767443 0.343211 0.171606 0.985166i \(-0.445105\pi\)
0.171606 + 0.985166i \(0.445105\pi\)
\(6\) 0 0
\(7\) −2.02171 −0.764134 −0.382067 0.924135i \(-0.624788\pi\)
−0.382067 + 0.924135i \(0.624788\pi\)
\(8\) 0 0
\(9\) −2.46795 −0.822649
\(10\) 0 0
\(11\) 3.70678 1.11764 0.558818 0.829290i \(-0.311255\pi\)
0.558818 + 0.829290i \(0.311255\pi\)
\(12\) 0 0
\(13\) −1.24494 −0.345285 −0.172642 0.984985i \(-0.555231\pi\)
−0.172642 + 0.984985i \(0.555231\pi\)
\(14\) 0 0
\(15\) 0.559788 0.144537
\(16\) 0 0
\(17\) 3.58130 0.868593 0.434296 0.900770i \(-0.356997\pi\)
0.434296 + 0.900770i \(0.356997\pi\)
\(18\) 0 0
\(19\) −3.29207 −0.755254 −0.377627 0.925958i \(-0.623260\pi\)
−0.377627 + 0.925958i \(0.623260\pi\)
\(20\) 0 0
\(21\) −1.47467 −0.321800
\(22\) 0 0
\(23\) −2.34621 −0.489219 −0.244609 0.969622i \(-0.578660\pi\)
−0.244609 + 0.969622i \(0.578660\pi\)
\(24\) 0 0
\(25\) −4.41103 −0.882206
\(26\) 0 0
\(27\) −3.98843 −0.767573
\(28\) 0 0
\(29\) 0 0
\(30\) 0 0
\(31\) −5.93955 −1.06677 −0.533387 0.845871i \(-0.679081\pi\)
−0.533387 + 0.845871i \(0.679081\pi\)
\(32\) 0 0
\(33\) 2.70380 0.470670
\(34\) 0 0
\(35\) −1.55155 −0.262259
\(36\) 0 0
\(37\) −0.856538 −0.140814 −0.0704070 0.997518i \(-0.522430\pi\)
−0.0704070 + 0.997518i \(0.522430\pi\)
\(38\) 0 0
\(39\) −0.908085 −0.145410
\(40\) 0 0
\(41\) −7.92138 −1.23711 −0.618556 0.785741i \(-0.712282\pi\)
−0.618556 + 0.785741i \(0.712282\pi\)
\(42\) 0 0
\(43\) 8.30193 1.26603 0.633016 0.774139i \(-0.281817\pi\)
0.633016 + 0.774139i \(0.281817\pi\)
\(44\) 0 0
\(45\) −1.89401 −0.282342
\(46\) 0 0
\(47\) −2.40165 −0.350316 −0.175158 0.984540i \(-0.556044\pi\)
−0.175158 + 0.984540i \(0.556044\pi\)
\(48\) 0 0
\(49\) −2.91270 −0.416100
\(50\) 0 0
\(51\) 2.61227 0.365791
\(52\) 0 0
\(53\) 11.7655 1.61611 0.808055 0.589107i \(-0.200520\pi\)
0.808055 + 0.589107i \(0.200520\pi\)
\(54\) 0 0
\(55\) 2.84474 0.383585
\(56\) 0 0
\(57\) −2.40130 −0.318060
\(58\) 0 0
\(59\) 1.61067 0.209692 0.104846 0.994488i \(-0.466565\pi\)
0.104846 + 0.994488i \(0.466565\pi\)
\(60\) 0 0
\(61\) −14.4889 −1.85511 −0.927556 0.373684i \(-0.878095\pi\)
−0.927556 + 0.373684i \(0.878095\pi\)
\(62\) 0 0
\(63\) 4.98947 0.628614
\(64\) 0 0
\(65\) −0.955422 −0.118506
\(66\) 0 0
\(67\) −4.41071 −0.538854 −0.269427 0.963021i \(-0.586834\pi\)
−0.269427 + 0.963021i \(0.586834\pi\)
\(68\) 0 0
\(69\) −1.71137 −0.206025
\(70\) 0 0
\(71\) 15.2115 1.80527 0.902636 0.430404i \(-0.141629\pi\)
0.902636 + 0.430404i \(0.141629\pi\)
\(72\) 0 0
\(73\) −0.840227 −0.0983412 −0.0491706 0.998790i \(-0.515658\pi\)
−0.0491706 + 0.998790i \(0.515658\pi\)
\(74\) 0 0
\(75\) −3.21749 −0.371524
\(76\) 0 0
\(77\) −7.49402 −0.854023
\(78\) 0 0
\(79\) −9.84833 −1.10802 −0.554012 0.832509i \(-0.686904\pi\)
−0.554012 + 0.832509i \(0.686904\pi\)
\(80\) 0 0
\(81\) 4.49461 0.499401
\(82\) 0 0
\(83\) −12.8266 −1.40790 −0.703949 0.710250i \(-0.748582\pi\)
−0.703949 + 0.710250i \(0.748582\pi\)
\(84\) 0 0
\(85\) 2.74844 0.298111
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.46866 0.261677 0.130839 0.991404i \(-0.458233\pi\)
0.130839 + 0.991404i \(0.458233\pi\)
\(90\) 0 0
\(91\) 2.51691 0.263844
\(92\) 0 0
\(93\) −4.33242 −0.449251
\(94\) 0 0
\(95\) −2.52648 −0.259211
\(96\) 0 0
\(97\) −16.1133 −1.63606 −0.818030 0.575175i \(-0.804934\pi\)
−0.818030 + 0.575175i \(0.804934\pi\)
\(98\) 0 0
\(99\) −9.14813 −0.919422
\(100\) 0 0
\(101\) 12.7240 1.26608 0.633042 0.774117i \(-0.281806\pi\)
0.633042 + 0.774117i \(0.281806\pi\)
\(102\) 0 0
\(103\) −17.3194 −1.70653 −0.853264 0.521480i \(-0.825380\pi\)
−0.853264 + 0.521480i \(0.825380\pi\)
\(104\) 0 0
\(105\) −1.13173 −0.110445
\(106\) 0 0
\(107\) −6.79254 −0.656660 −0.328330 0.944563i \(-0.606486\pi\)
−0.328330 + 0.944563i \(0.606486\pi\)
\(108\) 0 0
\(109\) 9.13608 0.875078 0.437539 0.899199i \(-0.355850\pi\)
0.437539 + 0.899199i \(0.355850\pi\)
\(110\) 0 0
\(111\) −0.624776 −0.0593011
\(112\) 0 0
\(113\) −12.0253 −1.13125 −0.565623 0.824664i \(-0.691364\pi\)
