Properties

Label 3364.2.a.q.1.8
Level $3364$
Weight $2$
Character 3364.1
Self dual yes
Analytic conductor $26.862$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3364,2,Mod(1,3364)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3364, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3364.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3364 = 2^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3364.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.8616752400\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.3266578125.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 10x^{6} + 6x^{5} + 29x^{4} - 9x^{3} - 25x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-0.944572\) of defining polynomial
Character \(\chi\) \(=\) 3364.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.54007 q^{3} +2.86661 q^{5} -4.47762 q^{7} +3.45197 q^{9} -4.32400 q^{11} -6.10684 q^{13} +7.28140 q^{15} -3.82253 q^{17} +1.09874 q^{19} -11.3735 q^{21} -2.39010 q^{23} +3.21745 q^{25} +1.14803 q^{27} +3.71243 q^{31} -10.9833 q^{33} -12.8356 q^{35} -1.69068 q^{37} -15.5118 q^{39} -5.13396 q^{41} +2.00170 q^{43} +9.89545 q^{45} +9.28904 q^{47} +13.0491 q^{49} -9.70950 q^{51} +1.66810 q^{53} -12.3952 q^{55} +2.79087 q^{57} +0.0901690 q^{59} -8.52727 q^{61} -15.4566 q^{63} -17.5059 q^{65} -8.77154 q^{67} -6.07102 q^{69} +9.23764 q^{71} -2.10072 q^{73} +8.17257 q^{75} +19.3612 q^{77} -5.42047 q^{79} -7.43982 q^{81} -6.23899 q^{83} -10.9577 q^{85} +3.62161 q^{89} +27.3441 q^{91} +9.42984 q^{93} +3.14965 q^{95} -6.64300 q^{97} -14.9263 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - q^{5} - 2 q^{7} + 4 q^{9} - 5 q^{11} + 4 q^{13} + 17 q^{15} - 15 q^{17} - 11 q^{19} - 19 q^{21} - 3 q^{23} + 3 q^{25} - 16 q^{27} + 9 q^{31} - 16 q^{33} + 9 q^{35} + 2 q^{37} - 9 q^{39}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.54007 1.46651 0.733256 0.679953i \(-0.238000\pi\)
0.733256 + 0.679953i \(0.238000\pi\)
\(4\) 0 0
\(5\) 2.86661 1.28199 0.640994 0.767546i \(-0.278523\pi\)
0.640994 + 0.767546i \(0.278523\pi\)
\(6\) 0 0
\(7\) −4.47762 −1.69238 −0.846190 0.532881i \(-0.821109\pi\)
−0.846190 + 0.532881i \(0.821109\pi\)
\(8\) 0 0
\(9\) 3.45197 1.15066
\(10\) 0 0
\(11\) −4.32400 −1.30374 −0.651868 0.758332i \(-0.726014\pi\)
−0.651868 + 0.758332i \(0.726014\pi\)
\(12\) 0 0
\(13\) −6.10684 −1.69373 −0.846866 0.531806i \(-0.821514\pi\)
−0.846866 + 0.531806i \(0.821514\pi\)
\(14\) 0 0
\(15\) 7.28140 1.88005
\(16\) 0 0
\(17\) −3.82253 −0.927099 −0.463550 0.886071i \(-0.653424\pi\)
−0.463550 + 0.886071i \(0.653424\pi\)
\(18\) 0 0
\(19\) 1.09874 0.252068 0.126034 0.992026i \(-0.459775\pi\)
0.126034 + 0.992026i \(0.459775\pi\)
\(20\) 0 0
\(21\) −11.3735 −2.48190
\(22\) 0 0
\(23\) −2.39010 −0.498370 −0.249185 0.968456i \(-0.580163\pi\)
−0.249185 + 0.968456i \(0.580163\pi\)
\(24\) 0 0
\(25\) 3.21745 0.643491
\(26\) 0 0
\(27\) 1.14803 0.220939
\(28\) 0 0
\(29\) 0 0
\(30\) 0 0
\(31\) 3.71243 0.666772 0.333386 0.942790i \(-0.391809\pi\)
0.333386 + 0.942790i \(0.391809\pi\)
\(32\) 0 0
\(33\) −10.9833 −1.91194
\(34\) 0 0
\(35\) −12.8356 −2.16961
\(36\) 0 0
\(37\) −1.69068 −0.277946 −0.138973 0.990296i \(-0.544380\pi\)
−0.138973 + 0.990296i \(0.544380\pi\)
\(38\) 0 0
\(39\) −15.5118 −2.48388
\(40\) 0 0
\(41\) −5.13396 −0.801790 −0.400895 0.916124i \(-0.631301\pi\)
−0.400895 + 0.916124i \(0.631301\pi\)
\(42\) 0 0
\(43\) 2.00170 0.305256 0.152628 0.988284i \(-0.451226\pi\)
0.152628 + 0.988284i \(0.451226\pi\)
\(44\) 0 0
\(45\) 9.89545 1.47513
\(46\) 0 0
\(47\) 9.28904 1.35495 0.677473 0.735547i \(-0.263075\pi\)
0.677473 + 0.735547i \(0.263075\pi\)
\(48\) 0 0
\(49\) 13.0491 1.86415
\(50\) 0 0
\(51\) −9.70950 −1.35960
\(52\) 0 0
\(53\) 1.66810 0.229130 0.114565 0.993416i \(-0.463453\pi\)
0.114565 + 0.993416i \(0.463453\pi\)
\(54\) 0 0
\(55\) −12.3952 −1.67137
\(56\) 0 0
\(57\) 2.79087 0.369660
\(58\) 0 0
\(59\) 0.0901690 0.0117390 0.00586950 0.999983i \(-0.498132\pi\)
0.00586950 + 0.999983i \(0.498132\pi\)
\(60\) 0 0
\(61\) −8.52727 −1.09181 −0.545903 0.837849i \(-0.683813\pi\)
−0.545903 + 0.837849i \(0.683813\pi\)
\(62\) 0 0
\(63\) −15.4566 −1.94735
\(64\) 0 0
\(65\) −17.5059 −2.17134
