Properties

Label 3380.1.cs.a.1207.1
Level $3380$
Weight $1$
Character 3380.1207
Analytic conductor $1.687$
Analytic rank $0$
Dimension $48$
Projective image $D_{156}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3380,1,Mod(7,3380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3380, base_ring=CyclotomicField(156))
 
chi = DirichletCharacter(H, H._module([78, 39, 107]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3380.7");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3380 = 2^{2} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3380.cs (of order \(156\), degree \(48\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.68683974270\)
Analytic rank: \(0\)
Dimension: \(48\)
Coefficient field: \(\Q(\zeta_{156})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{48} + x^{46} - x^{42} - x^{40} + x^{36} + x^{34} - x^{30} - x^{28} + x^{24} - x^{20} - x^{18} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{156}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{156} - \cdots)\)

Embedding invariants

Embedding label 1207.1
Root \(0.774605 - 0.632445i\) of defining polynomial
Character \(\chi\) \(=\) 3380.1207
Dual form 3380.1.cs.a.1683.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.979791 + 0.200026i) q^{2} +(0.919979 + 0.391967i) q^{4} +(-0.996757 + 0.0804666i) q^{5} +(0.822984 + 0.568065i) q^{8} +(-0.316668 - 0.948536i) q^{9} +(-0.992709 - 0.120537i) q^{10} +(-0.428693 + 0.903450i) q^{13} +(0.692724 + 0.721202i) q^{16} +(1.74770 + 0.622857i) q^{17} +(-0.120537 - 0.992709i) q^{18} +(-0.948536 - 0.316668i) q^{20} +(0.987050 - 0.160411i) q^{25} +(-0.600742 + 0.799443i) q^{26} +(1.23933 + 0.253011i) q^{29} +(0.534466 + 0.845190i) q^{32} +(1.58779 + 0.959854i) q^{34} +(0.0804666 - 0.996757i) q^{36} +(1.62364 + 1.02673i) q^{37} +(-0.866025 - 0.500000i) q^{40} +(-0.894750 - 0.644584i) q^{41} +(0.391967 + 0.919979i) q^{45} +(-0.632445 + 0.774605i) q^{49} +(0.999189 + 0.0402659i) q^{50} +(-0.748511 + 0.663123i) q^{52} +(-0.121025 - 0.660411i) q^{53} +(1.16367 + 0.495795i) q^{58} +(-0.319782 + 0.0258155i) q^{61} +(0.354605 + 0.935016i) q^{64} +(0.354605 - 0.935016i) q^{65} +(1.36371 + 1.25806i) q^{68} +(0.278217 - 0.960518i) q^{72} +(-0.663123 - 0.748511i) q^{73} +(1.38546 + 1.33075i) q^{74} +(-0.748511 - 0.663123i) q^{80} +(-0.799443 + 0.600742i) q^{81} +(-0.747735 - 0.810531i) q^{82} +(-1.79215 - 0.480206i) q^{85} +(0.442985 - 1.65324i) q^{89} +(0.200026 + 0.979791i) q^{90} +(-0.892750 - 0.258588i) q^{97} +(-0.774605 + 0.632445i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} + 2 q^{5} - 2 q^{13} + 2 q^{16} + 4 q^{17} + 4 q^{18} - 2 q^{20} + 2 q^{25} + 2 q^{34} - 2 q^{41} + 2 q^{49} - 4 q^{52} - 2 q^{53} - 2 q^{58} + 4 q^{64} + 4 q^{65} + 2 q^{68} + 2 q^{72} + 20 q^{74}+ \cdots - 2 q^{90}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3380\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1691\) \(1861\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(e\left(\frac{127}{156}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.979791 + 0.200026i 0.979791 + 0.200026i
\(3\) 0 0 0.584522 0.811378i \(-0.301282\pi\)
−0.584522 + 0.811378i \(0.698718\pi\)
\(4\) 0.919979 + 0.391967i 0.919979 + 0.391967i
\(5\) −0.996757 + 0.0804666i −0.996757 + 0.0804666i
\(6\) 0 0
\(7\) 0 0 −0.428693 0.903450i \(-0.641026\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(8\) 0.822984 + 0.568065i 0.822984 + 0.568065i
\(9\) −0.316668 0.948536i −0.316668 0.948536i
\(10\) −0.992709 0.120537i −0.992709 0.120537i
\(11\) 0 0 0.894635 0.446798i \(-0.147436\pi\)
−0.894635 + 0.446798i \(0.852564\pi\)
\(12\) 0 0
\(13\) −0.428693 + 0.903450i −0.428693 + 0.903450i
\(14\) 0 0
\(15\) 0 0
\(16\) 0.692724 + 0.721202i 0.692724 + 0.721202i
\(17\) 1.74770 + 0.622857i 1.74770 + 0.622857i 0.999189 0.0402659i \(-0.0128205\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(18\) −0.120537 0.992709i −0.120537 0.992709i
\(19\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(20\) −0.948536 0.316668i −0.948536 0.316668i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(24\) 0 0
\(25\) 0.987050 0.160411i 0.987050 0.160411i
\(26\) −0.600742 + 0.799443i −0.600742 + 0.799443i
\(27\) 0 0
\(28\) 0 0
\(29\) 1.23933 + 0.253011i 1.23933 + 0.253011i 0.774605 0.632445i \(-0.217949\pi\)
0.464723 + 0.885456i \(0.346154\pi\)
\(30\) 0 0
\(31\) 0 0 −0.954721 0.297503i \(-0.903846\pi\)
0.954721 + 0.297503i \(0.0961538\pi\)
\(32\) 0.534466 + 0.845190i 0.534466 + 0.845190i
\(33\) 0 0
\(34\) 1.58779 + 0.959854i 1.58779 + 0.959854i
\(35\) 0 0
\(36\) 0.0804666 0.996757i 0.0804666 0.996757i
\(37\) 1.62364 + 1.02673i 1.62364 + 1.02673i 0.960518 + 0.278217i \(0.0897436\pi\)
0.663123 + 0.748511i \(0.269231\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −0.866025 0.500000i −0.866025 0.500000i