−0.565623 + 0.824664i \(0.691364\pi\)
\(114\) 0 0
\(115\) −1.80058 −0.167905
\(116\) 0 0
\(117\) 3.07245 0.284048
\(118\) 0 0
\(119\) −7.24034 −0.663721
\(120\) 0 0
\(121\) 2.74021 0.249110
\(122\) 0 0
\(123\) −5.77801 −0.520986
\(124\) 0 0
\(125\) −7.22243 −0.645994
\(126\) 0 0
\(127\) 8.30315 0.736786 0.368393 0.929670i \(-0.379908\pi\)
0.368393 + 0.929670i \(0.379908\pi\)
\(128\) 0 0
\(129\) 6.05559 0.533165
\(130\) 0 0
\(131\) 2.12640 0.185784 0.0928920 0.995676i \(-0.470389\pi\)
0.0928920 + 0.995676i \(0.470389\pi\)
\(132\) 0 0
\(133\) 6.65561 0.577115
\(134\) 0 0
\(135\) −3.06089 −0.263440
\(136\) 0 0
\(137\) −18.2911 −1.56272 −0.781359 0.624082i \(-0.785473\pi\)
−0.781359 + 0.624082i \(0.785473\pi\)
\(138\) 0 0
\(139\) −18.6779 −1.58424 −0.792119 0.610367i \(-0.791022\pi\)
−0.792119 + 0.610367i \(0.791022\pi\)
\(140\) 0 0
\(141\) −1.75181 −0.147529
\(142\) 0 0
\(143\) −4.61472 −0.385903
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −2.12458 −0.175232
\(148\) 0 0
\(149\) 22.3871 1.83403 0.917013 0.398858i \(-0.130593\pi\)
0.917013 + 0.398858i \(0.130593\pi\)
\(150\) 0 0
\(151\) 0.319407 0.0259930 0.0129965 0.999916i \(-0.495863\pi\)
0.0129965 + 0.999916i \(0.495863\pi\)
\(152\) 0 0
\(153\) −8.83846 −0.714547
\(154\) 0 0
\(155\) −4.55827 −0.366129
\(156\) 0 0
\(157\) −17.1206 −1.36637 −0.683187 0.730243i \(-0.739407\pi\)
−0.683187 + 0.730243i \(0.739407\pi\)
\(158\) 0 0
\(159\) 8.58195 0.680593
\(160\) 0 0
\(161\) 4.74335 0.373828
\(162\) 0 0
\(163\) 15.9530 1.24954 0.624769 0.780810i \(-0.285193\pi\)
0.624769 + 0.780810i \(0.285193\pi\)
\(164\) 0 0
\(165\) 2.07501 0.161539
\(166\) 0 0
\(167\) −6.06511 −0.469332 −0.234666 0.972076i \(-0.575400\pi\)
−0.234666 + 0.972076i \(0.575400\pi\)
\(168\) 0 0
\(169\) −11.4501 −0.880778
\(170\) 0 0
\(171\) 8.12467 0.621309
\(172\) 0 0
\(173\) 0.821089 0.0624263 0.0312131 0.999513i \(-0.490063\pi\)
0.0312131 + 0.999513i \(0.490063\pi\)
\(174\) 0 0
\(175\) 8.91782 0.674124
\(176\) 0 0
\(177\) 1.17486 0.0883076
\(178\) 0 0
\(179\) 20.0466 1.49835 0.749177 0.662370i \(-0.230449\pi\)
0.749177 + 0.662370i \(0.230449\pi\)
\(180\) 0 0
\(181\) −6.89043 −0.512162 −0.256081 0.966655i \(-0.582431\pi\)
−0.256081 + 0.966655i \(0.582431\pi\)
\(182\) 0 0
\(183\) −10.5685 −0.781244
\(184\) 0 0
\(185\) −0.657344 −0.0483289
\(186\) 0 0
\(187\) 13.2751 0.970770
\(188\) 0 0
\(189\) 8.06343 0.586529
\(190\) 0 0
\(191\) 15.4002 1.11432 0.557159 0.830406i \(-0.311891\pi\)
0.557159 + 0.830406i \(0.311891\pi\)
\(192\) 0 0
\(193\) −18.0067 −1.29615 −0.648077 0.761575i \(-0.724427\pi\)
−0.648077 + 0.761575i \(0.724427\pi\)
\(194\) 0 0
\(195\) −0.696904 −0.0499063
\(196\) 0 0
\(197\) −7.34986 −0.523656 −0.261828 0.965115i \(-0.584325\pi\)
−0.261828 + 0.965115i \(0.584325\pi\)
\(198\) 0 0
\(199\) −10.5618 −0.748709 −0.374355 0.927286i \(-0.622136\pi\)
−0.374355 + 0.927286i \(0.622136\pi\)
\(200\) 0 0
\(201\) −3.21726 −0.226928
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −6.07921 −0.424590
\(206\) 0 0
\(207\) 5.79032 0.402455
\(208\) 0 0
\(209\) −12.2030 −0.844098
\(210\) 0 0
\(211\) −7.13512 −0.491202 −0.245601 0.969371i \(-0.578985\pi\)
−0.245601 + 0.969371i \(0.578985\pi\)
\(212\) 0 0
\(213\) 11.0956 0.760255
\(214\) 0 0
\(215\) 6.37126 0.434516
\(216\) 0 0
\(217\) 12.0080 0.815159
\(218\) 0 0
\(219\) −0.612878 −0.0414145
\(220\) 0 0
\(221\) −4.45851 −0.299912
\(222\) 0 0
\(223\) 0.144735 0.00969217 0.00484608 0.999988i \(-0.498457\pi\)
0.00484608 + 0.999988i \(0.498457\pi\)
\(224\) 0 0
\(225\) 10.8862 0.725746
\(226\) 0 0
\(227\) 14.0201 0.930545 0.465272 0.885168i \(-0.345956\pi\)
0.465272 + 0.885168i \(0.345956\pi\)
\(228\) 0 0
\(229\) −4.15050 −0.274273 −0.137136 0.990552i \(-0.543790\pi\)
−0.137136 + 0.990552i \(0.543790\pi\)
\(230\) 0 0
\(231\) −5.46629 −0.359655
\(232\) 0 0
\(233\) 21.6954 1.42131 0.710656 0.703540i \(-0.248398\pi\)
0.710656 + 0.703540i \(0.248398\pi\)
\(234\) 0 0