\(66\) 0 0
\(67\) −8.77154 −1.07161 −0.535807 0.844340i \(-0.679993\pi\)
−0.535807 + 0.844340i \(0.679993\pi\)
\(68\) 0 0
\(69\) −6.07102 −0.730865
\(70\) 0 0
\(71\) 9.23764 1.09631 0.548153 0.836378i \(-0.315331\pi\)
0.548153 + 0.836378i \(0.315331\pi\)
\(72\) 0 0
\(73\) −2.10072 −0.245871 −0.122936 0.992415i \(-0.539231\pi\)
−0.122936 + 0.992415i \(0.539231\pi\)
\(74\) 0 0
\(75\) 8.17257 0.943687
\(76\) 0 0
\(77\) 19.3612 2.20642
\(78\) 0 0
\(79\) −5.42047 −0.609851 −0.304925 0.952376i \(-0.598632\pi\)
−0.304925 + 0.952376i \(0.598632\pi\)
\(80\) 0 0
\(81\) −7.43982 −0.826646
\(82\) 0 0
\(83\) −6.23899 −0.684818 −0.342409 0.939551i \(-0.611243\pi\)
−0.342409 + 0.939551i \(0.611243\pi\)
\(84\) 0 0
\(85\) −10.9577 −1.18853
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.62161 0.383890 0.191945 0.981406i \(-0.438520\pi\)
0.191945 + 0.981406i \(0.438520\pi\)
\(90\) 0 0
\(91\) 27.3441 2.86644
\(92\) 0 0
\(93\) 9.42984 0.977829
\(94\) 0 0
\(95\) 3.14965 0.323148
\(96\) 0 0
\(97\) −6.64300 −0.674495 −0.337247 0.941416i \(-0.609496\pi\)
−0.337247 + 0.941416i \(0.609496\pi\)
\(98\) 0 0
\(99\) −14.9263 −1.50015
\(100\) 0 0
\(101\) −13.3066 −1.32406 −0.662030 0.749477i \(-0.730305\pi\)
−0.662030 + 0.749477i \(0.730305\pi\)
\(102\) 0 0
\(103\) 13.1162 1.29237 0.646187 0.763179i \(-0.276363\pi\)
0.646187 + 0.763179i \(0.276363\pi\)
\(104\) 0 0
\(105\) −32.6033 −3.18176
\(106\) 0 0
\(107\) −0.431361 −0.0417012 −0.0208506 0.999783i \(-0.506637\pi\)
−0.0208506 + 0.999783i \(0.506637\pi\)
\(108\) 0 0
\(109\) −11.3350 −1.08569 −0.542846 0.839832i \(-0.682653\pi\)
−0.542846 + 0.839832i \(0.682653\pi\)
\(110\) 0 0
\(111\) −4.29445 −0.407611
\(112\) 0 0
\(113\) −13.5162 −1.27150 −0.635749 0.771896i \(-0.719309\pi\)
−0.635749 + 0.771896i \(0.719309\pi\)
\(114\) 0 0
\(115\) −6.85148 −0.638904
\(116\) 0 0
\(117\) −21.0806 −1.94890
\(118\) 0 0
\(119\) 17.1158 1.56901
\(120\) 0 0
\(121\) 7.69700 0.699727
\(122\) 0 0
\(123\) −13.0406 −1.17583
\(124\) 0 0
\(125\) −5.10986 −0.457040
\(126\) 0 0
\(127\) 17.0701 1.51473 0.757363 0.652994i \(-0.226487\pi\)
0.757363 + 0.652994i \(0.226487\pi\)
\(128\) 0 0
\(129\) 5.08446 0.447662
\(130\) 0 0
\(131\) −3.17246 −0.277179 −0.138589 0.990350i \(-0.544257\pi\)
−0.138589 + 0.990350i \(0.544257\pi\)
\(132\) 0 0
\(133\) −4.91973 −0.426595
\(134\) 0 0
\(135\) 3.29097 0.283241
\(136\) 0 0
\(137\) 15.9993 1.36691 0.683455 0.729993i \(-0.260477\pi\)
0.683455 + 0.729993i \(0.260477\pi\)
\(138\) 0 0
\(139\) 2.91997 0.247669 0.123835 0.992303i \(-0.460481\pi\)
0.123835 + 0.992303i \(0.460481\pi\)
\(140\) 0 0
\(141\) 23.5948 1.98704
\(142\) 0 0
\(143\) 26.4060 2.20818
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 33.1456 2.73380
\(148\) 0 0
\(149\) −20.1018 −1.64680 −0.823402 0.567459i \(-0.807927\pi\)
−0.823402 + 0.567459i \(0.807927\pi\)
\(150\) 0 0
\(151\) 21.2129 1.72629 0.863143 0.504960i \(-0.168493\pi\)
0.863143 + 0.504960i \(0.168493\pi\)
\(152\) 0 0
\(153\) −13.1953 −1.06677
\(154\) 0 0
\(155\) 10.6421 0.854793
\(156\) 0 0
\(157\) −9.25613 −0.738720 −0.369360 0.929286i \(-0.620423\pi\)
−0.369360 + 0.929286i \(0.620423\pi\)
\(158\) 0 0
\(159\) 4.23708 0.336023
\(160\) 0 0
\(161\) 10.7019 0.843432
\(162\) 0 0
\(163\) −21.4376 −1.67912 −0.839562 0.543264i \(-0.817188\pi\)
−0.839562 + 0.543264i \(0.817188\pi\)
\(164\) 0 0
\(165\) −31.4848 −2.45109
\(166\) 0 0
\(167\) 23.8164 1.84297 0.921486 0.388411i \(-0.126976\pi\)
0.921486 + 0.388411i \(0.126976\pi\)
\(168\) 0 0
\(169\) 24.2935 1.86873
\(170\) 0 0
\(171\) 3.79281 0.290043
\(172\) 0 0
\(173\) 22.9900 1.74789 0.873947 0.486021i \(-0.161552\pi\)
0.873947 + 0.486021i \(0.161552\pi\)
\(174\) 0 0
\(175\) −14.4065 −1.08903
\(176\) 0 0
\(177\) 0.229036 0.0172154
\(178\) 0 0
\(179\) −1.39397 −0.104190 −0.0520950 0.998642i \(-0.516590\pi\)
−0.0520950 + 0.998642i \(0.516590\pi\)
\(180\) 0 0
\(181\) 5.50670 0.409310 0.204655 0.978834i \(-0.434393\pi\)
0.204655 + 0.978834i \(0.434393\pi\)
\(182\) 0 0
\(183\) −21.6599 −1.60115
\(184\) 0 0
\(185\) −4.84652 −0.356324
\(186\) 0 0
\(187\) 16.5286 1.20869
\(188\) 0 0
\(189\) −5.14046 −0.373913
\(190\) 0 0
\(191\) 4.50876 0.326242 0.163121 0.986606i \(-0.447844\pi\)
