Properties

Label 338.4.c.o.191.6
Level $338$
Weight $4$
Character 338.191
Analytic conductor $19.943$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(191,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.191");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 108 x^{10} - 63 x^{9} + 7831 x^{8} - 3348 x^{7} + 317885 x^{6} + 1680 x^{5} + \cdots + 1759886401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 13^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 191.6
Root \(-2.42606 + 4.20205i\) of defining polynomial
Character \(\chi\) \(=\) 338.191
Dual form 338.4.c.o.315.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.73205i) q^{2} +(4.07401 - 7.05638i) q^{3} +(-2.00000 - 3.46410i) q^{4} -12.6646 q^{5} +(8.14801 + 14.1128i) q^{6} +(14.3853 + 24.9160i) q^{7} +8.00000 q^{8} +(-19.6950 - 34.1128i) q^{9} +(12.6646 - 21.9357i) q^{10} +(26.4203 - 45.7613i) q^{11} -32.5920 q^{12} -57.5411 q^{14} +(-51.5957 + 89.3664i) q^{15} +(-8.00000 + 13.8564i) q^{16} +(-35.5161 - 61.5158i) q^{17} +78.7801 q^{18} +(-32.8843 - 56.9572i) q^{19} +(25.3292 + 43.8715i) q^{20} +234.423 q^{21} +(52.8406 + 91.5226i) q^{22} +(22.2154 - 38.4783i) q^{23} +(32.5920 - 56.4511i) q^{24} +35.3924 q^{25} -100.954 q^{27} +(57.5411 - 99.6641i) q^{28} +(39.2189 - 67.9292i) q^{29} +(-103.191 - 178.733i) q^{30} -195.024 q^{31} +(-16.0000 - 27.7128i) q^{32} +(-215.273 - 372.863i) q^{33} +142.065 q^{34} +(-182.184 - 315.552i) q^{35} +(-78.7801 + 136.451i) q^{36} +(-116.595 + 201.948i) q^{37} +131.537 q^{38} -101.317 q^{40} +(-60.2286 + 104.319i) q^{41} +(-234.423 + 406.032i) q^{42} +(-202.551 - 350.829i) q^{43} -211.362 q^{44} +(249.430 + 432.025i) q^{45} +(44.4309 + 76.9566i) q^{46} -400.779 q^{47} +(65.1841 + 112.902i) q^{48} +(-242.372 + 419.800i) q^{49} +(-35.3924 + 61.3014i) q^{50} -578.772 q^{51} +116.566 q^{53} +(100.954 - 174.858i) q^{54} +(-334.603 + 579.549i) q^{55} +(115.082 + 199.328i) q^{56} -535.883 q^{57} +(78.4379 + 135.858i) q^{58} +(-390.718 - 676.744i) q^{59} +412.765 q^{60} +(-26.2781 - 45.5149i) q^{61} +(195.024 - 337.792i) q^{62} +(566.637 - 981.444i) q^{63} +64.0000 q^{64} +861.091 q^{66} +(402.652 - 697.414i) q^{67} +(-142.065 + 246.063i) q^{68} +(-181.012 - 313.521i) q^{69} +728.735 q^{70} +(200.786 + 347.771i) q^{71} +(-157.560 - 272.902i) q^{72} +323.057 q^{73} +(-233.189 - 403.895i) q^{74} +(144.189 - 249.742i) q^{75} +(-131.537 + 227.829i) q^{76} +1520.25 q^{77} -794.845 q^{79} +(101.317 - 175.486i) q^{80} +(120.477 - 208.673i) q^{81} +(-120.457 - 208.638i) q^{82} +444.820 q^{83} +(-468.845 - 812.064i) q^{84} +(449.798 + 779.073i) q^{85} +810.205 q^{86} +(-319.556 - 553.488i) q^{87} +(211.362 - 366.090i) q^{88} +(-39.5736 + 68.5435i) q^{89} -997.720 q^{90} -177.724 q^{92} +(-794.529 + 1376.16i) q^{93} +(400.779 - 694.169i) q^{94} +(416.467 + 721.341i) q^{95} -260.736 q^{96} +(-1.94818 - 3.37434i) q^{97} +(-484.744 - 839.601i) q^{98} -2081.39 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{2} - 9 q^{3} - 24 q^{4} + 36 q^{5} - 18 q^{6} - 25 q^{7} + 96 q^{8} - 113 q^{9} - 36 q^{10} - 37 q^{11} + 72 q^{12} + 100 q^{14} - 118 q^{15} - 96 q^{16} - 99 q^{17} + 452 q^{18} + 81 q^{19}+ \cdots - 2688 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.73205i −0.353553 + 0.612372i
\(3\) 4.07401 7.05638i 0.784043 1.35800i −0.145527 0.989354i \(-0.546488\pi\)
0.929569 0.368647i \(-0.120179\pi\)
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) −12.6646 −1.13276 −0.566379 0.824145i \(-0.691656\pi\)
−0.566379 + 0.824145i \(0.691656\pi\)
\(6\) 8.14801 + 14.1128i 0.554402 + 0.960252i
\(7\) 14.3853 + 24.9160i 0.776732 + 1.34534i 0.933816 + 0.357753i \(0.116457\pi\)
−0.157085 + 0.987585i \(0.550210\pi\)
\(8\) 8.00000 0.353553
\(9\) −19.6950 34.1128i −0.729446 1.26344i
\(10\) 12.6646 21.9357i 0.400490 0.693669i
\(11\) 26.4203 45.7613i 0.724183 1.25432i −0.235126 0.971965i \(-0.575550\pi\)
0.959309 0.282357i \(-0.0911164\pi\)
\(12\) −32.5920 −0.784043
\(13\) 0 0
\(14\) −57.5411 −1.09846
\(15\) −51.5957 + 89.3664i −0.888130 + 1.53829i
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) −35.5161 61.5158i −0.506702 0.877633i −0.999970 0.00775579i \(-0.997531\pi\)
0.493268 0.869877i \(-0.335802\pi\)
\(18\) 78.7801 1.03159
\(19\) −32.8843 56.9572i −0.397062 0.687731i 0.596300 0.802761i \(-0.296637\pi\)
−0.993362 + 0.115030i \(0.963303\pi\)
\(20\) 25.3292 + 43.8715i 0.283189 + 0.490498i
\(21\) 234.423 2.43596
\(22\) 52.8406 + 91.5226i 0.512075 + 0.886940i
\(23\) 22.2154 38.4783i 0.201402 0.348838i −0.747579 0.664173i \(-0.768784\pi\)
0.948980 + 0.315335i \(0.102117\pi\)
\(24\) 32.5920 56.4511i 0.277201 0.480126i
\(25\) 35.3924 0.283139
\(26\) 0 0
\(27\) −100.954 −0.719581
\(28\) 57.5411 99.6641i 0.388366 0.672669i
\(29\) 39.2189 67.9292i 0.251130 0.434970i −0.712707 0.701462i \(-0.752531\pi\)
0.963837 + 0.266492i \(0.0858645\pi\)
\(30\) −103.191 178.733i −0.628003 1.08773i
\(31\) −195.024 −1.12991 −0.564957 0.825120i \(-0.691107\pi\)
−0.564957 + 0.825120i \(0.691107\pi\)
\(32\) −16.0000 27.7128i −0.0883883 0.153093i
\(33\) −215.273 372.863i −1.13558 1.96688i
\(34\) 142.065 0.716584
\(35\) −182.184 315.552i −0.879848 1.52394i
\(36\) −78.7801 + 136.451i −0.364723 + 0.631719i
\(37\) −116.595 + 201.948i −0.518055 + 0.897297i 0.481725 + 0.876322i \(0.340010\pi\)
−0.999780 + 0.0209750i \(0.993323\pi\)
\(38\) 131.537 0.561530
\(39\) 0 0
\(40\) −101.317 −0.400490
\(41\) −60.2286 + 104.319i −0.229418 + 0.397363i −0.957636 0.287983i \(-0.907015\pi\)
0.728218 + 0.685345i \(0.240349\pi\)
\(42\) −234.423 + 406.032i −0.861243 + 1.49172i
\(43\) −202.551 350.829i −0.718344 1.24421i −0.961656 0.274260i \(-0.911567\pi\)
0.243312 0.969948i \(-0.421766\pi\)
\(44\) −211.362 −0.724183
\(45\) 249.430 + 432.025i 0.826285 + 1.43117i
\(46\) 44.4309 + 76.9566i 0.142413 + 0.246666i
\(47\) −400.779 −1.24382 −0.621911 0.783088i \(-0.713643\pi\)
−0.621911 + 0.783088i \(0.713643\pi\)
\(48\) 65.1841 + 112.902i 0.196011 + 0.339500i
\(49\) −242.372 + 419.800i −0.706624 + 1.22391i
\(50\) −35.3924 + 61.3014i −0.100105 + 0.173386i
\(51\) −578.772 −1.58910
\(52\) 0 0
\(53\) 116.566 0.302105 0.151052 0.988526i \(-0.451734\pi\)
0.151052 + 0.988526i \(0.451734\pi\)
\(54\) 100.954 174.858i 0.254410 0.440652i
\(55\) −334.603 + 579.549i −0.820324 + 1.42084i
\(56\) 115.082 + 199.328i 0.274616 + 0.475649i
\(57\) −535.883 −1.24525
\(58\) 78.4379 + 135.858i 0.177576 + 0.307570i
\(59\) −390.718 676.744i −0.862155 1.49330i −0.869844 0.493326i \(-0.835781\pi\)
0.00768919 0.999970i \(-0.497552\pi\)
\(60\) 412.765 0.888130
\(61\) −26.2781 45.5149i −0.0551567 0.0955343i 0.837129 0.547006i \(-0.184233\pi\)
−0.892285 + 0.451472i \(0.850899\pi\)
\(62\) 195.024 337.792i 0.399485 0.691929i
\(63\) 566.637 981.444i 1.13317 1.96270i
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 861.091 1.60595