\(41\) −0.894750 0.644584i −0.894750 0.644584i 0.0402659 0.999189i \(-0.487179\pi\)
−0.935016 + 0.354605i \(0.884615\pi\)
\(42\) 0 0
\(43\) 0 0 −0.975564 0.219715i \(-0.929487\pi\)
0.975564 + 0.219715i \(0.0705128\pi\)
\(44\) 0 0
\(45\) 0.391967 + 0.919979i 0.391967 + 0.919979i
\(46\) 0 0
\(47\) 0 0 0.120537 0.992709i \(-0.461538\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(48\) 0 0
\(49\) −0.632445 + 0.774605i −0.632445 + 0.774605i
\(50\) 0.999189 + 0.0402659i 0.999189 + 0.0402659i
\(51\) 0 0
\(52\) −0.748511 + 0.663123i −0.748511 + 0.663123i
\(53\) −0.121025 0.660411i −0.121025 0.660411i −0.987050 0.160411i \(-0.948718\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 1.16367 + 0.495795i 1.16367 + 0.495795i
\(59\) 0 0 0.999797 0.0201371i \(-0.00641026\pi\)
−0.999797 + 0.0201371i \(0.993590\pi\)
\(60\) 0 0
\(61\) −0.319782 + 0.0258155i −0.319782 + 0.0258155i −0.239316 0.970942i \(-0.576923\pi\)
−0.0804666 + 0.996757i \(0.525641\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.354605 + 0.935016i 0.354605 + 0.935016i
\(65\) 0.354605 0.935016i 0.354605 0.935016i
\(66\) 0 0
\(67\) 0 0 −0.391967 0.919979i \(-0.628205\pi\)
0.391967 + 0.919979i \(0.371795\pi\)
\(68\) 1.36371 + 1.25806i 1.36371 + 1.25806i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.100522 0.994935i \(-0.467949\pi\)
−0.100522 + 0.994935i \(0.532051\pi\)
\(72\) 0.278217 0.960518i 0.278217 0.960518i
\(73\) −0.663123 0.748511i −0.663123 0.748511i 0.316668 0.948536i \(-0.397436\pi\)
−0.979791 + 0.200026i \(0.935897\pi\)
\(74\) 1.38546 + 1.33075i 1.38546 + 1.33075i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.992709 0.120537i \(-0.961538\pi\)
0.992709 + 0.120537i \(0.0384615\pi\)
\(80\) −0.748511 0.663123i −0.748511 0.663123i
\(81\) −0.799443 + 0.600742i −0.799443 + 0.600742i
\(82\) −0.747735 0.810531i −0.747735 0.810531i
\(83\) 0 0 −0.354605 0.935016i \(-0.615385\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(84\) 0 0
\(85\) −1.79215 0.480206i −1.79215 0.480206i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.442985 1.65324i 0.442985 1.65324i −0.278217 0.960518i \(-0.589744\pi\)
0.721202 0.692724i \(-0.243590\pi\)
\(90\) 0.200026 + 0.979791i 0.200026 + 0.979791i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −0.892750 0.258588i −0.892750 0.258588i −0.200026 0.979791i \(-0.564103\pi\)
−0.692724 + 0.721202i \(0.743590\pi\)
\(98\) −0.774605 + 0.632445i −0.774605 + 0.632445i
\(99\) 0 0
\(100\) 0.970942 + 0.239316i 0.970942 + 0.239316i
\(101\) −1.06806 + 0.0430415i −1.06806 + 0.0430415i −0.568065 0.822984i \(-0.692308\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) 0 0 0.911900 0.410413i \(-0.134615\pi\)
−0.911900 + 0.410413i \(0.865385\pi\)
\(104\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(105\) 0 0
\(106\) 0.0135202 0.671273i 0.0135202 0.671273i
\(107\) 0 0 0.482459 0.875918i \(-0.339744\pi\)
−0.482459 + 0.875918i \(0.660256\pi\)
\(108\) 0 0
\(109\) −1.17759 + 0.366951i −1.17759 + 0.366951i −0.822984 0.568065i \(-0.807692\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.62243 1.16881i 1.62243 1.16881i 0.799443 0.600742i \(-0.205128\pi\)
0.822984 0.568065i \(-0.192308\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.04098 + 0.718540i 1.04098 + 0.718540i
\(117\) 0.992709 + 0.120537i 0.992709 + 0.120537i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.600742 0.799443i 0.600742 0.799443i
\(122\) −0.318483 0.0386709i −0.318483 0.0386709i
\(123\) 0 0
\(124\) 0 0
\(125\) −0.970942 + 0.239316i −0.970942 + 0.239316i
\(126\) 0 0
\(127\) 0 0 0.373361 0.927686i \(-0.378205\pi\)
−0.373361 + 0.927686i \(0.621795\pi\)
\(128\) 0.160411 + 0.987050i 0.160411 + 0.987050i
\(129\) 0 0
\(130\) 0.534466 0.845190i 0.534466 0.845190i
\(131\) 0 0 −0.748511 0.663123i \(-0.769231\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 1.08451 + 1.50541i 1.08451 + 1.50541i
\(137\) −1.17097 + 0.740475i −1.17097 + 0.740475i −0.970942 0.239316i \(-0.923077\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(138\) 0 0
\(139\) 0 0 −0.960518 0.278217i \(-0.910256\pi\)
0.960518 + 0.278217i \(0.0897436\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0.464723 0.885456i 0.464723 0.885456i
\(145\) −1.25567 0.152466i −1.25567 0.152466i
\(146\) −0.500000 0.866025i −0.500000 0.866025i
\(147\) 0 0
\(148\) 1.09127 + 1.58098i 1.09127 + 1.58098i
\(149\) −1.34267 + 0.190538i −1.34267 + 0.190538i −0.774605 0.632445i \(-0.782051\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(150\) 0 0
\(151\) 0 0 −0.787183 0.616719i \(-0.788462\pi\)
0.787183 + 0.616719i \(0.211538\pi\)
\(152\) 0 0
\(153\) 0.0373617 1.85500i 0.0373617 1.85500i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.760492 1.25801i −0.760492 1.25801i −0.960518 0.278217i \(-0.910256\pi\)
0.200026 0.979791i \(-0.435897\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −0.600742 0.799443i −0.600742 0.799443i