0.163121 + 0.986606i \(0.447844\pi\)
\(192\) 0 0
\(193\) −18.6121 −1.33972 −0.669862 0.742485i \(-0.733647\pi\)
−0.669862 + 0.742485i \(0.733647\pi\)
\(194\) 0 0
\(195\) −44.4663 −3.18430
\(196\) 0 0
\(197\) −1.93897 −0.138146 −0.0690730 0.997612i \(-0.522004\pi\)
−0.0690730 + 0.997612i \(0.522004\pi\)
\(198\) 0 0
\(199\) −8.60268 −0.609828 −0.304914 0.952380i \(-0.598628\pi\)
−0.304914 + 0.952380i \(0.598628\pi\)
\(200\) 0 0
\(201\) −22.2804 −1.57154
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −14.7171 −1.02788
\(206\) 0 0
\(207\) −8.25054 −0.573452
\(208\) 0 0
\(209\) −4.75095 −0.328630
\(210\) 0 0
\(211\) −12.4158 −0.854740 −0.427370 0.904077i \(-0.640560\pi\)
−0.427370 + 0.904077i \(0.640560\pi\)
\(212\) 0 0
\(213\) 23.4643 1.60775
\(214\) 0 0
\(215\) 5.73809 0.391335
\(216\) 0 0
\(217\) −16.6228 −1.12843
\(218\) 0 0
\(219\) −5.33599 −0.360573
\(220\) 0 0
\(221\) 23.3436 1.57026
\(222\) 0 0
\(223\) 4.53663 0.303795 0.151897 0.988396i \(-0.451462\pi\)
0.151897 + 0.988396i \(0.451462\pi\)
\(224\) 0 0
\(225\) 11.1066 0.740437
\(226\) 0 0
\(227\) 22.0483 1.46340 0.731698 0.681629i \(-0.238728\pi\)
0.731698 + 0.681629i \(0.238728\pi\)
\(228\) 0 0
\(229\) −15.2327 −1.00661 −0.503304 0.864110i \(-0.667882\pi\)
−0.503304 + 0.864110i \(0.667882\pi\)
\(230\) 0 0
\(231\) 49.1789 3.23574
\(232\) 0 0
\(233\) 23.8550 1.56279 0.781396 0.624035i \(-0.214508\pi\)
0.781396 + 0.624035i \(0.214508\pi\)
\(234\) 0 0
\(235\) 26.6281 1.73702
\(236\) 0 0
\(237\) −13.7684 −0.894353
\(238\) 0 0
\(239\) 8.43908 0.545879 0.272939 0.962031i \(-0.412004\pi\)
0.272939 + 0.962031i \(0.412004\pi\)
\(240\) 0 0
\(241\) −4.58894 −0.295599 −0.147800 0.989017i \(-0.547219\pi\)
−0.147800 + 0.989017i \(0.547219\pi\)
\(242\) 0 0
\(243\) −22.3418 −1.43323
\(244\) 0 0
\(245\) 37.4066 2.38982
\(246\) 0 0
\(247\) −6.70981 −0.426935
\(248\) 0 0
\(249\) −15.8475 −1.00429
\(250\) 0 0
\(251\) −24.6139 −1.55362 −0.776808 0.629737i \(-0.783163\pi\)
−0.776808 + 0.629737i \(0.783163\pi\)
\(252\) 0 0
\(253\) 10.3348 0.649743
\(254\) 0 0
\(255\) −27.8334 −1.74299
\(256\) 0 0
\(257\) 27.7988 1.73404 0.867021 0.498272i \(-0.166032\pi\)
0.867021 + 0.498272i \(0.166032\pi\)
\(258\) 0 0
\(259\) 7.57023 0.470391
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7.94396 0.489846 0.244923 0.969543i \(-0.421237\pi\)
0.244923 + 0.969543i \(0.421237\pi\)
\(264\) 0 0
\(265\) 4.78178 0.293742
\(266\) 0 0
\(267\) 9.19916 0.562979
\(268\) 0 0
\(269\) −16.8863 −1.02958 −0.514789 0.857317i \(-0.672130\pi\)
−0.514789 + 0.857317i \(0.672130\pi\)
\(270\) 0 0
\(271\) −8.46327 −0.514107 −0.257053 0.966397i \(-0.582752\pi\)
−0.257053 + 0.966397i \(0.582752\pi\)
\(272\) 0 0
\(273\) 69.4560 4.20367
\(274\) 0 0
\(275\) −13.9123 −0.838942
\(276\) 0 0
\(277\) 5.99603 0.360266 0.180133 0.983642i \(-0.442347\pi\)
0.180133 + 0.983642i \(0.442347\pi\)
\(278\) 0 0
\(279\) 12.8152 0.767225
\(280\) 0 0
\(281\) 7.92833 0.472965 0.236482 0.971636i \(-0.424005\pi\)
0.236482 + 0.971636i \(0.424005\pi\)
\(282\) 0 0
\(283\) −0.461103 −0.0274097 −0.0137049 0.999906i \(-0.504363\pi\)
−0.0137049 + 0.999906i \(0.504363\pi\)
\(284\) 0 0
\(285\) 8.00035 0.473900
\(286\) 0 0
\(287\) 22.9879 1.35693
\(288\) 0 0
\(289\) −2.38827 −0.140487
\(290\) 0 0
\(291\) −16.8737 −0.989155
\(292\) 0 0
\(293\) 17.1593 1.00246 0.501229 0.865314i \(-0.332881\pi\)
0.501229 + 0.865314i \(0.332881\pi\)
\(294\) 0 0
\(295\) 0.258479 0.0150492
\(296\) 0 0
\(297\) −4.96410 −0.288046
\(298\) 0 0
\(299\) 14.5959 0.844105
\(300\) 0 0
\(301\) −8.96284 −0.516610
\(302\) 0 0
\(303\) −33.7998 −1.94175
\(304\) 0 0
\(305\) −24.4444 −1.39968
\(306\) 0 0
\(307\) 18.4233 1.05148 0.525738 0.850647i \(-0.323789\pi\)
0.525738 + 0.850647i \(0.323789\pi\)
\(308\) 0 0
\(309\) 33.3160 1.89528
\(310\) 0 0
\(311\) 6.38060 0.361811 0.180905 0.983501i \(-0.442097\pi\)
0.180905 + 0.983501i \(0.442097\pi\)
\(312\) 0 0
\(313\) 25.4903 1.44080 0.720400 0.693559i \(-0.243958\pi\)
0.720400 + 0.693559i \(0.243958\pi\)
\(314\) 0 0
\(315\) −44.3080 −2.49648
\(316\) 0 0
\(317\) 31.4695 1.76750 0.883751 0.467958i \(-0.155010\pi\)
0.883751 + 0.467958i \(0.155010\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −1.09569 −0.0611554
