Properties

Label 3380.1.cs.a.1047.1
Level $3380$
Weight $1$
Character 3380.1047
Analytic conductor $1.687$
Analytic rank $0$
Dimension $48$
Projective image $D_{156}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3380,1,Mod(7,3380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3380, base_ring=CyclotomicField(156))
 
chi = DirichletCharacter(H, H._module([78, 39, 107]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3380.7");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3380 = 2^{2} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3380.cs (of order \(156\), degree \(48\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.68683974270\)
Analytic rank: \(0\)
Dimension: \(48\)
Coefficient field: \(\Q(\zeta_{156})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{48} + x^{46} - x^{42} - x^{40} + x^{36} + x^{34} - x^{30} - x^{28} + x^{24} - x^{20} - x^{18} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{156}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{156} - \cdots)\)

Embedding invariants

Embedding label 1047.1
Root \(-0.316668 + 0.948536i\) of defining polynomial
Character \(\chi\) \(=\) 3380.1047
Dual form 3380.1.cs.a.3083.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.600742 - 0.799443i) q^{2} +(-0.278217 - 0.960518i) q^{4} +(-0.632445 + 0.774605i) q^{5} +(-0.935016 - 0.354605i) q^{8} +(0.391967 + 0.919979i) q^{9} +(0.239316 + 0.970942i) q^{10} +(-0.987050 - 0.160411i) q^{13} +(-0.845190 + 0.534466i) q^{16} +(-1.02399 + 1.42140i) q^{17} +(0.970942 + 0.239316i) q^{18} +(0.919979 + 0.391967i) q^{20} +(-0.200026 - 0.979791i) q^{25} +(-0.721202 + 0.692724i) q^{26} +(-1.13965 + 1.51660i) q^{29} +(-0.0804666 + 0.996757i) q^{32} +(0.521177 + 1.67252i) q^{34} +(0.774605 - 0.632445i) q^{36} +(1.99190 - 0.160803i) q^{37} +(0.866025 - 0.500000i) q^{40} +(-1.09182 + 1.65196i) q^{41} +(-0.960518 - 0.278217i) q^{45} +(0.948536 - 0.316668i) q^{49} +(-0.903450 - 0.428693i) q^{50} +(0.120537 + 0.992709i) q^{52} +(-0.666000 - 1.47979i) q^{53} +(0.527799 + 1.82217i) q^{58} +(-1.23933 + 1.51790i) q^{61} +(0.748511 + 0.663123i) q^{64} +(0.748511 - 0.663123i) q^{65} +(1.65017 + 0.588099i) q^{68} +(-0.0402659 - 0.999189i) q^{72} +(-0.992709 + 0.120537i) q^{73} +(1.06806 - 1.68901i) q^{74} +(0.120537 - 0.992709i) q^{80} +(-0.692724 + 0.721202i) q^{81} +(0.664749 + 1.86525i) q^{82} +(-0.453409 - 1.69214i) q^{85} +(0.574732 - 0.153999i) q^{89} +(-0.799443 + 0.600742i) q^{90} +(1.64463 - 0.0662764i) q^{97} +(0.316668 - 0.948536i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} + 2 q^{5} - 2 q^{13} + 2 q^{16} + 4 q^{17} + 4 q^{18} - 2 q^{20} + 2 q^{25} + 2 q^{34} - 2 q^{41} + 2 q^{49} - 4 q^{52} - 2 q^{53} - 2 q^{58} + 4 q^{64} + 4 q^{65} + 2 q^{68} + 2 q^{72} + 20 q^{74}+ \cdots - 2 q^{90}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3380\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1691\) \(1861\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(e\left(\frac{71}{156}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.600742 0.799443i 0.600742 0.799443i
\(3\) 0 0 −0.834256 0.551377i \(-0.814103\pi\)
0.834256 + 0.551377i \(0.185897\pi\)
\(4\) −0.278217 0.960518i −0.278217 0.960518i
\(5\) −0.632445 + 0.774605i −0.632445 + 0.774605i
\(6\) 0 0
\(7\) 0 0 0.987050 0.160411i \(-0.0512821\pi\)
−0.987050 + 0.160411i \(0.948718\pi\)
\(8\) −0.935016 0.354605i −0.935016 0.354605i
\(9\) 0.391967 + 0.919979i 0.391967 + 0.919979i
\(10\) 0.239316 + 0.970942i 0.239316 + 0.970942i
\(11\) 0 0 0.927686 0.373361i \(-0.121795\pi\)
−0.927686 + 0.373361i \(0.878205\pi\)
\(12\) 0 0
\(13\) −0.987050 0.160411i −0.987050 0.160411i
\(14\) 0 0
\(15\) 0 0
\(16\) −0.845190 + 0.534466i −0.845190 + 0.534466i
\(17\) −1.02399 + 1.42140i −1.02399 + 1.42140i −0.120537 + 0.992709i \(0.538462\pi\)
−0.903450 + 0.428693i \(0.858974\pi\)
\(18\) 0.970942 + 0.239316i 0.970942 + 0.239316i
\(19\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(20\) 0.919979 + 0.391967i 0.919979 + 0.391967i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(24\) 0 0
\(25\) −0.200026 0.979791i −0.200026 0.979791i
\(26\) −0.721202 + 0.692724i −0.721202 + 0.692724i
\(27\) 0 0
\(28\) 0 0
\(29\) −1.13965 + 1.51660i −1.13965 + 1.51660i −0.316668 + 0.948536i \(0.602564\pi\)
−0.822984 + 0.568065i \(0.807692\pi\)
\(30\) 0 0
\(31\) 0 0 0.180255 0.983620i \(-0.442308\pi\)
−0.180255 + 0.983620i \(0.557692\pi\)
\(32\) −0.0804666 + 0.996757i −0.0804666 + 0.996757i
\(33\) 0 0
\(34\) 0.521177 + 1.67252i 0.521177 + 1.67252i
\(35\) 0 0
\(36\) 0.774605 0.632445i 0.774605 0.632445i
\(37\) 1.99190 0.160803i 1.99190 0.160803i 0.992709 0.120537i \(-0.0384615\pi\)
0.999189 0.0402659i \(-0.0128205\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.866025 0.500000i 0.866025 0.500000i
\(41\) −1.09182 + 1.65196i −1.09182 + 1.65196i −0.428693 + 0.903450i \(0.641026\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(42\) 0 0