\(161\) 0 0
\(162\) −0.903450 + 0.428693i −0.903450 + 0.428693i
\(163\) 0 0 −0.999189 0.0402659i \(-0.987179\pi\)
0.999189 + 0.0402659i \(0.0128205\pi\)
\(164\) −0.570496 0.943716i −0.570496 0.943716i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.200026 0.979791i \(-0.435897\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(168\) 0 0
\(169\) −0.632445 0.774605i −0.632445 0.774605i
\(170\) −1.65988 0.828977i −1.65988 0.828977i
\(171\) 0 0
\(172\) 0 0
\(173\) 0.680937 + 1.69191i 0.680937 + 1.69191i 0.721202 + 0.692724i \(0.243590\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0.764724 1.53122i 0.764724 1.53122i
\(179\) 0 0 0.428693 0.903450i \(-0.358974\pi\)
−0.428693 + 0.903450i \(0.641026\pi\)
\(180\) 1.00000i 1.00000i
\(181\) −0.477079 + 1.93559i −0.477079 + 1.93559i −0.160411 + 0.987050i \(0.551282\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.70099 0.892750i −1.70099 0.892750i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0 0
\(193\) −1.80544 0.856690i −1.80544 0.856690i −0.919979 0.391967i \(-0.871795\pi\)
−0.885456 0.464723i \(-0.846154\pi\)
\(194\) −0.822984 0.431935i −0.822984 0.431935i
\(195\) 0 0
\(196\) −0.885456 + 0.464723i −0.885456 + 0.464723i
\(197\) 1.86852 0.0752986i 1.86852 0.0752986i 0.919979 0.391967i \(-0.128205\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(198\) 0 0
\(199\) 0 0 0.278217 0.960518i \(-0.410256\pi\)
−0.278217 + 0.960518i \(0.589744\pi\)
\(200\) 0.903450 + 0.428693i 0.903450 + 0.428693i
\(201\) 0 0
\(202\) −1.05509 0.171469i −1.05509 0.171469i
\(203\) 0 0
\(204\) 0 0
\(205\) 0.943716 + 0.570496i 0.943716 + 0.570496i
\(206\) 0 0
\(207\) 0 0
\(208\) −0.948536 + 0.316668i −0.948536 + 0.316668i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.919979 0.391967i \(-0.128205\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(212\) 0.147519 0.655003i 0.147519 0.655003i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −1.22719 + 0.123988i −1.22719 + 0.123988i
\(219\) 0 0
\(220\) 0 0
\(221\) −1.31195 + 1.31195i −1.31195 + 1.31195i
\(222\) 0 0
\(223\) 0 0 −0.278217 0.960518i \(-0.589744\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(224\) 0 0
\(225\) −0.464723 0.885456i −0.464723 0.885456i
\(226\) 1.82343 0.820659i 1.82343 0.820659i
\(227\) 0 0 0.391967 0.919979i \(-0.371795\pi\)
−0.391967 + 0.919979i \(0.628205\pi\)
\(228\) 0 0
\(229\) 0.107253 + 0.344186i 0.107253 + 0.344186i 0.992709 0.120537i \(-0.0384615\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.876221 + 0.912242i 0.876221 + 0.912242i
\(233\) 0.783659 1.74122i 0.783659 1.74122i 0.120537 0.992709i \(-0.461538\pi\)
0.663123 0.748511i \(-0.269231\pi\)
\(234\) 0.948536 + 0.316668i 0.948536 + 0.316668i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(240\) 0 0
\(241\) 0.782914 + 1.42140i 0.782914 + 1.42140i 0.903450 + 0.428693i \(0.141026\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(242\) 0.748511 0.663123i 0.748511 0.663123i
\(243\) 0 0
\(244\) −0.304312 0.101594i −0.304312 0.101594i
\(245\) 0.568065 0.822984i 0.568065 0.822984i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −0.999189 + 0.0402659i −0.999189 + 0.0402659i
\(251\) 0 0 −0.999189 0.0402659i \(-0.987179\pi\)
0.999189 + 0.0402659i \(0.0128205\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.0402659 + 0.999189i −0.0402659 + 0.999189i
\(257\) 0.182067 1.28298i 0.182067 1.28298i −0.663123 0.748511i \(-0.730769\pi\)
0.845190 0.534466i \(-0.179487\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.692724 0.721202i 0.692724 0.721202i
\(261\) −0.152466 1.25567i −0.152466 1.25567i
\(262\) 0 0
\(263\) 0 0 0.894635 0.446798i \(-0.147436\pi\)
−0.894635 + 0.446798i \(0.852564\pi\)
\(264\) 0 0
\(265\) 0.173773 + 0.648531i 0.173773 + 0.648531i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0.370750 0.302708i 0.370750 0.302708i −0.428693 0.903450i \(-0.641026\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(270\) 0 0
\(271\) 0 0 0.373361 0.927686i \(-0.378205\pi\)
−0.373361 + 0.927686i \(0.621795\pi\)
\(272\) 0.761468 + 1.69191i 0.761468 + 1.69191i
\(273\) 0 0
\(274\) −1.29542 + 0.491287i −1.29542 + 0.491287i
\(275\) 0 0
\(276\) 0 0
\(277\) −0.335386 + 0.394291i −0.335386 + 0.394291i −0.903450 0.428693i \(-0.858974\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.773191 1.71796i −0.773191 1.71796i −0.692724 0.721202i \(-0.743590\pi\)
−0.0804666 0.996757i \(-0.525641\pi\)
\(282\) 0 0
\(283\) 0 0 −0.219715 0.975564i \(-0.570513\pi\)
0.219715 + 0.975564i \(0.429487\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.632445 0.774605i 0.632445 0.774605i
\(289\) 1.89190 + 1.54469i 1.89190 + 1.54469i
\(290\) −1.19979 0.400550i −1.19979 0.400550i
\(291\) 0 0
\(292\) −0.316668 0.948536i −0.316668 0.948536i
\(293\) −0.136019 1.68490i −0.136019 1.68490i −0.600742 0.799443i \(-0.705128\pi\)