\(67\) 402.652 697.414i 0.734206 1.27168i −0.220864 0.975305i \(-0.570888\pi\)
0.955071 0.296378i \(-0.0957789\pi\)
\(68\) −142.065 + 246.063i −0.253351 + 0.438817i
\(69\) −181.012 313.521i −0.315815 0.547008i
\(70\) 728.735 1.24429
\(71\) 200.786 + 347.771i 0.335618 + 0.581307i 0.983603 0.180345i \(-0.0577216\pi\)
−0.647985 + 0.761653i \(0.724388\pi\)
\(72\) −157.560 272.902i −0.257898 0.446692i
\(73\) 323.057 0.517958 0.258979 0.965883i \(-0.416614\pi\)
0.258979 + 0.965883i \(0.416614\pi\)
\(74\) −233.189 403.895i −0.366320 0.634485i
\(75\) 144.189 249.742i 0.221993 0.384503i
\(76\) −131.537 + 227.829i −0.198531 + 0.343865i
\(77\) 1520.25 2.24998
\(78\) 0 0
\(79\) −794.845 −1.13199 −0.565994 0.824409i \(-0.691507\pi\)
−0.565994 + 0.824409i \(0.691507\pi\)
\(80\) 101.317 175.486i 0.141595 0.245249i
\(81\) 120.477 208.673i 0.165264 0.286245i
\(82\) −120.457 208.638i −0.162223 0.280978i
\(83\) 444.820 0.588258 0.294129 0.955766i \(-0.404971\pi\)
0.294129 + 0.955766i \(0.404971\pi\)
\(84\) −468.845 812.064i −0.608991 1.05480i
\(85\) 449.798 + 779.073i 0.573970 + 0.994145i
\(86\) 810.205 1.01589
\(87\) −319.556 553.488i −0.393793 0.682070i
\(88\) 211.362 366.090i 0.256037 0.443470i
\(89\) −39.5736 + 68.5435i −0.0471325 + 0.0816359i −0.888629 0.458626i \(-0.848342\pi\)
0.841497 + 0.540262i \(0.181675\pi\)
\(90\) −997.720 −1.16854
\(91\) 0 0
\(92\) −177.724 −0.201402
\(93\) −794.529 + 1376.16i −0.885901 + 1.53443i
\(94\) 400.779 694.169i 0.439757 0.761682i
\(95\) 416.467 + 721.341i 0.449774 + 0.779032i
\(96\) −260.736 −0.277201
\(97\) −1.94818 3.37434i −0.00203925 0.00353209i 0.865004 0.501765i \(-0.167316\pi\)
−0.867043 + 0.498233i \(0.833982\pi\)
\(98\) −484.744 839.601i −0.499658 0.865434i
\(99\) −2081.39 −2.11301
\(100\) −70.7847 122.603i −0.0707847 0.122603i
\(101\) 517.657 896.609i 0.509988 0.883326i −0.489945 0.871754i \(-0.662983\pi\)
0.999933 0.0115723i \(-0.00368367\pi\)
\(102\) 578.772 1002.46i 0.561833 0.973123i
\(103\) 1248.51 1.19436 0.597181 0.802107i \(-0.296287\pi\)
0.597181 + 0.802107i \(0.296287\pi\)
\(104\) 0 0
\(105\) −2968.87 −2.75935
\(106\) −116.566 + 201.898i −0.106810 + 0.185001i
\(107\) 581.006 1006.33i 0.524934 0.909212i −0.474644 0.880178i \(-0.657423\pi\)
0.999578 0.0290348i \(-0.00924335\pi\)
\(108\) 201.909 + 349.716i 0.179895 + 0.311588i
\(109\) −1003.58 −0.881885 −0.440943 0.897535i \(-0.645356\pi\)
−0.440943 + 0.897535i \(0.645356\pi\)
\(110\) −669.205 1159.10i −0.580057 1.00469i
\(111\) 950.014 + 1645.47i 0.812354 + 1.40704i
\(112\) −460.329 −0.388366
\(113\) 372.206 + 644.679i 0.309860 + 0.536693i 0.978332 0.207045i \(-0.0663845\pi\)
−0.668472 + 0.743738i \(0.733051\pi\)
\(114\) 535.883 928.176i 0.440263 0.762559i
\(115\) −281.350 + 487.312i −0.228139 + 0.395149i
\(116\) −313.751 −0.251130
\(117\) 0 0
\(118\) 1562.87 1.21927
\(119\) 1021.82 1769.84i 0.787142 1.36337i
\(120\) −412.765 + 714.931i −0.314001 + 0.543866i
\(121\) −730.563 1265.37i −0.548883 0.950694i
\(122\) 105.112 0.0780034
\(123\) 490.743 + 849.992i 0.359746 + 0.623099i
\(124\) 390.048 + 675.583i 0.282479 + 0.489267i
\(125\) 1134.85 0.812030
\(126\) 1133.27 + 1962.89i 0.801270 + 1.38784i
\(127\) −841.759 + 1457.97i −0.588142 + 1.01869i 0.406334 + 0.913725i \(0.366807\pi\)
−0.994476 + 0.104967i \(0.966526\pi\)
\(128\) −64.0000 + 110.851i −0.0441942 + 0.0765466i
\(129\) −3300.78 −2.25285
\(130\) 0 0
\(131\) 2177.87 1.45253 0.726266 0.687414i \(-0.241254\pi\)
0.726266 + 0.687414i \(0.241254\pi\)
\(132\) −861.091 + 1491.45i −0.567791 + 0.983442i
\(133\) 946.098 1638.69i 0.616821 1.06836i
\(134\) 805.305 + 1394.83i 0.519162 + 0.899215i
\(135\) 1278.55 0.815110
\(136\) −284.129 492.126i −0.179146 0.310290i
\(137\) 883.829 + 1530.84i 0.551172 + 0.954658i 0.998190 + 0.0601334i \(0.0191526\pi\)
−0.447018 + 0.894525i \(0.647514\pi\)
\(138\) 724.047 0.446630
\(139\) −502.768 870.819i −0.306793 0.531381i 0.670866 0.741579i \(-0.265923\pi\)
−0.977659 + 0.210198i \(0.932589\pi\)
\(140\) −728.735 + 1262.21i −0.439924 + 0.761971i
\(141\) −1632.78 + 2828.05i −0.975209 + 1.68911i
\(142\) −803.143 −0.474635
\(143\) 0 0
\(144\) 630.241 0.364723
\(145\) −496.692 + 860.297i −0.284469 + 0.492715i
\(146\) −323.057 + 559.551i −0.183126 + 0.317183i
\(147\) 1974.85 + 3420.54i 1.10805 + 1.91919i
\(148\) 932.757 0.518055
\(149\) 68.1369 + 118.017i 0.0374631 + 0.0648879i 0.884149 0.467205i \(-0.154739\pi\)
−0.846686 + 0.532093i \(0.821406\pi\)
\(150\) 288.377 + 499.484i 0.156973 + 0.271885i
\(151\) −804.394 −0.433514 −0.216757 0.976226i \(-0.569548\pi\)
−0.216757 + 0.976226i \(0.569548\pi\)
\(152\) −263.074 455.658i −0.140383 0.243150i
\(153\) −1398.98 + 2423.11i −0.739223 + 1.28037i
\(154\) −1520.25 + 2633.15i −0.795490 + 1.37783i
\(155\) 2469.90 1.27992
\(156\) 0 0
\(157\) 3730.07 1.89613 0.948064 0.318079i \(-0.103038\pi\)
0.948064 + 0.318079i \(0.103038\pi\)
\(158\) 794.845 1376.71i 0.400218 0.693198i
\(159\) 474.890 822.534i 0.236863 0.410259i
\(160\) 202.634 + 350.972i 0.100123 + 0.173417i
\(161\) 1278.30 0.625740
\(162\) 240.954 + 417.345i 0.116859 + 0.202406i
\(163\) −1311.63 2271.80i −0.630273 1.09166i −0.987496 0.157646i \(-0.949610\pi\)
0.357223 0.934019i \(-0.383724\pi\)
\(164\) 481.828 0.229418
\(165\) 2726.35 + 4722.17i 1.28634 + 2.22800i
\(166\) −444.820 + 770.451i −0.207980 + 0.360233i
\(167\) 639.001 1106.78i 0.296092 0.512847i −0.679146 0.734003i \(-0.737650\pi\)
0.975238 + 0.221156i \(0.0709831\pi\)
\(168\) 1875.38 0.861243
\(169\) 0 0
\(170\) −1799.19 −0.811716
\(171\) −1295.31 + 2243.55i −0.579270 + 1.00332i
\(172\) −810.205 + 1403.32i −0.359172 + 0.622104i
\(173\) −534.991 926.631i −0.235113 0.407228i 0.724192 0.689598i \(-0.242213\pi\)
−0.959306 + 0.282370i \(0.908879\pi\)
\(174\) 1278.22 0.556908
\(175\) 509.129 + 881.836i 0.219923 + 0.380918i
\(176\) 422.725 + 732.181i 0.181046 + 0.313581i
\(177\) −6367.15 −2.70387
\(178\) −79.1472 137.087i −0.0333277 0.0577253i
\(179\) −368.774 + 638.736i −0.153986 + 0.266712i −0.932689 0.360681i \(-0.882544\pi\)
0.778703 + 0.627392i \(0.215878\pi\)
\(180\) 997.720 1728.10i 0.413142 0.715584i
\(181\) −1457.02 −0.598338 −0.299169 0.954200i \(-0.596709\pi\)
−0.299169 + 0.954200i \(0.596709\pi\)
\(182\) 0 0
\(183\) −428.228 −0.172981
\(184\) 177.724 307.826i 0.0712063 0.123333i
\(185\) 1476.62 2557.59i 0.586830 1.01642i
\(186\) −1589.06 2752.33i −0.626427 1.08500i
\(187\) −3753.39 −1.46778
\(188\) 801.558 + 1388.34i 0.310955 + 0.538591i
\(189\) −1452.26 2515.38i −0.558921 0.968080i
\(190\) −1665.87 −0.636077
\(191\) −287.715 498.337i −0.108997 0.188788i 0.806367 0.591415i \(-0.201430\pi\)
−0.915364 + 0.402627i \(0.868097\pi\)
\(192\) 260.736 451.609i 0.0980053 0.169750i
\(193\) −1219.36 + 2112.00i −0.454775 + 0.787694i −0.998675 0.0514564i \(-0.983614\pi\)
0.543900 + 0.839150i \(0.316947\pi\)