\(235\) −1.84313 −0.120232
\(236\) 0 0
\(237\) −7.18357 −0.466623
\(238\) 0 0
\(239\) 24.5869 1.59039 0.795197 0.606351i \(-0.207367\pi\)
0.795197 + 0.606351i \(0.207367\pi\)
\(240\) 0 0
\(241\) 2.48439 0.160034 0.0800168 0.996794i \(-0.474503\pi\)
0.0800168 + 0.996794i \(0.474503\pi\)
\(242\) 0 0
\(243\) 15.2437 0.977886
\(244\) 0 0
\(245\) −2.23533 −0.142810
\(246\) 0 0
\(247\) 4.09844 0.260778
\(248\) 0 0
\(249\) −9.35595 −0.592909
\(250\) 0 0
\(251\) 7.75412 0.489435 0.244718 0.969594i \(-0.421305\pi\)
0.244718 + 0.969594i \(0.421305\pi\)
\(252\) 0 0
\(253\) −8.69688 −0.546768
\(254\) 0 0
\(255\) 2.00477 0.125543
\(256\) 0 0
\(257\) −31.2147 −1.94712 −0.973559 0.228434i \(-0.926639\pi\)
−0.973559 + 0.228434i \(0.926639\pi\)
\(258\) 0 0
\(259\) 1.73167 0.107601
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −10.4590 −0.644929 −0.322464 0.946582i \(-0.604511\pi\)
−0.322464 + 0.946582i \(0.604511\pi\)
\(264\) 0 0
\(265\) 9.02932 0.554667
\(266\) 0 0
\(267\) 1.80069 0.110200
\(268\) 0 0
\(269\) −0.685928 −0.0418218 −0.0209109 0.999781i \(-0.506657\pi\)
−0.0209109 + 0.999781i \(0.506657\pi\)
\(270\) 0 0
\(271\) −16.1931 −0.983660 −0.491830 0.870691i \(-0.663672\pi\)
−0.491830 + 0.870691i \(0.663672\pi\)
\(272\) 0 0
\(273\) 1.83588 0.111113
\(274\) 0 0
\(275\) −16.3507 −0.985985
\(276\) 0 0
\(277\) 14.8322 0.891183 0.445591 0.895236i \(-0.352993\pi\)
0.445591 + 0.895236i \(0.352993\pi\)
\(278\) 0 0
\(279\) 14.6585 0.877581
\(280\) 0 0
\(281\) −7.37493 −0.439951 −0.219976 0.975505i \(-0.570598\pi\)
−0.219976 + 0.975505i \(0.570598\pi\)
\(282\) 0 0
\(283\) 23.9057 1.42105 0.710524 0.703673i \(-0.248458\pi\)
0.710524 + 0.703673i \(0.248458\pi\)
\(284\) 0 0
\(285\) −1.84286 −0.109162
\(286\) 0 0
\(287\) 16.0147 0.945319
\(288\) 0 0
\(289\) −4.17430 −0.245547
\(290\) 0 0
\(291\) −11.7534 −0.688995
\(292\) 0 0
\(293\) −3.37749 −0.197315 −0.0986576 0.995121i \(-0.531455\pi\)
−0.0986576 + 0.995121i \(0.531455\pi\)
\(294\) 0 0
\(295\) 1.23610 0.0719685
\(296\) 0 0
\(297\) −14.7842 −0.857867
\(298\) 0 0
\(299\) 2.92090 0.168920
\(300\) 0 0
\(301\) −16.7841 −0.967418
\(302\) 0 0
\(303\) 9.28113 0.533187
\(304\) 0 0
\(305\) −11.1194 −0.636695
\(306\) 0 0
\(307\) −10.1287 −0.578075 −0.289038 0.957318i \(-0.593335\pi\)
−0.289038 + 0.957318i \(0.593335\pi\)
\(308\) 0 0
\(309\) −12.6331 −0.718671
\(310\) 0 0
\(311\) −14.3866 −0.815786 −0.407893 0.913030i \(-0.633736\pi\)
−0.407893 + 0.913030i \(0.633736\pi\)
\(312\) 0 0
\(313\) 29.7699 1.68269 0.841346 0.540497i \(-0.181764\pi\)
0.841346 + 0.540497i \(0.181764\pi\)
\(314\) 0 0
\(315\) 3.82913 0.215747
\(316\) 0 0
\(317\) 3.38943 0.190369 0.0951846 0.995460i \(-0.469656\pi\)
0.0951846 + 0.995460i \(0.469656\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −4.95461 −0.276540
\(322\) 0 0
\(323\) −11.7899 −0.656008
\(324\) 0 0
\(325\) 5.49148 0.304612
\(326\) 0 0
\(327\) 6.66404 0.368522
\(328\) 0 0
\(329\) 4.85543 0.267688
\(330\) 0 0
\(331\) −14.6345 −0.804385 −0.402192 0.915555i \(-0.631752\pi\)
−0.402192 + 0.915555i \(0.631752\pi\)
\(332\) 0 0
\(333\) 2.11389 0.115841
\(334\) 0 0
\(335\) −3.38497 −0.184941
\(336\) 0 0
\(337\) −11.2957 −0.615315 −0.307657 0.951497i \(-0.599545\pi\)
−0.307657 + 0.951497i \(0.599545\pi\)
\(338\) 0 0
\(339\) −8.77149 −0.476402
\(340\) 0 0
\(341\) −22.0166 −1.19227
\(342\) 0 0
\(343\) 20.0406 1.08209
\(344\) 0 0
\(345\) −1.31338 −0.0707100
\(346\) 0 0
\(347\) 1.57899 0.0847648 0.0423824 0.999101i \(-0.486505\pi\)
0.0423824 + 0.999101i \(0.486505\pi\)
\(348\) 0 0
\(349\) −4.99875 −0.267577 −0.133788 0.991010i \(-0.542714\pi\)
−0.133788 + 0.991010i \(0.542714\pi\)
\(350\) 0 0
\(351\) 4.96536 0.265031
\(352\) 0 0
\(353\) −8.23964 −0.438552 −0.219276 0.975663i \(-0.570370\pi\)
−0.219276 + 0.975663i \(0.570370\pi\)
\(354\) 0 0
\(355\) 11.6740 0.619589
\(356\) 0 0
\(357\) −5.28124 −0.279513
\(358\) 0 0
\(359\) −6.20747 −0.327617 −0.163809 0.986492i \(-0.552378\pi\)