\(43\) 0 0 −0.647915 0.761712i \(-0.724359\pi\)
0.647915 + 0.761712i \(0.275641\pi\)
\(44\) 0 0
\(45\) −0.960518 0.278217i −0.960518 0.278217i
\(46\) 0 0
\(47\) 0 0 0.970942 0.239316i \(-0.0769231\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(48\) 0 0
\(49\) 0.948536 0.316668i 0.948536 0.316668i
\(50\) −0.903450 0.428693i −0.903450 0.428693i
\(51\) 0 0
\(52\) 0.120537 + 0.992709i 0.120537 + 0.992709i
\(53\) −0.666000 1.47979i −0.666000 1.47979i −0.866025 0.500000i \(-0.833333\pi\)
0.200026 0.979791i \(-0.435897\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0.527799 + 1.82217i 0.527799 + 1.82217i
\(59\) 0 0 −0.219715 0.975564i \(-0.570513\pi\)
0.219715 + 0.975564i \(0.429487\pi\)
\(60\) 0 0
\(61\) −1.23933 + 1.51790i −1.23933 + 1.51790i −0.464723 + 0.885456i \(0.653846\pi\)
−0.774605 + 0.632445i \(0.782051\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.748511 + 0.663123i 0.748511 + 0.663123i
\(65\) 0.748511 0.663123i 0.748511 0.663123i
\(66\) 0 0
\(67\) 0 0 −0.960518 0.278217i \(-0.910256\pi\)
0.960518 + 0.278217i \(0.0897436\pi\)
\(68\) 1.65017 + 0.588099i 1.65017 + 0.588099i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.446798 0.894635i \(-0.647436\pi\)
0.446798 + 0.894635i \(0.352564\pi\)
\(72\) −0.0402659 0.999189i −0.0402659 0.999189i
\(73\) −0.992709 + 0.120537i −0.992709 + 0.120537i −0.600742 0.799443i \(-0.705128\pi\)
−0.391967 + 0.919979i \(0.628205\pi\)
\(74\) 1.06806 1.68901i 1.06806 1.68901i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.239316 0.970942i \(-0.576923\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(80\) 0.120537 0.992709i 0.120537 0.992709i
\(81\) −0.692724 + 0.721202i −0.692724 + 0.721202i
\(82\) 0.664749 + 1.86525i 0.664749 + 1.86525i
\(83\) 0 0 −0.748511 0.663123i \(-0.769231\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(84\) 0 0
\(85\) −0.453409 1.69214i −0.453409 1.69214i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.574732 0.153999i 0.574732 0.153999i 0.0402659 0.999189i \(-0.487179\pi\)
0.534466 + 0.845190i \(0.320513\pi\)
\(90\) −0.799443 + 0.600742i −0.799443 + 0.600742i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.64463 0.0662764i 1.64463 0.0662764i 0.799443 0.600742i \(-0.205128\pi\)
0.845190 + 0.534466i \(0.179487\pi\)
\(98\) 0.316668 0.948536i 0.316668 0.948536i
\(99\) 0 0
\(100\) −0.885456 + 0.464723i −0.885456 + 0.464723i
\(101\) −0.145395 + 0.0689908i −0.145395 + 0.0689908i −0.500000 0.866025i \(-0.666667\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(102\) 0 0
\(103\) 0 0 −0.998176 0.0603785i \(-0.980769\pi\)
0.998176 + 0.0603785i \(0.0192308\pi\)
\(104\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(105\) 0 0
\(106\) −1.58310 0.356544i −1.58310 0.356544i
\(107\) 0 0 0.735006 0.678061i \(-0.237179\pi\)
−0.735006 + 0.678061i \(0.762821\pi\)
\(108\) 0 0
\(109\) 0.186505 + 1.01773i 0.186505 + 1.01773i 0.935016 + 0.354605i \(0.115385\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.242292 0.366598i −0.242292 0.366598i 0.692724 0.721202i \(-0.256410\pi\)
−0.935016 + 0.354605i \(0.884615\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.77379 + 0.672711i 1.77379 + 0.672711i
\(117\) −0.239316 0.970942i −0.239316 0.970942i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.721202 0.692724i 0.721202 0.692724i
\(122\) 0.468959 + 1.90264i 0.468959 + 1.90264i
\(123\) 0 0
\(124\) 0 0
\(125\) 0.885456 + 0.464723i 0.885456 + 0.464723i
\(126\) 0 0
\(127\) 0 0 −0.482459 0.875918i \(-0.660256\pi\)
0.482459 + 0.875918i \(0.339744\pi\)
\(128\) 0.979791 0.200026i 0.979791 0.200026i
\(129\) 0 0
\(130\) −0.0804666 0.996757i −0.0804666 0.996757i
\(131\) 0 0 0.120537 0.992709i \(-0.461538\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 1.46148 0.965923i 1.46148 0.965923i
\(137\) 1.68490 + 0.136019i 1.68490 + 0.136019i 0.885456 0.464723i \(-0.153846\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(138\) 0 0
\(139\) 0 0 0.999189 0.0402659i \(-0.0128205\pi\)
−0.999189 + 0.0402659i \(0.987179\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −0.822984 0.568065i −0.822984 0.568065i
\(145\) −0.453999 1.84195i −0.453999 1.84195i
\(146\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(147\) 0 0
\(148\) −0.708635 1.86852i −0.708635 1.86852i
\(149\) 0.671273 + 0.0135202i 0.671273 + 0.0135202i 0.354605 0.935016i \(-0.384615\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(150\) 0 0
\(151\) 0 0 0.855781 0.517338i \(-0.173077\pi\)
−0.855781 + 0.517338i \(0.826923\pi\)
\(152\) 0 0
\(153\) −1.70903 0.384905i −1.70903 0.384905i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1.79863 0.560476i −1.79863 0.560476i −0.799443 0.600742i \(-0.794872\pi\)
−0.999189 + 0.0402659i \(0.987179\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −0.721202 0.692724i −0.721202 0.692724i
\(161\) 0 0
