Properties

Label 338.4.c.o.315.6
Level $338$
Weight $4$
Character 338.315
Analytic conductor $19.943$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,4,Mod(191,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.191");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 338.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9426455819\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 108 x^{10} - 63 x^{9} + 7831 x^{8} - 3348 x^{7} + 317885 x^{6} + 1680 x^{5} + \cdots + 1759886401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 13^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 315.6
Root \(-2.42606 - 4.20205i\) of defining polynomial
Character \(\chi\) \(=\) 338.315
Dual form 338.4.c.o.191.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{2} +(4.07401 + 7.05638i) q^{3} +(-2.00000 + 3.46410i) q^{4} -12.6646 q^{5} +(8.14801 - 14.1128i) q^{6} +(14.3853 - 24.9160i) q^{7} +8.00000 q^{8} +(-19.6950 + 34.1128i) q^{9} +(12.6646 + 21.9357i) q^{10} +(26.4203 + 45.7613i) q^{11} -32.5920 q^{12} -57.5411 q^{14} +(-51.5957 - 89.3664i) q^{15} +(-8.00000 - 13.8564i) q^{16} +(-35.5161 + 61.5158i) q^{17} +78.7801 q^{18} +(-32.8843 + 56.9572i) q^{19} +(25.3292 - 43.8715i) q^{20} +234.423 q^{21} +(52.8406 - 91.5226i) q^{22} +(22.2154 + 38.4783i) q^{23} +(32.5920 + 56.4511i) q^{24} +35.3924 q^{25} -100.954 q^{27} +(57.5411 + 99.6641i) q^{28} +(39.2189 + 67.9292i) q^{29} +(-103.191 + 178.733i) q^{30} -195.024 q^{31} +(-16.0000 + 27.7128i) q^{32} +(-215.273 + 372.863i) q^{33} +142.065 q^{34} +(-182.184 + 315.552i) q^{35} +(-78.7801 - 136.451i) q^{36} +(-116.595 - 201.948i) q^{37} +131.537 q^{38} -101.317 q^{40} +(-60.2286 - 104.319i) q^{41} +(-234.423 - 406.032i) q^{42} +(-202.551 + 350.829i) q^{43} -211.362 q^{44} +(249.430 - 432.025i) q^{45} +(44.4309 - 76.9566i) q^{46} -400.779 q^{47} +(65.1841 - 112.902i) q^{48} +(-242.372 - 419.800i) q^{49} +(-35.3924 - 61.3014i) q^{50} -578.772 q^{51} +116.566 q^{53} +(100.954 + 174.858i) q^{54} +(-334.603 - 579.549i) q^{55} +(115.082 - 199.328i) q^{56} -535.883 q^{57} +(78.4379 - 135.858i) q^{58} +(-390.718 + 676.744i) q^{59} +412.765 q^{60} +(-26.2781 + 45.5149i) q^{61} +(195.024 + 337.792i) q^{62} +(566.637 + 981.444i) q^{63} +64.0000 q^{64} +861.091 q^{66} +(402.652 + 697.414i) q^{67} +(-142.065 - 246.063i) q^{68} +(-181.012 + 313.521i) q^{69} +728.735 q^{70} +(200.786 - 347.771i) q^{71} +(-157.560 + 272.902i) q^{72} +323.057 q^{73} +(-233.189 + 403.895i) q^{74} +(144.189 + 249.742i) q^{75} +(-131.537 - 227.829i) q^{76} +1520.25 q^{77} -794.845 q^{79} +(101.317 + 175.486i) q^{80} +(120.477 + 208.673i) q^{81} +(-120.457 + 208.638i) q^{82} +444.820 q^{83} +(-468.845 + 812.064i) q^{84} +(449.798 - 779.073i) q^{85} +810.205 q^{86} +(-319.556 + 553.488i) q^{87} +(211.362 + 366.090i) q^{88} +(-39.5736 - 68.5435i) q^{89} -997.720 q^{90} -177.724 q^{92} +(-794.529 - 1376.16i) q^{93} +(400.779 + 694.169i) q^{94} +(416.467 - 721.341i) q^{95} -260.736 q^{96} +(-1.94818 + 3.37434i) q^{97} +(-484.744 + 839.601i) q^{98} -2081.39 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{2} - 9 q^{3} - 24 q^{4} + 36 q^{5} - 18 q^{6} - 25 q^{7} + 96 q^{8} - 113 q^{9} - 36 q^{10} - 37 q^{11} + 72 q^{12} + 100 q^{14} - 118 q^{15} - 96 q^{16} - 99 q^{17} + 452 q^{18} + 81 q^{19}+ \cdots - 2688 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.73205i −0.353553 0.612372i
\(3\) 4.07401 + 7.05638i 0.784043 + 1.35800i 0.929569 + 0.368647i \(0.120179\pi\)
−0.145527 + 0.989354i \(0.546488\pi\)
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) −12.6646 −1.13276 −0.566379 0.824145i \(-0.691656\pi\)
−0.566379 + 0.824145i \(0.691656\pi\)
\(6\) 8.14801 14.1128i 0.554402 0.960252i
\(7\) 14.3853 24.9160i 0.776732 1.34534i −0.157085 0.987585i \(-0.550210\pi\)
0.933816 0.357753i \(-0.116457\pi\)
\(8\) 8.00000 0.353553
\(9\) −19.6950 + 34.1128i −0.729446 + 1.26344i
\(10\) 12.6646 + 21.9357i 0.400490 + 0.693669i
\(11\) 26.4203 + 45.7613i 0.724183 + 1.25432i 0.959309 + 0.282357i \(0.0911164\pi\)
−0.235126 + 0.971965i \(0.575550\pi\)
\(12\) −32.5920 −0.784043
\(13\) 0 0
\(14\) −57.5411 −1.09846
\(15\) −51.5957 89.3664i −0.888130 1.53829i
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) −35.5161 + 61.5158i −0.506702 + 0.877633i 0.493268 + 0.869877i \(0.335802\pi\)
−0.999970 + 0.00775579i \(0.997531\pi\)
\(18\) 78.7801 1.03159
\(19\) −32.8843 + 56.9572i −0.397062 + 0.687731i −0.993362 0.115030i \(-0.963303\pi\)
0.596300 + 0.802761i \(0.296637\pi\)
\(20\) 25.3292 43.8715i 0.283189 0.490498i
\(21\) 234.423 2.43596
\(22\) 52.8406 91.5226i 0.512075 0.886940i
\(23\) 22.2154 + 38.4783i 0.201402 + 0.348838i 0.948980 0.315335i \(-0.102117\pi\)
−0.747579 + 0.664173i \(0.768784\pi\)
\(24\) 32.5920 + 56.4511i 0.277201 + 0.480126i
\(25\) 35.3924 0.283139
\(26\) 0 0
\(27\) −100.954 −0.719581
\(28\) 57.5411 + 99.6641i 0.388366 + 0.672669i
\(29\) 39.2189 + 67.9292i 0.251130 + 0.434970i 0.963837 0.266492i \(-0.0858645\pi\)
−0.712707 + 0.701462i \(0.752531\pi\)
\(30\) −103.191 + 178.733i −0.628003 + 1.08773i
\(31\) −195.024 −1.12991 −0.564957 0.825120i \(-0.691107\pi\)
−0.564957 + 0.825120i \(0.691107\pi\)
\(32\) −16.0000 + 27.7128i −0.0883883 + 0.153093i
\(33\) −215.273 + 372.863i −1.13558 + 1.96688i
\(34\) 142.065 0.716584
\(35\) −182.184 + 315.552i −0.879848 + 1.52394i
\(36\) −78.7801 136.451i −0.364723 0.631719i
\(37\) −116.595 201.948i −0.518055 0.897297i −0.999780 0.0209750i \(-0.993323\pi\)
0.481725 0.876322i \(-0.340010\pi\)
\(38\) 131.537 0.561530
\(39\) 0 0
\(40\) −101.317 −0.400490
\(41\) −60.2286 104.319i −0.229418 0.397363i 0.728218 0.685345i \(-0.240349\pi\)
−0.957636 + 0.287983i \(0.907015\pi\)
\(42\) −234.423 406.032i −0.861243 1.49172i
\(43\) −202.551 + 350.829i −0.718344 + 1.24421i 0.243312 + 0.969948i \(0.421766\pi\)
−0.961656 + 0.274260i \(0.911567\pi\)
\(44\) −211.362 −0.724183
\(45\) 249.430 432.025i 0.826285 1.43117i
\(46\) 44.4309 76.9566i 0.142413 0.246666i
\(47\) −400.779 −1.24382 −0.621911 0.783088i \(-0.713643\pi\)
−0.621911 + 0.783088i \(0.713643\pi\)
\(48\) 65.1841 112.902i 0.196011 0.339500i
\(49\) −242.372 419.800i −0.706624 1.22391i
\(50\) −35.3924 61.3014i −0.100105 0.173386i
\(51\) −578.772 −1.58910
\(52\) 0 0
\(53\) 116.566 0.302105 0.151052 0.988526i \(-0.451734\pi\)
0.151052 + 0.988526i \(0.451734\pi\)
\(54\) 100.954 + 174.858i 0.254410 + 0.440652i
\(55\) −334.603 579.549i −0.820324 1.42084i
\(56\) 115.082 199.328i 0.274616 0.475649i
\(57\) −535.883 −1.24525
\(58\) 78.4379 135.858i 0.177576 0.307570i
\(59\) −390.718 + 676.744i −0.862155 + 1.49330i 0.00768919 + 0.999970i \(0.497552\pi\)
−0.869844 + 0.493326i \(0.835781\pi\)
\(60\) 412.765 0.888130
\(61\) −26.2781 + 45.5149i −0.0551567 + 0.0955343i −0.892285 0.451472i \(-0.850899\pi\)
0.837129 + 0.547006i \(0.184233\pi\)
\(62\) 195.024 + 337.792i 0.399485 + 0.691929i