−0.163809 + 0.986492i \(0.552378\pi\)
\(360\) 0 0
\(361\) −8.16225 −0.429592
\(362\) 0 0
\(363\) 1.99876 0.104908
\(364\) 0 0
\(365\) −0.644827 −0.0337518
\(366\) 0 0
\(367\) 26.1215 1.36353 0.681765 0.731571i \(-0.261212\pi\)
0.681765 + 0.731571i \(0.261212\pi\)
\(368\) 0 0
\(369\) 19.5496 1.01771
\(370\) 0 0
\(371\) −23.7863 −1.23492
\(372\) 0 0
\(373\) 14.2786 0.739316 0.369658 0.929168i \(-0.379475\pi\)
0.369658 + 0.929168i \(0.379475\pi\)
\(374\) 0 0
\(375\) −5.26818 −0.272048
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 19.6128 1.00744 0.503720 0.863867i \(-0.331964\pi\)
0.503720 + 0.863867i \(0.331964\pi\)
\(380\) 0 0
\(381\) 6.05648 0.310283
\(382\) 0 0
\(383\) −15.9953 −0.817322 −0.408661 0.912686i \(-0.634004\pi\)
−0.408661 + 0.912686i \(0.634004\pi\)
\(384\) 0 0
\(385\) −5.75124 −0.293110
\(386\) 0 0
\(387\) −20.4887 −1.04150
\(388\) 0 0
\(389\) −4.89046 −0.247956 −0.123978 0.992285i \(-0.539565\pi\)
−0.123978 + 0.992285i \(0.539565\pi\)
\(390\) 0 0
\(391\) −8.40248 −0.424932
\(392\) 0 0
\(393\) 1.55103 0.0782393
\(394\) 0 0
\(395\) −7.55804 −0.380286
\(396\) 0 0
\(397\) 27.4917 1.37977 0.689884 0.723920i \(-0.257661\pi\)
0.689884 + 0.723920i \(0.257661\pi\)
\(398\) 0 0
\(399\) 4.85473 0.243041
\(400\) 0 0
\(401\) −18.2792 −0.912821 −0.456410 0.889769i \(-0.650865\pi\)
−0.456410 + 0.889769i \(0.650865\pi\)
\(402\) 0 0
\(403\) 7.39440 0.368341
\(404\) 0 0
\(405\) 3.44935 0.171400
\(406\) 0 0
\(407\) −3.17500 −0.157379
\(408\) 0 0
\(409\) 1.66374 0.0822665 0.0411332 0.999154i \(-0.486903\pi\)
0.0411332 + 0.999154i \(0.486903\pi\)
\(410\) 0 0
\(411\) −13.3419 −0.658108
\(412\) 0 0
\(413\) −3.25631 −0.160233
\(414\) 0 0
\(415\) −9.84366 −0.483206
\(416\) 0 0
\(417\) −13.6240 −0.667171
\(418\) 0 0
\(419\) 8.97520 0.438467 0.219234 0.975672i \(-0.429644\pi\)
0.219234 + 0.975672i \(0.429644\pi\)
\(420\) 0 0
\(421\) 19.7189 0.961041 0.480521 0.876983i \(-0.340448\pi\)
0.480521 + 0.876983i \(0.340448\pi\)
\(422\) 0 0
\(423\) 5.92714 0.288187
\(424\) 0 0
\(425\) −15.7972 −0.766278
\(426\) 0 0
\(427\) 29.2923 1.41755
\(428\) 0 0
\(429\) −3.36607 −0.162515
\(430\) 0 0
\(431\) 30.2008 1.45472 0.727362 0.686254i \(-0.240746\pi\)
0.727362 + 0.686254i \(0.240746\pi\)
\(432\) 0 0
\(433\) 9.82867 0.472336 0.236168 0.971712i \(-0.424108\pi\)
0.236168 + 0.971712i \(0.424108\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7.72390 0.369484
\(438\) 0 0
\(439\) −12.4301 −0.593257 −0.296628 0.954993i \(-0.595862\pi\)
−0.296628 + 0.954993i \(0.595862\pi\)
\(440\) 0 0
\(441\) 7.18838 0.342304
\(442\) 0 0
\(443\) 28.9783 1.37680 0.688399 0.725332i \(-0.258314\pi\)
0.688399 + 0.725332i \(0.258314\pi\)
\(444\) 0 0
\(445\) 1.89456 0.0898106
\(446\) 0 0
\(447\) 16.3296 0.772364
\(448\) 0 0
\(449\) −5.23266 −0.246945 −0.123472 0.992348i \(-0.539403\pi\)
−0.123472 + 0.992348i \(0.539403\pi\)
\(450\) 0 0
\(451\) −29.3628 −1.38264
\(452\) 0 0
\(453\) 0.232982 0.0109464
\(454\) 0 0
\(455\) 1.93158 0.0905541
\(456\) 0 0
\(457\) −28.4744 −1.33198 −0.665989 0.745962i \(-0.731990\pi\)
−0.665989 + 0.745962i \(0.731990\pi\)
\(458\) 0 0
\(459\) −14.2838 −0.666708
\(460\) 0 0
\(461\) −34.7454 −1.61825 −0.809127 0.587634i \(-0.800059\pi\)
−0.809127 + 0.587634i \(0.800059\pi\)
\(462\) 0 0
\(463\) 20.2963 0.943247 0.471624 0.881800i \(-0.343668\pi\)
0.471624 + 0.881800i \(0.343668\pi\)
\(464\) 0 0
\(465\) −3.32489 −0.154188
\(466\) 0 0
\(467\) −3.44474 −0.159404 −0.0797018 0.996819i \(-0.525397\pi\)
−0.0797018 + 0.996819i \(0.525397\pi\)
\(468\) 0 0
\(469\) 8.91716 0.411756
\(470\) 0 0
\(471\) −12.4881 −0.575422
\(472\) 0 0
\(473\) 30.7734 1.41496
\(474\) 0 0
\(475\) 14.5214 0.666289
\(476\) 0 0
\(477\) −29.0365 −1.32949
\(478\) 0 0
\(479\) −36.4072 −1.66349 −0.831745 0.555158i \(-0.812658\pi\)
−0.831745 + 0.555158i \(0.812658\pi\)
\(480\) 0 0
\(481\) 1.06634 0.0486209
\(482\) 0 0
\(483\) 3.45989 0.157431
\(484\) 0 0
\(485\) −12.3661 −0.561514
\(486\) 0 0