\(322\) 0 0
\(323\) −4.19996 −0.233692
\(324\) 0 0
\(325\) −19.6485 −1.08990
\(326\) 0 0
\(327\) −28.7916 −1.59218
\(328\) 0 0
\(329\) −41.5928 −2.29309
\(330\) 0 0
\(331\) 5.51681 0.303231 0.151616 0.988440i \(-0.451552\pi\)
0.151616 + 0.988440i \(0.451552\pi\)
\(332\) 0 0
\(333\) −5.83618 −0.319821
\(334\) 0 0
\(335\) −25.1446 −1.37380
\(336\) 0 0
\(337\) −31.4322 −1.71222 −0.856111 0.516792i \(-0.827126\pi\)
−0.856111 + 0.516792i \(0.827126\pi\)
\(338\) 0 0
\(339\) −34.3321 −1.86467
\(340\) 0 0
\(341\) −16.0526 −0.869295
\(342\) 0 0
\(343\) −27.0854 −1.46248
\(344\) 0 0
\(345\) −17.4033 −0.936960
\(346\) 0 0
\(347\) −11.3510 −0.609352 −0.304676 0.952456i \(-0.598548\pi\)
−0.304676 + 0.952456i \(0.598548\pi\)
\(348\) 0 0
\(349\) −30.2358 −1.61848 −0.809242 0.587476i \(-0.800122\pi\)
−0.809242 + 0.587476i \(0.800122\pi\)
\(350\) 0 0
\(351\) −7.01086 −0.374212
\(352\) 0 0
\(353\) −19.6670 −1.04677 −0.523385 0.852096i \(-0.675331\pi\)
−0.523385 + 0.852096i \(0.675331\pi\)
\(354\) 0 0
\(355\) 26.4807 1.40545
\(356\) 0 0
\(357\) 43.4754 2.30096
\(358\) 0 0
\(359\) 2.82863 0.149289 0.0746446 0.997210i \(-0.476218\pi\)
0.0746446 + 0.997210i \(0.476218\pi\)
\(360\) 0 0
\(361\) −17.7928 −0.936462
\(362\) 0 0
\(363\) 19.5509 1.02616
\(364\) 0 0
\(365\) −6.02195 −0.315203
\(366\) 0 0
\(367\) −20.9002 −1.09098 −0.545490 0.838117i \(-0.683656\pi\)
−0.545490 + 0.838117i \(0.683656\pi\)
\(368\) 0 0
\(369\) −17.7223 −0.922584
\(370\) 0 0
\(371\) −7.46909 −0.387776
\(372\) 0 0
\(373\) 25.9106 1.34160 0.670801 0.741638i \(-0.265951\pi\)
0.670801 + 0.741638i \(0.265951\pi\)
\(374\) 0 0
\(375\) −12.9794 −0.670255
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −7.58517 −0.389624 −0.194812 0.980841i \(-0.562410\pi\)
−0.194812 + 0.980841i \(0.562410\pi\)
\(380\) 0 0
\(381\) 43.3593 2.22136
\(382\) 0 0
\(383\) −19.8197 −1.01274 −0.506370 0.862316i \(-0.669013\pi\)
−0.506370 + 0.862316i \(0.669013\pi\)
\(384\) 0 0
\(385\) 55.5011 2.82860
\(386\) 0 0
\(387\) 6.90980 0.351245
\(388\) 0 0
\(389\) −4.72989 −0.239815 −0.119907 0.992785i \(-0.538260\pi\)
−0.119907 + 0.992785i \(0.538260\pi\)
\(390\) 0 0
\(391\) 9.13622 0.462038
\(392\) 0 0
\(393\) −8.05827 −0.406486
\(394\) 0 0
\(395\) −15.5384 −0.781821
\(396\) 0 0
\(397\) −2.98587 −0.149856 −0.0749281 0.997189i \(-0.523873\pi\)
−0.0749281 + 0.997189i \(0.523873\pi\)
\(398\) 0 0
\(399\) −12.4965 −0.625606
\(400\) 0 0
\(401\) −0.398244 −0.0198874 −0.00994369 0.999951i \(-0.503165\pi\)
−0.00994369 + 0.999951i \(0.503165\pi\)
\(402\) 0 0
\(403\) −22.6712 −1.12933
\(404\) 0 0
\(405\) −21.3271 −1.05975
\(406\) 0 0
\(407\) 7.31051 0.362369
\(408\) 0 0
\(409\) −23.3127 −1.15274 −0.576368 0.817190i \(-0.695531\pi\)
−0.576368 + 0.817190i \(0.695531\pi\)
\(410\) 0 0
\(411\) 40.6393 2.00459
\(412\) 0 0
\(413\) −0.403742 −0.0198669
\(414\) 0 0
\(415\) −17.8847 −0.877928
\(416\) 0 0
\(417\) 7.41695 0.363209
\(418\) 0 0
\(419\) −16.7523 −0.818404 −0.409202 0.912444i \(-0.634193\pi\)
−0.409202 + 0.912444i \(0.634193\pi\)
\(420\) 0 0
\(421\) 16.7982 0.818696 0.409348 0.912378i \(-0.365756\pi\)
0.409348 + 0.912378i \(0.365756\pi\)
\(422\) 0 0
\(423\) 32.0655 1.55908
\(424\) 0 0
\(425\) −12.2988 −0.596580
\(426\) 0 0
\(427\) 38.1819 1.84775
\(428\) 0 0
\(429\) 67.0731 3.23832
\(430\) 0 0
\(431\) −3.46854 −0.167074 −0.0835368 0.996505i \(-0.526622\pi\)
−0.0835368 + 0.996505i \(0.526622\pi\)
\(432\) 0 0
\(433\) 8.04976 0.386847 0.193423 0.981115i \(-0.438041\pi\)
0.193423 + 0.981115i \(0.438041\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.62609 −0.125623
\(438\) 0 0
\(439\) 7.46048 0.356069 0.178035 0.984024i \(-0.443026\pi\)
0.178035 + 0.984024i \(0.443026\pi\)
\(440\) 0 0
\(441\) 45.0450 2.14500
\(442\) 0 0
\(443\) −18.9218 −0.899002 −0.449501 0.893280i \(-0.648398\pi\)
−0.449501 + 0.893280i \(0.648398\pi\)
\(444\) 0 0
\(445\) 10.3818 0.492142
\(446\) 0 0
\(447\) −51.0600 −2.41506
\(448\) 0 0
\(449\) 12.5079 0.590285 0.295143 0.955453i \(-0.404633\pi\)
0.295143 + 0.955453i \(0.404633\pi\)
\(450\) 0 0
\(451\) 22.1993 1.04532
\(452\) 0 0
\(453\) 53.8824 2.53162
\(454\) 0 0
\(455\) 78.3849 3.67474
\(456\) 0 0
