Properties

Label 3380.1.cs.a.687.1
Level $3380$
Weight $1$
Character 3380.687
Analytic conductor $1.687$
Analytic rank $0$
Dimension $48$
Projective image $D_{156}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3380,1,Mod(7,3380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3380, base_ring=CyclotomicField(156))
 
chi = DirichletCharacter(H, H._module([78, 39, 107]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3380.7");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3380 = 2^{2} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3380.cs (of order \(156\), degree \(48\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.68683974270\)
Analytic rank: \(0\)
Dimension: \(48\)
Coefficient field: \(\Q(\zeta_{156})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{48} + x^{46} - x^{42} - x^{40} + x^{36} + x^{34} - x^{30} - x^{28} + x^{24} - x^{20} - x^{18} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{156}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{156} - \cdots)\)

Embedding invariants

Embedding label 687.1
Root \(-0.600742 + 0.799443i\) of defining polynomial
Character \(\chi\) \(=\) 3380.687
Dual form 3380.1.cs.a.123.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.960518 - 0.278217i) q^{2} +(0.845190 - 0.534466i) q^{4} +(-0.200026 - 0.979791i) q^{5} +(0.663123 - 0.748511i) q^{8} +(-0.721202 - 0.692724i) q^{9} +(-0.464723 - 0.885456i) q^{10} +(-0.948536 - 0.316668i) q^{13} +(0.428693 - 0.903450i) q^{16} +(0.196337 - 0.393130i) q^{17} +(-0.885456 - 0.464723i) q^{18} +(-0.692724 - 0.721202i) q^{20} +(-0.919979 + 0.391967i) q^{25} +(-0.999189 - 0.0402659i) q^{26} +(-1.53576 + 0.444838i) q^{29} +(0.160411 - 0.987050i) q^{32} +(0.0792096 - 0.432233i) q^{34} +(-0.979791 - 0.200026i) q^{36} +(0.158849 - 0.0258155i) q^{37} +(-0.866025 - 0.500000i) q^{40} +(1.62515 + 0.654068i) q^{41} +(-0.534466 + 0.845190i) q^{45} +(0.799443 - 0.600742i) q^{49} +(-0.774605 + 0.632445i) q^{50} +(-0.970942 + 0.239316i) q^{52} +(1.78600 - 0.108033i) q^{53} +(-1.35136 + 0.854550i) q^{58} +(0.156807 + 0.768090i) q^{61} +(-0.120537 - 0.992709i) q^{64} +(-0.120537 + 0.992709i) q^{65} +(-0.0441724 - 0.437205i) q^{68} +(-0.996757 + 0.0804666i) q^{72} +(-0.239316 - 0.970942i) q^{73} +(0.145395 - 0.0689908i) q^{74} +(-0.970942 - 0.239316i) q^{80} +(0.0402659 + 0.999189i) q^{81} +(1.74296 + 0.176098i) q^{82} +(-0.424457 - 0.113733i) q^{85} +(0.0933069 - 0.348226i) q^{89} +(-0.278217 + 0.960518i) q^{90} +(-0.150475 - 1.86397i) q^{97} +(0.600742 - 0.799443i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} + 2 q^{5} - 2 q^{13} + 2 q^{16} + 4 q^{17} + 4 q^{18} - 2 q^{20} + 2 q^{25} + 2 q^{34} - 2 q^{41} + 2 q^{49} - 4 q^{52} - 2 q^{53} - 2 q^{58} + 4 q^{64} + 4 q^{65} + 2 q^{68} + 2 q^{72} + 20 q^{74}+ \cdots - 2 q^{90}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3380\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1691\) \(1861\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(e\left(\frac{103}{156}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.960518 0.278217i 0.960518 0.278217i
\(3\) 0 0 0.373361 0.927686i \(-0.378205\pi\)
−0.373361 + 0.927686i \(0.621795\pi\)