\(194\) 7.79271 0.00288394
\(195\) 0 0
\(196\) 1938.98 0.706624
\(197\) −1911.76 + 3311.27i −0.691408 + 1.19755i 0.279969 + 0.960009i \(0.409676\pi\)
−0.971377 + 0.237544i \(0.923658\pi\)
\(198\) 2081.39 3605.08i 0.747062 1.29395i
\(199\) 1078.71 + 1868.37i 0.384258 + 0.665555i 0.991666 0.128835i \(-0.0411238\pi\)
−0.607408 + 0.794390i \(0.707790\pi\)
\(200\) 283.139 0.100105
\(201\) −3280.82 5682.54i −1.15130 1.99411i
\(202\) 1035.31 + 1793.22i 0.360616 + 0.624606i
\(203\) 2256.70 0.780243
\(204\) 1157.54 + 2004.92i 0.397276 + 0.688102i
\(205\) 762.771 1321.16i 0.259874 0.450116i
\(206\) −1248.51 + 2162.48i −0.422271 + 0.731394i
\(207\) −1750.14 −0.587647
\(208\) 0 0
\(209\) −3475.25 −1.15018
\(210\) 2968.87 5142.24i 0.975579 1.68975i
\(211\) −1681.93 + 2913.19i −0.548762 + 0.950484i 0.449598 + 0.893231i \(0.351567\pi\)
−0.998360 + 0.0572525i \(0.981766\pi\)
\(212\) −233.132 403.796i −0.0755262 0.130815i
\(213\) 3272.01 1.05255
\(214\) 1162.01 + 2012.66i 0.371184 + 0.642910i
\(215\) 2565.23 + 4443.11i 0.813709 + 1.40939i
\(216\) −807.635 −0.254410
\(217\) −2805.47 4859.22i −0.877640 1.52012i
\(218\) 1003.58 1738.25i 0.311794 0.540042i
\(219\) 1316.13 2279.61i 0.406101 0.703388i
\(220\) 2676.82 0.820324
\(221\) 0 0
\(222\) −3800.06 −1.14884
\(223\) 1646.95 2852.61i 0.494566 0.856613i −0.505415 0.862877i \(-0.668660\pi\)
0.999980 + 0.00626360i \(0.00199378\pi\)
\(224\) 460.329 797.313i 0.137308 0.237824i
\(225\) −697.054 1207.33i −0.206534 0.357728i
\(226\) −1488.82 −0.438208
\(227\) −271.743 470.673i −0.0794547 0.137620i 0.823560 0.567229i \(-0.191985\pi\)
−0.903015 + 0.429609i \(0.858651\pi\)
\(228\) 1071.77 + 1856.35i 0.311313 + 0.539210i
\(229\) 3071.66 0.886379 0.443189 0.896428i \(-0.353847\pi\)
0.443189 + 0.896428i \(0.353847\pi\)
\(230\) −562.700 974.625i −0.161319 0.279412i
\(231\) 6193.51 10727.5i 1.76408 3.05548i
\(232\) 313.751 543.433i 0.0887879 0.153785i
\(233\) 3383.06 0.951208 0.475604 0.879660i \(-0.342230\pi\)
0.475604 + 0.879660i \(0.342230\pi\)
\(234\) 0 0
\(235\) 5075.71 1.40895
\(236\) −1562.87 + 2706.97i −0.431078 + 0.746648i
\(237\) −3238.20 + 5608.73i −0.887527 + 1.53724i
\(238\) 2043.64 + 3539.68i 0.556594 + 0.964049i
\(239\) 698.550 0.189060 0.0945302 0.995522i \(-0.469865\pi\)
0.0945302 + 0.995522i \(0.469865\pi\)
\(240\) −825.531 1429.86i −0.222032 0.384572i
\(241\) −1857.72 3217.67i −0.496541 0.860034i 0.503451 0.864024i \(-0.332063\pi\)
−0.999992 + 0.00398962i \(0.998730\pi\)
\(242\) 2922.25 0.776238
\(243\) −2344.53 4060.85i −0.618938 1.07203i
\(244\) −105.112 + 182.060i −0.0275784 + 0.0477671i
\(245\) 3069.55 5316.61i 0.800433 1.38639i
\(246\) −1962.97 −0.508758
\(247\) 0 0
\(248\) −1560.19 −0.399485
\(249\) 1812.20 3138.82i 0.461219 0.798855i
\(250\) −1134.85 + 1965.61i −0.287096 + 0.497265i
\(251\) 1926.42 + 3336.65i 0.484440 + 0.839074i 0.999840 0.0178750i \(-0.00569010\pi\)
−0.515400 + 0.856950i \(0.672357\pi\)
\(252\) −4533.09 −1.13317
\(253\) −1173.88 2033.21i −0.291704 0.505245i
\(254\) −1683.52 2915.94i −0.415879 0.720324i
\(255\) 7329.92 1.80007
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) −2288.73 + 3964.19i −0.555513 + 0.962177i 0.442350 + 0.896842i \(0.354145\pi\)
−0.997863 + 0.0653345i \(0.979189\pi\)
\(258\) 3300.78 5717.12i 0.796502 1.37958i
\(259\) −6708.98 −1.60956
\(260\) 0 0
\(261\) −3089.67 −0.732743
\(262\) −2177.87 + 3772.19i −0.513547 + 0.889490i
\(263\) 2411.71 4177.21i 0.565447 0.979383i −0.431561 0.902084i \(-0.642037\pi\)
0.997008 0.0772990i \(-0.0246296\pi\)
\(264\) −1722.18 2982.91i −0.401489 0.695399i
\(265\) −1476.26 −0.342212
\(266\) 1892.20 + 3277.38i 0.436158 + 0.755448i
\(267\) 322.446 + 558.493i 0.0739078 + 0.128012i
\(268\) −3221.22 −0.734206
\(269\) 982.898 + 1702.43i 0.222782 + 0.385870i 0.955652 0.294499i \(-0.0951529\pi\)
−0.732870 + 0.680369i \(0.761820\pi\)
\(270\) −1278.55 + 2214.51i −0.288185 + 0.499151i
\(271\) 2207.96 3824.29i 0.494922 0.857230i −0.505061 0.863084i \(-0.668530\pi\)
0.999983 + 0.00585389i \(0.00186336\pi\)
\(272\) 1136.52 0.253351
\(273\) 0 0
\(274\) −3535.32 −0.779475
\(275\) 935.076 1619.60i 0.205044 0.355147i
\(276\) −724.047 + 1254.09i −0.157908 + 0.273504i
\(277\) −1806.11 3128.28i −0.391765 0.678557i 0.600917 0.799311i \(-0.294802\pi\)
−0.992682 + 0.120754i \(0.961469\pi\)
\(278\) 2011.07 0.433871
\(279\) 3841.01 + 6652.82i 0.824212 + 1.42758i
\(280\) −1457.47 2524.41i −0.311073 0.538795i
\(281\) 4095.02 0.869353 0.434676 0.900587i \(-0.356863\pi\)
0.434676 + 0.900587i \(0.356863\pi\)
\(282\) −3265.55 5656.10i −0.689577 1.19438i
\(283\) −3363.10 + 5825.05i −0.706415 + 1.22355i 0.259764 + 0.965672i \(0.416355\pi\)
−0.966179 + 0.257874i \(0.916978\pi\)
\(284\) 803.143 1391.08i 0.167809 0.290654i
\(285\) 6786.75 1.41057
\(286\) 0 0
\(287\) −3465.62 −0.712783
\(288\) −630.241 + 1091.61i −0.128949 + 0.223346i
\(289\) −66.2919 + 114.821i −0.0134932 + 0.0233709i
\(290\) −993.385 1720.59i −0.201150 0.348402i
\(291\) −31.7475 −0.00639544
\(292\) −646.114 1119.10i −0.129490 0.224282i
\(293\) −2251.72 3900.10i −0.448966 0.777632i 0.549353 0.835590i \(-0.314874\pi\)
−0.998319 + 0.0579584i \(0.981541\pi\)
\(294\) −7899.40 −1.56701
\(295\) 4948.29 + 8570.69i 0.976613 + 1.69154i
\(296\) −932.757 + 1615.58i −0.183160 + 0.317243i
\(297\) −2667.24 + 4619.80i −0.521109 + 0.902586i
\(298\) −272.548 −0.0529808
\(299\) 0 0
\(300\) −1153.51 −0.221993
\(301\) 5827.51 10093.5i 1.11592 1.93283i
\(302\) 804.394 1393.25i 0.153270 0.265472i
\(303\) −4217.88 7305.58i −0.799705 1.38513i
\(304\) 1052.30 0.198531
\(305\) 332.801 + 576.429i 0.0624792 + 0.108217i
\(306\) −2797.97 4846.22i −0.522709 0.905359i
\(307\) −1934.75 −0.359681 −0.179841 0.983696i \(-0.557558\pi\)
−0.179841 + 0.983696i \(0.557558\pi\)
\(308\) −3040.50 5266.31i −0.562496 0.974272i
\(309\) 5086.43 8809.96i 0.936431 1.62195i
\(310\) −2469.90 + 4278.00i −0.452520 + 0.783787i
\(311\) −2655.72 −0.484219 −0.242110 0.970249i \(-0.577839\pi\)
−0.242110 + 0.970249i \(0.577839\pi\)
\(312\) 0 0
\(313\) 6102.36 1.10200 0.550999 0.834506i \(-0.314247\pi\)
0.550999 + 0.834506i \(0.314247\pi\)
\(314\) −3730.07 + 6460.67i −0.670383 + 1.16114i
\(315\) −7176.23 + 12429.6i −1.28360 + 2.22327i
\(316\) 1589.69 + 2753.42i 0.282997 + 0.490165i
\(317\) 1382.99 0.245037 0.122518 0.992466i \(-0.460903\pi\)
0.122518 + 0.992466i \(0.460903\pi\)
\(318\) 949.781 + 1645.07i 0.167488 + 0.290097i
\(319\) −2072.35 3589.42i −0.363728 0.629996i
\(320\) −810.535 −0.141595
\(321\) −4734.04 8199.60i −0.823141 1.42572i
\(322\) −1278.30 + 2214.08i −0.221233 + 0.383186i
\(323\) −2335.85 + 4045.80i −0.402384 + 0.696949i
\(324\) −963.817 −0.165264
\(325\) 0 0
\(326\) 5246.50 0.891340
\(327\) −4088.59 + 7081.64i −0.691436 + 1.19760i
\(328\) −481.828 + 834.551i −0.0811114 + 0.140489i
\(329\) −5765.31 9985.81i −0.966115 1.67336i