0.464723 0.885456i \(-0.346154\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.752982 + 1.76731i 0.752982 + 1.76731i
\(297\) 0 0
\(298\) −1.35365 0.0818806i −1.35365 0.0818806i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.316668 0.0514636i 0.316668 0.0514636i
\(306\) 0.407653 1.81003i 0.407653 1.81003i
\(307\) 0 0 0.885456 0.464723i \(-0.153846\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.464723 0.885456i \(-0.653846\pi\)
0.464723 + 0.885456i \(0.346154\pi\)
\(312\) 0 0
\(313\) 1.90596 0.593921i 1.90596 0.593921i 0.935016 0.354605i \(-0.115385\pi\)
0.970942 0.239316i \(-0.0769231\pi\)
\(314\) −0.493489 1.38470i −0.493489 1.38470i
\(315\) 0 0
\(316\) 0 0
\(317\) 0.705614 0.487050i 0.705614 0.487050i −0.160411 0.987050i \(-0.551282\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.428693 0.903450i −0.428693 0.903450i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.970942 + 0.239316i −0.970942 + 0.239316i
\(325\) −0.278217 + 0.960518i −0.278217 + 0.960518i
\(326\) 0 0
\(327\) 0 0
\(328\) −0.370200 1.03876i −0.370200 1.03876i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.335705 0.941967i \(-0.391026\pi\)
−0.335705 + 0.941967i \(0.608974\pi\)
\(332\) 0 0
\(333\) 0.459734 1.86521i 0.459734 1.86521i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.37966 + 1.37966i −1.37966 + 1.37966i −0.534466 + 0.845190i \(0.679487\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(338\) −0.464723 0.885456i −0.464723 0.885456i
\(339\) 0 0
\(340\) −1.46052 1.14424i −1.46052 1.14424i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0.328749 + 1.79393i 0.328749 + 1.79393i
\(347\) 0 0 −0.894635 0.446798i \(-0.852564\pi\)
0.894635 + 0.446798i \(0.147436\pi\)
\(348\) 0 0
\(349\) −0.462291 0.925657i −0.462291 0.925657i −0.996757 0.0804666i \(-0.974359\pi\)
0.534466 0.845190i \(-0.320513\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.160411 + 0.0129497i 0.160411 + 0.0129497i 0.160411 0.987050i \(-0.448718\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.05555 1.34731i 1.05555 1.34731i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.180255 0.983620i \(-0.442308\pi\)
−0.180255 + 0.983620i \(0.557692\pi\)
\(360\) −0.200026 + 0.979791i −0.200026 + 0.979791i
\(361\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(362\) −0.854605 + 1.80104i −0.854605 + 1.80104i
\(363\) 0 0
\(364\) 0 0
\(365\) 0.721202 + 0.692724i 0.721202 + 0.692724i
\(366\) 0 0
\(367\) 0 0 0.834256 0.551377i \(-0.185897\pi\)
−0.834256 + 0.551377i \(0.814103\pi\)
\(368\) 0 0
\(369\) −0.328073 + 1.05282i −0.328073 + 1.05282i
\(370\) −1.48804 1.21495i −1.48804 1.21495i
\(371\) 0 0
\(372\) 0 0
\(373\) −1.39197 0.919979i −1.39197 0.919979i −0.391967 0.919979i \(-0.628205\pi\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.759873 + 1.01121i −0.759873 + 1.01121i
\(378\) 0 0
\(379\) 0 0 0.584522 0.811378i \(-0.301282\pi\)
−0.584522 + 0.811378i \(0.698718\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.996757 0.0804666i \(-0.0256410\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.59759 1.20051i −1.59759 1.20051i
\(387\) 0 0
\(388\) −0.719954 0.587824i −0.719954 0.587824i
\(389\) −0.316091 0.457937i −0.316091 0.457937i 0.632445 0.774605i \(-0.282051\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.960518 + 0.278217i −0.960518 + 0.278217i
\(393\) 0 0
\(394\) 1.84582 + 0.299974i 1.84582 + 0.299974i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.918722 + 0.956491i −0.918722 + 0.956491i −0.999189 0.0402659i \(-0.987179\pi\)
0.0804666 + 0.996757i \(0.474359\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.799443 + 0.600742i 0.799443 + 0.600742i
\(401\) 0.439341 + 0.00884883i 0.439341 + 0.00884883i 0.239316 0.970942i \(-0.423077\pi\)
0.200026 + 0.979791i \(0.435897\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −0.999468 0.379048i −0.999468 0.379048i
\(405\) 0.748511 0.663123i 0.748511 0.663123i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −1.92207 0.194194i −1.92207 0.194194i −0.935016 0.354605i \(-0.884615\pi\)
−0.987050 + 0.160411i \(0.948718\pi\)
\(410\) 0.810531 + 0.747735i 0.810531 + 0.747735i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −0.992709 + 0.120537i −0.992709 + 0.120537i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.600742 0.799443i \(-0.705128\pi\)
0.600742 + 0.799443i \(0.294872\pi\)
\(420\) 0 0
\(421\) 0.479791 1.06605i 0.479791 1.06605i −0.500000 0.866025i \(-0.666667\pi\)
0.979791 0.200026i \(-0.0641026\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0.275555 0.612258i 0.275555 0.612258i
\(425\) 1.82498 + 0.334440i 1.82498 + 0.334440i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.990080 0.140502i \(-0.955128\pi\)
0.990080 + 0.140502i \(0.0448718\pi\)
\(432\) 0 0
\(433\) −0.964723 + 0.0194306i −0.964723 + 0.0194306i −0.500000 0.866025i \(-0.666667\pi\)