\(4\) 0.845190 0.534466i 0.845190 0.534466i
\(5\) −0.200026 0.979791i −0.200026 0.979791i
\(6\) 0 0
\(7\) 0 0 0.948536 0.316668i \(-0.102564\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(8\) 0.663123 0.748511i 0.663123 0.748511i
\(9\) −0.721202 0.692724i −0.721202 0.692724i
\(10\) −0.464723 0.885456i −0.464723 0.885456i
\(11\) 0 0 −0.999797 0.0201371i \(-0.993590\pi\)
0.999797 + 0.0201371i \(0.00641026\pi\)
\(12\) 0 0
\(13\) −0.948536 0.316668i −0.948536 0.316668i
\(14\) 0 0
\(15\) 0 0
\(16\) 0.428693 0.903450i 0.428693 0.903450i
\(17\) 0.196337 0.393130i 0.196337 0.393130i −0.774605 0.632445i \(-0.782051\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(18\) −0.885456 0.464723i −0.885456 0.464723i
\(19\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(20\) −0.692724 0.721202i −0.692724 0.721202i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(24\) 0 0
\(25\) −0.919979 + 0.391967i −0.919979 + 0.391967i
\(26\) −0.999189 0.0402659i −0.999189 0.0402659i
\(27\) 0 0
\(28\) 0 0
\(29\) −1.53576 + 0.444838i −1.53576 + 0.444838i −0.935016 0.354605i \(-0.884615\pi\)
−0.600742 + 0.799443i \(0.705128\pi\)
\(30\) 0 0
\(31\) 0 0 0.911900 0.410413i \(-0.134615\pi\)
−0.911900 + 0.410413i \(0.865385\pi\)
\(32\) 0.160411 0.987050i 0.160411 0.987050i
\(33\) 0 0
\(34\) 0.0792096 0.432233i 0.0792096 0.432233i
\(35\) 0 0
\(36\) −0.979791 0.200026i −0.979791 0.200026i
\(37\) 0.158849 0.0258155i 0.158849 0.0258155i −0.0804666 0.996757i \(-0.525641\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −0.866025 0.500000i −0.866025 0.500000i
\(41\) 1.62515 + 0.654068i 1.62515 + 0.654068i 0.992709 0.120537i \(-0.0384615\pi\)
0.632445 + 0.774605i \(0.282051\pi\)
\(42\) 0 0
\(43\) 0 0 −0.584522 0.811378i \(-0.698718\pi\)
0.584522 + 0.811378i \(0.301282\pi\)
\(44\) 0 0
\(45\) −0.534466 + 0.845190i −0.534466 + 0.845190i
\(46\) 0 0
\(47\) 0 0 0.885456 0.464723i \(-0.153846\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(48\) 0 0
\(49\) 0.799443 0.600742i 0.799443 0.600742i
\(50\) −0.774605 + 0.632445i −0.774605 + 0.632445i
\(51\) 0 0
\(52\) −0.970942 + 0.239316i −0.970942 + 0.239316i
\(53\) 1.78600 0.108033i 1.78600 0.108033i 0.866025 0.500000i \(-0.166667\pi\)
0.919979 + 0.391967i \(0.128205\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −1.35136 + 0.854550i −1.35136 + 0.854550i
\(59\) 0 0 0.335705 0.941967i \(-0.391026\pi\)
−0.335705 + 0.941967i \(0.608974\pi\)
\(60\) 0 0
\(61\) 0.156807 + 0.768090i 0.156807 + 0.768090i 0.979791 + 0.200026i \(0.0641026\pi\)
−0.822984 + 0.568065i \(0.807692\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.120537 0.992709i −0.120537 0.992709i
\(65\) −0.120537 + 0.992709i −0.120537 + 0.992709i
\(66\) 0 0
\(67\) 0 0 0.534466 0.845190i \(-0.320513\pi\)
−0.534466 + 0.845190i \(0.679487\pi\)
\(68\) −0.0441724 0.437205i −0.0441724 0.437205i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.140502 0.990080i \(-0.544872\pi\)
0.140502 + 0.990080i \(0.455128\pi\)
\(72\) −0.996757 + 0.0804666i −0.996757 + 0.0804666i
\(73\) −0.239316 0.970942i −0.239316 0.970942i −0.960518 0.278217i \(-0.910256\pi\)
0.721202 0.692724i \(-0.243590\pi\)