\(63\) 566.637 + 981.444i 1.13317 + 1.96270i
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 861.091 1.60595
\(67\) 402.652 + 697.414i 0.734206 + 1.27168i 0.955071 + 0.296378i \(0.0957789\pi\)
−0.220864 + 0.975305i \(0.570888\pi\)
\(68\) −142.065 246.063i −0.253351 0.438817i
\(69\) −181.012 + 313.521i −0.315815 + 0.547008i
\(70\) 728.735 1.24429
\(71\) 200.786 347.771i 0.335618 0.581307i −0.647985 0.761653i \(-0.724388\pi\)
0.983603 + 0.180345i \(0.0577216\pi\)
\(72\) −157.560 + 272.902i −0.257898 + 0.446692i
\(73\) 323.057 0.517958 0.258979 0.965883i \(-0.416614\pi\)
0.258979 + 0.965883i \(0.416614\pi\)
\(74\) −233.189 + 403.895i −0.366320 + 0.634485i
\(75\) 144.189 + 249.742i 0.221993 + 0.384503i
\(76\) −131.537 227.829i −0.198531 0.343865i
\(77\) 1520.25 2.24998
\(78\) 0 0
\(79\) −794.845 −1.13199 −0.565994 0.824409i \(-0.691507\pi\)
−0.565994 + 0.824409i \(0.691507\pi\)
\(80\) 101.317 + 175.486i 0.141595 + 0.245249i
\(81\) 120.477 + 208.673i 0.165264 + 0.286245i
\(82\) −120.457 + 208.638i −0.162223 + 0.280978i
\(83\) 444.820 0.588258 0.294129 0.955766i \(-0.404971\pi\)
0.294129 + 0.955766i \(0.404971\pi\)
\(84\) −468.845 + 812.064i −0.608991 + 1.05480i
\(85\) 449.798 779.073i 0.573970 0.994145i
\(86\) 810.205 1.01589
\(87\) −319.556 + 553.488i −0.393793 + 0.682070i
\(88\) 211.362 + 366.090i 0.256037 + 0.443470i
\(89\) −39.5736 68.5435i −0.0471325 0.0816359i 0.841497 0.540262i \(-0.181675\pi\)
−0.888629 + 0.458626i \(0.848342\pi\)
\(90\) −997.720 −1.16854
\(91\) 0 0
\(92\) −177.724 −0.201402
\(93\) −794.529 1376.16i −0.885901 1.53443i
\(94\) 400.779 + 694.169i 0.439757 + 0.761682i
\(95\) 416.467 721.341i 0.449774 0.779032i
\(96\) −260.736 −0.277201
\(97\) −1.94818 + 3.37434i −0.00203925 + 0.00353209i −0.867043 0.498233i \(-0.833982\pi\)
0.865004 + 0.501765i \(0.167316\pi\)
\(98\) −484.744 + 839.601i −0.499658 + 0.865434i
\(99\) −2081.39 −2.11301
\(100\) −70.7847 + 122.603i −0.0707847 + 0.122603i
\(101\) 517.657 + 896.609i 0.509988 + 0.883326i 0.999933 + 0.0115723i \(0.00368367\pi\)
−0.489945 + 0.871754i \(0.662983\pi\)
\(102\) 578.772 + 1002.46i 0.561833 + 0.973123i
\(103\) 1248.51 1.19436 0.597181 0.802107i \(-0.296287\pi\)
0.597181 + 0.802107i \(0.296287\pi\)
\(104\) 0 0
\(105\) −2968.87 −2.75935
\(106\) −116.566 201.898i −0.106810 0.185001i
\(107\) 581.006 + 1006.33i 0.524934 + 0.909212i 0.999578 + 0.0290348i \(0.00924335\pi\)
−0.474644 + 0.880178i \(0.657423\pi\)
\(108\) 201.909 349.716i 0.179895 0.311588i
\(109\) −1003.58 −0.881885 −0.440943 0.897535i \(-0.645356\pi\)
−0.440943 + 0.897535i \(0.645356\pi\)
\(110\) −669.205 + 1159.10i −0.580057 + 1.00469i
\(111\) 950.014 1645.47i 0.812354 1.40704i
\(112\) −460.329 −0.388366
\(113\) 372.206 644.679i 0.309860 0.536693i −0.668472 0.743738i \(-0.733051\pi\)
0.978332 + 0.207045i \(0.0663845\pi\)
\(114\) 535.883 + 928.176i 0.440263 + 0.762559i
\(115\) −281.350 487.312i −0.228139 0.395149i
\(116\) −313.751 −0.251130
\(117\) 0 0
\(118\) 1562.87 1.21927
\(119\) 1021.82 + 1769.84i 0.787142 + 1.36337i
\(120\) −412.765 714.931i −0.314001 0.543866i
\(121\) −730.563 + 1265.37i −0.548883 + 0.950694i
\(122\) 105.112 0.0780034
\(123\) 490.743 849.992i 0.359746 0.623099i
\(124\) 390.048 675.583i 0.282479 0.489267i
\(125\) 1134.85 0.812030
\(126\) 1133.27 1962.89i 0.801270 1.38784i
\(127\) −841.759 1457.97i −0.588142 1.01869i −0.994476 0.104967i \(-0.966526\pi\)
0.406334 0.913725i \(-0.366807\pi\)
\(128\) −64.0000 110.851i −0.0441942 0.0765466i
\(129\) −3300.78 −2.25285
\(130\) 0 0
\(131\) 2177.87 1.45253 0.726266 0.687414i \(-0.241254\pi\)
0.726266 + 0.687414i \(0.241254\pi\)
\(132\) −861.091 1491.45i −0.567791 0.983442i
\(133\) 946.098 + 1638.69i 0.616821 + 1.06836i
\(134\) 805.305 1394.83i 0.519162 0.899215i
\(135\) 1278.55 0.815110
\(136\) −284.129 + 492.126i −0.179146 + 0.310290i
\(137\) 883.829 1530.84i 0.551172 0.954658i −0.447018 0.894525i \(-0.647514\pi\)
0.998190 0.0601334i \(-0.0191526\pi\)
\(138\) 724.047 0.446630
\(139\) −502.768 + 870.819i −0.306793 + 0.531381i −0.977659 0.210198i \(-0.932589\pi\)
0.670866 + 0.741579i \(0.265923\pi\)
\(140\) −728.735 1262.21i −0.439924 0.761971i
\(141\) −1632.78 2828.05i −0.975209 1.68911i
\(142\) −803.143 −0.474635
\(143\) 0 0
\(144\) 630.241 0.364723
\(145\) −496.692 860.297i −0.284469 0.492715i
\(146\) −323.057 559.551i −0.183126 0.317183i
\(147\) 1974.85 3420.54i 1.10805 1.91919i
\(148\) 932.757 0.518055
\(149\) 68.1369 118.017i 0.0374631 0.0648879i −0.846686 0.532093i \(-0.821406\pi\)
0.884149 + 0.467205i \(0.154739\pi\)
\(150\) 288.377 499.484i 0.156973 0.271885i
\(151\) −804.394 −0.433514 −0.216757 0.976226i \(-0.569548\pi\)
−0.216757 + 0.976226i \(0.569548\pi\)
\(152\) −263.074 + 455.658i −0.140383 + 0.243150i
\(153\) −1398.98 2423.11i −0.739223 1.28037i
\(154\) −1520.25 2633.15i −0.795490 1.37783i
\(155\) 2469.90 1.27992
\(156\) 0 0
\(157\) 3730.07 1.89613 0.948064 0.318079i \(-0.103038\pi\)
0.948064 + 0.318079i \(0.103038\pi\)
\(158\) 794.845 + 1376.71i 0.400218 + 0.693198i
\(159\) 474.890 + 822.534i 0.236863 + 0.410259i
\(160\) 202.634 350.972i 0.100123 0.173417i
\(161\) 1278.30 0.625740
\(162\) 240.954 417.345i 0.116859 0.202406i
\(163\) −1311.63 + 2271.80i −0.630273 + 1.09166i 0.357223 + 0.934019i \(0.383724\pi\)
−0.987496 + 0.157646i \(0.949610\pi\)
\(164\) 481.828 0.229418
\(165\) 2726.35 4722.17i 1.28634 2.22800i
\(166\) −444.820 770.451i −0.207980 0.360233i
\(167\) 639.001 + 1106.78i 0.296092 + 0.512847i 0.975238 0.221156i \(-0.0709831\pi\)
−0.679146 + 0.734003i \(0.737650\pi\)
\(168\) 1875.38 0.861243
\(169\) 0 0
\(170\) −1799.19 −0.811716
\(171\) −1295.31 2243.55i −0.579270 1.00332i
\(172\) −810.205 1403.32i −0.359172 0.622104i
\(173\) −534.991 + 926.631i −0.235113 + 0.407228i −0.959306 0.282370i \(-0.908879\pi\)
0.724192 + 0.689598i \(0.242213\pi\)
\(174\) 1278.22 0.556908
\(175\) 509.129 881.836i 0.219923 0.380918i
\(176\) 422.725 732.181i 0.181046 0.313581i
\(177\) −6367.15 −2.70387
\(178\) −79.1472 + 137.087i −0.0333277 + 0.0577253i
\(179\) −368.774 638.736i −0.153986 0.266712i 0.778703 0.627392i \(-0.215878\pi\)
−0.932689 + 0.360681i \(0.882544\pi\)
\(180\) 997.720 + 1728.10i 0.413142 + 0.715584i
\(181\) −1457.02 −0.598338 −0.299169 0.954200i \(-0.596709\pi\)
−0.299169 + 0.954200i \(0.596709\pi\)
\(182\) 0 0
\(183\) −428.228 −0.172981
\(184\) 177.724 + 307.826i 0.0712063 + 0.123333i
\(185\) 1476.62 + 2557.59i 0.586830 + 1.01642i
\(186\) −1589.06 + 2752.33i −0.626427 + 1.08500i
\(187\) −3753.39 −1.46778
\(188\) 801.558 1388.34i 0.310955 0.538591i
\(189\) −1452.26 + 2515.38i −0.558921 + 0.968080i
\(190\) −1665.87 −0.636077
\(191\) −287.715 + 498.337i −0.108997 + 0.188788i −0.915364 0.402627i \(-0.868097\pi\)
0.806367 + 0.591415i \(0.201430\pi\)
\(192\) 260.736 + 451.609i 0.0980053 + 0.169750i