\(457\) −24.7065 −1.15572 −0.577860 0.816136i \(-0.696112\pi\)
−0.577860 + 0.816136i \(0.696112\pi\)
\(458\) 0 0
\(459\) −4.38839 −0.204833
\(460\) 0 0
\(461\) −24.0499 −1.12012 −0.560059 0.828453i \(-0.689221\pi\)
−0.560059 + 0.828453i \(0.689221\pi\)
\(462\) 0 0
\(463\) −0.384490 −0.0178687 −0.00893437 0.999960i \(-0.502844\pi\)
−0.00893437 + 0.999960i \(0.502844\pi\)
\(464\) 0 0
\(465\) 27.0317 1.25356
\(466\) 0 0
\(467\) −29.5370 −1.36681 −0.683404 0.730041i \(-0.739501\pi\)
−0.683404 + 0.730041i \(0.739501\pi\)
\(468\) 0 0
\(469\) 39.2756 1.81358
\(470\) 0 0
\(471\) −23.5112 −1.08334
\(472\) 0 0
\(473\) −8.65535 −0.397973
\(474\) 0 0
\(475\) 3.53514 0.162203
\(476\) 0 0
\(477\) 5.75821 0.263650
\(478\) 0 0
\(479\) −22.3313 −1.02034 −0.510171 0.860073i \(-0.670418\pi\)
−0.510171 + 0.860073i \(0.670418\pi\)
\(480\) 0 0
\(481\) 10.3247 0.470767
\(482\) 0 0
\(483\) 27.1837 1.23690
\(484\) 0 0
\(485\) −19.0429 −0.864694
\(486\) 0 0
\(487\) 3.11160 0.141000 0.0705000 0.997512i \(-0.477541\pi\)
0.0705000 + 0.997512i \(0.477541\pi\)
\(488\) 0 0
\(489\) −54.4531 −2.46245
\(490\) 0 0
\(491\) −26.0152 −1.17405 −0.587025 0.809569i \(-0.699701\pi\)
−0.587025 + 0.809569i \(0.699701\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −42.7880 −1.92318
\(496\) 0 0
\(497\) −41.3626 −1.85537
\(498\) 0 0
\(499\) −32.3847 −1.44974 −0.724868 0.688888i \(-0.758099\pi\)
−0.724868 + 0.688888i \(0.758099\pi\)
\(500\) 0 0
\(501\) 60.4955 2.70274
\(502\) 0 0
\(503\) 3.68250 0.164195 0.0820974 0.996624i \(-0.473838\pi\)
0.0820974 + 0.996624i \(0.473838\pi\)
\(504\) 0 0
\(505\) −38.1449 −1.69743
\(506\) 0 0
\(507\) 61.7072 2.74051
\(508\) 0 0
\(509\) −21.8431 −0.968177 −0.484089 0.875019i \(-0.660849\pi\)
−0.484089 + 0.875019i \(0.660849\pi\)
\(510\) 0 0
\(511\) 9.40624 0.416107
\(512\) 0 0
\(513\) 1.26139 0.0556916
\(514\) 0 0
\(515\) 37.5989 1.65681
\(516\) 0 0
\(517\) −40.1659 −1.76649
\(518\) 0 0
\(519\) 58.3962 2.56331
\(520\) 0 0
\(521\) −13.6886 −0.599710 −0.299855 0.953985i \(-0.596938\pi\)
−0.299855 + 0.953985i \(0.596938\pi\)
\(522\) 0 0
\(523\) 10.0308 0.438614 0.219307 0.975656i \(-0.429620\pi\)
0.219307 + 0.975656i \(0.429620\pi\)
\(524\) 0 0
\(525\) −36.5936 −1.59708
\(526\) 0 0
\(527\) −14.1909 −0.618164
\(528\) 0 0
\(529\) −17.2874 −0.751627
\(530\) 0 0
\(531\) 0.311260 0.0135076
\(532\) 0 0
\(533\) 31.3523 1.35802
\(534\) 0 0
\(535\) −1.23654 −0.0534605
\(536\) 0 0
\(537\) −3.54078 −0.152796
\(538\) 0 0
\(539\) −56.4242 −2.43036
\(540\) 0 0
\(541\) 4.62008 0.198633 0.0993163 0.995056i \(-0.468334\pi\)
0.0993163 + 0.995056i \(0.468334\pi\)
\(542\) 0 0
\(543\) 13.9874 0.600258
\(544\) 0 0
\(545\) −32.4929 −1.39184
\(546\) 0 0
\(547\) 2.68607 0.114848 0.0574241 0.998350i \(-0.481711\pi\)
0.0574241 + 0.998350i \(0.481711\pi\)
\(548\) 0 0
\(549\) −29.4359 −1.25629
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 24.2708 1.03210
\(554\) 0 0
\(555\) −12.3105 −0.522553
\(556\) 0 0
\(557\) 12.3114 0.521651 0.260826 0.965386i \(-0.416005\pi\)
0.260826 + 0.965386i \(0.416005\pi\)
\(558\) 0 0
\(559\) −12.2241 −0.517022
\(560\) 0 0
\(561\) 41.9839 1.77256
\(562\) 0 0
\(563\) −28.1906 −1.18809 −0.594046 0.804431i \(-0.702470\pi\)
−0.594046 + 0.804431i \(0.702470\pi\)
\(564\) 0 0
\(565\) −38.7457 −1.63004
\(566\) 0 0
\(567\) 33.3127 1.39900
\(568\) 0 0
\(569\) 4.10036 0.171896 0.0859480 0.996300i \(-0.472608\pi\)
0.0859480 + 0.996300i \(0.472608\pi\)
\(570\) 0 0
\(571\) 12.3376 0.516313 0.258157 0.966103i \(-0.416885\pi\)
0.258157 + 0.966103i \(0.416885\pi\)
\(572\) 0 0
\(573\) 11.4526 0.478438
\(574\) 0 0
\(575\) −7.69003 −0.320697
\(576\) 0 0
\(577\) 37.1453 1.54638 0.773190 0.634174i \(-0.218660\pi\)
0.773190 + 0.634174i \(0.218660\pi\)
\(578\) 0 0
\(579\) −47.2760 −1.96472
\(580\) 0 0
\(581\) 27.9358 1.15897
\(582\) 0 0
\(583\) −7.21285 −0.298726
\(584\) 0 0
\(585\) −60.4299 −2.49847
\(586\) 0 0
\(587\) 33.3927 1.37827 0.689133 0.724635i \(-0.257992\pi\)
0.689133 + 0.724635i \(0.257992\pi\)
\(588\) 0 0
\(589\) 4.07899 0.168072
\(590\) 0 0
\(591\) −4.92513 −0.202593
\(592\) 0 0
\(593\) −10.6651 −0.437965 −0.218983 0.975729i \(-0.570274\pi\)
−0.218983 + 0.975729i \(0.570274\pi\)
\(594\) 0 0