−0.464723 + 0.885456i \(0.653846\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.22719 0.123988i −1.22719 0.123988i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.0402659 0.999189i \(-0.512821\pi\)
0.0402659 + 0.999189i \(0.487179\pi\)
\(440\) 0 0
\(441\) 0.935016 + 0.354605i 0.935016 + 0.354605i
\(442\) −1.54786 + 1.02301i −1.54786 + 1.02301i
\(443\) 0 0 −0.911900 0.410413i \(-0.865385\pi\)
0.911900 + 0.410413i \(0.134615\pi\)
\(444\) 0 0
\(445\) −0.308518 + 1.68353i −0.308518 + 1.68353i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.0450860 + 0.112025i 0.0450860 + 0.112025i 0.948536 0.316668i \(-0.102564\pi\)
−0.903450 + 0.428693i \(0.858974\pi\)
\(450\) −0.278217 0.960518i −0.278217 0.960518i
\(451\) 0 0
\(452\) 1.95073 0.439341i 1.95073 0.439341i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.39963 + 1.14277i 1.39963 + 1.14277i 0.970942 + 0.239316i \(0.0769231\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(458\) 0.0362392 + 0.358684i 0.0362392 + 0.358684i
\(459\) 0 0
\(460\) 0 0
\(461\) −0.0360306 0.0179944i −0.0360306 0.0179944i 0.428693 0.903450i \(-0.358974\pi\)
−0.464723 + 0.885456i \(0.653846\pi\)
\(462\) 0 0
\(463\) 0 0 0.663123 0.748511i \(-0.269231\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(464\) 0.676041 + 1.06907i 0.676041 + 1.06907i
\(465\) 0 0
\(466\) 1.11611 1.54928i 1.11611 1.54928i
\(467\) 0 0 0.0603785 0.998176i \(-0.480769\pi\)
−0.0603785 + 0.998176i \(0.519231\pi\)
\(468\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −0.588099 + 0.323928i −0.588099 + 0.323928i
\(478\) 0 0
\(479\) 0 0 0.678061 0.735006i \(-0.262821\pi\)
−0.678061 + 0.735006i \(0.737179\pi\)
\(480\) 0 0
\(481\) −1.62364 + 1.02673i −1.62364 + 1.02673i
\(482\) 0.482775 + 1.54928i 0.482775 + 1.54928i
\(483\) 0 0
\(484\) 0.866025 0.500000i 0.866025 0.500000i
\(485\) 0.910663 + 0.185913i 0.910663 + 0.185913i
\(486\) 0 0
\(487\) 0 0 0.600742 0.799443i \(-0.294872\pi\)
−0.600742 + 0.799443i \(0.705128\pi\)
\(488\) −0.277840 0.160411i −0.277840 0.160411i
\(489\) 0 0
\(490\) 0.721202 0.692724i 0.721202 0.692724i
\(491\) 0 0 0.721202 0.692724i \(-0.243590\pi\)
−0.721202 + 0.692724i \(0.756410\pi\)
\(492\) 0 0
\(493\) 2.00838 + 1.21411i 2.00838 + 1.21411i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.180255 0.983620i \(-0.557692\pi\)
0.180255 + 0.983620i \(0.442308\pi\)
\(500\) −0.987050 0.160411i −0.987050 0.160411i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.927686 0.373361i \(-0.121795\pi\)
−0.927686 + 0.373361i \(0.878205\pi\)
\(504\) 0 0
\(505\) 1.06114 0.128845i 1.06114 0.128845i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.110851 + 0.167722i 0.110851 + 0.167722i 0.885456 0.464723i \(-0.153846\pi\)
−0.774605 + 0.632445i \(0.782051\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.239316 + 0.970942i −0.239316 + 0.970942i
\(513\) 0 0
\(514\) 0.435016 1.22063i 0.435016 1.22063i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0.822984 0.568065i 0.822984 0.568065i
\(521\) −1.90264 + 0.468959i −1.90264 + 0.468959i −0.903450 + 0.428693i \(0.858974\pi\)
−0.999189 + 0.0402659i \(0.987179\pi\)
\(522\) 0.101781 1.26079i 0.101781 1.26079i
\(523\) 0 0 −0.999797 0.0201371i \(-0.993590\pi\)
0.999797 + 0.0201371i \(0.00641026\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.866025 0.500000i −0.866025 0.500000i
\(530\) 0.0405387 + 0.670184i 0.0405387 + 0.670184i
\(531\) 0 0
\(532\) 0 0
\(533\) 0.965923 0.532034i 0.965923 0.532034i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0.423807 0.222431i 0.423807 0.222431i
\(539\) 0 0
\(540\) 0 0
\(541\) −0.788125 + 1.30372i −0.788125 + 1.30372i 0.160411 + 0.987050i \(0.448718\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.407653 + 1.81003i 0.407653 + 1.81003i
\(545\) 1.14424 0.460518i 1.14424 0.460518i
\(546\) 0 0
\(547\) 0 0 −0.998176 0.0603785i \(-0.980769\pi\)
0.998176 + 0.0603785i \(0.0192308\pi\)
\(548\) −1.36751 + 0.222242i −1.36751 + 0.222242i
\(549\) 0.125752 + 0.295150i 0.125752 + 0.295150i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −0.407476 + 0.319237i −0.407476 + 0.319237i
\(555\) 0 0
\(556\) 0 0
\(557\) 1.09543 1.34166i 1.09543 1.34166i 0.160411 0.987050i \(-0.448718\pi\)
0.935016 0.354605i \(-0.115385\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −0.413929 1.83790i −0.413929 1.83790i
\(563\) 0 0 −0.584522 0.811378i \(-0.698718\pi\)
0.584522 + 0.811378i \(0.301282\pi\)
\(564\) 0 0
\(565\) −1.52312 + 1.29557i −1.52312 + 1.29557i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −0.552378 1.90703i −0.552378 1.90703i −0.391967 0.919979i \(-0.628205\pi\)
−0.160411 0.987050i \(-0.551282\pi\)
\(570\) 0 0
\(571\) 0 0 0.935016 0.354605i \(-0.115385\pi\)
−0.935016 + 0.354605i \(0.884615\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.774605 0.632445i 0.774605 0.632445i