\(193\) −1219.36 2112.00i −0.454775 0.787694i 0.543900 0.839150i \(-0.316947\pi\)
−0.998675 + 0.0514564i \(0.983614\pi\)
\(194\) 7.79271 0.00288394
\(195\) 0 0
\(196\) 1938.98 0.706624
\(197\) −1911.76 3311.27i −0.691408 1.19755i −0.971377 0.237544i \(-0.923658\pi\)
0.279969 0.960009i \(-0.409676\pi\)
\(198\) 2081.39 + 3605.08i 0.747062 + 1.29395i
\(199\) 1078.71 1868.37i 0.384258 0.665555i −0.607408 0.794390i \(-0.707790\pi\)
0.991666 + 0.128835i \(0.0411238\pi\)
\(200\) 283.139 0.100105
\(201\) −3280.82 + 5682.54i −1.15130 + 1.99411i
\(202\) 1035.31 1793.22i 0.360616 0.624606i
\(203\) 2256.70 0.780243
\(204\) 1157.54 2004.92i 0.397276 0.688102i
\(205\) 762.771 + 1321.16i 0.259874 + 0.450116i
\(206\) −1248.51 2162.48i −0.422271 0.731394i
\(207\) −1750.14 −0.587647
\(208\) 0 0
\(209\) −3475.25 −1.15018
\(210\) 2968.87 + 5142.24i 0.975579 + 1.68975i
\(211\) −1681.93 2913.19i −0.548762 0.950484i −0.998360 0.0572525i \(-0.981766\pi\)
0.449598 0.893231i \(-0.351567\pi\)
\(212\) −233.132 + 403.796i −0.0755262 + 0.130815i
\(213\) 3272.01 1.05255
\(214\) 1162.01 2012.66i 0.371184 0.642910i
\(215\) 2565.23 4443.11i 0.813709 1.40939i
\(216\) −807.635 −0.254410
\(217\) −2805.47 + 4859.22i −0.877640 + 1.52012i
\(218\) 1003.58 + 1738.25i 0.311794 + 0.540042i
\(219\) 1316.13 + 2279.61i 0.406101 + 0.703388i
\(220\) 2676.82 0.820324
\(221\) 0 0
\(222\) −3800.06 −1.14884
\(223\) 1646.95 + 2852.61i 0.494566 + 0.856613i 0.999980 0.00626360i \(-0.00199378\pi\)
−0.505415 + 0.862877i \(0.668660\pi\)
\(224\) 460.329 + 797.313i 0.137308 + 0.237824i
\(225\) −697.054 + 1207.33i −0.206534 + 0.357728i
\(226\) −1488.82 −0.438208
\(227\) −271.743 + 470.673i −0.0794547 + 0.137620i −0.903015 0.429609i \(-0.858651\pi\)
0.823560 + 0.567229i \(0.191985\pi\)
\(228\) 1071.77 1856.35i 0.311313 0.539210i
\(229\) 3071.66 0.886379 0.443189 0.896428i \(-0.353847\pi\)
0.443189 + 0.896428i \(0.353847\pi\)
\(230\) −562.700 + 974.625i −0.161319 + 0.279412i
\(231\) 6193.51 + 10727.5i 1.76408 + 3.05548i
\(232\) 313.751 + 543.433i 0.0887879 + 0.153785i
\(233\) 3383.06 0.951208 0.475604 0.879660i \(-0.342230\pi\)
0.475604 + 0.879660i \(0.342230\pi\)
\(234\) 0 0
\(235\) 5075.71 1.40895
\(236\) −1562.87 2706.97i −0.431078 0.746648i
\(237\) −3238.20 5608.73i −0.887527 1.53724i
\(238\) 2043.64 3539.68i 0.556594 0.964049i
\(239\) 698.550 0.189060 0.0945302 0.995522i \(-0.469865\pi\)
0.0945302 + 0.995522i \(0.469865\pi\)
\(240\) −825.531 + 1429.86i −0.222032 + 0.384572i
\(241\) −1857.72 + 3217.67i −0.496541 + 0.860034i −0.999992 0.00398962i \(-0.998730\pi\)
0.503451 + 0.864024i \(0.332063\pi\)
\(242\) 2922.25 0.776238
\(243\) −2344.53 + 4060.85i −0.618938 + 1.07203i
\(244\) −105.112 182.060i −0.0275784 0.0477671i
\(245\) 3069.55 + 5316.61i 0.800433 + 1.38639i
\(246\) −1962.97 −0.508758
\(247\) 0 0
\(248\) −1560.19 −0.399485
\(249\) 1812.20 + 3138.82i 0.461219 + 0.798855i
\(250\) −1134.85 1965.61i −0.287096 0.497265i
\(251\) 1926.42 3336.65i 0.484440 0.839074i −0.515400 0.856950i \(-0.672357\pi\)
0.999840 + 0.0178750i \(0.00569010\pi\)
\(252\) −4533.09 −1.13317
\(253\) −1173.88 + 2033.21i −0.291704 + 0.505245i
\(254\) −1683.52 + 2915.94i −0.415879 + 0.720324i
\(255\) 7329.92 1.80007
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) −2288.73 3964.19i −0.555513 0.962177i −0.997863 0.0653345i \(-0.979189\pi\)
0.442350 0.896842i \(-0.354145\pi\)
\(258\) 3300.78 + 5717.12i 0.796502 + 1.37958i
\(259\) −6708.98 −1.60956
\(260\) 0 0
\(261\) −3089.67 −0.732743
\(262\) −2177.87 3772.19i −0.513547 0.889490i
\(263\) 2411.71 + 4177.21i 0.565447 + 0.979383i 0.997008 + 0.0772990i \(0.0246296\pi\)
−0.431561 + 0.902084i \(0.642037\pi\)
\(264\) −1722.18 + 2982.91i −0.401489 + 0.695399i
\(265\) −1476.26 −0.342212
\(266\) 1892.20 3277.38i 0.436158 0.755448i
\(267\) 322.446 558.493i 0.0739078 0.128012i
\(268\) −3221.22 −0.734206
\(269\) 982.898 1702.43i 0.222782 0.385870i −0.732870 0.680369i \(-0.761820\pi\)
0.955652 + 0.294499i \(0.0951529\pi\)
\(270\) −1278.55 2214.51i −0.288185 0.499151i
\(271\) 2207.96 + 3824.29i 0.494922 + 0.857230i 0.999983 0.00585389i \(-0.00186336\pi\)
−0.505061 + 0.863084i \(0.668530\pi\)
\(272\) 1136.52 0.253351
\(273\) 0 0
\(274\) −3535.32 −0.779475
\(275\) 935.076 + 1619.60i 0.205044 + 0.355147i
\(276\) −724.047 1254.09i −0.157908 0.273504i
\(277\) −1806.11 + 3128.28i −0.391765 + 0.678557i −0.992682 0.120754i \(-0.961469\pi\)
0.600917 + 0.799311i \(0.294802\pi\)
\(278\) 2011.07 0.433871
\(279\) 3841.01 6652.82i 0.824212 1.42758i
\(280\) −1457.47 + 2524.41i −0.311073 + 0.538795i
\(281\) 4095.02 0.869353 0.434676 0.900587i \(-0.356863\pi\)
0.434676 + 0.900587i \(0.356863\pi\)
\(282\) −3265.55 + 5656.10i −0.689577 + 1.19438i
\(283\) −3363.10 5825.05i −0.706415 1.22355i −0.966179 0.257874i \(-0.916978\pi\)
0.259764 0.965672i \(-0.416355\pi\)
\(284\) 803.143 + 1391.08i 0.167809 + 0.290654i
\(285\) 6786.75 1.41057
\(286\) 0 0
\(287\) −3465.62 −0.712783
\(288\) −630.241 1091.61i −0.128949 0.223346i
\(289\) −66.2919 114.821i −0.0134932 0.0233709i
\(290\) −993.385 + 1720.59i −0.201150 + 0.348402i
\(291\) −31.7475 −0.00639544
\(292\) −646.114 + 1119.10i −0.129490 + 0.224282i
\(293\) −2251.72 + 3900.10i −0.448966 + 0.777632i −0.998319 0.0579584i \(-0.981541\pi\)
0.549353 + 0.835590i \(0.314874\pi\)
\(294\) −7899.40 −1.56701
\(295\) 4948.29 8570.69i 0.976613 1.69154i
\(296\) −932.757 1615.58i −0.183160 0.317243i
\(297\) −2667.24 4619.80i −0.521109 0.902586i
\(298\) −272.548 −0.0529808
\(299\) 0 0
\(300\) −1153.51 −0.221993
\(301\) 5827.51 + 10093.5i 1.11592 + 1.93283i
\(302\) 804.394 + 1393.25i 0.153270 + 0.265472i
\(303\) −4217.88 + 7305.58i −0.799705 + 1.38513i
\(304\) 1052.30 0.198531
\(305\) 332.801 576.429i 0.0624792 0.108217i
\(306\) −2797.97 + 4846.22i −0.522709 + 0.905359i
\(307\) −1934.75 −0.359681 −0.179841 0.983696i \(-0.557558\pi\)
−0.179841 + 0.983696i \(0.557558\pi\)
\(308\) −3040.50 + 5266.31i −0.562496 + 0.974272i
\(309\) 5086.43 + 8809.96i 0.936431 + 1.62195i
\(310\) −2469.90 4278.00i −0.452520 0.783787i
\(311\) −2655.72 −0.484219 −0.242110 0.970249i \(-0.577839\pi\)
−0.242110 + 0.970249i \(0.577839\pi\)
\(312\) 0 0
\(313\) 6102.36 1.10200 0.550999 0.834506i \(-0.314247\pi\)
0.550999 + 0.834506i \(0.314247\pi\)
\(314\) −3730.07 6460.67i −0.670383 1.16114i
\(315\) −7176.23 12429.6i −1.28360 2.22327i
\(316\) 1589.69 2753.42i 0.282997 0.490165i
\(317\) 1382.99 0.245037 0.122518 0.992466i \(-0.460903\pi\)
0.122518 + 0.992466i \(0.460903\pi\)
\(318\) 949.781 1645.07i 0.167488 0.290097i
\(319\) −2072.35 + 3589.42i −0.363728 + 0.629996i
\(320\) −810.535 −0.141595
\(321\) −4734.04 + 8199.60i −0.823141 + 1.42572i
\(322\) −1278.30 2214.08i −0.221233 0.383186i
\(323\) −2335.85 4045.80i −0.402384 0.696949i
\(324\) −963.817 −0.165264
\(325\) 0 0
\(326\) 5246.50 0.891340
\(327\) −4088.59 7081.64i −0.691436 1.19760i