\(162\) 0.160411 + 0.987050i 0.160411 + 0.987050i
\(163\) 0 0 −0.903450 0.428693i \(-0.858974\pi\)
0.903450 + 0.428693i \(0.141026\pi\)
\(164\) 1.89050 + 0.589104i 1.89050 + 0.589104i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.799443 0.600742i \(-0.794872\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(168\) 0 0
\(169\) 0.948536 + 0.316668i 0.948536 + 0.316668i
\(170\) −1.62515 0.654068i −1.62515 0.654068i
\(171\) 0 0
\(172\) 0 0
\(173\) 0.963158 1.74864i 0.963158 1.74864i 0.428693 0.903450i \(-0.358974\pi\)
0.534466 0.845190i \(-0.320513\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0.222152 0.551979i 0.222152 0.551979i
\(179\) 0 0 −0.987050 0.160411i \(-0.948718\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(180\) 1.00000i 1.00000i
\(181\) −0.587824 1.12001i −0.587824 1.12001i −0.979791 0.200026i \(-0.935897\pi\)
0.391967 0.919979i \(-0.371795\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.13521 + 1.64463i −1.13521 + 1.64463i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 0 0
\(193\) −0.289847 + 1.78350i −0.289847 + 1.78350i 0.278217 + 0.960518i \(0.410256\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(194\) 0.935016 1.35460i 0.935016 1.35460i
\(195\) 0 0
\(196\) −0.568065 0.822984i −0.568065 0.822984i
\(197\) −1.19820 + 0.568552i −1.19820 + 0.568552i −0.919979 0.391967i \(-0.871795\pi\)
−0.278217 + 0.960518i \(0.589744\pi\)
\(198\) 0 0
\(199\) 0 0 −0.0402659 0.999189i \(-0.512821\pi\)
0.0402659 + 0.999189i \(0.487179\pi\)
\(200\) −0.160411 + 0.987050i −0.160411 + 0.987050i
\(201\) 0 0
\(202\) −0.0321908 + 0.157681i −0.0321908 + 0.157681i
\(203\) 0 0
\(204\) 0 0
\(205\) −0.589104 1.89050i −0.589104 1.89050i
\(206\) 0 0
\(207\) 0 0
\(208\) 0.919979 0.391967i 0.919979 0.391967i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.278217 0.960518i \(-0.410256\pi\)
−0.278217 + 0.960518i \(0.589744\pi\)
\(212\) −1.23607 + 1.05141i −1.23607 + 1.05141i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0.925657 + 0.462291i 0.925657 + 0.462291i
\(219\) 0 0
\(220\) 0 0
\(221\) 1.23874 1.23874i 1.23874 1.23874i
\(222\) 0 0
\(223\) 0 0 0.0402659 0.999189i \(-0.487179\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(224\) 0 0
\(225\) 0.822984 0.568065i 0.822984 0.568065i
\(226\) −0.438629 0.0265322i −0.438629 0.0265322i
\(227\) 0 0 0.960518 0.278217i \(-0.0897436\pi\)
−0.960518 + 0.278217i \(0.910256\pi\)
\(228\) 0 0
\(229\) −0.807380 + 0.147958i −0.807380 + 0.147958i −0.568065 0.822984i \(-0.692308\pi\)
−0.239316 + 0.970942i \(0.576923\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1.60339 1.01392i 1.60339 1.01392i
\(233\) 0.0217671 + 0.359852i 0.0217671 + 0.359852i 0.992709 + 0.120537i \(0.0384615\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(234\) −0.919979 0.391967i −0.919979 0.391967i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(240\) 0 0
\(241\) 0.810531 + 0.747735i 0.810531 + 0.747735i 0.970942 0.239316i \(-0.0769231\pi\)
−0.160411 + 0.987050i \(0.551282\pi\)
\(242\) −0.120537 0.992709i −0.120537 0.992709i
\(243\) 0 0
\(244\) 1.80277 + 0.768090i 1.80277 + 0.768090i
\(245\) −0.354605 + 0.935016i −0.354605 + 0.935016i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0.903450 0.428693i 0.903450 0.428693i
\(251\) 0 0 −0.903450 0.428693i \(-0.858974\pi\)
0.903450 + 0.428693i \(0.141026\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.428693 0.903450i 0.428693 0.903450i
\(257\) 0.00404843 + 0.201003i 0.00404843 + 0.201003i 0.996757 + 0.0804666i \(0.0256410\pi\)
−0.992709 + 0.120537i \(0.961538\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −0.845190 0.534466i −0.845190 0.534466i
\(261\) −1.84195 0.453999i −1.84195 0.453999i
\(262\) 0 0
\(263\) 0 0 0.927686 0.373361i \(-0.121795\pi\)
−0.927686 + 0.373361i \(0.878205\pi\)
\(264\) 0 0
\(265\) 1.56746 + 0.420000i 1.56746 + 0.420000i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.294326 + 0.881614i −0.294326 + 0.881614i 0.692724 + 0.721202i \(0.256410\pi\)
−0.987050 + 0.160411i \(0.948718\pi\)
\(270\) 0 0
\(271\) 0 0 −0.482459 0.875918i \(-0.660256\pi\)
0.482459 + 0.875918i \(0.339744\pi\)
\(272\) 0.105773 1.74864i 0.105773 1.74864i
\(273\) 0 0
\(274\) 1.12093 1.26527i 1.12093 1.26527i
\(275\) 0 0
\(276\) 0 0
\(277\) −0.194194 1.92207i −0.194194 1.92207i −0.354605 0.935016i \(-0.615385\pi\)
0.160411 0.987050i \(-0.448718\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.0705851 1.16691i 0.0705851 1.16691i −0.774605 0.632445i \(-0.782051\pi\)
0.845190 0.534466i \(-0.179487\pi\)
\(282\) 0 0
\(283\) 0 0 −0.761712 0.647915i \(-0.775641\pi\)
0.761712 + 0.647915i \(0.224359\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.948536 + 0.316668i −0.948536 + 0.316668i
\(289\) −0.655164 1.96246i −0.655164 1.96246i
\(290\) −1.74527 0.743589i −1.74527 0.743589i
\(291\) 0 0
\(292\) 0.391967 + 0.919979i 0.391967 + 0.919979i