\(577\) 1.59889i 1.59889i 0.600742 + 0.799443i \(0.294872\pi\)
−0.600742 + 0.799443i \(0.705128\pi\)
\(578\) 1.54469 + 1.89190i 1.54469 + 1.89190i
\(579\) 0 0
\(580\) −1.09543 0.632445i −1.09543 0.632445i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −0.120537 0.992709i −0.120537 0.992709i
\(585\) −0.999189 0.0402659i −0.999189 0.0402659i
\(586\) 0.203753 1.67806i 0.203753 1.67806i
\(587\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0.384257 + 1.88221i 0.384257 + 1.88221i
\(593\) 1.12341 0.426052i 1.12341 0.426052i 0.278217 0.960518i \(-0.410256\pi\)
0.845190 + 0.534466i \(0.179487\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.30991 0.350990i −1.30991 0.350990i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.992709 0.120537i \(-0.0384615\pi\)
−0.992709 + 0.120537i \(0.961538\pi\)
\(600\) 0 0
\(601\) 1.87251 + 0.625134i 1.87251 + 0.625134i 0.987050 + 0.160411i \(0.0512821\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.534466 + 0.845190i −0.534466 + 0.845190i
\(606\) 0 0
\(607\) 0 0 0.100522 0.994935i \(-0.467949\pi\)
−0.100522 + 0.994935i \(0.532051\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0.320562 + 0.0129182i 0.320562 + 0.0129182i
\(611\) 0 0
\(612\) 0.761468 1.69191i 0.761468 1.69191i
\(613\) 1.36751 + 1.42373i 1.36751 + 1.42373i 0.799443 + 0.600742i \(0.205128\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.11729 + 1.07318i 1.11729 + 1.07318i 0.996757 + 0.0804666i \(0.0256410\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(618\) 0 0
\(619\) 0 0 0.911900 0.410413i \(-0.134615\pi\)
−0.911900 + 0.410413i \(0.865385\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.948536 0.316668i 0.948536 0.316668i
\(626\) 1.98624 0.200677i 1.98624 0.200677i
\(627\) 0 0
\(628\) −0.206540 1.45543i −0.206540 1.45543i
\(629\) 2.19813 + 2.80571i 2.19813 + 2.80571i
\(630\) 0 0
\(631\) 0 0 0.647915 0.761712i \(-0.275641\pi\)
−0.647915 + 0.761712i \(0.724359\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0.788777 0.336066i 0.788777 0.336066i
\(635\) 0 0
\(636\) 0 0
\(637\) −0.428693 0.903450i −0.428693 0.903450i
\(638\) 0 0
\(639\) 0 0
\(640\) −0.239316 0.970942i −0.239316 0.970942i
\(641\) −1.69705 + 0.346455i −1.69705 + 0.346455i −0.948536 0.316668i \(-0.897436\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(642\) 0 0
\(643\) 0 0 −0.987050 0.160411i \(-0.948718\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.551377 0.834256i \(-0.685897\pi\)
0.551377 + 0.834256i \(0.314103\pi\)
\(648\) −0.999189 + 0.0402659i −0.999189 + 0.0402659i
\(649\) 0 0
\(650\) −0.464723 + 0.885456i −0.464723 + 0.885456i
\(651\) 0 0
\(652\) 0 0
\(653\) −1.90021 0.509159i −1.90021 0.509159i −0.996757 0.0804666i \(-0.974359\pi\)
−0.903450 0.428693i \(-0.858974\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −0.154940 1.09182i −0.154940 1.09182i
\(657\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(658\) 0 0
\(659\) 0 0 0.903450 0.428693i \(-0.141026\pi\)
−0.903450 + 0.428693i \(0.858974\pi\)
\(660\) 0 0
\(661\) −0.214045 + 0.182067i −0.214045 + 0.182067i −0.748511 0.663123i \(-0.769231\pi\)
0.534466 + 0.845190i \(0.320513\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0.823534 1.73556i 0.823534 1.73556i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.23607 + 0.890475i 1.23607 + 0.890475i 0.996757 0.0804666i \(-0.0256410\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(674\) −1.62774 + 1.07581i −1.62774 + 1.07581i
\(675\) 0 0
\(676\) −0.278217 0.960518i −0.278217 0.960518i
\(677\) −1.11325 1.11325i −1.11325 1.11325i −0.992709 0.120537i \(-0.961538\pi\)
−0.120537 0.992709i \(-0.538462\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1.20212 1.41326i −1.20212 1.41326i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.903450 0.428693i \(-0.141026\pi\)
−0.903450 + 0.428693i \(0.858974\pi\)
\(684\) 0 0
\(685\) 1.10759 0.832298i 1.10759 0.832298i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0.648531 + 0.173773i 0.648531 + 0.173773i
\(690\) 0 0
\(691\) 0 0 −0.647915 0.761712i \(-0.724359\pi\)
0.647915 + 0.761712i \(0.275641\pi\)
\(692\) −0.0367260 + 1.82343i −0.0367260 + 1.82343i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1.16227 1.68384i −1.16227 1.68384i
\(698\) −0.267794 0.999420i −0.267794 0.999420i
\(699\) 0 0
\(700\) 0 0
\(701\) 0.764919 1.45743i 0.764919 1.45743i −0.120537 0.992709i \(-0.538462\pi\)
0.885456 0.464723i \(-0.153846\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0.154579 + 0.0447744i 0.154579 + 0.0447744i
\(707\) 0 0
\(708\) 0 0
\(709\) −1.15745 1.60666i −1.15745 1.60666i −0.692724 0.721202i \(-0.743590\pi\)
−0.464723 0.885456i \(-0.653846\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.30372 1.10895i 1.30372 1.10895i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.845190 0.534466i \(-0.179487\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(720\) −0.391967 + 0.919979i −0.391967 + 0.919979i