\(328\) −481.828 834.551i −0.0811114 0.140489i
\(329\) −5765.31 + 9985.81i −0.966115 + 1.67336i
\(330\) −10905.4 −1.81916
\(331\) 5003.33 8666.02i 0.830839 1.43906i −0.0665347 0.997784i \(-0.521194\pi\)
0.897374 0.441271i \(-0.145472\pi\)
\(332\) −889.641 + 1540.90i −0.147064 + 0.254723i
\(333\) 9185.34 1.51157
\(334\) 1278.00 2213.57i 0.209369 0.362637i
\(335\) −5099.44 8832.48i −0.831678 1.44051i
\(336\) −1875.38 3248.26i −0.304495 0.527401i
\(337\) 11057.1 1.78730 0.893649 0.448767i \(-0.148137\pi\)
0.893649 + 0.448767i \(0.148137\pi\)
\(338\) 0 0
\(339\) 6065.47 0.971773
\(340\) 1799.19 + 3116.29i 0.286985 + 0.497073i
\(341\) −5152.59 8924.55i −0.818266 1.41728i
\(342\) −2590.63 + 4487.10i −0.409606 + 0.709458i
\(343\) −4078.05 −0.641964
\(344\) −1620.41 + 2806.63i −0.253973 + 0.439894i
\(345\) 2292.44 3970.63i 0.357742 0.619627i
\(346\) 2139.96 0.332500
\(347\) 4316.98 7477.22i 0.667860 1.15677i −0.310642 0.950527i \(-0.600544\pi\)
0.978501 0.206240i \(-0.0661228\pi\)
\(348\) −1278.22 2213.95i −0.196897 0.341035i
\(349\) −4684.53 8113.84i −0.718502 1.24448i −0.961593 0.274478i \(-0.911495\pi\)
0.243092 0.970003i \(-0.421838\pi\)
\(350\) −2036.51 −0.311018
\(351\) 0 0
\(352\) −1690.90 −0.256037
\(353\) 2508.93 + 4345.59i 0.378291 + 0.655220i 0.990814 0.135233i \(-0.0431784\pi\)
−0.612522 + 0.790453i \(0.709845\pi\)
\(354\) 6367.15 + 11028.2i 0.955961 + 1.65577i
\(355\) −2542.87 + 4404.38i −0.380174 + 0.658480i
\(356\) 316.589 0.0471325
\(357\) −8325.79 + 14420.7i −1.23431 + 2.13788i
\(358\) −737.549 + 1277.47i −0.108885 + 0.188594i
\(359\) 7268.33 1.06855 0.534273 0.845312i \(-0.320586\pi\)
0.534273 + 0.845312i \(0.320586\pi\)
\(360\) 1995.44 3456.20i 0.292136 0.505994i
\(361\) 1266.75 + 2194.07i 0.184684 + 0.319882i
\(362\) 1457.02 + 2523.63i 0.211545 + 0.366406i
\(363\) −11905.3 −1.72139
\(364\) 0 0
\(365\) −4091.39 −0.586721
\(366\) 428.228 + 741.712i 0.0611580 + 0.105929i
\(367\) −5943.72 10294.8i −0.845394 1.46427i −0.885279 0.465061i \(-0.846032\pi\)
0.0398848 0.999204i \(-0.487301\pi\)
\(368\) 355.447 615.652i 0.0503504 0.0872095i
\(369\) 4744.81 0.669391
\(370\) 2953.25 5115.18i 0.414952 0.718718i
\(371\) 1676.83 2904.36i 0.234654 0.406433i
\(372\) 6356.23 0.885901
\(373\) 7117.28 12327.5i 0.987986 1.71124i 0.360156 0.932892i \(-0.382723\pi\)
0.627830 0.778350i \(-0.283943\pi\)
\(374\) 3753.39 + 6501.06i 0.518939 + 0.898828i
\(375\) 4623.37 + 8007.91i 0.636666 + 1.10274i
\(376\) −3206.23 −0.439757
\(377\) 0 0
\(378\) 5809.03 0.790434
\(379\) −3960.04 6859.00i −0.536712 0.929612i −0.999078 0.0429233i \(-0.986333\pi\)
0.462366 0.886689i \(-0.347000\pi\)
\(380\) 1665.87 + 2885.37i 0.224887 + 0.389516i
\(381\) 6858.66 11879.5i 0.922257 1.59740i
\(382\) 1150.86 0.154144
\(383\) −5313.47 + 9203.20i −0.708892 + 1.22784i 0.256376 + 0.966577i \(0.417471\pi\)
−0.965268 + 0.261260i \(0.915862\pi\)
\(384\) 521.473 903.217i 0.0693002 0.120032i
\(385\) −19253.4 −2.54869
\(386\) −2438.72 + 4223.99i −0.321575 + 0.556983i
\(387\) −7978.51 13819.2i −1.04799 1.81516i
\(388\) −7.79271 13.4974i −0.00101963 0.00176604i
\(389\) −10183.7 −1.32733 −0.663667 0.748028i \(-0.731001\pi\)
−0.663667 + 0.748028i \(0.731001\pi\)
\(390\) 0 0
\(391\) −3156.03 −0.408202
\(392\) −1938.98 3358.40i −0.249829 0.432717i
\(393\) 8872.66 + 15367.9i 1.13885 + 1.97254i
\(394\) −3823.52 + 6622.53i −0.488899 + 0.846798i
\(395\) 10066.4 1.28227
\(396\) 4162.79 7210.16i 0.528252 0.914960i
\(397\) −1826.03 + 3162.78i −0.230846 + 0.399837i −0.958057 0.286577i \(-0.907483\pi\)
0.727211 + 0.686414i \(0.240816\pi\)
\(398\) −4314.82 −0.543424
\(399\) −7708.82 + 13352.1i −0.967227 + 1.67529i
\(400\) −283.139 490.411i −0.0353924 0.0613014i
\(401\) 4442.35 + 7694.37i 0.553217 + 0.958200i 0.998040 + 0.0625817i \(0.0199334\pi\)
−0.444823 + 0.895619i \(0.646733\pi\)
\(402\) 13123.3 1.62818
\(403\) 0 0
\(404\) −4141.26 −0.509988
\(405\) −1525.80 2642.76i −0.187204 0.324246i
\(406\) −2256.70 3908.72i −0.275857 0.477799i
\(407\) 6160.93 10671.0i 0.750334 1.29962i
\(408\) −4630.17 −0.561833
\(409\) 5733.99 9931.55i 0.693221 1.20069i −0.277556 0.960709i \(-0.589524\pi\)
0.970777 0.239984i \(-0.0771423\pi\)
\(410\) 1525.54 2642.32i 0.183759 0.318280i
\(411\) 14402.9 1.72857
\(412\) −2497.02 + 4324.96i −0.298590 + 0.517174i
\(413\) 11241.2 + 19470.3i 1.33933 + 2.31978i
\(414\) 1750.14 + 3031.32i 0.207764 + 0.359859i
\(415\) −5633.48 −0.666353
\(416\) 0 0
\(417\) −8193.11 −0.962155
\(418\) 3475.25 + 6019.31i 0.406651 + 0.704340i
\(419\) 7957.04 + 13782.0i 0.927749 + 1.60691i 0.787080 + 0.616851i \(0.211592\pi\)
0.140669 + 0.990057i \(0.455075\pi\)
\(420\) 5937.74 10284.5i 0.689839 1.19484i
\(421\) −3091.64 −0.357904 −0.178952 0.983858i \(-0.557271\pi\)
−0.178952 + 0.983858i \(0.557271\pi\)
\(422\) −3363.86 + 5826.37i −0.388033 + 0.672093i
\(423\) 7893.35 13671.7i 0.907300 1.57149i
\(424\) 932.528 0.106810
\(425\) −1257.00 + 2177.19i −0.143467 + 0.248492i
\(426\) −3272.01 5667.28i −0.372134 0.644556i
\(427\) 756.034 + 1309.49i 0.0856840 + 0.148409i
\(428\) −4648.05 −0.524934
\(429\) 0 0
\(430\) −10260.9 −1.15076
\(431\) −2498.35 4327.26i −0.279214 0.483612i 0.691976 0.721921i \(-0.256740\pi\)
−0.971190 + 0.238308i \(0.923407\pi\)
\(432\) 807.635 + 1398.87i 0.0899476 + 0.155794i
\(433\) 920.918 1595.08i 0.102209 0.177031i −0.810386 0.585897i \(-0.800742\pi\)
0.912594 + 0.408866i \(0.134076\pi\)
\(434\) 11221.9 1.24117
\(435\) 4047.06 7009.71i 0.446072 0.772620i
\(436\) 2007.16 3476.50i 0.220471 0.381868i
\(437\) −2922.16 −0.319876
\(438\) 2632.27 4559.23i 0.287157 0.497370i
\(439\) −4981.61 8628.40i −0.541593 0.938066i −0.998813 0.0487128i \(-0.984488\pi\)
0.457220 0.889354i \(-0.348845\pi\)
\(440\) −2676.82 4636.39i −0.290028 0.502344i
\(441\) 19094.1 2.06177
\(442\) 0 0
\(443\) −8480.02 −0.909476 −0.454738 0.890625i \(-0.650267\pi\)
−0.454738 + 0.890625i \(0.650267\pi\)
\(444\) 3800.06 + 6581.89i 0.406177 + 0.703519i
\(445\) 501.184 + 868.076i 0.0533897 + 0.0924736i
\(446\) 3293.91 5705.21i 0.349711 0.605717i
\(447\) 1110.36 0.117491
\(448\) 920.657 1594.63i 0.0970914 0.168167i
\(449\) −1725.34 + 2988.37i −0.181344 + 0.314098i −0.942339 0.334661i \(-0.891378\pi\)
0.760994 + 0.648759i \(0.224712\pi\)
\(450\) 2788.21 0.292084
\(451\) 3182.51 5512.27i 0.332281 0.575527i
\(452\) 1488.82 + 2578.72i 0.154930 + 0.268347i
\(453\) −3277.10 5676.11i −0.339893 0.588713i
\(454\) 1086.97 0.112366
\(455\) 0 0
\(456\) −4287.06 −0.440263
\(457\) −3270.61 5664.87i −0.334776 0.579850i 0.648666 0.761074i \(-0.275327\pi\)
−0.983442 + 0.181224i \(0.941994\pi\)
\(458\) −3071.66 5320.27i −0.313382 0.542794i
\(459\) 3585.51 6210.29i 0.364613 0.631528i
\(460\) 2250.80 0.228139
\(461\) −7306.92 + 12656.0i −0.738215 + 1.27863i 0.215083 + 0.976596i \(0.430998\pi\)
−0.953298 + 0.302030i \(0.902336\pi\)