\(293\) −1.54419 1.26079i −1.54419 1.26079i −0.822984 0.568065i \(-0.807692\pi\)
−0.721202 0.692724i \(-0.756410\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.91948 0.555984i −1.91948 0.555984i
\(297\) 0 0
\(298\) 0.414071 0.528522i 0.414071 0.528522i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.391967 1.91998i −0.391967 1.91998i
\(306\) −1.33440 + 1.13504i −1.33440 + 1.13504i
\(307\) 0 0 −0.568065 0.822984i \(-0.692308\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.822984 0.568065i \(-0.192308\pi\)
−0.822984 + 0.568065i \(0.807692\pi\)
\(312\) 0 0
\(313\) −0.222333 1.21323i −0.222333 1.21323i −0.885456 0.464723i \(-0.846154\pi\)
0.663123 0.748511i \(-0.269231\pi\)
\(314\) −1.52858 + 1.10120i −1.52858 + 1.10120i
\(315\) 0 0
\(316\) 0 0
\(317\) −1.84582 + 0.700026i −1.84582 + 0.700026i −0.866025 + 0.500000i \(0.833333\pi\)
−0.979791 + 0.200026i \(0.935897\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.987050 + 0.160411i −0.987050 + 0.160411i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.885456 + 0.464723i 0.885456 + 0.464723i
\(325\) 0.0402659 + 0.999189i 0.0402659 + 0.999189i
\(326\) 0 0
\(327\) 0 0
\(328\) 1.60666 1.15745i 1.60666 1.15745i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.811378 0.584522i \(-0.801282\pi\)
0.811378 + 0.584522i \(0.198718\pi\)
\(332\) 0 0
\(333\) 0.928693 + 1.76948i 0.928693 + 1.76948i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −0.916291 + 0.916291i −0.916291 + 0.916291i −0.996757 0.0804666i \(-0.974359\pi\)
0.0804666 + 0.996757i \(0.474359\pi\)
\(338\) 0.822984 0.568065i 0.822984 0.568065i
\(339\) 0 0
\(340\) −1.49919 + 0.906291i −1.49919 + 0.906291i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −0.819328 1.82047i −0.819328 1.82047i
\(347\) 0 0 −0.927686 0.373361i \(-0.878205\pi\)
0.927686 + 0.373361i \(0.121795\pi\)
\(348\) 0 0
\(349\) −0.712912 1.77136i −0.712912 1.77136i −0.632445 0.774605i \(-0.717949\pi\)
−0.0804666 0.996757i \(-0.525641\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.979791 + 1.20003i 0.979791 + 1.20003i 0.979791 + 0.200026i \(0.0641026\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −0.307819 0.509195i −0.307819 0.509195i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.410413 0.911900i \(-0.365385\pi\)
−0.410413 + 0.911900i \(0.634615\pi\)
\(360\) 0.799443 + 0.600742i 0.799443 + 0.600742i
\(361\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(362\) −1.24851 0.202903i −1.24851 0.202903i
\(363\) 0 0
\(364\) 0 0
\(365\) 0.534466 0.845190i 0.534466 0.845190i
\(366\) 0 0
\(367\) 0 0 −0.140502 0.990080i \(-0.544872\pi\)
0.140502 + 0.990080i \(0.455128\pi\)
\(368\) 0 0
\(369\) −1.94773 0.356934i −1.94773 0.356934i
\(370\) 0.632822 + 1.89553i 0.632822 + 1.89553i
\(371\) 0 0
\(372\) 0 0
\(373\) −0.0394819 + 0.278217i −0.0394819 + 0.278217i 0.960518 + 0.278217i \(0.0897436\pi\)
−1.00000 \(1.00000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.36817 1.31415i 1.36817 1.31415i
\(378\) 0 0
\(379\) 0 0 −0.834256 0.551377i \(-0.814103\pi\)
0.834256 + 0.551377i \(0.185897\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.632445 0.774605i \(-0.282051\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1.25168 + 1.30314i 1.25168 + 1.30314i
\(387\) 0 0
\(388\) −0.521225 1.56126i −0.521225 1.56126i
\(389\) −0.0285570 0.0752986i −0.0285570 0.0752986i 0.919979 0.391967i \(-0.128205\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.999189 0.0402659i −0.999189 0.0402659i
\(393\) 0 0
\(394\) −0.265283 + 1.29944i −0.265283 + 1.29944i
\(395\) 0 0
\(396\) 0 0
\(397\) 1.67806 + 1.06114i 1.67806 + 1.06114i 0.903450 + 0.428693i \(0.141026\pi\)
0.774605 + 0.632445i \(0.217949\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.692724 + 0.721202i 0.692724 + 0.721202i
\(401\) −0.334720 + 1.48620i −0.334720 + 1.48620i 0.464723 + 0.885456i \(0.346154\pi\)
−0.799443 + 0.600742i \(0.794872\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0.106718 + 0.120460i 0.106718 + 0.120460i
\(405\) −0.120537 0.992709i −0.120537 0.992709i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −0.463097 + 0.231280i −0.463097 + 0.231280i −0.663123 0.748511i \(-0.730769\pi\)
0.200026 + 0.979791i \(0.435897\pi\)
\(410\) −1.86525 0.664749i −1.86525 0.664749i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0.239316 0.970942i 0.239316 0.970942i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.721202 0.692724i \(-0.756410\pi\)
0.721202 + 0.692724i \(0.243590\pi\)
\(420\) 0 0
\(421\) 0.100742 + 1.66547i 0.100742 + 1.66547i 0.600742 + 0.799443i \(0.294872\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0.0979795 + 1.61980i 0.0979795 + 1.61980i
\(425\) 1.59750 + 0.718976i 1.59750 + 0.718976i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.999797 0.0201371i \(-0.00641026\pi\)
−0.999797 + 0.0201371i \(0.993590\pi\)
\(432\) 0 0