\(330\) −10905.4 −1.81916
\(331\) 5003.33 + 8666.02i 0.830839 + 1.43906i 0.897374 + 0.441271i \(0.145472\pi\)
−0.0665347 + 0.997784i \(0.521194\pi\)
\(332\) −889.641 1540.90i −0.147064 0.254723i
\(333\) 9185.34 1.51157
\(334\) 1278.00 + 2213.57i 0.209369 + 0.362637i
\(335\) −5099.44 + 8832.48i −0.831678 + 1.44051i
\(336\) −1875.38 + 3248.26i −0.304495 + 0.527401i
\(337\) 11057.1 1.78730 0.893649 0.448767i \(-0.148137\pi\)
0.893649 + 0.448767i \(0.148137\pi\)
\(338\) 0 0
\(339\) 6065.47 0.971773
\(340\) 1799.19 3116.29i 0.286985 0.497073i
\(341\) −5152.59 + 8924.55i −0.818266 + 1.41728i
\(342\) −2590.63 4487.10i −0.409606 0.709458i
\(343\) −4078.05 −0.641964
\(344\) −1620.41 2806.63i −0.253973 0.439894i
\(345\) 2292.44 + 3970.63i 0.357742 + 0.619627i
\(346\) 2139.96 0.332500
\(347\) 4316.98 + 7477.22i 0.667860 + 1.15677i 0.978501 + 0.206240i \(0.0661228\pi\)
−0.310642 + 0.950527i \(0.600544\pi\)
\(348\) −1278.22 + 2213.95i −0.196897 + 0.341035i
\(349\) −4684.53 + 8113.84i −0.718502 + 1.24448i 0.243092 + 0.970003i \(0.421838\pi\)
−0.961593 + 0.274478i \(0.911495\pi\)
\(350\) −2036.51 −0.311018
\(351\) 0 0
\(352\) −1690.90 −0.256037
\(353\) 2508.93 4345.59i 0.378291 0.655220i −0.612522 0.790453i \(-0.709845\pi\)
0.990814 + 0.135233i \(0.0431784\pi\)
\(354\) 6367.15 11028.2i 0.955961 1.65577i
\(355\) −2542.87 4404.38i −0.380174 0.658480i
\(356\) 316.589 0.0471325
\(357\) −8325.79 14420.7i −1.23431 2.13788i
\(358\) −737.549 1277.47i −0.108885 0.188594i
\(359\) 7268.33 1.06855 0.534273 0.845312i \(-0.320586\pi\)
0.534273 + 0.845312i \(0.320586\pi\)
\(360\) 1995.44 + 3456.20i 0.292136 + 0.505994i
\(361\) 1266.75 2194.07i 0.184684 0.319882i
\(362\) 1457.02 2523.63i 0.211545 0.366406i
\(363\) −11905.3 −1.72139
\(364\) 0 0
\(365\) −4091.39 −0.586721
\(366\) 428.228 741.712i 0.0611580 0.105929i
\(367\) −5943.72 + 10294.8i −0.845394 + 1.46427i 0.0398848 + 0.999204i \(0.487301\pi\)
−0.885279 + 0.465061i \(0.846032\pi\)
\(368\) 355.447 + 615.652i 0.0503504 + 0.0872095i
\(369\) 4744.81 0.669391
\(370\) 2953.25 + 5115.18i 0.414952 + 0.718718i
\(371\) 1676.83 + 2904.36i 0.234654 + 0.406433i
\(372\) 6356.23 0.885901
\(373\) 7117.28 + 12327.5i 0.987986 + 1.71124i 0.627830 + 0.778350i \(0.283943\pi\)
0.360156 + 0.932892i \(0.382723\pi\)
\(374\) 3753.39 6501.06i 0.518939 0.898828i
\(375\) 4623.37 8007.91i 0.636666 1.10274i
\(376\) −3206.23 −0.439757
\(377\) 0 0
\(378\) 5809.03 0.790434
\(379\) −3960.04 + 6859.00i −0.536712 + 0.929612i 0.462366 + 0.886689i \(0.347000\pi\)
−0.999078 + 0.0429233i \(0.986333\pi\)
\(380\) 1665.87 2885.37i 0.224887 0.389516i
\(381\) 6858.66 + 11879.5i 0.922257 + 1.59740i
\(382\) 1150.86 0.154144
\(383\) −5313.47 9203.20i −0.708892 1.22784i −0.965268 0.261260i \(-0.915862\pi\)
0.256376 0.966577i \(-0.417471\pi\)
\(384\) 521.473 + 903.217i 0.0693002 + 0.120032i
\(385\) −19253.4 −2.54869
\(386\) −2438.72 4223.99i −0.321575 0.556983i
\(387\) −7978.51 + 13819.2i −1.04799 + 1.81516i
\(388\) −7.79271 + 13.4974i −0.00101963 + 0.00176604i
\(389\) −10183.7 −1.32733 −0.663667 0.748028i \(-0.731001\pi\)
−0.663667 + 0.748028i \(0.731001\pi\)
\(390\) 0 0
\(391\) −3156.03 −0.408202
\(392\) −1938.98 + 3358.40i −0.249829 + 0.432717i
\(393\) 8872.66 15367.9i 1.13885 1.97254i
\(394\) −3823.52 6622.53i −0.488899 0.846798i
\(395\) 10066.4 1.28227
\(396\) 4162.79 + 7210.16i 0.528252 + 0.914960i
\(397\) −1826.03 3162.78i −0.230846 0.399837i 0.727211 0.686414i \(-0.240816\pi\)
−0.958057 + 0.286577i \(0.907483\pi\)
\(398\) −4314.82 −0.543424
\(399\) −7708.82 13352.1i −0.967227 1.67529i
\(400\) −283.139 + 490.411i −0.0353924 + 0.0613014i
\(401\) 4442.35 7694.37i 0.553217 0.958200i −0.444823 0.895619i \(-0.646733\pi\)
0.998040 0.0625817i \(-0.0199334\pi\)
\(402\) 13123.3 1.62818
\(403\) 0 0
\(404\) −4141.26 −0.509988
\(405\) −1525.80 + 2642.76i −0.187204 + 0.324246i
\(406\) −2256.70 + 3908.72i −0.275857 + 0.477799i
\(407\) 6160.93 + 10671.0i 0.750334 + 1.29962i
\(408\) −4630.17 −0.561833
\(409\) 5733.99 + 9931.55i 0.693221 + 1.20069i 0.970777 + 0.239984i \(0.0771423\pi\)
−0.277556 + 0.960709i \(0.589524\pi\)
\(410\) 1525.54 + 2642.32i 0.183759 + 0.318280i
\(411\) 14402.9 1.72857
\(412\) −2497.02 4324.96i −0.298590 0.517174i
\(413\) 11241.2 19470.3i 1.33933 2.31978i
\(414\) 1750.14 3031.32i 0.207764 0.359859i
\(415\) −5633.48 −0.666353
\(416\) 0 0
\(417\) −8193.11 −0.962155
\(418\) 3475.25 6019.31i 0.406651 0.704340i
\(419\) 7957.04 13782.0i 0.927749 1.60691i 0.140669 0.990057i \(-0.455075\pi\)
0.787080 0.616851i \(-0.211592\pi\)
\(420\) 5937.74 + 10284.5i 0.689839 + 1.19484i
\(421\) −3091.64 −0.357904 −0.178952 0.983858i \(-0.557271\pi\)
−0.178952 + 0.983858i \(0.557271\pi\)
\(422\) −3363.86 5826.37i −0.388033 0.672093i
\(423\) 7893.35 + 13671.7i 0.907300 + 1.57149i
\(424\) 932.528 0.106810
\(425\) −1257.00 2177.19i −0.143467 0.248492i
\(426\) −3272.01 + 5667.28i −0.372134 + 0.644556i
\(427\) 756.034 1309.49i 0.0856840 0.148409i
\(428\) −4648.05 −0.524934
\(429\) 0 0
\(430\) −10260.9 −1.15076
\(431\) −2498.35 + 4327.26i −0.279214 + 0.483612i −0.971190 0.238308i \(-0.923407\pi\)
0.691976 + 0.721921i \(0.256740\pi\)
\(432\) 807.635 1398.87i 0.0899476 0.155794i
\(433\) 920.918 + 1595.08i 0.102209 + 0.177031i 0.912594 0.408866i \(-0.134076\pi\)
−0.810386 + 0.585897i \(0.800742\pi\)
\(434\) 11221.9 1.24117
\(435\) 4047.06 + 7009.71i 0.446072 + 0.772620i
\(436\) 2007.16 + 3476.50i 0.220471 + 0.381868i
\(437\) −2922.16 −0.319876
\(438\) 2632.27 + 4559.23i 0.287157 + 0.497370i
\(439\) −4981.61 + 8628.40i −0.541593 + 0.938066i 0.457220 + 0.889354i \(0.348845\pi\)
−0.998813 + 0.0487128i \(0.984488\pi\)
\(440\) −2676.82 + 4636.39i −0.290028 + 0.502344i
\(441\) 19094.1 2.06177
\(442\) 0 0
\(443\) −8480.02 −0.909476 −0.454738 0.890625i \(-0.650267\pi\)
−0.454738 + 0.890625i \(0.650267\pi\)
\(444\) 3800.06 6581.89i 0.406177 0.703519i
\(445\) 501.184 868.076i 0.0533897 0.0924736i
\(446\) 3293.91 + 5705.21i 0.349711 + 0.605717i
\(447\) 1110.36 0.117491
\(448\) 920.657 + 1594.63i 0.0970914 + 0.168167i
\(449\) −1725.34 2988.37i −0.181344 0.314098i 0.760994 0.648759i \(-0.224712\pi\)
−0.942339 + 0.334661i \(0.891378\pi\)
\(450\) 2788.21 0.292084
\(451\) 3182.51 + 5512.27i 0.332281 + 0.575527i
\(452\) 1488.82 2578.72i 0.154930 0.268347i
\(453\) −3277.10 + 5676.11i −0.339893 + 0.588713i
\(454\) 1086.97 0.112366
\(455\) 0 0
\(456\) −4287.06 −0.440263
\(457\) −3270.61 + 5664.87i −0.334776 + 0.579850i −0.983442 0.181224i \(-0.941994\pi\)
0.648666 + 0.761074i \(0.275327\pi\)
\(458\) −3071.66 + 5320.27i −0.313382 + 0.542794i
\(459\) 3585.51 + 6210.29i 0.364613 + 0.631528i
\(460\) 2250.80 0.228139
\(461\) −7306.92 12656.0i −0.738215 1.27863i −0.953298 0.302030i \(-0.902336\pi\)
0.215083 0.976596i \(-0.430998\pi\)
\(462\) 12387.0 + 21455.0i 1.24740 + 2.16055i