\(462\) 12387.0 21455.0i 1.24740 2.16055i
\(463\) −3680.01 −0.369383 −0.184692 0.982797i \(-0.559129\pi\)
−0.184692 + 0.982797i \(0.559129\pi\)
\(464\) 627.503 1086.87i 0.0627825 0.108743i
\(465\) 10062.4 + 17428.6i 1.00351 + 1.73813i
\(466\) −3383.06 5859.63i −0.336303 0.582494i
\(467\) 457.544 0.0453375 0.0226687 0.999743i \(-0.492784\pi\)
0.0226687 + 0.999743i \(0.492784\pi\)
\(468\) 0 0
\(469\) 23169.1 2.28112
\(470\) −5075.71 8791.39i −0.498138 0.862801i
\(471\) 15196.3 + 26320.8i 1.48665 + 2.57495i
\(472\) −3125.74 + 5413.95i −0.304818 + 0.527960i
\(473\) −21405.9 −2.08085
\(474\) −6476.40 + 11217.5i −0.627576 + 1.08699i
\(475\) −1163.85 + 2015.85i −0.112424 + 0.194723i
\(476\) −8174.55 −0.787142
\(477\) −2295.77 + 3976.39i −0.220369 + 0.381691i
\(478\) −698.550 1209.92i −0.0668429 0.115775i
\(479\) 4885.47 + 8461.88i 0.466018 + 0.807167i 0.999247 0.0388039i \(-0.0123548\pi\)
−0.533229 + 0.845971i \(0.679021\pi\)
\(480\) 3302.12 0.314001
\(481\) 0 0
\(482\) 7430.89 0.702215
\(483\) 5207.80 + 9020.18i 0.490607 + 0.849756i
\(484\) −2922.25 5061.49i −0.274442 0.475347i
\(485\) 24.6729 42.7347i 0.00230998 0.00400100i
\(486\) 9378.13 0.875310
\(487\) −10125.1 + 17537.2i −0.942118 + 1.63180i −0.180698 + 0.983539i \(0.557836\pi\)
−0.761421 + 0.648258i \(0.775498\pi\)
\(488\) −210.225 + 364.120i −0.0195009 + 0.0337765i
\(489\) −21374.3 −1.97664
\(490\) 6139.09 10633.2i 0.565992 0.980326i
\(491\) 8639.72 + 14964.4i 0.794104 + 1.37543i 0.923407 + 0.383823i \(0.125393\pi\)
−0.129303 + 0.991605i \(0.541274\pi\)
\(492\) 1962.97 + 3399.97i 0.179873 + 0.311549i
\(493\) −5571.62 −0.508992
\(494\) 0 0
\(495\) 26360.0 2.39353
\(496\) 1560.19 + 2702.33i 0.141239 + 0.244634i
\(497\) −5776.71 10005.6i −0.521370 0.903039i
\(498\) 3624.40 6277.65i 0.326131 0.564876i
\(499\) 16994.7 1.52462 0.762310 0.647212i \(-0.224065\pi\)
0.762310 + 0.647212i \(0.224065\pi\)
\(500\) −2269.69 + 3931.22i −0.203007 + 0.351619i
\(501\) −5206.59 + 9018.08i −0.464298 + 0.804188i
\(502\) −7705.67 −0.685101
\(503\) −1550.97 + 2686.35i −0.137483 + 0.238128i −0.926543 0.376188i \(-0.877235\pi\)
0.789060 + 0.614316i \(0.210568\pi\)
\(504\) 4533.09 + 7851.55i 0.400635 + 0.693920i
\(505\) −6555.93 11355.2i −0.577693 1.00059i
\(506\) 4695.51 0.412531
\(507\) 0 0
\(508\) 6734.07 0.588142
\(509\) 9973.82 + 17275.2i 0.868530 + 1.50434i 0.863499 + 0.504350i \(0.168268\pi\)
0.00503052 + 0.999987i \(0.498399\pi\)
\(510\) −7329.92 12695.8i −0.636420 1.10231i
\(511\) 4647.26 8049.29i 0.402314 0.696829i
\(512\) 512.000 0.0441942
\(513\) 3319.81 5750.09i 0.285718 0.494878i
\(514\) −4577.45 + 7928.38i −0.392807 + 0.680362i
\(515\) −15811.9 −1.35292
\(516\) 6601.56 11434.2i 0.563212 0.975512i
\(517\) −10588.7 18340.2i −0.900755 1.56015i
\(518\) 6708.98 + 11620.3i 0.569065 + 0.985649i
\(519\) −8718.22 −0.737355
\(520\) 0 0
\(521\) −18106.1 −1.52254 −0.761270 0.648436i \(-0.775424\pi\)
−0.761270 + 0.648436i \(0.775424\pi\)
\(522\) 3089.67 + 5351.47i 0.259064 + 0.448712i
\(523\) 427.606 + 740.635i 0.0357512 + 0.0619229i 0.883347 0.468719i \(-0.155284\pi\)
−0.847596 + 0.530642i \(0.821951\pi\)
\(524\) −4355.74 + 7544.37i −0.363133 + 0.628964i
\(525\) 8296.77 0.689716
\(526\) 4823.42 8354.42i 0.399831 0.692528i
\(527\) 6926.50 11997.1i 0.572530 0.991651i
\(528\) 6888.73 0.567791
\(529\) 5096.45 8827.31i 0.418875 0.725512i
\(530\) 1476.26 + 2556.96i 0.120990 + 0.209561i
\(531\) −15390.4 26657.0i −1.25779 2.17856i
\(532\) −7568.79 −0.616821
\(533\) 0 0
\(534\) −1289.78 −0.104521
\(535\) −7358.21 12744.8i −0.594623 1.02992i
\(536\) 3221.22 + 5579.32i 0.259581 + 0.449608i
\(537\) 3004.78 5204.43i 0.241463 0.418226i
\(538\) −3931.59 −0.315061
\(539\) 12807.1 22182.5i 1.02345 1.77267i
\(540\) −2557.10 + 4429.02i −0.203778 + 0.352953i
\(541\) −12326.5 −0.979592 −0.489796 0.871837i \(-0.662929\pi\)
−0.489796 + 0.871837i \(0.662929\pi\)
\(542\) 4415.91 7648.59i 0.349963 0.606153i
\(543\) −5935.90 10281.3i −0.469123 0.812544i
\(544\) −1136.52 1968.50i −0.0895730 0.155145i
\(545\) 12709.9 0.998962
\(546\) 0 0
\(547\) 7326.20 0.572661 0.286330 0.958131i \(-0.407564\pi\)
0.286330 + 0.958131i \(0.407564\pi\)
\(548\) 3535.32 + 6123.35i 0.275586 + 0.477329i
\(549\) −1035.09 1792.84i −0.0804677 0.139374i
\(550\) 1870.15 3239.20i 0.144988 0.251127i
\(551\) −5158.75 −0.398857
\(552\) −1448.09 + 2508.17i −0.111658 + 0.193396i
\(553\) −11434.1 + 19804.4i −0.879251 + 1.52291i
\(554\) 7224.46 0.554039
\(555\) −12031.6 + 20839.3i −0.920200 + 1.59383i
\(556\) −2011.07 3483.28i −0.153396 0.265690i
\(557\) −291.685 505.212i −0.0221886 0.0384318i 0.854718 0.519093i \(-0.173730\pi\)
−0.876907 + 0.480661i \(0.840397\pi\)
\(558\) −15364.0 −1.16561
\(559\) 0 0
\(560\) 5829.88 0.439924
\(561\) −15291.3 26485.3i −1.15080 1.99325i
\(562\) −4095.02 7092.78i −0.307363 0.532368i
\(563\) −2719.97 + 4711.13i −0.203611 + 0.352665i −0.949689 0.313193i \(-0.898601\pi\)
0.746078 + 0.665858i \(0.231935\pi\)
\(564\) 13062.2 0.975209
\(565\) −4713.84 + 8164.61i −0.350996 + 0.607943i
\(566\) −6726.19 + 11650.1i −0.499511 + 0.865178i
\(567\) 6932.39 0.513462
\(568\) 1606.29 2782.17i 0.118659 0.205523i
\(569\) −9071.62 15712.5i −0.668369 1.15765i −0.978360 0.206910i \(-0.933659\pi\)
0.309991 0.950739i \(-0.399674\pi\)
\(570\) −6786.75 11755.0i −0.498712 0.863794i
\(571\) 12916.3 0.946634 0.473317 0.880892i \(-0.343056\pi\)
0.473317 + 0.880892i \(0.343056\pi\)
\(572\) 0 0
\(573\) −4688.61 −0.341832
\(574\) 3465.62 + 6002.62i 0.252007 + 0.436489i
\(575\) 786.257 + 1361.84i 0.0570247 + 0.0987696i
\(576\) −1260.48 + 2183.22i −0.0911807 + 0.157930i
\(577\) 1345.12 0.0970504 0.0485252 0.998822i \(-0.484548\pi\)
0.0485252 + 0.998822i \(0.484548\pi\)
\(578\) −132.584 + 229.642i −0.00954111 + 0.0165257i
\(579\) 9935.37 17208.6i 0.713126 1.23517i
\(580\) 3973.54 0.284469
\(581\) 6398.86 11083.2i 0.456918 0.791405i
\(582\) 31.7475 + 54.9883i 0.00226113 + 0.00391639i
\(583\) 3079.71 + 5334.21i 0.218779 + 0.378937i
\(584\) 2584.45 0.183126
\(585\) 0 0
\(586\) 9006.89 0.634934
\(587\) 4968.49 + 8605.67i 0.349355 + 0.605100i 0.986135 0.165945i \(-0.0530674\pi\)
−0.636780 + 0.771045i \(0.719734\pi\)
\(588\) 7899.40 + 13682.2i 0.554023 + 0.959596i
\(589\) 6413.23 11108.0i 0.448646 0.777077i
\(590\) −19793.2 −1.38114
\(591\) 15577.0 26980.2i 1.08419 1.87787i
\(592\) −1865.51 + 3231.16i −0.129514 + 0.224324i
\(593\) −15740.8 −1.09005 −0.545024 0.838420i \(-0.683480\pi\)
−0.545024 + 0.838420i \(0.683480\pi\)
\(594\) −5334.49 + 9239.61i −0.368479 + 0.638225i
\(595\) −12940.9 22414.4i −0.891641 1.54437i
\(596\) 272.548 + 472.067i 0.0187315 + 0.0324440i
\(597\) 17578.6 1.20510
\(598\) 0 0
\(599\) −6079.68 −0.414706 −0.207353 0.978266i \(-0.566485\pi\)
−0.207353 + 0.978266i \(0.566485\pi\)
\(600\) 1153.51 + 1997.94i 0.0784863 + 0.135942i
\(601\) 6882.14 + 11920.2i 0.467102 + 0.809045i 0.999294 0.0375793i \(-0.0119647\pi\)