\(433\) 0.322984 + 1.43409i 0.322984 + 1.43409i 0.822984 + 0.568065i \(0.192308\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.925657 0.462291i 0.925657 0.462291i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.428693 0.903450i \(-0.641026\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(440\) 0 0
\(441\) 0.663123 + 0.748511i 0.663123 + 0.748511i
\(442\) −0.246137 1.73446i −0.246137 1.73446i
\(443\) 0 0 0.998176 0.0603785i \(-0.0192308\pi\)
−0.998176 + 0.0603785i \(0.980769\pi\)
\(444\) 0 0
\(445\) −0.244198 + 0.542586i −0.244198 + 0.542586i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.759568 + 1.37902i −0.759568 + 1.37902i 0.160411 + 0.987050i \(0.448718\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(450\) 0.0402659 0.999189i 0.0402659 0.999189i
\(451\) 0 0
\(452\) −0.284714 + 0.334720i −0.284714 + 0.334720i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.101594 + 0.304312i 0.101594 + 0.304312i 0.987050 0.160411i \(-0.0512821\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(458\) −0.366744 + 0.734339i −0.366744 + 0.734339i
\(459\) 0 0
\(460\) 0 0
\(461\) 1.81003 + 0.728476i 1.81003 + 0.728476i 0.987050 + 0.160411i \(0.0512821\pi\)
0.822984 + 0.568065i \(0.192308\pi\)
\(462\) 0 0
\(463\) 0 0 −0.992709 0.120537i \(-0.961538\pi\)
0.992709 + 0.120537i \(0.0384615\pi\)
\(464\) 0.152651 1.89092i 0.152651 1.89092i
\(465\) 0 0
\(466\) 0.300758 + 0.198777i 0.300758 + 0.198777i
\(467\) 0 0 −0.787183 0.616719i \(-0.788462\pi\)
0.787183 + 0.616719i \(0.211538\pi\)
\(468\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.10033 1.19273i 1.10033 1.19273i
\(478\) 0 0
\(479\) 0 0 0.335705 0.941967i \(-0.391026\pi\)
−0.335705 + 0.941967i \(0.608974\pi\)
\(480\) 0 0
\(481\) −1.99190 0.160803i −1.99190 0.160803i
\(482\) 1.08469 0.198777i 1.08469 0.198777i
\(483\) 0 0
\(484\) −0.866025 0.500000i −0.866025 0.500000i
\(485\) −0.988802 + 1.31586i −0.988802 + 1.31586i
\(486\) 0 0
\(487\) 0 0 0.721202 0.692724i \(-0.243590\pi\)
−0.721202 + 0.692724i \(0.756410\pi\)
\(488\) 1.69705 0.979791i 1.69705 0.979791i
\(489\) 0 0
\(490\) 0.534466 + 0.845190i 0.534466 + 0.845190i
\(491\) 0 0 −0.534466 0.845190i \(-0.679487\pi\)
0.534466 + 0.845190i \(0.320513\pi\)
\(492\) 0 0
\(493\) −0.988710 3.17288i −0.988710 3.17288i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.410413 0.911900i \(-0.634615\pi\)
0.410413 + 0.911900i \(0.365385\pi\)
\(500\) 0.200026 0.979791i 0.200026 0.979791i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.875918 0.482459i \(-0.839744\pi\)
0.875918 + 0.482459i \(0.160256\pi\)
\(504\) 0 0
\(505\) 0.0385138 0.156257i 0.0385138 0.156257i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.884733 0.125553i 0.884733 0.125553i 0.316668 0.948536i \(-0.397436\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.464723 0.885456i −0.464723 0.885456i
\(513\) 0 0
\(514\) 0.163123 + 0.117515i 0.163123 + 0.117515i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −0.935016 + 0.354605i −0.935016 + 0.354605i
\(521\) 1.06386 + 0.558358i 1.06386 + 0.558358i 0.903450 0.428693i \(-0.141026\pi\)
0.160411 + 0.987050i \(0.448718\pi\)
\(522\) −1.46948 + 1.19979i −1.46948 + 1.19979i
\(523\) 0 0 0.219715 0.975564i \(-0.429487\pi\)
−0.219715 + 0.975564i \(0.570513\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 0.866025 0.500000i 0.866025 0.500000i
\(530\) 1.27741 1.00078i 1.27741 1.00078i
\(531\) 0 0
\(532\) 0 0
\(533\) 1.34267 1.45543i 1.34267 1.45543i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0.527986 + 0.764919i 0.527986 + 0.764919i
\(539\) 0 0
\(540\) 0 0
\(541\) 1.89977 0.591992i 1.89977 0.591992i 0.919979 0.391967i \(-0.128205\pi\)
0.979791 0.200026i \(-0.0641026\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −1.33440 1.13504i −1.33440 1.13504i
\(545\) −0.906291 0.499189i −0.906291 0.499189i
\(546\) 0 0
\(547\) 0 0 0.616719 0.787183i \(-0.288462\pi\)
−0.616719 + 0.787183i \(0.711538\pi\)
\(548\) −0.338119 1.65622i −0.338119 1.65622i
\(549\) −1.88221 0.545190i −1.88221 0.545190i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −1.65324 0.999420i −1.65324 0.999420i
\(555\) 0 0
\(556\) 0 0
\(557\) 1.64291 0.548485i 1.64291 0.548485i 0.663123 0.748511i \(-0.269231\pi\)
0.979791 + 0.200026i \(0.0641026\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −0.890475 0.757442i −0.890475 0.757442i
\(563\) 0 0 0.834256 0.551377i \(-0.185897\pi\)
−0.834256 + 0.551377i \(0.814103\pi\)
\(564\) 0 0
\(565\) 0.437205 + 0.0441724i 0.437205 + 0.0441724i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −0.0192725 + 0.478243i −0.0192725 + 0.478243i 0.960518 + 0.278217i \(0.0897436\pi\)
−0.979791 + 0.200026i \(0.935897\pi\)
\(570\) 0 0
\(571\) 0 0 0.663123 0.748511i \(-0.269231\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.316668 + 0.948536i −0.316668 + 0.948536i
\(577\) 1.38545i 1.38545i 0.721202 + 0.692724i \(0.243590\pi\)