\(463\) −3680.01 −0.369383 −0.184692 0.982797i \(-0.559129\pi\)
−0.184692 + 0.982797i \(0.559129\pi\)
\(464\) 627.503 + 1086.87i 0.0627825 + 0.108743i
\(465\) 10062.4 17428.6i 1.00351 1.73813i
\(466\) −3383.06 + 5859.63i −0.336303 + 0.582494i
\(467\) 457.544 0.0453375 0.0226687 0.999743i \(-0.492784\pi\)
0.0226687 + 0.999743i \(0.492784\pi\)
\(468\) 0 0
\(469\) 23169.1 2.28112
\(470\) −5075.71 + 8791.39i −0.498138 + 0.862801i
\(471\) 15196.3 26320.8i 1.48665 2.57495i
\(472\) −3125.74 5413.95i −0.304818 0.527960i
\(473\) −21405.9 −2.08085
\(474\) −6476.40 11217.5i −0.627576 1.08699i
\(475\) −1163.85 2015.85i −0.112424 0.194723i
\(476\) −8174.55 −0.787142
\(477\) −2295.77 3976.39i −0.220369 0.381691i
\(478\) −698.550 + 1209.92i −0.0668429 + 0.115775i
\(479\) 4885.47 8461.88i 0.466018 0.807167i −0.533229 0.845971i \(-0.679021\pi\)
0.999247 + 0.0388039i \(0.0123548\pi\)
\(480\) 3302.12 0.314001
\(481\) 0 0
\(482\) 7430.89 0.702215
\(483\) 5207.80 9020.18i 0.490607 0.849756i
\(484\) −2922.25 + 5061.49i −0.274442 + 0.475347i
\(485\) 24.6729 + 42.7347i 0.00230998 + 0.00400100i
\(486\) 9378.13 0.875310
\(487\) −10125.1 17537.2i −0.942118 1.63180i −0.761421 0.648258i \(-0.775498\pi\)
−0.180698 0.983539i \(-0.557836\pi\)
\(488\) −210.225 364.120i −0.0195009 0.0337765i
\(489\) −21374.3 −1.97664
\(490\) 6139.09 + 10633.2i 0.565992 + 0.980326i
\(491\) 8639.72 14964.4i 0.794104 1.37543i −0.129303 0.991605i \(-0.541274\pi\)
0.923407 0.383823i \(-0.125393\pi\)
\(492\) 1962.97 3399.97i 0.179873 0.311549i
\(493\) −5571.62 −0.508992
\(494\) 0 0
\(495\) 26360.0 2.39353
\(496\) 1560.19 2702.33i 0.141239 0.244634i
\(497\) −5776.71 + 10005.6i −0.521370 + 0.903039i
\(498\) 3624.40 + 6277.65i 0.326131 + 0.564876i
\(499\) 16994.7 1.52462 0.762310 0.647212i \(-0.224065\pi\)
0.762310 + 0.647212i \(0.224065\pi\)
\(500\) −2269.69 3931.22i −0.203007 0.351619i
\(501\) −5206.59 9018.08i −0.464298 0.804188i
\(502\) −7705.67 −0.685101
\(503\) −1550.97 2686.35i −0.137483 0.238128i 0.789060 0.614316i \(-0.210568\pi\)
−0.926543 + 0.376188i \(0.877235\pi\)
\(504\) 4533.09 7851.55i 0.400635 0.693920i
\(505\) −6555.93 + 11355.2i −0.577693 + 1.00059i
\(506\) 4695.51 0.412531
\(507\) 0 0
\(508\) 6734.07 0.588142
\(509\) 9973.82 17275.2i 0.868530 1.50434i 0.00503052 0.999987i \(-0.498399\pi\)
0.863499 0.504350i \(-0.168268\pi\)
\(510\) −7329.92 + 12695.8i −0.636420 + 1.10231i
\(511\) 4647.26 + 8049.29i 0.402314 + 0.696829i
\(512\) 512.000 0.0441942
\(513\) 3319.81 + 5750.09i 0.285718 + 0.494878i
\(514\) −4577.45 7928.38i −0.392807 0.680362i
\(515\) −15811.9 −1.35292
\(516\) 6601.56 + 11434.2i 0.563212 + 0.975512i
\(517\) −10588.7 + 18340.2i −0.900755 + 1.56015i
\(518\) 6708.98 11620.3i 0.569065 0.985649i
\(519\) −8718.22 −0.737355
\(520\) 0 0
\(521\) −18106.1 −1.52254 −0.761270 0.648436i \(-0.775424\pi\)
−0.761270 + 0.648436i \(0.775424\pi\)
\(522\) 3089.67 5351.47i 0.259064 0.448712i
\(523\) 427.606 740.635i 0.0357512 0.0619229i −0.847596 0.530642i \(-0.821951\pi\)
0.883347 + 0.468719i \(0.155284\pi\)
\(524\) −4355.74 7544.37i −0.363133 0.628964i
\(525\) 8296.77 0.689716
\(526\) 4823.42 + 8354.42i 0.399831 + 0.692528i
\(527\) 6926.50 + 11997.1i 0.572530 + 0.991651i
\(528\) 6888.73 0.567791
\(529\) 5096.45 + 8827.31i 0.418875 + 0.725512i
\(530\) 1476.26 2556.96i 0.120990 0.209561i
\(531\) −15390.4 + 26657.0i −1.25779 + 2.17856i
\(532\) −7568.79 −0.616821
\(533\) 0 0
\(534\) −1289.78 −0.104521
\(535\) −7358.21 + 12744.8i −0.594623 + 1.02992i
\(536\) 3221.22 5579.32i 0.259581 0.449608i
\(537\) 3004.78 + 5204.43i 0.241463 + 0.418226i
\(538\) −3931.59 −0.315061
\(539\) 12807.1 + 22182.5i 1.02345 + 1.77267i
\(540\) −2557.10 4429.02i −0.203778 0.352953i
\(541\) −12326.5 −0.979592 −0.489796 0.871837i \(-0.662929\pi\)
−0.489796 + 0.871837i \(0.662929\pi\)
\(542\) 4415.91 + 7648.59i 0.349963 + 0.606153i
\(543\) −5935.90 + 10281.3i −0.469123 + 0.812544i
\(544\) −1136.52 + 1968.50i −0.0895730 + 0.155145i
\(545\) 12709.9 0.998962
\(546\) 0 0
\(547\) 7326.20 0.572661 0.286330 0.958131i \(-0.407564\pi\)
0.286330 + 0.958131i \(0.407564\pi\)
\(548\) 3535.32 6123.35i 0.275586 0.477329i
\(549\) −1035.09 + 1792.84i −0.0804677 + 0.139374i
\(550\) 1870.15 + 3239.20i 0.144988 + 0.251127i
\(551\) −5158.75 −0.398857
\(552\) −1448.09 2508.17i −0.111658 0.193396i
\(553\) −11434.1 19804.4i −0.879251 1.52291i
\(554\) 7224.46 0.554039
\(555\) −12031.6 20839.3i −0.920200 1.59383i
\(556\) −2011.07 + 3483.28i −0.153396 + 0.265690i
\(557\) −291.685 + 505.212i −0.0221886 + 0.0384318i −0.876907 0.480661i \(-0.840397\pi\)
0.854718 + 0.519093i \(0.173730\pi\)
\(558\) −15364.0 −1.16561
\(559\) 0 0
\(560\) 5829.88 0.439924
\(561\) −15291.3 + 26485.3i −1.15080 + 1.99325i
\(562\) −4095.02 + 7092.78i −0.307363 + 0.532368i
\(563\) −2719.97 4711.13i −0.203611 0.352665i 0.746078 0.665858i \(-0.231935\pi\)
−0.949689 + 0.313193i \(0.898601\pi\)
\(564\) 13062.2 0.975209
\(565\) −4713.84 8164.61i −0.350996 0.607943i
\(566\) −6726.19 11650.1i −0.499511 0.865178i
\(567\) 6932.39 0.513462
\(568\) 1606.29 + 2782.17i 0.118659 + 0.205523i
\(569\) −9071.62 + 15712.5i −0.668369 + 1.15765i 0.309991 + 0.950739i \(0.399674\pi\)
−0.978360 + 0.206910i \(0.933659\pi\)
\(570\) −6786.75 + 11755.0i −0.498712 + 0.863794i
\(571\) 12916.3 0.946634 0.473317 0.880892i \(-0.343056\pi\)
0.473317 + 0.880892i \(0.343056\pi\)
\(572\) 0 0
\(573\) −4688.61 −0.341832
\(574\) 3465.62 6002.62i 0.252007 0.436489i
\(575\) 786.257 1361.84i 0.0570247 0.0987696i
\(576\) −1260.48 2183.22i −0.0911807 0.157930i
\(577\) 1345.12 0.0970504 0.0485252 0.998822i \(-0.484548\pi\)
0.0485252 + 0.998822i \(0.484548\pi\)
\(578\) −132.584 229.642i −0.00954111 0.0165257i
\(579\) 9935.37 + 17208.6i 0.713126 + 1.23517i
\(580\) 3973.54 0.284469
\(581\) 6398.86 + 11083.2i 0.456918 + 0.791405i
\(582\) 31.7475 54.9883i 0.00226113 0.00391639i
\(583\) 3079.71 5334.21i 0.218779 0.378937i
\(584\) 2584.45 0.183126
\(585\) 0 0
\(586\) 9006.89 0.634934
\(587\) 4968.49 8605.67i 0.349355 0.605100i −0.636780 0.771045i \(-0.719734\pi\)
0.986135 + 0.165945i \(0.0530674\pi\)
\(588\) 7899.40 13682.2i 0.554023 0.959596i
\(589\) 6413.23 + 11108.0i 0.448646 + 0.777077i
\(590\) −19793.2 −1.38114
\(591\) 15577.0 + 26980.2i 1.08419 + 1.87787i
\(592\) −1865.51 3231.16i −0.129514 0.224324i
\(593\) −15740.8 −1.09005 −0.545024 0.838420i \(-0.683480\pi\)
−0.545024 + 0.838420i \(0.683480\pi\)
\(594\) −5334.49 9239.61i −0.368479 0.638225i
\(595\) −12940.9 + 22414.4i −0.891641 + 1.54437i
\(596\) 272.548 472.067i 0.0187315 0.0324440i
\(597\) 17578.6 1.20510
\(598\) 0 0
\(599\) −6079.68 −0.414706 −0.207353 0.978266i \(-0.566485\pi\)
−0.207353 + 0.978266i \(0.566485\pi\)
\(600\) 1153.51 1997.94i 0.0784863 0.135942i
\(601\) 6882.14 11920.2i 0.467102 0.809045i −0.532191 0.846624i \(-0.678631\pi\)