−0.532191 + 0.846624i \(0.678631\pi\)
\(602\) 11655.0 20187.1i 0.789075 1.36672i
\(603\) −31721.0 −2.14225
\(604\) 1608.79 2786.50i 0.108379 0.187717i
\(605\) 9252.30 16025.5i 0.621751 1.07690i
\(606\) 16871.5 1.13095
\(607\) −8132.99 + 14086.8i −0.543835 + 0.941950i 0.454844 + 0.890571i \(0.349695\pi\)
−0.998679 + 0.0513790i \(0.983638\pi\)
\(608\) −1052.30 1822.63i −0.0701913 0.121575i
\(609\) 9193.81 + 15924.1i 0.611743 + 1.05957i
\(610\) −1331.21 −0.0883589
\(611\) 0 0
\(612\) 11191.9 0.739223
\(613\) 6247.17 + 10820.4i 0.411616 + 0.712940i 0.995067 0.0992084i \(-0.0316310\pi\)
−0.583450 + 0.812149i \(0.698298\pi\)
\(614\) 1934.75 + 3351.09i 0.127167 + 0.220259i
\(615\) −6215.07 + 10764.8i −0.407505 + 0.705820i
\(616\) 12162.0 0.795490
\(617\) 7233.90 12529.5i 0.472003 0.817534i −0.527484 0.849565i \(-0.676864\pi\)
0.999487 + 0.0320316i \(0.0101977\pi\)
\(618\) 10172.9 17619.9i 0.662156 1.14689i
\(619\) 7989.85 0.518803 0.259401 0.965770i \(-0.416475\pi\)
0.259401 + 0.965770i \(0.416475\pi\)
\(620\) −4939.81 + 8556.00i −0.319980 + 0.554221i
\(621\) −2242.75 3884.55i −0.144925 0.251017i
\(622\) 2655.72 + 4599.85i 0.171197 + 0.296523i
\(623\) −2277.11 −0.146437
\(624\) 0 0
\(625\) −18796.4 −1.20297
\(626\) −6102.36 10569.6i −0.389615 0.674834i
\(627\) −14158.2 24522.7i −0.901792 1.56195i
\(628\) −7460.14 + 12921.3i −0.474032 + 0.821048i
\(629\) 16564.0 1.05000
\(630\) −14352.5 + 24859.2i −0.907644 + 1.57209i
\(631\) −9484.25 + 16427.2i −0.598355 + 1.03638i 0.394709 + 0.918806i \(0.370845\pi\)
−0.993064 + 0.117575i \(0.962488\pi\)
\(632\) −6358.76 −0.400218
\(633\) 13704.4 23736.7i 0.860506 1.49044i
\(634\) −1382.99 2395.42i −0.0866336 0.150054i
\(635\) 10660.5 + 18464.6i 0.666222 + 1.15393i
\(636\) −3799.12 −0.236863
\(637\) 0 0
\(638\) 8289.40 0.514390
\(639\) 7908.96 + 13698.7i 0.489630 + 0.848064i
\(640\) 810.535 + 1403.89i 0.0500613 + 0.0867087i
\(641\) −12260.2 + 21235.3i −0.755459 + 1.30849i 0.189687 + 0.981845i \(0.439253\pi\)
−0.945146 + 0.326649i \(0.894081\pi\)
\(642\) 18936.2 1.16410
\(643\) −5887.83 + 10198.0i −0.361110 + 0.625460i −0.988144 0.153532i \(-0.950935\pi\)
0.627034 + 0.778992i \(0.284269\pi\)
\(644\) −2556.60 + 4428.16i −0.156435 + 0.270954i
\(645\) 41803.1 2.55193
\(646\) −4671.69 + 8091.61i −0.284528 + 0.492817i
\(647\) 10917.4 + 18909.5i 0.663382 + 1.14901i 0.979721 + 0.200365i \(0.0642128\pi\)
−0.316340 + 0.948646i \(0.602454\pi\)
\(648\) 963.817 + 1669.38i 0.0584295 + 0.101203i
\(649\) −41291.5 −2.49743
\(650\) 0 0
\(651\) −45718.1 −2.75243
\(652\) −5246.50 9087.21i −0.315136 0.545832i
\(653\) −3663.85 6345.98i −0.219567 0.380302i 0.735108 0.677950i \(-0.237131\pi\)
−0.954676 + 0.297648i \(0.903798\pi\)
\(654\) −8177.18 + 14163.3i −0.488919 + 0.846832i
\(655\) −27581.9 −1.64537
\(656\) −963.657 + 1669.10i −0.0573544 + 0.0993407i
\(657\) −6362.61 + 11020.4i −0.377822 + 0.654407i
\(658\) 23061.2 1.36629
\(659\) 4184.17 7247.20i 0.247333 0.428393i −0.715452 0.698662i \(-0.753779\pi\)
0.962785 + 0.270269i \(0.0871126\pi\)
\(660\) 10905.4 + 18888.7i 0.643169 + 1.11400i
\(661\) −7591.06 13148.1i −0.446684 0.773679i 0.551484 0.834185i \(-0.314062\pi\)
−0.998168 + 0.0605065i \(0.980728\pi\)
\(662\) −20013.3 −1.17498
\(663\) 0 0
\(664\) 3558.56 0.207980
\(665\) −11982.0 20753.4i −0.698708 1.21020i
\(666\) −9185.34 15909.5i −0.534421 0.925645i
\(667\) −1742.53 + 3018.15i −0.101156 + 0.175207i
\(668\) −5112.01 −0.296092
\(669\) −13419.4 + 23243.1i −0.775521 + 1.34324i
\(670\) −10198.9 + 17665.0i −0.588085 + 1.01859i
\(671\) −2777.10 −0.159774
\(672\) −3750.76 + 6496.51i −0.215311 + 0.372929i
\(673\) 9952.15 + 17237.6i 0.570026 + 0.987314i 0.996563 + 0.0828434i \(0.0264001\pi\)
−0.426537 + 0.904470i \(0.640267\pi\)
\(674\) −11057.1 19151.5i −0.631905 1.09449i
\(675\) −3573.01 −0.203741
\(676\) 0 0
\(677\) −10760.9 −0.610896 −0.305448 0.952209i \(-0.598806\pi\)
−0.305448 + 0.952209i \(0.598806\pi\)
\(678\) −6065.47 10505.7i −0.343574 0.595087i
\(679\) 56.0501 + 97.0816i 0.00316790 + 0.00548697i
\(680\) 3598.38 6232.58i 0.202929 0.351483i
\(681\) −4428.33 −0.249183
\(682\) −10305.2 + 17849.1i −0.578601 + 1.00217i
\(683\) 11589.1 20073.0i 0.649262 1.12456i −0.334037 0.942560i \(-0.608411\pi\)
0.983299 0.181995i \(-0.0582556\pi\)
\(684\) 10362.5 0.579270
\(685\) −11193.3 + 19387.4i −0.624344 + 1.08140i
\(686\) 4078.05 + 7063.38i 0.226969 + 0.393121i
\(687\) 12513.9 + 21674.8i 0.694959 + 1.20370i
\(688\) 6481.64 0.359172
\(689\) 0 0
\(690\) −9169.77 −0.505923
\(691\) −8675.41 15026.3i −0.477610 0.827244i 0.522061 0.852908i \(-0.325163\pi\)
−0.999671 + 0.0256641i \(0.991830\pi\)
\(692\) −2139.96 3706.53i −0.117557 0.203614i
\(693\) −29941.4 + 51860.1i −1.64124 + 2.84271i
\(694\) −17267.9 −0.944497
\(695\) 6367.36 11028.6i 0.347522 0.601925i
\(696\) −2556.45 + 4427.90i −0.139227 + 0.241148i
\(697\) 8556.34 0.464985
\(698\) −9369.06 + 16227.7i −0.508057 + 0.879981i
\(699\) 13782.6 + 23872.2i 0.745788 + 1.29174i
\(700\) 2036.51 + 3527.35i 0.109961 + 0.190459i
\(701\) 50.2552 0.00270772 0.00135386 0.999999i \(-0.499569\pi\)
0.00135386 + 0.999999i \(0.499569\pi\)
\(702\) 0 0
\(703\) 15336.5 0.822799
\(704\) 1690.90 + 2928.72i 0.0905229 + 0.156790i
\(705\) 20678.5 + 35816.1i 1.10468 + 1.91335i
\(706\) 5017.86 8691.19i 0.267492 0.463311i
\(707\) 29786.6 1.58450
\(708\) 12734.3 22056.5i 0.675966 1.17081i
\(709\) 12727.2 22044.2i 0.674163 1.16768i −0.302550 0.953133i \(-0.597838\pi\)
0.976713 0.214550i \(-0.0688286\pi\)
\(710\) 10171.5 0.537647
\(711\) 15654.5 27114.4i 0.825724 1.43020i
\(712\) −316.589 548.348i −0.0166639 0.0288626i
\(713\) −4332.55 7504.19i −0.227567 0.394157i
\(714\) 33303.1 1.74557
\(715\) 0 0
\(716\) 2950.20 0.153986
\(717\) 2845.90 + 4929.24i 0.148231 + 0.256744i
\(718\) −7268.33 12589.1i −0.377788 0.654348i
\(719\) −3742.99 + 6483.06i −0.194145 + 0.336269i −0.946620 0.322352i \(-0.895527\pi\)
0.752475 + 0.658621i \(0.228860\pi\)
\(720\) −7981.76 −0.413142
\(721\) 17960.1 31107.9i 0.927698 1.60682i
\(722\) 2533.50 4388.14i 0.130591 0.226191i
\(723\) −30273.5 −1.55724
\(724\) 2914.03 5047.26i 0.149585 0.259088i
\(725\) 1388.05 + 2404.17i 0.0711047 + 0.123157i
\(726\) 11905.3 + 20620.5i 0.608604 + 1.05413i
\(727\) 19443.6 0.991919 0.495959 0.868346i \(-0.334817\pi\)
0.495959 + 0.868346i \(0.334817\pi\)
\(728\) 0 0
\(729\) −31700.8 −1.61057
\(730\) 4091.39 + 7086.49i 0.207437 + 0.359292i
\(731\) −14387.7 24920.2i −0.727972 1.26088i
\(732\) 856.456 1483.42i 0.0432452 0.0749030i
\(733\) 24222.3 1.22056 0.610280 0.792186i \(-0.291057\pi\)
0.610280 + 0.792186i \(0.291057\pi\)
\(734\) −11887.4 + 20589.6i −0.597784 + 1.03539i
\(735\) −25010.7 + 43319.8i −1.25515 + 2.17398i
\(736\) −1421.79 −0.0712063
\(737\) −21276.4 + 36851.8i −1.06340 + 1.84186i
\(738\) −4744.81 8218.26i −0.236665 0.409916i