−0.721202 + 0.692724i \(0.756410\pi\)
\(578\) −1.96246 0.655164i −1.96246 0.655164i
\(579\) 0 0
\(580\) −1.64291 + 0.948536i −1.64291 + 0.948536i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0.970942 + 0.239316i 0.970942 + 0.239316i
\(585\) 0.903450 + 0.428693i 0.903450 + 0.428693i
\(586\) −1.93559 + 0.477079i −1.93559 + 0.477079i
\(587\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −1.59759 + 1.20051i −1.59759 + 1.20051i
\(593\) 0.956491 1.07966i 0.956491 1.07966i −0.0402659 0.999189i \(-0.512821\pi\)
0.996757 0.0804666i \(-0.0256410\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.173773 0.648531i −0.173773 0.648531i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.239316 0.970942i \(-0.423077\pi\)
−0.239316 + 0.970942i \(0.576923\pi\)
\(600\) 0 0
\(601\) 0.368039 + 0.156807i 0.368039 + 0.156807i 0.568065 0.822984i \(-0.307692\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.0804666 + 0.996757i 0.0804666 + 0.996757i
\(606\) 0 0
\(607\) 0 0 −0.446798 0.894635i \(-0.647436\pi\)
0.446798 + 0.894635i \(0.352564\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −1.77038 0.840058i −1.77038 0.840058i
\(611\) 0 0
\(612\) 0.105773 + 1.74864i 0.105773 + 1.74864i
\(613\) 0.338119 0.213814i 0.338119 0.213814i −0.354605 0.935016i \(-0.615385\pi\)
0.692724 + 0.721202i \(0.256410\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −0.338496 + 0.535289i −0.338496 + 0.535289i −0.970942 0.239316i \(-0.923077\pi\)
0.632445 + 0.774605i \(0.282051\pi\)
\(618\) 0 0
\(619\) 0 0 −0.998176 0.0603785i \(-0.980769\pi\)
0.998176 + 0.0603785i \(0.0192308\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.919979 + 0.391967i −0.919979 + 0.391967i
\(626\) −1.10348 0.551098i −1.10348 0.551098i
\(627\) 0 0
\(628\) −0.0379369 + 1.88355i −0.0379369 + 1.88355i
\(629\) −1.81111 + 2.99595i −1.81111 + 2.99595i
\(630\) 0 0
\(631\) 0 0 −0.100522 0.994935i \(-0.532051\pi\)
0.100522 + 0.994935i \(0.467949\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −0.549229 + 1.89616i −0.549229 + 1.89616i
\(635\) 0 0
\(636\) 0 0
\(637\) −0.987050 + 0.160411i −0.987050 + 0.160411i
\(638\) 0 0
\(639\) 0 0
\(640\) −0.464723 + 0.885456i −0.464723 + 0.885456i
\(641\) 1.04052 + 1.38468i 1.04052 + 1.38468i 0.919979 + 0.391967i \(0.128205\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(642\) 0 0
\(643\) 0 0 0.200026 0.979791i \(-0.435897\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.990080 0.140502i \(-0.0448718\pi\)
−0.990080 + 0.140502i \(0.955128\pi\)
\(648\) 0.903450 0.428693i 0.903450 0.428693i
\(649\) 0 0
\(650\) 0.822984 + 0.568065i 0.822984 + 0.568065i
\(651\) 0 0
\(652\) 0 0
\(653\) −0.472034 1.76166i −0.472034 1.76166i −0.632445 0.774605i \(-0.717949\pi\)
0.160411 0.987050i \(-0.448718\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.0398746 1.97976i 0.0398746 1.97976i
\(657\) −0.500000 0.866025i −0.500000 0.866025i
\(658\) 0 0
\(659\) 0 0 −0.160411 0.987050i \(-0.551282\pi\)
0.160411 + 0.987050i \(0.448718\pi\)
\(660\) 0 0
\(661\) 0.0400701 + 0.00404843i 0.0400701 + 0.00404843i 0.120537 0.992709i \(-0.461538\pi\)
−0.0804666 + 0.996757i \(0.525641\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 1.97250 + 0.320562i 1.97250 + 0.320562i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.09717 1.66006i 1.09717 1.66006i 0.464723 0.885456i \(-0.346154\pi\)
0.632445 0.774605i \(-0.282051\pi\)
\(674\) 0.182067 + 1.28298i 0.182067 + 1.28298i
\(675\) 0 0
\(676\) 0.0402659 0.999189i 0.0402659 0.999189i
\(677\) 1.21026 + 1.21026i 1.21026 + 1.21026i 0.970942 + 0.239316i \(0.0769231\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −0.176098 + 1.74296i −0.176098 + 1.74296i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.160411 0.987050i \(-0.551282\pi\)
0.160411 + 0.987050i \(0.448718\pi\)
\(684\) 0 0
\(685\) −1.17097 + 1.21911i −1.17097 + 1.21911i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0.420000 + 1.56746i 0.420000 + 1.56746i
\(690\) 0 0
\(691\) 0 0 0.100522 0.994935i \(-0.467949\pi\)
−0.100522 + 0.994935i \(0.532051\pi\)
\(692\) −1.94757 0.438629i −1.94757 0.438629i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1.23010 3.24349i −1.23010 3.24349i
\(698\) −1.84438 0.494200i −1.84438 0.494200i
\(699\) 0 0
\(700\) 0 0
\(701\) 1.53901 + 1.06230i 1.53901 + 1.06230i 0.970942 + 0.239316i \(0.0769231\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 1.54795 0.0623804i 1.54795 0.0623804i
\(707\) 0 0
\(708\) 0 0
\(709\) 1.66817 1.10253i 1.66817 1.10253i 0.822984 0.568065i \(-0.192308\pi\)
0.845190 0.534466i \(-0.179487\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −0.591992 0.0598112i −0.591992 0.0598112i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.996757 0.0804666i \(-0.974359\pi\)
0.996757 + 0.0804666i \(0.0256410\pi\)
\(720\) 0.960518 0.278217i 0.960518 0.278217i
\(721\) 0 0
\(722\) 0.919979 0.391967i 0.919979 0.391967i