\(595\) 49.0644 2.01144
\(596\) 0 0
\(597\) −21.8514 −0.894319
\(598\) 0 0
\(599\) −3.74463 −0.153002 −0.0765008 0.997070i \(-0.524375\pi\)
−0.0765008 + 0.997070i \(0.524375\pi\)
\(600\) 0 0
\(601\) 43.8423 1.78836 0.894181 0.447705i \(-0.147758\pi\)
0.894181 + 0.447705i \(0.147758\pi\)
\(602\) 0 0
\(603\) −30.2791 −1.23306
\(604\) 0 0
\(605\) 22.0643 0.897041
\(606\) 0 0
\(607\) 15.8709 0.644180 0.322090 0.946709i \(-0.395615\pi\)
0.322090 + 0.946709i \(0.395615\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −56.7267 −2.29492
\(612\) 0 0
\(613\) −24.6412 −0.995247 −0.497624 0.867393i \(-0.665794\pi\)
−0.497624 + 0.867393i \(0.665794\pi\)
\(614\) 0 0
\(615\) −37.3824 −1.50740
\(616\) 0 0
\(617\) 26.8503 1.08095 0.540476 0.841359i \(-0.318244\pi\)
0.540476 + 0.841359i \(0.318244\pi\)
\(618\) 0 0
\(619\) −40.9215 −1.64477 −0.822386 0.568929i \(-0.807358\pi\)
−0.822386 + 0.568929i \(0.807358\pi\)
\(620\) 0 0
\(621\) −2.74391 −0.110109
\(622\) 0 0
\(623\) −16.2162 −0.649688
\(624\) 0 0
\(625\) −30.7353 −1.22941
\(626\) 0 0
\(627\) −12.0677 −0.481939
\(628\) 0 0
\(629\) 6.46268 0.257684
\(630\) 0 0
\(631\) −2.47464 −0.0985137 −0.0492569 0.998786i \(-0.515685\pi\)
−0.0492569 + 0.998786i \(0.515685\pi\)
\(632\) 0 0
\(633\) −31.5371 −1.25349
\(634\) 0 0
\(635\) 48.9333 1.94186
\(636\) 0 0
\(637\) −79.6886 −3.15738
\(638\) 0 0
\(639\) 31.8881 1.26147
\(640\) 0 0
\(641\) −20.4284 −0.806872 −0.403436 0.915008i \(-0.632184\pi\)
−0.403436 + 0.915008i \(0.632184\pi\)
\(642\) 0 0
\(643\) 35.6119 1.40440 0.702198 0.711981i \(-0.252202\pi\)
0.702198 + 0.711981i \(0.252202\pi\)
\(644\) 0 0
\(645\) 14.5752 0.573897
\(646\) 0 0
\(647\) −45.6943 −1.79643 −0.898214 0.439558i \(-0.855135\pi\)
−0.898214 + 0.439558i \(0.855135\pi\)
\(648\) 0 0
\(649\) −0.389891 −0.0153046
\(650\) 0 0
\(651\) −42.2232 −1.65486
\(652\) 0 0
\(653\) 50.1369 1.96201 0.981005 0.193983i \(-0.0621408\pi\)
0.981005 + 0.193983i \(0.0621408\pi\)
\(654\) 0 0
\(655\) −9.09420 −0.355340
\(656\) 0 0
\(657\) −7.25163 −0.282913
\(658\) 0 0
\(659\) 10.8024 0.420801 0.210401 0.977615i \(-0.432523\pi\)
0.210401 + 0.977615i \(0.432523\pi\)
\(660\) 0 0
\(661\) −39.8040 −1.54820 −0.774098 0.633065i \(-0.781796\pi\)
−0.774098 + 0.633065i \(0.781796\pi\)
\(662\) 0 0
\(663\) 59.2944 2.30280
\(664\) 0 0
\(665\) −14.1029 −0.546889
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 11.5234 0.445519
\(670\) 0 0
\(671\) 36.8720 1.42343
\(672\) 0 0
\(673\) 3.98519 0.153618 0.0768088 0.997046i \(-0.475527\pi\)
0.0768088 + 0.997046i \(0.475527\pi\)
\(674\) 0 0
\(675\) 3.69375 0.142172
\(676\) 0 0
\(677\) −36.5729 −1.40561 −0.702806 0.711382i \(-0.748070\pi\)
−0.702806 + 0.711382i \(0.748070\pi\)
\(678\) 0 0
\(679\) 29.7448 1.14150
\(680\) 0 0
\(681\) 56.0042 2.14609
\(682\) 0 0
\(683\) −17.6178 −0.674126 −0.337063 0.941482i \(-0.609434\pi\)
−0.337063 + 0.941482i \(0.609434\pi\)
\(684\) 0 0
\(685\) 45.8636 1.75236
\(686\) 0 0
\(687\) −38.6923 −1.47620
\(688\) 0 0
\(689\) −10.1868 −0.388086
\(690\) 0 0
\(691\) 25.5735 0.972862 0.486431 0.873719i \(-0.338298\pi\)
0.486431 + 0.873719i \(0.338298\pi\)
\(692\) 0 0
\(693\) 66.8344 2.53883
\(694\) 0 0
\(695\) 8.37043 0.317508
\(696\) 0 0
\(697\) 19.6247 0.743339
\(698\) 0 0
\(699\) 60.5934 2.29185
\(700\) 0 0
\(701\) −10.3556 −0.391125 −0.195563 0.980691i \(-0.562653\pi\)
−0.195563 + 0.980691i \(0.562653\pi\)
\(702\) 0 0
\(703\) −1.85762 −0.0700613
\(704\) 0 0
\(705\) 67.6372 2.54737
\(706\) 0 0
\(707\) 59.5820 2.24081
\(708\) 0 0
\(709\) 25.2348 0.947713 0.473856 0.880602i \(-0.342862\pi\)
0.473856 + 0.880602i \(0.342862\pi\)
\(710\) 0 0
\(711\) −18.7113 −0.701729
\(712\) 0 0
\(713\) −8.87307 −0.332299
\(714\) 0 0
\(715\) 75.6957 2.83086
\(716\) 0 0
\(717\) 21.4359 0.800538
\(718\) 0 0
\(719\) −31.7480 −1.18400 −0.592000 0.805938i \(-0.701661\pi\)
−0.592000 + 0.805938i \(0.701661\pi\)
\(720\) 0 0
\(721\) −58.7291 −2.18719
\(722\) 0 0
\(723\) −11.6562 −0.433500
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 40.1191 1.48794 0.743968 0.668215i \(-0.232941\pi\)
0.743968 + 0.668215i \(0.232941\pi\)
\(728\) 0 0
\(729\) −34.4303 −1.27520
\(730\) 0 0
\(731\) −7.65155 −0.283003
\(732\) 0 0