\(739\) −1805.33 3126.92i −0.0898647 0.155650i 0.817589 0.575802i \(-0.195310\pi\)
−0.907454 + 0.420152i \(0.861977\pi\)
\(740\) −11813.0 −0.586830
\(741\) 0 0
\(742\) −6707.33 −0.331852
\(743\) 13089.8 + 22672.2i 0.646324 + 1.11947i 0.983994 + 0.178201i \(0.0570278\pi\)
−0.337670 + 0.941264i \(0.609639\pi\)
\(744\) −6356.23 11009.3i −0.313213 0.542502i
\(745\) −862.928 + 1494.63i −0.0424365 + 0.0735022i
\(746\) −28469.1 −1.39722
\(747\) −8760.75 + 15174.1i −0.429102 + 0.743226i
\(748\) 7506.77 13002.1i 0.366945 0.635567i
\(749\) 33431.7 1.63093
\(750\) 9246.74 16015.8i 0.450191 0.779753i
\(751\) −6379.01 11048.8i −0.309951 0.536851i 0.668400 0.743802i \(-0.266979\pi\)
−0.978351 + 0.206950i \(0.933646\pi\)
\(752\) 3206.23 + 5553.36i 0.155478 + 0.269295i
\(753\) 31392.9 1.51929
\(754\) 0 0
\(755\) 10187.3 0.491066
\(756\) −5809.03 10061.5i −0.279461 0.484040i
\(757\) −39.2371 67.9606i −0.00188388 0.00326297i 0.865082 0.501631i \(-0.167266\pi\)
−0.866966 + 0.498368i \(0.833933\pi\)
\(758\) −7920.09 + 13718.0i −0.379513 + 0.657335i
\(759\) −19129.5 −0.914832
\(760\) 3331.73 5770.73i 0.159019 0.275429i
\(761\) 8488.84 14703.1i 0.404363 0.700377i −0.589884 0.807488i \(-0.700827\pi\)
0.994247 + 0.107111i \(0.0341600\pi\)
\(762\) −27434.6 −1.30427
\(763\) −14436.8 + 25005.2i −0.684988 + 1.18643i
\(764\) −1150.86 1993.35i −0.0544983 0.0943938i
\(765\) 17717.6 + 30687.7i 0.837360 + 1.45035i
\(766\) 21253.9 1.00252
\(767\) 0 0
\(768\) −2085.89 −0.0980053
\(769\) 11494.7 + 19909.4i 0.539024 + 0.933616i 0.998957 + 0.0456629i \(0.0145400\pi\)
−0.459933 + 0.887954i \(0.652127\pi\)
\(770\) 19253.4 + 33347.9i 0.901096 + 1.56074i
\(771\) 18648.6 32300.3i 0.871092 1.50878i
\(772\) 9754.90 0.454775
\(773\) 3016.71 5225.10i 0.140367 0.243123i −0.787268 0.616611i \(-0.788505\pi\)
0.927635 + 0.373488i \(0.121838\pi\)
\(774\) −15957.0 + 27638.4i −0.741038 + 1.28351i
\(775\) −6902.36 −0.319923
\(776\) −15.5854 + 26.9947i −0.000720984 + 0.00124878i
\(777\) −27332.4 47341.1i −1.26196 2.18578i
\(778\) 10183.7 + 17638.6i 0.469283 + 0.812823i
\(779\) 7922.29 0.364372
\(780\) 0 0
\(781\) 21219.3 0.972196
\(782\) 3156.03 + 5466.40i 0.144321 + 0.249972i
\(783\) −3959.32 6857.75i −0.180708 0.312996i
\(784\) −3877.95 + 6716.81i −0.176656 + 0.305977i
\(785\) −47239.9 −2.14785
\(786\) 17745.3 30735.8i 0.805286 1.39480i
\(787\) −18827.9 + 32610.9i −0.852786 + 1.47707i 0.0258980 + 0.999665i \(0.491755\pi\)
−0.878684 + 0.477404i \(0.841578\pi\)
\(788\) 15294.1 0.691408
\(789\) −19650.7 + 34035.9i −0.886669 + 1.53576i
\(790\) −10066.4 17435.5i −0.453350 0.785225i
\(791\) −10708.6 18547.8i −0.481356 0.833733i
\(792\) −16651.2 −0.747062
\(793\) 0 0
\(794\) 7304.13 0.326466
\(795\) −6014.30 10417.1i −0.268308 0.464724i
\(796\) 4314.82 + 7473.49i 0.192129 + 0.332778i
\(797\) −12114.0 + 20982.1i −0.538395 + 0.932527i 0.460596 + 0.887610i \(0.347636\pi\)
−0.998991 + 0.0449170i \(0.985698\pi\)
\(798\) 30835.3 1.36787
\(799\) 14234.1 24654.2i 0.630246 1.09162i
\(800\) −566.278 + 980.822i −0.0250262 + 0.0433466i
\(801\) 3117.61 0.137522
\(802\) 8884.69 15388.7i 0.391184 0.677550i
\(803\) 8535.25 + 14783.5i 0.375097 + 0.649686i
\(804\) −13123.3 22730.2i −0.575649 0.997053i
\(805\) −16189.2 −0.708812
\(806\) 0 0
\(807\) 16017.3 0.698682
\(808\) 4141.26 + 7172.87i 0.180308 + 0.312303i
\(809\) −19987.2 34618.9i −0.868621 1.50450i −0.863407 0.504509i \(-0.831674\pi\)
−0.00521394 0.999986i \(-0.501660\pi\)
\(810\) −3051.59 + 5285.51i −0.132373 + 0.229277i
\(811\) 13394.4 0.579953 0.289977 0.957034i \(-0.406352\pi\)
0.289977 + 0.957034i \(0.406352\pi\)
\(812\) −4513.40 + 7817.44i −0.195061 + 0.337855i
\(813\) −17990.5 + 31160.4i −0.776080 + 1.34421i
\(814\) −24643.7 −1.06113
\(815\) 16611.2 28771.5i 0.713946 1.23659i
\(816\) 4630.17 + 8019.70i 0.198638 + 0.344051i
\(817\) −13321.5 23073.5i −0.570453 0.988054i
\(818\) −22935.9 −0.980362
\(819\) 0 0
\(820\) −6102.17 −0.259874
\(821\) −15769.6 27313.8i −0.670358 1.16109i −0.977803 0.209528i \(-0.932807\pi\)
0.307445 0.951566i \(-0.400526\pi\)
\(822\) −14402.9 24946.5i −0.611142 1.05853i
\(823\) 13443.2 23284.2i 0.569379 0.986193i −0.427249 0.904134i \(-0.640517\pi\)
0.996627 0.0820590i \(-0.0261496\pi\)
\(824\) 9988.07 0.422271
\(825\) −7619.01 + 13196.5i −0.321527 + 0.556901i
\(826\) 22482.3 38940.5i 0.947047 1.64033i
\(827\) 16064.3 0.675466 0.337733 0.941242i \(-0.390340\pi\)
0.337733 + 0.941242i \(0.390340\pi\)
\(828\) 3500.27 6062.65i 0.146912 0.254458i
\(829\) −3927.65 6802.90i −0.164551 0.285011i 0.771945 0.635690i \(-0.219284\pi\)
−0.936496 + 0.350679i \(0.885951\pi\)
\(830\) 5633.48 + 9757.47i 0.235591 + 0.408056i
\(831\) −29432.5 −1.22864
\(832\) 0 0
\(833\) 34432.5 1.43219
\(834\) 8193.11 + 14190.9i 0.340173 + 0.589197i
\(835\) −8092.70 14017.0i −0.335401 0.580931i
\(836\) 6950.50 12038.6i 0.287545 0.498043i
\(837\) 19688.5 0.813065
\(838\) 15914.1 27564.0i 0.656017 1.13626i
\(839\) −2603.26 + 4508.98i −0.107121 + 0.185539i −0.914603 0.404354i \(-0.867497\pi\)
0.807482 + 0.589892i \(0.200830\pi\)
\(840\) −23751.0 −0.975579
\(841\) 9118.25 15793.3i 0.373867 0.647557i
\(842\) 3091.64 + 5354.88i 0.126538 + 0.219170i
\(843\) 16683.1 + 28896.0i 0.681610 + 1.18058i
\(844\) 13455.4 0.548762
\(845\) 0 0
\(846\) −31573.4 −1.28312
\(847\) 21018.7 + 36405.5i 0.852670 + 1.47687i
\(848\) −932.528 1615.19i −0.0377631 0.0654077i
\(849\) 27402.5 47462.6i 1.10772 1.91862i
\(850\) 5028.00 0.202893
\(851\) 5180.40 8972.72i 0.208674 0.361435i
\(852\) −6544.01 + 11334.6i −0.263139 + 0.455770i
\(853\) −11007.6 −0.441842 −0.220921 0.975292i \(-0.570906\pi\)
−0.220921 + 0.975292i \(0.570906\pi\)
\(854\) 1512.07 2618.98i 0.0605877 0.104941i
\(855\) 16404.6 + 28413.7i 0.656172 + 1.13652i
\(856\) 4648.05 + 8050.65i 0.185592 + 0.321455i
\(857\) −15769.9 −0.628576 −0.314288 0.949328i \(-0.601766\pi\)
−0.314288 + 0.949328i \(0.601766\pi\)
\(858\) 0 0
\(859\) 13386.6 0.531716 0.265858 0.964012i \(-0.414345\pi\)
0.265858 + 0.964012i \(0.414345\pi\)
\(860\) 10260.9 + 17772.5i 0.406854 + 0.704693i
\(861\) −14118.9 24454.7i −0.558853 0.967961i
\(862\) −4996.69 + 8654.52i −0.197434 + 0.341965i
\(863\) 13233.1 0.521968 0.260984 0.965343i \(-0.415953\pi\)
0.260984 + 0.965343i \(0.415953\pi\)
\(864\) 1615.27 2797.73i 0.0636026 0.110163i
\(865\) 6775.45 11735.4i 0.266326 0.461291i
\(866\) −3683.67 −0.144545
\(867\) 540.147 935.563i 0.0211584 0.0366475i
\(868\) −11221.9 19436.9i −0.438820 0.760059i
\(869\) −21000.0 36373.1i −0.819767 1.41988i
\(870\) −16188.2 −0.630841
\(871\) 0 0
\(872\) −8028.64 −0.311794
\(873\) −76.7388 132.916i −0.00297505 0.00515293i
\(874\) 2922.16 + 5061.32i 0.113093 + 0.195883i
\(875\) 16325.1 28275.8i 0.630729 1.09245i
\(876\) −10529.1 −0.406101
\(877\) −17860.3 + 30934.9i −0.687684 + 1.19110i 0.284901 + 0.958557i \(0.408039\pi\)