\(487\) −0.113357 −0.00513670 −0.00256835 0.999997i \(-0.500818\pi\)
−0.00256835 + 0.999997i \(0.500818\pi\)
\(488\) 0 0
\(489\) 11.6365 0.526218
\(490\) 0 0
\(491\) −20.9051 −0.943436 −0.471718 0.881749i \(-0.656366\pi\)
−0.471718 + 0.881749i \(0.656366\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −7.02067 −0.315556
\(496\) 0 0
\(497\) −30.7532 −1.37947
\(498\) 0 0
\(499\) 36.9570 1.65442 0.827211 0.561891i \(-0.189926\pi\)
0.827211 + 0.561891i \(0.189926\pi\)
\(500\) 0 0
\(501\) −4.42401 −0.197650
\(502\) 0 0
\(503\) 34.8086 1.55204 0.776019 0.630709i \(-0.217236\pi\)
0.776019 + 0.630709i \(0.217236\pi\)
\(504\) 0 0
\(505\) 9.76494 0.434534
\(506\) 0 0
\(507\) −8.35194 −0.370923
\(508\) 0 0
\(509\) 21.1709 0.938382 0.469191 0.883097i \(-0.344546\pi\)
0.469191 + 0.883097i \(0.344546\pi\)
\(510\) 0 0
\(511\) 1.69869 0.0751458
\(512\) 0 0
\(513\) 13.1302 0.579712
\(514\) 0 0
\(515\) −13.2916 −0.585699
\(516\) 0 0
\(517\) −8.90237 −0.391526
\(518\) 0 0
\(519\) 0.598919 0.0262896
\(520\) 0 0
\(521\) 0.988926 0.0433257 0.0216628 0.999765i \(-0.493104\pi\)
0.0216628 + 0.999765i \(0.493104\pi\)
\(522\) 0 0
\(523\) −24.5416 −1.07313 −0.536564 0.843859i \(-0.680278\pi\)
−0.536564 + 0.843859i \(0.680278\pi\)
\(524\) 0 0
\(525\) 6.50483 0.283894
\(526\) 0 0
\(527\) −21.2713 −0.926593
\(528\) 0 0
\(529\) −17.4953 −0.760665
\(530\) 0 0
\(531\) −3.97506 −0.172503
\(532\) 0 0
\(533\) 9.86166 0.427156
\(534\) 0 0
\(535\) −5.21289 −0.225373
\(536\) 0 0
\(537\) 14.6224 0.631002
\(538\) 0 0
\(539\) −10.7967 −0.465048
\(540\) 0 0
\(541\) 19.6472 0.844698 0.422349 0.906433i \(-0.361206\pi\)
0.422349 + 0.906433i \(0.361206\pi\)
\(542\) 0 0
\(543\) −5.02601 −0.215687
\(544\) 0 0
\(545\) 7.01142 0.300336
\(546\) 0 0
\(547\) 19.9629 0.853551 0.426775 0.904358i \(-0.359650\pi\)
0.426775 + 0.904358i \(0.359650\pi\)
\(548\) 0 0
\(549\) 35.7578 1.52611
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 19.9105 0.846679
\(554\) 0 0
\(555\) −0.479480 −0.0203528
\(556\) 0 0
\(557\) 11.4997 0.487257 0.243629 0.969869i \(-0.421662\pi\)
0.243629 + 0.969869i \(0.421662\pi\)
\(558\) 0 0
\(559\) −10.3354 −0.437142
\(560\) 0 0
\(561\) 9.68310 0.408821
\(562\) 0 0
\(563\) 44.7407 1.88560 0.942798 0.333365i \(-0.108184\pi\)
0.942798 + 0.333365i \(0.108184\pi\)
\(564\) 0 0
\(565\) −9.22874 −0.388256
\(566\) 0 0
\(567\) −9.08678 −0.381609
\(568\) 0 0
\(569\) −25.6562 −1.07556 −0.537781 0.843084i \(-0.680737\pi\)
−0.537781 + 0.843084i \(0.680737\pi\)
\(570\) 0 0
\(571\) −22.1209 −0.925730 −0.462865 0.886429i \(-0.653178\pi\)
−0.462865 + 0.886429i \(0.653178\pi\)
\(572\) 0 0
\(573\) 11.2332 0.469273
\(574\) 0 0
\(575\) 10.3492 0.431592
\(576\) 0 0
\(577\) 6.41863 0.267211 0.133606 0.991035i \(-0.457344\pi\)
0.133606 + 0.991035i \(0.457344\pi\)
\(578\) 0 0
\(579\) −13.1345 −0.545850
\(580\) 0 0
\(581\) 25.9316 1.07582
\(582\) 0 0
\(583\) 43.6119 1.80622
\(584\) 0 0
\(585\) 2.35793 0.0974885
\(586\) 0 0
\(587\) 18.3752 0.758427 0.379213 0.925309i \(-0.376195\pi\)
0.379213 + 0.925309i \(0.376195\pi\)
\(588\) 0 0
\(589\) 19.5534 0.805686
\(590\) 0 0
\(591\) −5.36113 −0.220528
\(592\) 0 0
\(593\) −42.9405 −1.76336 −0.881678 0.471851i \(-0.843586\pi\)
−0.881678 + 0.471851i \(0.843586\pi\)
\(594\) 0 0
\(595\) −5.55655 −0.227796
\(596\) 0 0
\(597\) −7.70402 −0.315304
\(598\) 0 0
\(599\) 36.0434 1.47269 0.736346 0.676605i \(-0.236550\pi\)
0.736346 + 0.676605i \(0.236550\pi\)
\(600\) 0 0
\(601\) 36.9395 1.50679 0.753396 0.657567i \(-0.228414\pi\)
0.753396 + 0.657567i \(0.228414\pi\)
\(602\) 0 0
\(603\) 10.8854 0.443288
\(604\) 0 0
\(605\) 2.10295 0.0854972
\(606\) 0 0
\(607\) −22.4913 −0.912893 −0.456446 0.889751i \(-0.650878\pi\)
−0.456446 + 0.889751i \(0.650878\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.98991 0.120959
\(612\) 0 0
\(613\) −4.90637 −0.198167 −0.0990833 0.995079i \(-0.531591\pi\)
−0.0990833 + 0.995079i \(0.531591\pi\)
\(614\) 0 0
\(615\) −4.43429 −0.178808
\(616\) 0 0