\(723\) 0 0
\(724\) −0.912242 + 0.876221i −0.912242 + 0.876221i
\(725\) 1.71391 + 0.813261i 1.71391 + 0.813261i
\(726\) 0 0
\(727\) 0 0 −0.911900 0.410413i \(-0.865385\pi\)
0.911900 + 0.410413i \(0.134615\pi\)
\(728\) 0 0
\(729\) −0.935016 0.354605i −0.935016 0.354605i
\(730\) −0.354605 0.935016i −0.354605 0.935016i
\(731\) 0 0
\(732\) 0 0
\(733\) 0.641762 0.568552i 0.641762 0.568552i −0.278217 0.960518i \(-0.589744\pi\)
0.919979 + 0.391967i \(0.128205\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −1.45543 + 1.34267i −1.45543 + 1.34267i
\(739\) 0 0 −0.975564 0.219715i \(-0.929487\pi\)
0.975564 + 0.219715i \(0.0705128\pi\)
\(740\) 1.89553 + 0.632822i 1.89553 + 0.632822i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.278217 0.960518i \(-0.410256\pi\)
−0.278217 + 0.960518i \(0.589744\pi\)
\(744\) 0 0
\(745\) −0.435016 + 0.511421i −0.435016 + 0.511421i
\(746\) 0.198700 + 0.198700i 0.198700 + 0.198700i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.391967 0.919979i \(-0.371795\pi\)
−0.391967 + 0.919979i \(0.628205\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −0.228667 1.88324i −0.228667 1.88324i
\(755\) 0 0
\(756\) 0 0
\(757\) −0.120733 + 0.00243169i −0.120733 + 0.00243169i −0.0804666 0.996757i \(-0.525641\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −0.256248 + 1.80571i −0.256248 + 1.80571i 0.278217 + 0.960518i \(0.410256\pi\)
−0.534466 + 0.845190i \(0.679487\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.37902 1.08039i 1.37902 1.08039i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0.00243169 + 0.120733i 0.00243169 + 0.120733i 0.999189 + 0.0402659i \(0.0128205\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.79373 0.217798i 1.79373 0.217798i
\(773\) −0.0192725 0.478243i −0.0192725 0.478243i −0.979791 0.200026i \(-0.935897\pi\)
0.960518 0.278217i \(-0.0897436\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −1.56126 0.521225i −1.56126 0.521225i
\(777\) 0 0
\(778\) −0.0773523 0.0224054i −0.0773523 0.0224054i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.632445 + 0.774605i −0.632445 + 0.774605i
\(785\) 1.57168 1.03876i 1.57168 1.03876i
\(786\) 0 0
\(787\) 0 0 −0.278217 0.960518i \(-0.589744\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(788\) 0.879463 + 0.992709i 0.879463 + 0.992709i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.46677 1.29944i 1.46677 1.29944i
\(794\) 1.85640 0.704039i 1.85640 0.704039i
\(795\) 0 0
\(796\) 0 0
\(797\) −1.57405 0.0317031i −1.57405 0.0317031i −0.774605 0.632445i \(-0.782051\pi\)
−0.799443 + 0.600742i \(0.794872\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.992709 0.120537i 0.992709 0.120537i
\(801\) 0.366951 + 0.468379i 0.366951 + 0.468379i
\(802\) 0.987050 + 1.16041i 0.987050 + 1.16041i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0.160411 0.0129497i 0.160411 0.0129497i
\(809\) −0.664135 + 0.542249i −0.664135 + 0.542249i −0.903450 0.428693i \(-0.858974\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(810\) −0.866025 0.500000i −0.866025 0.500000i
\(811\) 0 0 −0.297503 0.954721i \(-0.596154\pi\)
0.297503 + 0.954721i \(0.403846\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −0.0933069 + 0.509159i −0.0933069 + 0.509159i
\(819\) 0 0
\(820\) −1.65196 + 1.09182i −1.65196 + 1.09182i
\(821\) −1.14990 1.59617i −1.14990 1.59617i −0.721202 0.692724i \(-0.756410\pi\)
−0.428693 0.903450i \(-0.641026\pi\)
\(822\) 0 0
\(823\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.970942 0.239316i \(-0.923077\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(828\) 0 0
\(829\) 0.271156 0.171469i 0.271156 0.171469i −0.391967 0.919979i \(-0.628205\pi\)
0.663123 + 0.748511i \(0.269231\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −0.632445 0.774605i −0.632445 0.774605i
\(833\) −0.521177 + 1.67252i −0.521177 + 1.67252i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.941967 0.335705i \(-0.108974\pi\)
−0.941967 + 0.335705i \(0.891026\pi\)
\(840\) 0 0
\(841\) −0.723055 2.49628i −0.723055 2.49628i
\(842\) 1.39197 + 0.919979i 1.39197 + 0.919979i
\(843\) 0 0
\(844\) 0 0
\(845\) −0.845190 + 0.534466i −0.845190 + 0.534466i
\(846\) 0 0
\(847\) 0 0
\(848\) 1.35379 + 0.894750i 1.35379 + 0.894750i
\(849\) 0 0
\(850\) 1.53447 0.845190i 1.53447 0.845190i
\(851\) 0 0
\(852\) 0 0
\(853\) −0.520276 0.197315i −0.520276 0.197315i 0.0804666 0.996757i \(-0.474359\pi\)
−0.600742 + 0.799443i \(0.705128\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0.496387 1.59296i 0.496387 1.59296i −0.278217 0.960518i \(-0.589744\pi\)
0.774605 0.632445i \(-0.217949\pi\)
\(858\) 0 0
\(859\) 0 0 0.464723 0.885456i \(-0.346154\pi\)
−0.464723 + 0.885456i \(0.653846\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.970942 0.239316i \(-0.923077\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(864\) 0 0
\(865\) 0.745361 + 1.85199i 0.745361 + 1.85199i