0.999294 + 0.0375793i \(0.0119647\pi\)
\(602\) 11655.0 + 20187.1i 0.789075 + 1.36672i
\(603\) −31721.0 −2.14225
\(604\) 1608.79 + 2786.50i 0.108379 + 0.187717i
\(605\) 9252.30 + 16025.5i 0.621751 + 1.07690i
\(606\) 16871.5 1.13095
\(607\) −8132.99 14086.8i −0.543835 0.941950i −0.998679 0.0513790i \(-0.983638\pi\)
0.454844 0.890571i \(-0.349695\pi\)
\(608\) −1052.30 + 1822.63i −0.0701913 + 0.121575i
\(609\) 9193.81 15924.1i 0.611743 1.05957i
\(610\) −1331.21 −0.0883589
\(611\) 0 0
\(612\) 11191.9 0.739223
\(613\) 6247.17 10820.4i 0.411616 0.712940i −0.583450 0.812149i \(-0.698298\pi\)
0.995067 + 0.0992084i \(0.0316310\pi\)
\(614\) 1934.75 3351.09i 0.127167 0.220259i
\(615\) −6215.07 10764.8i −0.407505 0.705820i
\(616\) 12162.0 0.795490
\(617\) 7233.90 + 12529.5i 0.472003 + 0.817534i 0.999487 0.0320316i \(-0.0101977\pi\)
−0.527484 + 0.849565i \(0.676864\pi\)
\(618\) 10172.9 + 17619.9i 0.662156 + 1.14689i
\(619\) 7989.85 0.518803 0.259401 0.965770i \(-0.416475\pi\)
0.259401 + 0.965770i \(0.416475\pi\)
\(620\) −4939.81 8556.00i −0.319980 0.554221i
\(621\) −2242.75 + 3884.55i −0.144925 + 0.251017i
\(622\) 2655.72 4599.85i 0.171197 0.296523i
\(623\) −2277.11 −0.146437
\(624\) 0 0
\(625\) −18796.4 −1.20297
\(626\) −6102.36 + 10569.6i −0.389615 + 0.674834i
\(627\) −14158.2 + 24522.7i −0.901792 + 1.56195i
\(628\) −7460.14 12921.3i −0.474032 0.821048i
\(629\) 16564.0 1.05000
\(630\) −14352.5 24859.2i −0.907644 1.57209i
\(631\) −9484.25 16427.2i −0.598355 1.03638i −0.993064 0.117575i \(-0.962488\pi\)
0.394709 0.918806i \(-0.370845\pi\)
\(632\) −6358.76 −0.400218
\(633\) 13704.4 + 23736.7i 0.860506 + 1.49044i
\(634\) −1382.99 + 2395.42i −0.0866336 + 0.150054i
\(635\) 10660.5 18464.6i 0.666222 1.15393i
\(636\) −3799.12 −0.236863
\(637\) 0 0
\(638\) 8289.40 0.514390
\(639\) 7908.96 13698.7i 0.489630 0.848064i
\(640\) 810.535 1403.89i 0.0500613 0.0867087i
\(641\) −12260.2 21235.3i −0.755459 1.30849i −0.945146 0.326649i \(-0.894081\pi\)
0.189687 0.981845i \(-0.439253\pi\)
\(642\) 18936.2 1.16410
\(643\) −5887.83 10198.0i −0.361110 0.625460i 0.627034 0.778992i \(-0.284269\pi\)
−0.988144 + 0.153532i \(0.950935\pi\)
\(644\) −2556.60 4428.16i −0.156435 0.270954i
\(645\) 41803.1 2.55193
\(646\) −4671.69 8091.61i −0.284528 0.492817i
\(647\) 10917.4 18909.5i 0.663382 1.14901i −0.316340 0.948646i \(-0.602454\pi\)
0.979721 0.200365i \(-0.0642128\pi\)
\(648\) 963.817 1669.38i 0.0584295 0.101203i
\(649\) −41291.5 −2.49743
\(650\) 0 0
\(651\) −45718.1 −2.75243
\(652\) −5246.50 + 9087.21i −0.315136 + 0.545832i
\(653\) −3663.85 + 6345.98i −0.219567 + 0.380302i −0.954676 0.297648i \(-0.903798\pi\)
0.735108 + 0.677950i \(0.237131\pi\)
\(654\) −8177.18 14163.3i −0.488919 0.846832i
\(655\) −27581.9 −1.64537
\(656\) −963.657 1669.10i −0.0573544 0.0993407i
\(657\) −6362.61 11020.4i −0.377822 0.654407i
\(658\) 23061.2 1.36629
\(659\) 4184.17 + 7247.20i 0.247333 + 0.428393i 0.962785 0.270269i \(-0.0871126\pi\)
−0.715452 + 0.698662i \(0.753779\pi\)
\(660\) 10905.4 18888.7i 0.643169 1.11400i
\(661\) −7591.06 + 13148.1i −0.446684 + 0.773679i −0.998168 0.0605065i \(-0.980728\pi\)
0.551484 + 0.834185i \(0.314062\pi\)
\(662\) −20013.3 −1.17498
\(663\) 0 0
\(664\) 3558.56 0.207980
\(665\) −11982.0 + 20753.4i −0.698708 + 1.21020i
\(666\) −9185.34 + 15909.5i −0.534421 + 0.925645i
\(667\) −1742.53 3018.15i −0.101156 0.175207i
\(668\) −5112.01 −0.296092
\(669\) −13419.4 23243.1i −0.775521 1.34324i
\(670\) −10198.9 17665.0i −0.588085 1.01859i
\(671\) −2777.10 −0.159774
\(672\) −3750.76 6496.51i −0.215311 0.372929i
\(673\) 9952.15 17237.6i 0.570026 0.987314i −0.426537 0.904470i \(-0.640267\pi\)
0.996563 0.0828434i \(-0.0264001\pi\)
\(674\) −11057.1 + 19151.5i −0.631905 + 1.09449i
\(675\) −3573.01 −0.203741
\(676\) 0 0
\(677\) −10760.9 −0.610896 −0.305448 0.952209i \(-0.598806\pi\)
−0.305448 + 0.952209i \(0.598806\pi\)
\(678\) −6065.47 + 10505.7i −0.343574 + 0.595087i
\(679\) 56.0501 97.0816i 0.00316790 0.00548697i
\(680\) 3598.38 + 6232.58i 0.202929 + 0.351483i
\(681\) −4428.33 −0.249183
\(682\) −10305.2 17849.1i −0.578601 1.00217i
\(683\) 11589.1 + 20073.0i 0.649262 + 1.12456i 0.983299 + 0.181995i \(0.0582556\pi\)
−0.334037 + 0.942560i \(0.608411\pi\)
\(684\) 10362.5 0.579270
\(685\) −11193.3 19387.4i −0.624344 1.08140i
\(686\) 4078.05 7063.38i 0.226969 0.393121i
\(687\) 12513.9 21674.8i 0.694959 1.20370i
\(688\) 6481.64 0.359172
\(689\) 0 0
\(690\) −9169.77 −0.505923
\(691\) −8675.41 + 15026.3i −0.477610 + 0.827244i −0.999671 0.0256641i \(-0.991830\pi\)
0.522061 + 0.852908i \(0.325163\pi\)
\(692\) −2139.96 + 3706.53i −0.117557 + 0.203614i
\(693\) −29941.4 51860.1i −1.64124 2.84271i
\(694\) −17267.9 −0.944497
\(695\) 6367.36 + 11028.6i 0.347522 + 0.601925i
\(696\) −2556.45 4427.90i −0.139227 0.241148i
\(697\) 8556.34 0.464985
\(698\) −9369.06 16227.7i −0.508057 0.879981i
\(699\) 13782.6 23872.2i 0.745788 1.29174i
\(700\) 2036.51 3527.35i 0.109961 0.190459i
\(701\) 50.2552 0.00270772 0.00135386 0.999999i \(-0.499569\pi\)
0.00135386 + 0.999999i \(0.499569\pi\)
\(702\) 0 0
\(703\) 15336.5 0.822799
\(704\) 1690.90 2928.72i 0.0905229 0.156790i
\(705\) 20678.5 35816.1i 1.10468 1.91335i
\(706\) 5017.86 + 8691.19i 0.267492 + 0.463311i
\(707\) 29786.6 1.58450
\(708\) 12734.3 + 22056.5i 0.675966 + 1.17081i
\(709\) 12727.2 + 22044.2i 0.674163 + 1.16768i 0.976713 + 0.214550i \(0.0688286\pi\)
−0.302550 + 0.953133i \(0.597838\pi\)
\(710\) 10171.5 0.537647
\(711\) 15654.5 + 27114.4i 0.825724 + 1.43020i
\(712\) −316.589 + 548.348i −0.0166639 + 0.0288626i
\(713\) −4332.55 + 7504.19i −0.227567 + 0.394157i
\(714\) 33303.1 1.74557
\(715\) 0 0
\(716\) 2950.20 0.153986
\(717\) 2845.90 4929.24i 0.148231 0.256744i
\(718\) −7268.33 + 12589.1i −0.377788 + 0.654348i
\(719\) −3742.99 6483.06i −0.194145 0.336269i 0.752475 0.658621i \(-0.228860\pi\)
−0.946620 + 0.322352i \(0.895527\pi\)
\(720\) −7981.76 −0.413142
\(721\) 17960.1 + 31107.9i 0.927698 + 1.60682i
\(722\) 2533.50 + 4388.14i 0.130591 + 0.226191i
\(723\) −30273.5 −1.55724
\(724\) 2914.03 + 5047.26i 0.149585 + 0.259088i
\(725\) 1388.05 2404.17i 0.0711047 0.123157i
\(726\) 11905.3 20620.5i 0.608604 1.05413i
\(727\) 19443.6 0.991919 0.495959 0.868346i \(-0.334817\pi\)
0.495959 + 0.868346i \(0.334817\pi\)
\(728\) 0 0
\(729\) −31700.8 −1.61057
\(730\) 4091.39 7086.49i 0.207437 0.359292i
\(731\) −14387.7 + 24920.2i −0.727972 + 1.26088i
\(732\) 856.456 + 1483.42i 0.0432452 + 0.0749030i
\(733\) 24222.3 1.22056 0.610280 0.792186i \(-0.291057\pi\)
0.610280 + 0.792186i \(0.291057\pi\)
\(734\) −11887.4 20589.6i −0.597784 1.03539i
\(735\) −25010.7 43319.8i −1.25515 2.17398i
\(736\) −1421.79 −0.0712063
\(737\) −21276.4 36851.8i −1.06340 1.84186i
\(738\) −4744.81 + 8218.26i −0.236665 + 0.409916i
\(739\) −1805.33 + 3126.92i −0.0898647 + 0.155650i −0.907454 0.420152i \(-0.861977\pi\)