\(721\) 0 0
\(722\) −0.948536 + 0.316668i −0.948536 + 0.316668i
\(723\) 0 0
\(724\) −1.19759 + 1.59370i −1.19759 + 1.59370i
\(725\) 1.26386 + 0.0509320i 1.26386 + 0.0509320i
\(726\) 0 0
\(727\) 0 0 −0.983620 0.180255i \(-0.942308\pi\)
0.983620 + 0.180255i \(0.0576923\pi\)
\(728\) 0 0
\(729\) 0.822984 + 0.568065i 0.822984 + 0.568065i
\(730\) 0.568065 + 0.822984i 0.568065 + 0.822984i
\(731\) 0 0
\(732\) 0 0
\(733\) −0.0285570 + 0.0752986i −0.0285570 + 0.0752986i −0.948536 0.316668i \(-0.897436\pi\)
0.919979 + 0.391967i \(0.128205\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −0.532034 + 0.965923i −0.532034 + 0.965923i
\(739\) 0 0 0.0201371 0.999797i \(-0.493590\pi\)
−0.0201371 + 0.999797i \(0.506410\pi\)
\(740\) −1.21495 1.48804i −1.21495 1.48804i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.919979 0.391967i \(-0.128205\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(744\) 0 0
\(745\) 1.32298 0.297961i 1.32298 0.297961i
\(746\) −1.17982 1.17982i −1.17982 1.17982i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.316668 0.948536i \(-0.397436\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −0.946784 + 0.838778i −0.946784 + 0.838778i
\(755\) 0 0
\(756\) 0 0
\(757\) 0.812683 + 0.115328i 0.812683 + 0.115328i 0.534466 0.845190i \(-0.320513\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.64118 1.08469i −1.64118 1.08469i −0.919979 0.391967i \(-0.871795\pi\)
−0.721202 0.692724i \(-0.756410\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0.112025 + 1.85199i 0.112025 + 1.85199i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0.115328 0.812683i 0.115328 0.812683i −0.845190 0.534466i \(-0.820513\pi\)
0.960518 0.278217i \(-0.0897436\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.32517 1.49581i −1.32517 1.49581i
\(773\) −0.552378 + 1.90703i −0.552378 + 1.90703i −0.160411 + 0.987050i \(0.551282\pi\)
−0.391967 + 0.919979i \(0.628205\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −0.587824 0.719954i −0.587824 0.719954i
\(777\) 0 0
\(778\) −0.218104 0.511909i −0.218104 0.511909i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.996757 + 0.0804666i −0.996757 + 0.0804666i
\(785\) 0.859254 + 1.19273i 0.859254 + 1.19273i
\(786\) 0 0
\(787\) 0 0 −0.919979 0.391967i \(-0.871795\pi\)
0.919979 + 0.391967i \(0.128205\pi\)
\(788\) 1.74851 + 0.663123i 1.74851 + 0.663123i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0.113765 0.299974i 0.113765 0.299974i
\(794\) −1.09148 + 0.753393i −1.09148 + 0.753393i
\(795\) 0 0
\(796\) 0 0
\(797\) 0.119559 0.0169667i 0.119559 0.0169667i −0.0804666 0.996757i \(-0.525641\pi\)
0.200026 + 0.979791i \(0.435897\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.663123 + 0.748511i 0.663123 + 0.748511i
\(801\) −1.70844 + 0.103342i −1.70844 + 0.103342i
\(802\) 0.428693 + 0.0965496i 0.428693 + 0.0965496i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −0.903450 0.571307i −0.903450 0.571307i
\(809\) 0.00648012 0.0802707i 0.00648012 0.0802707i −0.992709 0.120537i \(-0.961538\pi\)
0.999189 + 0.0402659i \(0.0128205\pi\)
\(810\) 0.866025 0.500000i 0.866025 0.500000i
\(811\) 0 0 −0.855781 0.517338i \(-0.826923\pi\)
0.855781 + 0.517338i \(0.173077\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −1.84438 0.574732i −1.84438 0.574732i
\(819\) 0 0
\(820\) 0.644584 + 0.894750i 0.644584 + 0.894750i
\(821\) −0.560476 + 0.199746i −0.560476 + 0.199746i −0.600742 0.799443i \(-0.705128\pi\)
0.0402659 + 0.999189i \(0.487179\pi\)
\(822\) 0 0
\(823\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(828\) 0 0
\(829\) 1.25168 + 1.30314i 1.25168 + 1.30314i 0.935016 + 0.354605i \(0.115385\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −0.996757 0.0804666i −0.996757 0.0804666i
\(833\) −1.58779 + 0.959854i −1.58779 + 0.959854i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.735006 0.678061i \(-0.237179\pi\)
−0.735006 + 0.678061i \(0.762821\pi\)
\(840\) 0 0
\(841\) 0.551940 + 0.235160i 0.551940 + 0.235160i
\(842\) 0.683332 0.948536i 0.683332 0.948536i
\(843\) 0 0
\(844\) 0 0
\(845\) 0.692724 + 0.721202i 0.692724 + 0.721202i
\(846\) 0 0
\(847\) 0 0
\(848\) 0.392453 0.544766i 0.392453 0.544766i
\(849\) 0 0
\(850\) 1.72120 + 0.692724i 1.72120 + 0.692724i
\(851\) 0 0
\(852\) 0 0
\(853\) −1.51426 1.04522i −1.51426 1.04522i −0.979791 0.200026i \(-0.935897\pi\)
−0.534466 0.845190i \(-0.679487\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.00045 0.604791i 1.00045 0.604791i 0.0804666 0.996757i \(-0.474359\pi\)
0.919979 + 0.391967i \(0.128205\pi\)
\(858\) 0 0
\(859\) 0 0 −0.239316 0.970942i \(-0.576923\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(864\) 0 0
\(865\) −0.814871 1.63163i −0.814871 1.63163i