\(617\) −3.17098 −0.127659 −0.0638295 0.997961i \(-0.520331\pi\)
−0.0638295 + 0.997961i \(0.520331\pi\)
\(618\) 0 0
\(619\) 20.7571 0.834299 0.417149 0.908838i \(-0.363029\pi\)
0.417149 + 0.908838i \(0.363029\pi\)
\(620\) 0 0
\(621\) 9.35769 0.375511
\(622\) 0 0
\(623\) −4.99091 −0.199957
\(624\) 0 0
\(625\) 16.5124 0.660494
\(626\) 0 0
\(627\) −8.90110 −0.355476
\(628\) 0 0
\(629\) −3.06752 −0.122310
\(630\) 0 0
\(631\) −14.0960 −0.561151 −0.280576 0.959832i \(-0.590525\pi\)
−0.280576 + 0.959832i \(0.590525\pi\)
\(632\) 0 0
\(633\) −5.20449 −0.206860
\(634\) 0 0
\(635\) 6.37220 0.252873
\(636\) 0 0
\(637\) 3.62614 0.143673
\(638\) 0 0
\(639\) −37.5412 −1.48511
\(640\) 0 0
\(641\) −26.1964 −1.03470 −0.517349 0.855775i \(-0.673081\pi\)
−0.517349 + 0.855775i \(0.673081\pi\)
\(642\) 0 0
\(643\) 22.3949 0.883170 0.441585 0.897219i \(-0.354416\pi\)
0.441585 + 0.897219i \(0.354416\pi\)
\(644\) 0 0
\(645\) 4.64732 0.182988
\(646\) 0 0
\(647\) 32.6252 1.28263 0.641314 0.767278i \(-0.278389\pi\)
0.641314 + 0.767278i \(0.278389\pi\)
\(648\) 0 0
\(649\) 5.97041 0.234359
\(650\) 0 0
\(651\) 8.75890 0.343288
\(652\) 0 0
\(653\) −22.2236 −0.869678 −0.434839 0.900508i \(-0.643195\pi\)
−0.434839 + 0.900508i \(0.643195\pi\)
\(654\) 0 0
\(655\) 1.63189 0.0637631
\(656\) 0 0
\(657\) 2.07364 0.0809003
\(658\) 0 0
\(659\) 35.3819 1.37828 0.689142 0.724627i \(-0.257988\pi\)
0.689142 + 0.724627i \(0.257988\pi\)
\(660\) 0 0
\(661\) 41.8752 1.62876 0.814378 0.580334i \(-0.197078\pi\)
0.814378 + 0.580334i \(0.197078\pi\)
\(662\) 0 0
\(663\) −3.25212 −0.126302
\(664\) 0 0
\(665\) 5.10780 0.198072
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0.105572 0.00408167
\(670\) 0 0
\(671\) −53.7071 −2.07334
\(672\) 0 0
\(673\) −32.3743 −1.24794 −0.623970 0.781449i \(-0.714481\pi\)
−0.623970 + 0.781449i \(0.714481\pi\)
\(674\) 0 0
\(675\) 17.5931 0.677158
\(676\) 0 0
\(677\) 38.9484 1.49691 0.748454 0.663186i \(-0.230796\pi\)
0.748454 + 0.663186i \(0.230796\pi\)
\(678\) 0 0
\(679\) 32.5764 1.25017
\(680\) 0 0
\(681\) 10.2265 0.391881
\(682\) 0 0
\(683\) 39.9899 1.53017 0.765086 0.643928i \(-0.222696\pi\)
0.765086 + 0.643928i \(0.222696\pi\)
\(684\) 0 0
\(685\) −14.0374 −0.536342
\(686\) 0 0
\(687\) −3.02745 −0.115505
\(688\) 0 0
\(689\) −14.6473 −0.558018
\(690\) 0 0
\(691\) −19.7880 −0.752770 −0.376385 0.926463i \(-0.622833\pi\)
−0.376385 + 0.926463i \(0.622833\pi\)
\(692\) 0 0
\(693\) 18.4949 0.702561
\(694\) 0 0
\(695\) −14.3342 −0.543728
\(696\) 0 0
\(697\) −28.3688 −1.07455
\(698\) 0 0
\(699\) 15.8250 0.598557
\(700\) 0 0
\(701\) −29.4121 −1.11088 −0.555440 0.831557i \(-0.687450\pi\)
−0.555440 + 0.831557i \(0.687450\pi\)
\(702\) 0 0
\(703\) 2.81979 0.106350
\(704\) 0 0
\(705\) −1.34441 −0.0506335
\(706\) 0 0
\(707\) −25.7242 −0.967458
\(708\) 0 0
\(709\) −40.5367 −1.52239 −0.761193 0.648525i \(-0.775386\pi\)
−0.761193 + 0.648525i \(0.775386\pi\)
\(710\) 0 0
\(711\) 24.3052 0.911515
\(712\) 0 0
\(713\) 13.9354 0.521886
\(714\) 0 0
\(715\) −3.54154 −0.132446
\(716\) 0 0
\(717\) 17.9342 0.669763
\(718\) 0 0
\(719\) 5.08472 0.189628 0.0948141 0.995495i \(-0.469774\pi\)
0.0948141 + 0.995495i \(0.469774\pi\)
\(720\) 0 0
\(721\) 35.0147 1.30402
\(722\) 0 0
\(723\) 1.81216 0.0673951
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −5.33242 −0.197768 −0.0988842 0.995099i \(-0.531527\pi\)
−0.0988842 + 0.995099i \(0.531527\pi\)
\(728\) 0 0
\(729\) −2.36474 −0.0875830
\(730\) 0 0
\(731\) 29.7317 1.09967
\(732\) 0 0
\(733\) 8.74448 0.322985 0.161492 0.986874i \(-0.448369\pi\)
0.161492 + 0.986874i \(0.448369\pi\)
\(734\) 0 0
\(735\) −1.63049 −0.0601416
\(736\) 0 0
\(737\) −16.3495 −0.602242
\(738\) 0 0
\(739\) −25.1780 −0.926186 −0.463093 0.886310i \(-0.653260\pi\)
−0.463093 + 0.886310i \(0.653260\pi\)
\(740\) 0 0
\(741\) 2.98948 0.109821
\(742\) 0 0
\(743\) 50.9579 1.86946 0.934731 0.355355i \(-0.115640\pi\)
0.934731 + 0.355355i \(0.115640\pi\)
\(744\) 0 0
\(745\) 17.1808 0.629458
\(746\) 0 0