−0.972585 + 0.232547i \(0.925294\pi\)
\(878\) −9963.22 + 17256.8i −0.382964 + 0.663313i
\(879\) −36694.1 −1.40803
\(880\) −5353.64 + 9272.78i −0.205081 + 0.355211i
\(881\) −263.170 455.824i −0.0100641 0.0174315i 0.860950 0.508690i \(-0.169870\pi\)
−0.871014 + 0.491259i \(0.836537\pi\)
\(882\) −19094.1 33071.9i −0.728947 1.26257i
\(883\) 39626.2 1.51022 0.755112 0.655596i \(-0.227583\pi\)
0.755112 + 0.655596i \(0.227583\pi\)
\(884\) 0 0
\(885\) 80637.5 3.06282
\(886\) 8480.02 + 14687.8i 0.321548 + 0.556938i
\(887\) 18332.2 + 31752.3i 0.693951 + 1.20196i 0.970533 + 0.240968i \(0.0774650\pi\)
−0.276582 + 0.960990i \(0.589202\pi\)
\(888\) 7600.11 13163.8i 0.287211 0.497463i
\(889\) −48435.7 −1.82731
\(890\) 1002.37 1736.15i 0.0377522 0.0653887i
\(891\) −6366.08 + 11026.4i −0.239362 + 0.414588i
\(892\) −13175.6 −0.494566
\(893\) 13179.3 22827.3i 0.493874 0.855415i
\(894\) −1110.36 1923.20i −0.0415392 0.0719480i
\(895\) 4670.38 + 8089.34i 0.174429 + 0.302119i
\(896\) −3682.63 −0.137308
\(897\) 0 0
\(898\) 6901.34 0.256460
\(899\) −7648.64 13247.8i −0.283756 0.491479i
\(900\) −2788.21 4829.33i −0.103267 0.178864i
\(901\) −4139.97 + 7170.64i −0.153077 + 0.265137i
\(902\) −12730.0 −0.469916
\(903\) −47482.6 + 82242.3i −1.74986 + 3.03084i
\(904\) 2977.65 5157.43i 0.109552 0.189750i
\(905\) 18452.6 0.677772
\(906\) −6554.21 + 11352.2i −0.240341 + 0.416283i
\(907\) 17715.0 + 30683.3i 0.648530 + 1.12329i 0.983474 + 0.181049i \(0.0579493\pi\)
−0.334944 + 0.942238i \(0.608717\pi\)
\(908\) −1086.97 1882.69i −0.0397273 0.0688098i
\(909\) −40781.1 −1.48804
\(910\) 0 0
\(911\) −1970.18 −0.0716521 −0.0358261 0.999358i \(-0.511406\pi\)
−0.0358261 + 0.999358i \(0.511406\pi\)
\(912\) 4287.06 + 7425.41i 0.155657 + 0.269605i
\(913\) 11752.3 + 20355.6i 0.426006 + 0.737865i
\(914\) −6541.22 + 11329.7i −0.236723 + 0.410016i
\(915\) 5423.34 0.195945
\(916\) −6143.31 + 10640.5i −0.221595 + 0.383813i
\(917\) 31329.3 54263.9i 1.12823 1.95415i
\(918\) −14342.0 −0.515640
\(919\) −3499.62 + 6061.52i −0.125617 + 0.217575i −0.921974 0.387252i \(-0.873424\pi\)
0.796357 + 0.604827i \(0.206758\pi\)
\(920\) −2250.80 3898.50i −0.0806594 0.139706i
\(921\) −7882.19 13652.4i −0.282005 0.488448i
\(922\) 29227.7 1.04399
\(923\) 0 0
\(924\) −49548.1 −1.76408
\(925\) −4126.56 7147.41i −0.146681 0.254060i
\(926\) 3680.01 + 6373.96i 0.130597 + 0.226200i
\(927\) −24589.4 + 42590.1i −0.871222 + 1.50900i
\(928\) −2510.01 −0.0887879
\(929\) −11816.3 + 20466.4i −0.417309 + 0.722801i −0.995668 0.0929817i \(-0.970360\pi\)
0.578358 + 0.815783i \(0.303694\pi\)
\(930\) 20124.8 34857.2i 0.709590 1.22905i
\(931\) 31880.9 1.12229
\(932\) −6766.11 + 11719.3i −0.237802 + 0.411885i
\(933\) −10819.4 18739.8i −0.379649 0.657571i
\(934\) −457.544 792.489i −0.0160292 0.0277634i
\(935\) 47535.2 1.66264
\(936\) 0 0
\(937\) −30872.4 −1.07637 −0.538183 0.842828i \(-0.680889\pi\)
−0.538183 + 0.842828i \(0.680889\pi\)
\(938\) −23169.1 40130.0i −0.806499 1.39690i
\(939\) 24861.0 + 43060.6i 0.864014 + 1.49652i
\(940\) −10151.4 + 17582.8i −0.352237 + 0.610092i
\(941\) −6690.77 −0.231788 −0.115894 0.993262i \(-0.536973\pi\)
−0.115894 + 0.993262i \(0.536973\pi\)
\(942\) 30392.7 52641.6i 1.05122 1.82076i
\(943\) 2676.01 4634.98i 0.0924102 0.160059i
\(944\) 12503.0 0.431078
\(945\) 18392.3 31856.3i 0.633122 1.09660i
\(946\) 21405.9 + 37076.0i 0.735692 + 1.27426i
\(947\) −10738.6 18599.7i −0.368486 0.638237i 0.620843 0.783935i \(-0.286791\pi\)
−0.989329 + 0.145698i \(0.953457\pi\)
\(948\) 25905.6 0.887527
\(949\) 0 0
\(950\) 4655.41 0.158991
\(951\) 5634.33 + 9758.94i 0.192119 + 0.332761i
\(952\) 8174.55 + 14158.7i 0.278297 + 0.482024i
\(953\) 3925.25 6798.73i 0.133422 0.231094i −0.791571 0.611077i \(-0.790737\pi\)
0.924994 + 0.379983i \(0.124070\pi\)
\(954\) 9183.08 0.311649
\(955\) 3643.80 6311.25i 0.123467 0.213851i
\(956\) −1397.10 + 2419.85i −0.0472651 + 0.0818656i
\(957\) −33771.1 −1.14071
\(958\) 9770.94 16923.8i 0.329525 0.570753i
\(959\) −25428.2 44043.0i −0.856226 1.48303i
\(960\) −3302.12 5719.45i −0.111016 0.192286i
\(961\) 8243.39 0.276707
\(962\) 0 0
\(963\) −45771.7 −1.53164
\(964\) −7430.89 12870.7i −0.248270 0.430017i
\(965\) 15442.7 + 26747.6i 0.515150 + 0.892266i
\(966\) 10415.6 18040.4i 0.346912 0.600869i
\(967\) 44143.2 1.46799 0.733997 0.679152i \(-0.237652\pi\)
0.733997 + 0.679152i \(0.237652\pi\)
\(968\) −5844.51 + 10123.0i −0.194060 + 0.336121i
\(969\) 19032.5 32965.2i 0.630972 1.09288i
\(970\) −98.6916 −0.00326680
\(971\) −14315.9 + 24795.8i −0.473139 + 0.819500i −0.999527 0.0307439i \(-0.990212\pi\)
0.526389 + 0.850244i \(0.323546\pi\)
\(972\) −9378.13 16243.4i −0.309469 0.536016i
\(973\) 14464.9 + 25053.9i 0.476591 + 0.825481i
\(974\) 40500.4 1.33236
\(975\) 0 0
\(976\) 840.898 0.0275784
\(977\) 4652.80 + 8058.88i 0.152360 + 0.263896i 0.932095 0.362215i \(-0.117979\pi\)
−0.779734 + 0.626110i \(0.784646\pi\)
\(978\) 21374.3 + 37021.3i 0.698849 + 1.21044i
\(979\) 2091.09 3621.88i 0.0682651 0.118239i
\(980\) −24556.4 −0.800433
\(981\) 19765.5 34234.9i 0.643287 1.11421i
\(982\) 17279.4 29928.9i 0.561516 0.972574i
\(983\) −28467.2 −0.923666 −0.461833 0.886967i \(-0.652808\pi\)
−0.461833 + 0.886967i \(0.652808\pi\)
\(984\) 3925.94 6799.93i 0.127190 0.220299i
\(985\) 24211.7 + 41935.9i 0.783197 + 1.35654i
\(986\) 5571.62 + 9650.33i 0.179956 + 0.311693i
\(987\) −93951.6 −3.02990
\(988\) 0 0
\(989\) −17999.1 −0.578703
\(990\) −26360.0 45656.9i −0.846240 1.46573i
\(991\) −7749.06 13421.8i −0.248393 0.430229i 0.714687 0.699444i \(-0.246569\pi\)
−0.963080 + 0.269215i \(0.913236\pi\)
\(992\) 3120.39 5404.67i 0.0998713 0.172982i
\(993\) 81534.3 2.60565
\(994\) −11553.4 + 20011.1i −0.368664 + 0.638545i
\(995\) −13661.4 + 23662.2i −0.435272 + 0.753912i
\(996\) −14497.6 −0.461219
\(997\) −630.399 + 1091.88i −0.0200250 + 0.0346844i −0.875864 0.482558i \(-0.839708\pi\)
0.855839 + 0.517242i \(0.173041\pi\)
\(998\) −16994.7 29435.6i −0.539035 0.933636i
\(999\) 11770.7 + 20387.5i 0.372782 + 0.645678i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.4.c.o.315.6 12
13.2 odd 12 338.4.b.h.337.1 12
13.3 even 3 338.4.a.o.1.1 yes 6
13.4 even 6 338.4.c.p.191.6 12
13.5 odd 4 338.4.e.i.23.5 24
13.6 odd 12 338.4.e.i.147.12 24
13.7 odd 12 338.4.e.i.147.5 24
13.8 odd 4 338.4.e.i.23.12 24
13.9 even 3 inner 338.4.c.o.191.6 12
13.10 even 6 338.4.a.n.1.1 6
13.11 odd 12 338.4.b.h.337.7 12
13.12 even 2 338.4.c.p.315.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
338.4.a.n.1.1 6 13.10 even 6
338.4.a.o.1.1 yes 6 13.3 even 3
338.4.b.h.337.1 12 13.2 odd 12
338.4.b.h.337.7 12 13.11 odd 12
338.4.c.o.191.6 12 13.9 even 3 inner
338.4.c.o.315.6 12 1.1 even 1 trivial
338.4.c.p.191.6 12 13.4 even 6
338.4.c.p.315.6 12 13.12 even 2
338.4.e.i.23.5 24 13.5 odd 4
338.4.e.i.23.12 24 13.8 odd 4
338.4.e.i.147.5 24 13.7 odd 12
338.4.e.i.147.12 24 13.6 odd 12