\(866\) −0.949113 0.173931i −0.949113 0.173931i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −1.17759 0.366951i −1.17759 0.366951i
\(873\) 0.0374250 + 0.928693i 0.0374250 + 0.928693i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.04733 + 1.65622i 1.04733 + 1.65622i 0.692724 + 0.721202i \(0.256410\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0.0321908 0.398754i 0.0321908 0.398754i −0.960518 0.278217i \(-0.910256\pi\)
0.992709 0.120537i \(-0.0384615\pi\)
\(882\) 0.845190 + 0.534466i 0.845190 + 0.534466i
\(883\) 0 0 −0.0603785 0.998176i \(-0.519231\pi\)
0.0603785 + 0.998176i \(0.480769\pi\)
\(884\) −1.72120 + 0.692724i −1.72120 + 0.692724i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.927686 0.373361i \(-0.878205\pi\)
0.927686 + 0.373361i \(0.121795\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −0.639031 + 1.58779i −0.639031 + 1.58779i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0.0217671 + 0.118779i 0.0217671 + 0.118779i
\(899\) 0 0
\(900\) −0.0804666 0.996757i −0.0804666 0.996757i
\(901\) 0.199826 1.22958i 0.199826 1.22958i
\(902\) 0 0
\(903\) 0 0
\(904\) 1.99919 0.0402659i 1.99919 0.0402659i
\(905\) 0.319782 1.96770i 0.319782 1.96770i
\(906\) 0 0
\(907\) 0 0 −0.875918 0.482459i \(-0.839744\pi\)
0.875918 + 0.482459i \(0.160256\pi\)
\(908\) 0 0
\(909\) 0.379048 + 0.999468i 0.379048 + 0.999468i
\(910\) 0 0
\(911\) 0 0 0.354605 0.935016i \(-0.384615\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 1.14277 + 1.39963i 1.14277 + 1.39963i
\(915\) 0 0
\(916\) −0.0362392 + 0.358684i −0.0362392 + 0.358684i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.721202 0.692724i \(-0.756410\pi\)
0.721202 + 0.692724i \(0.243590\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −0.0317031 0.0248378i −0.0317031 0.0248378i
\(923\) 0 0
\(924\) 0 0
\(925\) 1.76731 + 0.752982i 1.76731 + 0.752982i
\(926\) 0 0
\(927\) 0 0
\(928\) 0.448536 + 1.18269i 0.448536 + 1.18269i
\(929\) 0.622958 + 0.411726i 0.622958 + 0.411726i 0.822984 0.568065i \(-0.192308\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1.40345 1.29472i 1.40345 1.29472i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0.748511 + 0.663123i 0.748511 + 0.663123i
\(937\) 1.19141 1.52072i 1.19141 1.52072i 0.391967 0.919979i \(-0.371795\pi\)
0.799443 0.600742i \(-0.205128\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0.819328 + 0.0495602i 0.819328 + 0.0495602i 0.464723 0.885456i \(-0.346154\pi\)
0.354605 + 0.935016i \(0.384615\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.919979 0.391967i \(-0.128205\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(948\) 0 0
\(949\) 0.960518 0.278217i 0.960518 0.278217i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0.625233 + 0.531826i 0.625233 + 0.531826i 0.903450 0.428693i \(-0.141026\pi\)
−0.278217 + 0.960518i \(0.589744\pi\)
\(954\) −0.641008 + 0.199746i −0.641008 + 0.199746i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0.822984 + 0.568065i 0.822984 + 0.568065i
\(962\) −1.79620 + 0.681209i −1.79620 + 0.681209i
\(963\) 0 0
\(964\) 0.163123 + 1.61454i 0.163123 + 1.61454i
\(965\) 1.86852 + 0.708635i 1.86852 + 0.708635i
\(966\) 0 0
\(967\) 0 0 −0.992709 0.120537i \(-0.961538\pi\)
0.992709 + 0.120537i \(0.0384615\pi\)
\(968\) 0.948536 0.316668i 0.948536 0.316668i
\(969\) 0 0
\(970\) 0.855072 + 0.364312i 0.855072 + 0.364312i
\(971\) 0 0 0.845190 0.534466i \(-0.179487\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −0.240139 0.212745i −0.240139 0.212745i
\(977\) −0.0430415 + 0.0680647i −0.0430415 + 0.0680647i −0.866025 0.500000i \(-0.833333\pi\)
0.822984 + 0.568065i \(0.192308\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.845190 0.534466i 0.845190 0.534466i
\(981\) 0.720972 + 1.00078i 0.720972 + 1.00078i
\(982\) 0 0
\(983\) 0 0 −0.464723 0.885456i \(-0.653846\pi\)
0.464723 + 0.885456i \(0.346154\pi\)
\(984\) 0 0
\(985\) −1.85640 + 0.225408i −1.85640 + 0.225408i
\(986\) 1.72494 + 1.59130i 1.72494 + 1.59130i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −0.0135202 + 0.0379369i −0.0135202 + 0.0379369i −0.948536 0.316668i \(-0.897436\pi\)
0.935016 + 0.354605i \(0.115385\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3380.1.cs.a.1207.1 48
4.3 odd 2 CM 3380.1.cs.a.1207.1 48
5.3 odd 4 3380.1.cz.a.1883.1 yes 48
20.3 even 4 3380.1.cz.a.1883.1 yes 48
169.162 odd 156 3380.1.cz.a.1007.1 yes 48
676.331 even 156 3380.1.cz.a.1007.1 yes 48
845.838 even 156 inner 3380.1.cs.a.1683.1 yes 48
3380.1683 odd 156 inner 3380.1.cs.a.1683.1 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3380.1.cs.a.1207.1 48 1.1 even 1 trivial
3380.1.cs.a.1207.1 48 4.3 odd 2 CM
3380.1.cs.a.1683.1 yes 48 845.838 even 156 inner
3380.1.cs.a.1683.1 yes 48 3380.1683 odd 156 inner
3380.1.cz.a.1007.1 yes 48 169.162 odd 156
3380.1.cz.a.1007.1 yes 48 676.331 even 156
3380.1.cz.a.1883.1 yes 48 5.3 odd 4
3380.1.cz.a.1883.1 yes 48 20.3 even 4