0.817589 + 0.575802i \(0.195310\pi\)
\(740\) −11813.0 −0.586830
\(741\) 0 0
\(742\) −6707.33 −0.331852
\(743\) 13089.8 22672.2i 0.646324 1.11947i −0.337670 0.941264i \(-0.609639\pi\)
0.983994 0.178201i \(-0.0570278\pi\)
\(744\) −6356.23 + 11009.3i −0.313213 + 0.542502i
\(745\) −862.928 1494.63i −0.0424365 0.0735022i
\(746\) −28469.1 −1.39722
\(747\) −8760.75 15174.1i −0.429102 0.743226i
\(748\) 7506.77 + 13002.1i 0.366945 + 0.635567i
\(749\) 33431.7 1.63093
\(750\) 9246.74 + 16015.8i 0.450191 + 0.779753i
\(751\) −6379.01 + 11048.8i −0.309951 + 0.536851i −0.978351 0.206950i \(-0.933646\pi\)
0.668400 + 0.743802i \(0.266979\pi\)
\(752\) 3206.23 5553.36i 0.155478 0.269295i
\(753\) 31392.9 1.51929
\(754\) 0 0
\(755\) 10187.3 0.491066
\(756\) −5809.03 + 10061.5i −0.279461 + 0.484040i
\(757\) −39.2371 + 67.9606i −0.00188388 + 0.00326297i −0.866966 0.498368i \(-0.833933\pi\)
0.865082 + 0.501631i \(0.167266\pi\)
\(758\) −7920.09 13718.0i −0.379513 0.657335i
\(759\) −19129.5 −0.914832
\(760\) 3331.73 + 5770.73i 0.159019 + 0.275429i
\(761\) 8488.84 + 14703.1i 0.404363 + 0.700377i 0.994247 0.107111i \(-0.0341600\pi\)
−0.589884 + 0.807488i \(0.700827\pi\)
\(762\) −27434.6 −1.30427
\(763\) −14436.8 25005.2i −0.684988 1.18643i
\(764\) −1150.86 + 1993.35i −0.0544983 + 0.0943938i
\(765\) 17717.6 30687.7i 0.837360 1.45035i
\(766\) 21253.9 1.00252
\(767\) 0 0
\(768\) −2085.89 −0.0980053
\(769\) 11494.7 19909.4i 0.539024 0.933616i −0.459933 0.887954i \(-0.652127\pi\)
0.998957 0.0456629i \(-0.0145400\pi\)
\(770\) 19253.4 33347.9i 0.901096 1.56074i
\(771\) 18648.6 + 32300.3i 0.871092 + 1.50878i
\(772\) 9754.90 0.454775
\(773\) 3016.71 + 5225.10i 0.140367 + 0.243123i 0.927635 0.373488i \(-0.121838\pi\)
−0.787268 + 0.616611i \(0.788505\pi\)
\(774\) −15957.0 27638.4i −0.741038 1.28351i
\(775\) −6902.36 −0.319923
\(776\) −15.5854 26.9947i −0.000720984 0.00124878i
\(777\) −27332.4 + 47341.1i −1.26196 + 2.18578i
\(778\) 10183.7 17638.6i 0.469283 0.812823i
\(779\) 7922.29 0.364372
\(780\) 0 0
\(781\) 21219.3 0.972196
\(782\) 3156.03 5466.40i 0.144321 0.249972i
\(783\) −3959.32 + 6857.75i −0.180708 + 0.312996i
\(784\) −3877.95 6716.81i −0.176656 0.305977i
\(785\) −47239.9 −2.14785
\(786\) 17745.3 + 30735.8i 0.805286 + 1.39480i
\(787\) −18827.9 32610.9i −0.852786 1.47707i −0.878684 0.477404i \(-0.841578\pi\)
0.0258980 0.999665i \(-0.491755\pi\)
\(788\) 15294.1 0.691408
\(789\) −19650.7 34035.9i −0.886669 1.53576i
\(790\) −10066.4 + 17435.5i −0.453350 + 0.785225i
\(791\) −10708.6 + 18547.8i −0.481356 + 0.833733i
\(792\) −16651.2 −0.747062
\(793\) 0 0
\(794\) 7304.13 0.326466
\(795\) −6014.30 + 10417.1i −0.268308 + 0.464724i
\(796\) 4314.82 7473.49i 0.192129 0.332778i
\(797\) −12114.0 20982.1i −0.538395 0.932527i −0.998991 0.0449170i \(-0.985698\pi\)
0.460596 0.887610i \(-0.347636\pi\)
\(798\) 30835.3 1.36787
\(799\) 14234.1 + 24654.2i 0.630246 + 1.09162i
\(800\) −566.278 980.822i −0.0250262 0.0433466i
\(801\) 3117.61 0.137522
\(802\) 8884.69 + 15388.7i 0.391184 + 0.677550i
\(803\) 8535.25 14783.5i 0.375097 0.649686i
\(804\) −13123.3 + 22730.2i −0.575649 + 0.997053i
\(805\) −16189.2 −0.708812
\(806\) 0 0
\(807\) 16017.3 0.698682
\(808\) 4141.26 7172.87i 0.180308 0.312303i
\(809\) −19987.2 + 34618.9i −0.868621 + 1.50450i −0.00521394 + 0.999986i \(0.501660\pi\)
−0.863407 + 0.504509i \(0.831674\pi\)
\(810\) −3051.59 5285.51i −0.132373 0.229277i
\(811\) 13394.4 0.579953 0.289977 0.957034i \(-0.406352\pi\)
0.289977 + 0.957034i \(0.406352\pi\)
\(812\) −4513.40 7817.44i −0.195061 0.337855i
\(813\) −17990.5 31160.4i −0.776080 1.34421i
\(814\) −24643.7 −1.06113
\(815\) 16611.2 + 28771.5i 0.713946 + 1.23659i
\(816\) 4630.17 8019.70i 0.198638 0.344051i
\(817\) −13321.5 + 23073.5i −0.570453 + 0.988054i
\(818\) −22935.9 −0.980362
\(819\) 0 0
\(820\) −6102.17 −0.259874
\(821\) −15769.6 + 27313.8i −0.670358 + 1.16109i 0.307445 + 0.951566i \(0.400526\pi\)
−0.977803 + 0.209528i \(0.932807\pi\)
\(822\) −14402.9 + 24946.5i −0.611142 + 1.05853i
\(823\) 13443.2 + 23284.2i 0.569379 + 0.986193i 0.996627 + 0.0820590i \(0.0261496\pi\)
−0.427249 + 0.904134i \(0.640517\pi\)
\(824\) 9988.07 0.422271
\(825\) −7619.01 13196.5i −0.321527 0.556901i
\(826\) 22482.3 + 38940.5i 0.947047 + 1.64033i
\(827\) 16064.3 0.675466 0.337733 0.941242i \(-0.390340\pi\)
0.337733 + 0.941242i \(0.390340\pi\)
\(828\) 3500.27 + 6062.65i 0.146912 + 0.254458i
\(829\) −3927.65 + 6802.90i −0.164551 + 0.285011i −0.936496 0.350679i \(-0.885951\pi\)
0.771945 + 0.635690i \(0.219284\pi\)
\(830\) 5633.48 9757.47i 0.235591 0.408056i
\(831\) −29432.5 −1.22864
\(832\) 0 0
\(833\) 34432.5 1.43219
\(834\) 8193.11 14190.9i 0.340173 0.589197i
\(835\) −8092.70 + 14017.0i −0.335401 + 0.580931i
\(836\) 6950.50 + 12038.6i 0.287545 + 0.498043i
\(837\) 19688.5 0.813065
\(838\) 15914.1 + 27564.0i 0.656017 + 1.13626i
\(839\) −2603.26 4508.98i −0.107121 0.185539i 0.807482 0.589892i \(-0.200830\pi\)
−0.914603 + 0.404354i \(0.867497\pi\)
\(840\) −23751.0 −0.975579
\(841\) 9118.25 + 15793.3i 0.373867 + 0.647557i
\(842\) 3091.64 5354.88i 0.126538 0.219170i
\(843\) 16683.1 28896.0i 0.681610 1.18058i
\(844\) 13455.4 0.548762
\(845\) 0 0
\(846\) −31573.4 −1.28312
\(847\) 21018.7 36405.5i 0.852670 1.47687i
\(848\) −932.528 + 1615.19i −0.0377631 + 0.0654077i
\(849\) 27402.5 + 47462.6i 1.10772 + 1.91862i
\(850\) 5028.00 0.202893
\(851\) 5180.40 + 8972.72i 0.208674 + 0.361435i
\(852\) −6544.01 11334.6i −0.263139 0.455770i
\(853\) −11007.6 −0.441842 −0.220921 0.975292i \(-0.570906\pi\)
−0.220921 + 0.975292i \(0.570906\pi\)
\(854\) 1512.07 + 2618.98i 0.0605877 + 0.104941i
\(855\) 16404.6 28413.7i 0.656172 1.13652i
\(856\) 4648.05 8050.65i 0.185592 0.321455i
\(857\) −15769.9 −0.628576 −0.314288 0.949328i \(-0.601766\pi\)
−0.314288 + 0.949328i \(0.601766\pi\)
\(858\) 0 0
\(859\) 13386.6 0.531716 0.265858 0.964012i \(-0.414345\pi\)
0.265858 + 0.964012i \(0.414345\pi\)
\(860\) 10260.9 17772.5i 0.406854 0.704693i
\(861\) −14118.9 + 24454.7i −0.558853 + 0.967961i
\(862\) −4996.69 8654.52i −0.197434 0.341965i
\(863\) 13233.1 0.521968 0.260984 0.965343i \(-0.415953\pi\)
0.260984 + 0.965343i \(0.415953\pi\)
\(864\) 1615.27 + 2797.73i 0.0636026 + 0.110163i
\(865\) 6775.45 + 11735.4i 0.266326 + 0.461291i
\(866\) −3683.67 −0.144545
\(867\) 540.147 + 935.563i 0.0211584 + 0.0366475i
\(868\) −11221.9 + 19436.9i −0.438820 + 0.760059i
\(869\) −21000.0 + 36373.1i −0.819767 + 1.41988i
\(870\) −16188.2 −0.630841
\(871\) 0 0
\(872\) −8028.64 −0.311794
\(873\) −76.7388 + 132.916i −0.00297505 + 0.00515293i
\(874\) 2922.16 5061.32i 0.113093 0.195883i
\(875\) 16325.1 + 28275.8i 0.630729 + 1.09245i
\(876\) −10529.1 −0.406101
\(877\) −17860.3 30934.9i −0.687684 1.19110i −0.972585 0.232547i \(-0.925294\pi\)
0.284901 0.958557i \(-0.408039\pi\)