\(747\) 31.6553 1.15821
\(748\) 0 0
\(749\) 13.7325 0.501776
\(750\) 0 0
\(751\) 22.5333 0.822253 0.411126 0.911578i \(-0.365135\pi\)
0.411126 + 0.911578i \(0.365135\pi\)
\(752\) 0 0
\(753\) 5.65600 0.206116
\(754\) 0 0
\(755\) 0.245127 0.00892108
\(756\) 0 0
\(757\) 20.2369 0.735522 0.367761 0.929920i \(-0.380124\pi\)
0.367761 + 0.929920i \(0.380124\pi\)
\(758\) 0 0
\(759\) −6.34367 −0.230261
\(760\) 0 0
\(761\) 41.6120 1.50844 0.754218 0.656625i \(-0.228016\pi\)
0.754218 + 0.656625i \(0.228016\pi\)
\(762\) 0 0
\(763\) −18.4705 −0.668677
\(764\) 0 0
\(765\) −6.78301 −0.245240
\(766\) 0 0
\(767\) −2.00519 −0.0724034
\(768\) 0 0
\(769\) 3.47614 0.125353 0.0626764 0.998034i \(-0.480036\pi\)
0.0626764 + 0.998034i \(0.480036\pi\)
\(770\) 0 0
\(771\) −22.7686 −0.819991
\(772\) 0 0
\(773\) 21.1005 0.758932 0.379466 0.925206i \(-0.376108\pi\)
0.379466 + 0.925206i \(0.376108\pi\)
\(774\) 0 0
\(775\) 26.1995 0.941115
\(776\) 0 0
\(777\) 1.26311 0.0453140
\(778\) 0 0
\(779\) 26.0778 0.934333
\(780\) 0 0
\(781\) 56.3857 2.01764
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −13.1391 −0.468955
\(786\) 0 0
\(787\) 14.2337 0.507378 0.253689 0.967286i \(-0.418356\pi\)
0.253689 + 0.967286i \(0.418356\pi\)
\(788\) 0 0
\(789\) −7.62899 −0.271599
\(790\) 0 0
\(791\) 24.3117 0.864423
\(792\) 0 0
\(793\) 18.0378 0.640542
\(794\) 0 0
\(795\) 6.58616 0.233587
\(796\) 0 0
\(797\) −50.5995 −1.79233 −0.896163 0.443724i \(-0.853657\pi\)
−0.896163 + 0.443724i \(0.853657\pi\)
\(798\) 0 0
\(799\) −8.60101 −0.304282
\(800\) 0 0
\(801\) −6.09252 −0.215269
\(802\) 0 0
\(803\) −3.11454 −0.109910
\(804\) 0 0
\(805\) 3.64025 0.128302
\(806\) 0 0
\(807\) −0.500329 −0.0176124
\(808\) 0 0
\(809\) −53.0220 −1.86415 −0.932077 0.362261i \(-0.882005\pi\)
−0.932077 + 0.362261i \(0.882005\pi\)
\(810\) 0 0
\(811\) 36.6813 1.28805 0.644027 0.765003i \(-0.277262\pi\)
0.644027 + 0.765003i \(0.277262\pi\)
\(812\) 0 0
\(813\) −11.8116 −0.414249
\(814\) 0 0
\(815\) 12.2430 0.428855
\(816\) 0 0
\(817\) −27.3306 −0.956175
\(818\) 0 0
\(819\) −6.21160 −0.217051
\(820\) 0 0
\(821\) 26.0472 0.909054 0.454527 0.890733i \(-0.349808\pi\)
0.454527 + 0.890733i \(0.349808\pi\)
\(822\) 0 0
\(823\) −0.553811 −0.0193046 −0.00965231 0.999953i \(-0.503072\pi\)
−0.00965231 + 0.999953i \(0.503072\pi\)
\(824\) 0 0
\(825\) −11.9265 −0.415228
\(826\) 0 0
\(827\) −46.5323 −1.61809 −0.809043 0.587750i \(-0.800014\pi\)
−0.809043 + 0.587750i \(0.800014\pi\)
\(828\) 0 0
\(829\) −15.5265 −0.539258 −0.269629 0.962964i \(-0.586901\pi\)
−0.269629 + 0.962964i \(0.586901\pi\)
\(830\) 0 0
\(831\) 10.8189 0.375304
\(832\) 0 0
\(833\) −10.4312 −0.361421
\(834\) 0 0
\(835\) −4.65463 −0.161080
\(836\) 0 0
\(837\) 23.6895 0.818828
\(838\) 0 0
\(839\) −44.4093 −1.53318 −0.766590 0.642137i \(-0.778048\pi\)
−0.766590 + 0.642137i \(0.778048\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 0 0
\(843\) −5.37942 −0.185277
\(844\) 0 0
\(845\) −8.78732 −0.302293
\(846\) 0 0
\(847\) −5.53989 −0.190353
\(848\) 0 0
\(849\) 17.4373 0.598446
\(850\) 0 0
\(851\) 2.00962 0.0688888
\(852\) 0 0
\(853\) −3.03167 −0.103803 −0.0519013 0.998652i \(-0.516528\pi\)
−0.0519013 + 0.998652i \(0.516528\pi\)
\(854\) 0 0
\(855\) 6.23522 0.213240
\(856\) 0 0
\(857\) −3.80022 −0.129813 −0.0649064 0.997891i \(-0.520675\pi\)
−0.0649064 + 0.997891i \(0.520675\pi\)
\(858\) 0 0
\(859\) −11.1993 −0.382115 −0.191057 0.981579i \(-0.561192\pi\)
−0.191057 + 0.981579i \(0.561192\pi\)
\(860\) 0 0
\(861\) 11.6814 0.398103
\(862\) 0 0
\(863\) −36.4426 −1.24052 −0.620260 0.784396i \(-0.712973\pi\)
−0.620260 + 0.784396i \(0.712973\pi\)
\(864\) 0 0
\(865\) 0.630139 0.0214254
\(866\) 0 0
\(867\) −3.04481 −0.103407
\(868\) 0 0
\(869\) −36.5056 −1.23837
\(870\) 0 0
\(871\) 5.49108 0.186058
\(872\) 0 0
\(873\) 39.7669 1.34590
\(874\) 0 0
\(875\) 14.6016 0.493626
\(876\) 0 0
\(877\) −27.6875 −0.934940 −0.467470 0.884009i \(-0.654834\pi\)
−0.467470 + 0.884009i \(0.654834\pi\)