\(733\) −15.2548 −0.563447 −0.281724 0.959496i \(-0.590906\pi\)
−0.281724 + 0.959496i \(0.590906\pi\)
\(734\) 0 0
\(735\) 95.0155 3.50470
\(736\) 0 0
\(737\) 37.9282 1.39710
\(738\) 0 0
\(739\) 48.3414 1.77827 0.889133 0.457649i \(-0.151308\pi\)
0.889133 + 0.457649i \(0.151308\pi\)
\(740\) 0 0
\(741\) −17.0434 −0.626105
\(742\) 0 0
\(743\) 37.9370 1.39177 0.695886 0.718152i \(-0.255012\pi\)
0.695886 + 0.718152i \(0.255012\pi\)
\(744\) 0 0
\(745\) −57.6240 −2.11118
\(746\) 0 0
\(747\) −21.5368 −0.787990
\(748\) 0 0
\(749\) 1.93147 0.0705744
\(750\) 0 0
\(751\) −34.5571 −1.26100 −0.630502 0.776187i \(-0.717151\pi\)
−0.630502 + 0.776187i \(0.717151\pi\)
\(752\) 0 0
\(753\) −62.5211 −2.27840
\(754\) 0 0
\(755\) 60.8092 2.21308
\(756\) 0 0
\(757\) 27.4426 0.997418 0.498709 0.866770i \(-0.333808\pi\)
0.498709 + 0.866770i \(0.333808\pi\)
\(758\) 0 0
\(759\) 26.2511 0.952855
\(760\) 0 0
\(761\) −36.3063 −1.31610 −0.658052 0.752973i \(-0.728619\pi\)
−0.658052 + 0.752973i \(0.728619\pi\)
\(762\) 0 0
\(763\) 50.7536 1.83740
\(764\) 0 0
\(765\) −37.8256 −1.36759
\(766\) 0 0
\(767\) −0.550647 −0.0198827
\(768\) 0 0
\(769\) −4.95322 −0.178618 −0.0893089 0.996004i \(-0.528466\pi\)
−0.0893089 + 0.996004i \(0.528466\pi\)
\(770\) 0 0
\(771\) 70.6110 2.54299
\(772\) 0 0
\(773\) −53.5778 −1.92706 −0.963530 0.267600i \(-0.913769\pi\)
−0.963530 + 0.267600i \(0.913769\pi\)
\(774\) 0 0
\(775\) 11.9446 0.429062
\(776\) 0 0
\(777\) 19.2289 0.689834
\(778\) 0 0
\(779\) −5.64087 −0.202105
\(780\) 0 0
\(781\) −39.9436 −1.42929
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −26.5337 −0.947029
\(786\) 0 0
\(787\) −0.705956 −0.0251646 −0.0125823 0.999921i \(-0.504005\pi\)
−0.0125823 + 0.999921i \(0.504005\pi\)
\(788\) 0 0
\(789\) 20.1782 0.718364
\(790\) 0 0
\(791\) 60.5204 2.15186
\(792\) 0 0
\(793\) 52.0747 1.84923
\(794\) 0 0
\(795\) 12.1461 0.430777
\(796\) 0 0
\(797\) −8.43839 −0.298903 −0.149452 0.988769i \(-0.547751\pi\)
−0.149452 + 0.988769i \(0.547751\pi\)
\(798\) 0 0
\(799\) −35.5076 −1.25617
\(800\) 0 0
\(801\) 12.5017 0.441726
\(802\) 0 0
\(803\) 9.08353 0.320551
\(804\) 0 0
\(805\) 30.6783 1.08127
\(806\) 0 0
\(807\) −42.8925 −1.50989
\(808\) 0 0
\(809\) −40.1191 −1.41051 −0.705256 0.708953i \(-0.749168\pi\)
−0.705256 + 0.708953i \(0.749168\pi\)
\(810\) 0 0
\(811\) 47.7449 1.67655 0.838274 0.545249i \(-0.183565\pi\)
0.838274 + 0.545249i \(0.183565\pi\)
\(812\) 0 0
\(813\) −21.4973 −0.753944
\(814\) 0 0
\(815\) −61.4533 −2.15261
\(816\) 0 0
\(817\) 2.19934 0.0769452
\(818\) 0 0
\(819\) 94.3910 3.29829
\(820\) 0 0
\(821\) −40.1280 −1.40048 −0.700238 0.713909i \(-0.746923\pi\)
−0.700238 + 0.713909i \(0.746923\pi\)
\(822\) 0 0
\(823\) −10.5866 −0.369025 −0.184513 0.982830i \(-0.559071\pi\)
−0.184513 + 0.982830i \(0.559071\pi\)
\(824\) 0 0
\(825\) −35.3382 −1.23032
\(826\) 0 0
\(827\) −9.19893 −0.319878 −0.159939 0.987127i \(-0.551130\pi\)
−0.159939 + 0.987127i \(0.551130\pi\)
\(828\) 0 0
\(829\) 3.02848 0.105183 0.0525917 0.998616i \(-0.483252\pi\)
0.0525917 + 0.998616i \(0.483252\pi\)
\(830\) 0 0
\(831\) 15.2303 0.528335
\(832\) 0 0
\(833\) −49.8804 −1.72825
\(834\) 0 0
\(835\) 68.2725 2.36267
\(836\) 0 0
\(837\) 4.26199 0.147316
\(838\) 0 0
\(839\) 30.0647 1.03795 0.518975 0.854789i \(-0.326314\pi\)
0.518975 + 0.854789i \(0.326314\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 0 0
\(843\) 20.1385 0.693608
\(844\) 0 0
\(845\) 69.6399 2.39569
\(846\) 0 0
\(847\) −34.4642 −1.18421
\(848\) 0 0
\(849\) −1.17123 −0.0401967
\(850\) 0 0
\(851\) 4.04089 0.138520
\(852\) 0 0
\(853\) 23.0425 0.788959 0.394479 0.918905i \(-0.370925\pi\)
0.394479 + 0.918905i \(0.370925\pi\)
\(854\) 0 0
\(855\) 10.8725 0.371832
\(856\) 0 0
\(857\) 2.50916 0.0857112 0.0428556 0.999081i \(-0.486354\pi\)
0.0428556 + 0.999081i \(0.486354\pi\)
\(858\) 0 0
\(859\) −30.1508 −1.02873 −0.514367 0.857570i \(-0.671973\pi\)
−0.514367 + 0.857570i \(0.671973\pi\)
\(860\) 0 0
\(861\) 58.3910 1.98996
\(862\) 0 0
\(863\) −6.17741 −0.210281 −0.105141 0.994457i \(-0.533529\pi\)
−0.105141 + 0.994457i \(0.533529\pi\)
\(864\) 0 0
\(865\) 65.9032 2.24078
\(866\) 0 0
\(867\) −6.06638 −0.206025
\(868\) 0 0
\(869\) 23.4381 0.795084