\(878\) −9963.22 17256.8i −0.382964 0.663313i
\(879\) −36694.1 −1.40803
\(880\) −5353.64 9272.78i −0.205081 0.355211i
\(881\) −263.170 + 455.824i −0.0100641 + 0.0174315i −0.871014 0.491259i \(-0.836537\pi\)
0.860950 + 0.508690i \(0.169870\pi\)
\(882\) −19094.1 + 33071.9i −0.728947 + 1.26257i
\(883\) 39626.2 1.51022 0.755112 0.655596i \(-0.227583\pi\)
0.755112 + 0.655596i \(0.227583\pi\)
\(884\) 0 0
\(885\) 80637.5 3.06282
\(886\) 8480.02 14687.8i 0.321548 0.556938i
\(887\) 18332.2 31752.3i 0.693951 1.20196i −0.276582 0.960990i \(-0.589202\pi\)
0.970533 0.240968i \(-0.0774650\pi\)
\(888\) 7600.11 + 13163.8i 0.287211 + 0.497463i
\(889\) −48435.7 −1.82731
\(890\) 1002.37 + 1736.15i 0.0377522 + 0.0653887i
\(891\) −6366.08 11026.4i −0.239362 0.414588i
\(892\) −13175.6 −0.494566
\(893\) 13179.3 + 22827.3i 0.493874 + 0.855415i
\(894\) −1110.36 + 1923.20i −0.0415392 + 0.0719480i
\(895\) 4670.38 8089.34i 0.174429 0.302119i
\(896\) −3682.63 −0.137308
\(897\) 0 0
\(898\) 6901.34 0.256460
\(899\) −7648.64 + 13247.8i −0.283756 + 0.491479i
\(900\) −2788.21 + 4829.33i −0.103267 + 0.178864i
\(901\) −4139.97 7170.64i −0.153077 0.265137i
\(902\) −12730.0 −0.469916
\(903\) −47482.6 82242.3i −1.74986 3.03084i
\(904\) 2977.65 + 5157.43i 0.109552 + 0.189750i
\(905\) 18452.6 0.677772
\(906\) −6554.21 11352.2i −0.240341 0.416283i
\(907\) 17715.0 30683.3i 0.648530 1.12329i −0.334944 0.942238i \(-0.608717\pi\)
0.983474 0.181049i \(-0.0579493\pi\)
\(908\) −1086.97 + 1882.69i −0.0397273 + 0.0688098i
\(909\) −40781.1 −1.48804
\(910\) 0 0
\(911\) −1970.18 −0.0716521 −0.0358261 0.999358i \(-0.511406\pi\)
−0.0358261 + 0.999358i \(0.511406\pi\)
\(912\) 4287.06 7425.41i 0.155657 0.269605i
\(913\) 11752.3 20355.6i 0.426006 0.737865i
\(914\) −6541.22 11329.7i −0.236723 0.410016i
\(915\) 5423.34 0.195945
\(916\) −6143.31 10640.5i −0.221595 0.383813i
\(917\) 31329.3 + 54263.9i 1.12823 + 1.95415i
\(918\) −14342.0 −0.515640
\(919\) −3499.62 6061.52i −0.125617 0.217575i 0.796357 0.604827i \(-0.206758\pi\)
−0.921974 + 0.387252i \(0.873424\pi\)
\(920\) −2250.80 + 3898.50i −0.0806594 + 0.139706i
\(921\) −7882.19 + 13652.4i −0.282005 + 0.488448i
\(922\) 29227.7 1.04399
\(923\) 0 0
\(924\) −49548.1 −1.76408
\(925\) −4126.56 + 7147.41i −0.146681 + 0.254060i
\(926\) 3680.01 6373.96i 0.130597 0.226200i
\(927\) −24589.4 42590.1i −0.871222 1.50900i
\(928\) −2510.01 −0.0887879
\(929\) −11816.3 20466.4i −0.417309 0.722801i 0.578358 0.815783i \(-0.303694\pi\)
−0.995668 + 0.0929817i \(0.970360\pi\)
\(930\) 20124.8 + 34857.2i 0.709590 + 1.22905i
\(931\) 31880.9 1.12229
\(932\) −6766.11 11719.3i −0.237802 0.411885i
\(933\) −10819.4 + 18739.8i −0.379649 + 0.657571i
\(934\) −457.544 + 792.489i −0.0160292 + 0.0277634i
\(935\) 47535.2 1.66264
\(936\) 0 0
\(937\) −30872.4 −1.07637 −0.538183 0.842828i \(-0.680889\pi\)
−0.538183 + 0.842828i \(0.680889\pi\)
\(938\) −23169.1 + 40130.0i −0.806499 + 1.39690i
\(939\) 24861.0 43060.6i 0.864014 1.49652i
\(940\) −10151.4 17582.8i −0.352237 0.610092i
\(941\) −6690.77 −0.231788 −0.115894 0.993262i \(-0.536973\pi\)
−0.115894 + 0.993262i \(0.536973\pi\)
\(942\) 30392.7 + 52641.6i 1.05122 + 1.82076i
\(943\) 2676.01 + 4634.98i 0.0924102 + 0.160059i
\(944\) 12503.0 0.431078
\(945\) 18392.3 + 31856.3i 0.633122 + 1.09660i
\(946\) 21405.9 37076.0i 0.735692 1.27426i
\(947\) −10738.6 + 18599.7i −0.368486 + 0.638237i −0.989329 0.145698i \(-0.953457\pi\)
0.620843 + 0.783935i \(0.286791\pi\)
\(948\) 25905.6 0.887527
\(949\) 0 0
\(950\) 4655.41 0.158991
\(951\) 5634.33 9758.94i 0.192119 0.332761i
\(952\) 8174.55 14158.7i 0.278297 0.482024i
\(953\) 3925.25 + 6798.73i 0.133422 + 0.231094i 0.924994 0.379983i \(-0.124070\pi\)
−0.791571 + 0.611077i \(0.790737\pi\)
\(954\) 9183.08 0.311649
\(955\) 3643.80 + 6311.25i 0.123467 + 0.213851i
\(956\) −1397.10 2419.85i −0.0472651 0.0818656i
\(957\) −33771.1 −1.14071
\(958\) 9770.94 + 16923.8i 0.329525 + 0.570753i
\(959\) −25428.2 + 44043.0i −0.856226 + 1.48303i
\(960\) −3302.12 + 5719.45i −0.111016 + 0.192286i
\(961\) 8243.39 0.276707
\(962\) 0 0
\(963\) −45771.7 −1.53164
\(964\) −7430.89 + 12870.7i −0.248270 + 0.430017i
\(965\) 15442.7 26747.6i 0.515150 0.892266i
\(966\) 10415.6 + 18040.4i 0.346912 + 0.600869i
\(967\) 44143.2 1.46799 0.733997 0.679152i \(-0.237652\pi\)
0.733997 + 0.679152i \(0.237652\pi\)
\(968\) −5844.51 10123.0i −0.194060 0.336121i
\(969\) 19032.5 + 32965.2i 0.630972 + 1.09288i
\(970\) −98.6916 −0.00326680
\(971\) −14315.9 24795.8i −0.473139 0.819500i 0.526389 0.850244i \(-0.323546\pi\)
−0.999527 + 0.0307439i \(0.990212\pi\)
\(972\) −9378.13 + 16243.4i −0.309469 + 0.536016i
\(973\) 14464.9 25053.9i 0.476591 0.825481i
\(974\) 40500.4 1.33236
\(975\) 0 0
\(976\) 840.898 0.0275784
\(977\) 4652.80 8058.88i 0.152360 0.263896i −0.779734 0.626110i \(-0.784646\pi\)
0.932095 + 0.362215i \(0.117979\pi\)
\(978\) 21374.3 37021.3i 0.698849 1.21044i
\(979\) 2091.09 + 3621.88i 0.0682651 + 0.118239i
\(980\) −24556.4 −0.800433
\(981\) 19765.5 + 34234.9i 0.643287 + 1.11421i
\(982\) 17279.4 + 29928.9i 0.561516 + 0.972574i
\(983\) −28467.2 −0.923666 −0.461833 0.886967i \(-0.652808\pi\)
−0.461833 + 0.886967i \(0.652808\pi\)
\(984\) 3925.94 + 6799.93i 0.127190 + 0.220299i
\(985\) 24211.7 41935.9i 0.783197 1.35654i
\(986\) 5571.62 9650.33i 0.179956 0.311693i
\(987\) −93951.6 −3.02990
\(988\) 0 0
\(989\) −17999.1 −0.578703
\(990\) −26360.0 + 45656.9i −0.846240 + 1.46573i
\(991\) −7749.06 + 13421.8i −0.248393 + 0.430229i −0.963080 0.269215i \(-0.913236\pi\)
0.714687 + 0.699444i \(0.246569\pi\)
\(992\) 3120.39 + 5404.67i 0.0998713 + 0.172982i
\(993\) 81534.3 2.60565
\(994\) −11553.4 20011.1i −0.368664 0.638545i
\(995\) −13661.4 23662.2i −0.435272 0.753912i
\(996\) −14497.6 −0.461219
\(997\) −630.399 1091.88i −0.0200250 0.0346844i 0.855839 0.517242i \(-0.173041\pi\)
−0.875864 + 0.482558i \(0.839708\pi\)
\(998\) −16994.7 + 29435.6i −0.539035 + 0.933636i
\(999\) 11770.7 20387.5i 0.372782 0.645678i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.c.o.191.6 12
13.2 odd 12 338.4.e.i.23.5 24
13.3 even 3 inner 338.4.c.o.315.6 12
13.4 even 6 338.4.a.n.1.1 6
13.5 odd 4 338.4.e.i.147.12 24
13.6 odd 12 338.4.b.h.337.1 12
13.7 odd 12 338.4.b.h.337.7 12
13.8 odd 4 338.4.e.i.147.5 24
13.9 even 3 338.4.a.o.1.1 yes 6
13.10 even 6 338.4.c.p.315.6 12
13.11 odd 12 338.4.e.i.23.12 24
13.12 even 2 338.4.c.p.191.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.4.a.n.1.1 6 13.4 even 6
338.4.a.o.1.1 yes 6 13.9 even 3
338.4.b.h.337.1 12 13.6 odd 12
338.4.b.h.337.7 12 13.7 odd 12
338.4.c.o.191.6 12 1.1 even 1 trivial
338.4.c.o.315.6 12 13.3 even 3 inner
338.4.c.p.191.6 12 13.12 even 2
338.4.c.p.315.6 12 13.10 even 6
338.4.e.i.23.5 24 13.2 odd 12
338.4.e.i.23.12 24 13.11 odd 12
338.4.e.i.147.5 24 13.8 odd 4
338.4.e.i.147.12 24 13.5 odd 4