\(866\) 1.34050 + 0.603311i 1.34050 + 0.603311i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0.186505 1.01773i 0.186505 1.01773i
\(873\) 0.705614 + 1.48705i 0.705614 + 1.48705i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −0.0966793 + 1.19759i −0.0966793 + 1.19759i 0.748511 + 0.663123i \(0.230769\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1.23850 + 1.01121i −1.23850 + 1.01121i −0.239316 + 0.970942i \(0.576923\pi\)
−0.999189 + 0.0402659i \(0.987179\pi\)
\(882\) 0.996757 0.0804666i 0.996757 0.0804666i
\(883\) 0 0 0.787183 0.616719i \(-0.211538\pi\)
−0.787183 + 0.616719i \(0.788462\pi\)
\(884\) −1.53447 0.845190i −1.53447 0.845190i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.875918 0.482459i \(-0.160256\pi\)
−0.875918 + 0.482459i \(0.839744\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0.287066 + 0.521177i 0.287066 + 0.521177i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0.646140 + 1.43566i 0.646140 + 1.43566i
\(899\) 0 0
\(900\) −0.774605 0.632445i −0.774605 0.632445i
\(901\) 2.78535 + 0.568634i 2.78535 + 0.568634i
\(902\) 0 0
\(903\) 0 0
\(904\) 0.0965496 + 0.428693i 0.0965496 + 0.428693i
\(905\) 1.23933 + 0.253011i 1.23933 + 0.253011i
\(906\) 0 0
\(907\) 0 0 −0.678061 0.735006i \(-0.737179\pi\)
0.678061 + 0.735006i \(0.262821\pi\)
\(908\) 0 0
\(909\) −0.120460 0.106718i −0.120460 0.106718i
\(910\) 0 0
\(911\) 0 0 0.748511 0.663123i \(-0.230769\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0.304312 + 0.101594i 0.304312 + 0.101594i
\(915\) 0 0
\(916\) 0.366744 + 0.734339i 0.366744 + 0.734339i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.534466 0.845190i \(-0.320513\pi\)
−0.534466 + 0.845190i \(0.679487\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.66974 1.00939i 1.66974 1.00939i
\(923\) 0 0
\(924\) 0 0
\(925\) −0.555984 1.91948i −0.555984 1.91948i
\(926\) 0 0
\(927\) 0 0
\(928\) −1.41998 1.25799i −1.41998 1.25799i
\(929\) −0.135573 + 0.955347i −0.135573 + 0.955347i 0.799443 + 0.600742i \(0.205128\pi\)
−0.935016 + 0.354605i \(0.884615\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.339589 0.121025i 0.339589 0.121025i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −0.120537 + 0.992709i −0.120537 + 0.992709i
\(937\) −0.267794 0.442985i −0.267794 0.442985i 0.692724 0.721202i \(-0.256410\pi\)
−0.960518 + 0.278217i \(0.910256\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.0744731 + 0.0950579i −0.0744731 + 0.0950579i −0.822984 0.568065i \(-0.807692\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.278217 0.960518i \(-0.410256\pi\)
−0.278217 + 0.960518i \(0.589744\pi\)
\(948\) 0 0
\(949\) 0.999189 + 0.0402659i 0.999189 + 0.0402659i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.120145 + 0.0121387i −0.120145 + 0.0121387i −0.160411 0.987050i \(-0.551282\pi\)
0.0402659 + 0.999189i \(0.487179\pi\)
\(954\) −0.292510 1.59617i −0.292510 1.59617i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.935016 0.354605i −0.935016 0.354605i
\(962\) −1.32517 + 1.49581i −1.32517 + 1.49581i
\(963\) 0 0
\(964\) 0.492709 0.986562i 0.492709 0.986562i
\(965\) −1.19820 1.35248i −1.19820 1.35248i
\(966\) 0 0
\(967\) 0 0 −0.239316 0.970942i \(-0.576923\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(968\) −0.919979 + 0.391967i −0.919979 + 0.391967i
\(969\) 0 0
\(970\) 0.457937 + 1.58098i 0.457937 + 1.58098i
\(971\) 0 0 −0.996757 0.0804666i \(-0.974359\pi\)
0.996757 + 0.0804666i \(0.0256410\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0.236201 1.94529i 0.236201 1.94529i
\(977\) −0.0689908 0.854605i −0.0689908 0.854605i −0.935016 0.354605i \(-0.884615\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.996757 + 0.0804666i 0.996757 + 0.0804666i
\(981\) −0.863184 + 0.570496i −0.863184 + 0.570496i
\(982\) 0 0
\(983\) 0 0 0.822984 0.568065i \(-0.192308\pi\)
−0.822984 + 0.568065i \(0.807692\pi\)
\(984\) 0 0
\(985\) 0.317391 1.28771i 0.317391 1.28771i
\(986\) −3.13050 1.11567i −3.13050 1.11567i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.58310 + 1.14048i 1.58310 + 1.14048i 0.919979 + 0.391967i \(0.128205\pi\)
0.663123 + 0.748511i \(0.269231\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3380.1.cs.a.1047.1 48
4.3 odd 2 CM 3380.1.cs.a.1047.1 48
5.3 odd 4 3380.1.cz.a.1723.1 yes 48
20.3 even 4 3380.1.cz.a.1723.1 yes 48
169.41 odd 156 3380.1.cz.a.2407.1 yes 48
676.379 even 156 3380.1.cz.a.2407.1 yes 48
845.548 even 156 inner 3380.1.cs.a.3083.1 yes 48
3380.3083 odd 156 inner 3380.1.cs.a.3083.1 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3380.1.cs.a.1047.1 48 1.1 even 1 trivial
3380.1.cs.a.1047.1 48 4.3 odd 2 CM
3380.1.cs.a.3083.1 yes 48 845.548 even 156 inner
3380.1.cs.a.3083.1 yes 48 3380.3083 odd 156 inner
3380.1.cz.a.1723.1 yes 48 5.3 odd 4
3380.1.cz.a.1723.1 yes 48 20.3 even 4
3380.1.cz.a.2407.1 yes 48 169.41 odd 156
3380.1.cz.a.2407.1 yes 48 676.379 even 156