\(870\) 0 0
\(871\) 53.5664 1.81503
\(872\) 0 0
\(873\) −22.9314 −0.776112
\(874\) 0 0
\(875\) 22.8800 0.773486
\(876\) 0 0
\(877\) 36.3707 1.22815 0.614075 0.789247i \(-0.289529\pi\)
0.614075 + 0.789247i \(0.289529\pi\)
\(878\) 0 0
\(879\) 43.5860 1.47012
\(880\) 0 0
\(881\) −27.3364 −0.920986 −0.460493 0.887663i \(-0.652327\pi\)
−0.460493 + 0.887663i \(0.652327\pi\)
\(882\) 0 0
\(883\) 22.8431 0.768733 0.384367 0.923181i \(-0.374420\pi\)
0.384367 + 0.923181i \(0.374420\pi\)
\(884\) 0 0
\(885\) 0.656556 0.0220699
\(886\) 0 0
\(887\) −21.4514 −0.720269 −0.360134 0.932900i \(-0.617269\pi\)
−0.360134 + 0.932900i \(0.617269\pi\)
\(888\) 0 0
\(889\) −76.4333 −2.56349
\(890\) 0 0
\(891\) 32.1698 1.07773
\(892\) 0 0
\(893\) 10.2062 0.341538
\(894\) 0 0
\(895\) −3.99596 −0.133570
\(896\) 0 0
\(897\) 37.0748 1.23789
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −6.37634 −0.212427
\(902\) 0 0
\(903\) −22.7663 −0.757614
\(904\) 0 0
\(905\) 15.7856 0.524730
\(906\) 0 0
\(907\) 15.0698 0.500385 0.250192 0.968196i \(-0.419506\pi\)
0.250192 + 0.968196i \(0.419506\pi\)
\(908\) 0 0
\(909\) −45.9341 −1.52354
\(910\) 0 0
\(911\) 23.9314 0.792881 0.396441 0.918060i \(-0.370245\pi\)
0.396441 + 0.918060i \(0.370245\pi\)
\(912\) 0 0
\(913\) 26.9774 0.892822
\(914\) 0 0
\(915\) −62.0905 −2.05265
\(916\) 0 0
\(917\) 14.2051 0.469092
\(918\) 0 0
\(919\) 6.74894 0.222627 0.111313 0.993785i \(-0.464494\pi\)
0.111313 + 0.993785i \(0.464494\pi\)
\(920\) 0 0
\(921\) 46.7966 1.54200
\(922\) 0 0
\(923\) −56.4128 −1.85685
\(924\) 0 0
\(925\) −5.43969 −0.178856
\(926\) 0 0
\(927\) 45.2766 1.48708
\(928\) 0 0
\(929\) −52.3748 −1.71836 −0.859181 0.511671i \(-0.829027\pi\)
−0.859181 + 0.511671i \(0.829027\pi\)
\(930\) 0 0
\(931\) 14.3375 0.469893
\(932\) 0 0
\(933\) 16.2072 0.530600
\(934\) 0 0
\(935\) 47.3811 1.54953
\(936\) 0 0
\(937\) −26.1242 −0.853440 −0.426720 0.904384i \(-0.640331\pi\)
−0.426720 + 0.904384i \(0.640331\pi\)
\(938\) 0 0
\(939\) 64.7473 2.11295
\(940\) 0 0
\(941\) 38.2936 1.24834 0.624168 0.781291i \(-0.285438\pi\)
0.624168 + 0.781291i \(0.285438\pi\)
\(942\) 0 0
\(943\) 12.2707 0.399588
\(944\) 0 0
\(945\) −14.7357 −0.479352
\(946\) 0 0
\(947\) 0.0508504 0.00165242 0.000826208 1.00000i \(-0.499737\pi\)
0.000826208 1.00000i \(0.499737\pi\)
\(948\) 0 0
\(949\) 12.8288 0.416440
\(950\) 0 0
\(951\) 79.9347 2.59206
\(952\) 0 0
\(953\) 17.9962 0.582953 0.291476 0.956578i \(-0.405853\pi\)
0.291476 + 0.956578i \(0.405853\pi\)
\(954\) 0 0
\(955\) 12.9249 0.418239
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −71.6386 −2.31333
\(960\) 0 0
\(961\) −17.2179 −0.555415
\(962\) 0 0
\(963\) −1.48904 −0.0479838
\(964\) 0 0
\(965\) −53.3535 −1.71751
\(966\) 0 0
\(967\) −12.5848 −0.404701 −0.202350 0.979313i \(-0.564858\pi\)
−0.202350 + 0.979313i \(0.564858\pi\)
\(968\) 0 0
\(969\) −10.6682 −0.342712
\(970\) 0 0
\(971\) −35.0649 −1.12529 −0.562644 0.826700i \(-0.690216\pi\)
−0.562644 + 0.826700i \(0.690216\pi\)
\(972\) 0 0
\(973\) −13.0745 −0.419150
\(974\) 0 0
\(975\) −49.9086 −1.59835
\(976\) 0 0
\(977\) −23.3649 −0.747509 −0.373754 0.927528i \(-0.621930\pi\)
−0.373754 + 0.927528i \(0.621930\pi\)
\(978\) 0 0
\(979\) −15.6599 −0.500491
\(980\) 0 0
\(981\) −39.1279 −1.24926
\(982\) 0 0
\(983\) 58.5673 1.86801 0.934003 0.357265i \(-0.116291\pi\)
0.934003 + 0.357265i \(0.116291\pi\)
\(984\) 0 0
\(985\) −5.55828 −0.177101
\(986\) 0 0
\(987\) −105.649 −3.36284
\(988\) 0 0
\(989\) −4.78426 −0.152131
\(990\) 0 0
\(991\) −5.95075 −0.189032 −0.0945158 0.995523i \(-0.530130\pi\)
−0.0945158 + 0.995523i \(0.530130\pi\)
\(992\) 0 0
\(993\) 14.0131 0.444692
\(994\) 0 0
\(995\) −24.6605 −0.781791
\(996\) 0 0
\(997\) 8.69974 0.275523 0.137762 0.990465i \(-0.456009\pi\)
0.137762 + 0.990465i \(0.456009\pi\)
\(998\) 0 0
\(999\) −1.94096 −0.0614092
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3364.2.a.q.1.8 8
29.12 odd 4 3364.2.c.k.1681.15 16
29.17 odd 4 3364.2.c.k.1681.2 16
29.28 even 2 3364.2.a.r.1.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3364.2.a.q.1.8 8 1.1 even 1 trivial
3364.2.a.r.1.1 yes 8 29.28 even 2
3364.2.c.k.1681.2 16 29.17 odd 4
3364.2.c.k.1681.15 16 29.12 odd 4