\(878\) 0 0
\(879\) −2.46361 −0.0830954
\(880\) 0 0
\(881\) −22.6489 −0.763062 −0.381531 0.924356i \(-0.624603\pi\)
−0.381531 + 0.924356i \(0.624603\pi\)
\(882\) 0 0
\(883\) −28.0182 −0.942887 −0.471443 0.881896i \(-0.656267\pi\)
−0.471443 + 0.881896i \(0.656267\pi\)
\(884\) 0 0
\(885\) 0.901635 0.0303081
\(886\) 0 0
\(887\) 6.85335 0.230113 0.115057 0.993359i \(-0.463295\pi\)
0.115057 + 0.993359i \(0.463295\pi\)
\(888\) 0 0
\(889\) −16.7866 −0.563003
\(890\) 0 0
\(891\) 16.6605 0.558148
\(892\) 0 0
\(893\) 7.90640 0.264578
\(894\) 0 0
\(895\) 15.3846 0.514252
\(896\) 0 0
\(897\) 2.13056 0.0711373
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 42.1356 1.40374
\(902\) 0 0
\(903\) −12.2426 −0.407409
\(904\) 0 0
\(905\) −5.28801 −0.175780
\(906\) 0 0
\(907\) −2.49857 −0.0829636 −0.0414818 0.999139i \(-0.513208\pi\)
−0.0414818 + 0.999139i \(0.513208\pi\)
\(908\) 0 0
\(909\) −31.4021 −1.04154
\(910\) 0 0
\(911\) 39.7230 1.31608 0.658041 0.752982i \(-0.271385\pi\)
0.658041 + 0.752982i \(0.271385\pi\)
\(912\) 0 0
\(913\) −47.5452 −1.57352
\(914\) 0 0
\(915\) −8.11071 −0.268132
\(916\) 0 0
\(917\) −4.29895 −0.141964
\(918\) 0 0
\(919\) 0.936263 0.0308845 0.0154422 0.999881i \(-0.495084\pi\)
0.0154422 + 0.999881i \(0.495084\pi\)
\(920\) 0 0
\(921\) −7.38807 −0.243445
\(922\) 0 0
\(923\) −18.9374 −0.623333
\(924\) 0 0
\(925\) 3.77822 0.124227
\(926\) 0 0
\(927\) 42.7433 1.40387
\(928\) 0 0
\(929\) 12.6079 0.413653 0.206827 0.978378i \(-0.433686\pi\)
0.206827 + 0.978378i \(0.433686\pi\)
\(930\) 0 0
\(931\) 9.58882 0.314261
\(932\) 0 0
\(933\) −10.4938 −0.343553
\(934\) 0 0
\(935\) 10.1879 0.333179
\(936\) 0 0
\(937\) 2.55653 0.0835183 0.0417592 0.999128i \(-0.486704\pi\)
0.0417592 + 0.999128i \(0.486704\pi\)
\(938\) 0 0
\(939\) 21.7147 0.708633
\(940\) 0 0
\(941\) 35.4450 1.15547 0.577736 0.816223i \(-0.303936\pi\)
0.577736 + 0.816223i \(0.303936\pi\)
\(942\) 0 0
\(943\) 18.5852 0.605218
\(944\) 0 0
\(945\) 6.18823 0.201303
\(946\) 0 0
\(947\) 13.9515 0.453362 0.226681 0.973969i \(-0.427213\pi\)
0.226681 + 0.973969i \(0.427213\pi\)
\(948\) 0 0
\(949\) 1.04603 0.0339557
\(950\) 0 0
\(951\) 2.47232 0.0801703
\(952\) 0 0
\(953\) −2.34460 −0.0759490 −0.0379745 0.999279i \(-0.512091\pi\)
−0.0379745 + 0.999279i \(0.512091\pi\)
\(954\) 0 0
\(955\) 11.8188 0.382446
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 36.9793 1.19413
\(960\) 0 0
\(961\) 4.27827 0.138009
\(962\) 0 0
\(963\) 16.7636 0.540201
\(964\) 0 0
\(965\) −13.8192 −0.444854
\(966\) 0 0
\(967\) −36.0689 −1.15990 −0.579949 0.814653i \(-0.696928\pi\)
−0.579949 + 0.814653i \(0.696928\pi\)
\(968\) 0 0
\(969\) −8.59978 −0.276265
\(970\) 0 0
\(971\) −33.0640 −1.06108 −0.530538 0.847661i \(-0.678010\pi\)
−0.530538 + 0.847661i \(0.678010\pi\)
\(972\) 0 0
\(973\) 37.7612 1.21057
\(974\) 0 0
\(975\) 4.00559 0.128282
\(976\) 0 0
\(977\) 40.2148 1.28659 0.643293 0.765620i \(-0.277568\pi\)
0.643293 + 0.765620i \(0.277568\pi\)
\(978\) 0 0
\(979\) 9.15077 0.292460
\(980\) 0 0
\(981\) −22.5474 −0.719882
\(982\) 0 0
\(983\) 5.32325 0.169785 0.0848927 0.996390i \(-0.472945\pi\)
0.0848927 + 0.996390i \(0.472945\pi\)
\(984\) 0 0
\(985\) −5.64060 −0.179725
\(986\) 0 0
\(987\) 3.54164 0.112732
\(988\) 0 0
\(989\) −19.4781 −0.619367
\(990\) 0 0
\(991\) −27.9955 −0.889307 −0.444654 0.895703i \(-0.646673\pi\)
−0.444654 + 0.895703i \(0.646673\pi\)
\(992\) 0 0
\(993\) −10.6747 −0.338751
\(994\) 0 0
\(995\) −8.10562 −0.256965
\(996\) 0 0
\(997\) −19.4084 −0.614671 −0.307336 0.951601i \(-0.599437\pi\)
−0.307336 + 0.951601i \(0.599437\pi\)
\(998\) 0 0
\(999\) 3.41624 0.108085
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3364.2.a.q.1.7 8
29.12 odd 4 3364.2.c.k.1681.12 16
29.17 odd 4 3364.2.c.k.1681.5 16
29.28 even 2 3364.2.a.r.1.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3364.2.a.q.1.7 8 1.1 even 1 trivial
3364.2.a.r.1.2 yes 8 29.28 even 2
3364.2.c.k.1681.5 16 29.17 odd 4
3364.2.c.k.1681.12 16 29.12 odd 4