\(74\) 0.145395 0.0689908i 0.145395 0.0689908i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.464723 0.885456i \(-0.653846\pi\)
0.464723 + 0.885456i \(0.346154\pi\)
\(80\) −0.970942 0.239316i −0.970942 0.239316i
\(81\) 0.0402659 + 0.999189i 0.0402659 + 0.999189i
\(82\) 1.74296 + 0.176098i 1.74296 + 0.176098i
\(83\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(84\) 0 0
\(85\) −0.424457 0.113733i −0.424457 0.113733i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.0933069 0.348226i 0.0933069 0.348226i −0.903450 0.428693i \(-0.858974\pi\)
0.996757 + 0.0804666i \(0.0256410\pi\)
\(90\) −0.278217 + 0.960518i −0.278217 + 0.960518i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −0.150475 1.86397i −0.150475 1.86397i −0.428693 0.903450i \(-0.641026\pi\)
0.278217 0.960518i \(-0.410256\pi\)
\(98\) 0.600742 0.799443i 0.600742 0.799443i
\(99\) 0 0
\(100\) −0.568065 + 0.822984i −0.568065 + 0.822984i
\(101\) 0.248511 + 0.202903i 0.248511 + 0.202903i 0.748511 0.663123i \(-0.230769\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) 0 0
\(103\) 0 0 0.787183 0.616719i \(-0.211538\pi\)
−0.787183 + 0.616719i \(0.788462\pi\)
\(104\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(105\) 0 0
\(106\) 1.68543 0.600666i 1.68543 0.600666i
\(107\) 0 0 −0.647915 0.761712i \(-0.724359\pi\)
0.647915 + 0.761712i \(0.275641\pi\)
\(108\) 0 0
\(109\) −0.542586 0.244198i −0.542586 0.244198i 0.120537 0.992709i \(-0.461538\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.622857 0.250678i 0.622857 0.250678i −0.0402659 0.999189i \(-0.512821\pi\)
0.663123 + 0.748511i \(0.269231\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.06026 + 1.19678i −1.06026 + 1.19678i
\(117\) 0.464723 + 0.885456i 0.464723 + 0.885456i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.999189 + 0.0402659i 0.999189 + 0.0402659i
\(122\) 0.364312 + 0.694138i 0.364312 + 0.694138i
\(123\) 0 0
\(124\) 0 0
\(125\) 0.568065 + 0.822984i 0.568065 + 0.822984i
\(126\) 0 0
\(127\) 0 0 0.975564 0.219715i \(-0.0705128\pi\)
−0.975564 + 0.219715i \(0.929487\pi\)
\(128\) −0.391967 0.919979i −0.391967 0.919979i
\(129\) 0 0
\(130\) 0.160411 + 0.987050i 0.160411 + 0.987050i
\(131\) 0 0 −0.970942 0.239316i \(-0.923077\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −0.164066 0.407653i −0.164066 0.407653i
\(137\) 0.846282 + 0.137534i 0.846282 + 0.137534i 0.568065 0.822984i \(-0.307692\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(138\) 0 0
\(139\) 0 0 −0.0804666 0.996757i \(-0.525641\pi\)
0.0804666 + 0.996757i \(0.474359\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −0.935016 + 0.354605i −0.935016 + 0.354605i
\(145\) 0.743039 + 1.41574i 0.743039 + 1.41574i
\(146\) −0.500000 0.866025i −0.500000 0.866025i
\(147\) 0 0
\(148\) 0.120460 0.106718i 0.120460 0.106718i
\(149\) 1.34925 + 1.46257i 1.34925 + 1.46257i 0.748511 + 0.663123i \(0.230769\pi\)
0.600742 + 0.799443i \(0.294872\pi\)
\(150\) 0 0
\(151\) 0 0 0.954721 0.297503i \(-0.0961538\pi\)
−0.954721 + 0.297503i \(0.903846\pi\)
\(152\) 0 0
\(153\) −0.413929 + 0.147519i −0.413929 + 0.147519i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.197751 + 0.0362392i −0.197751 + 0.0362392i −0.278217 0.960518i \(-0.589744\pi\)
0.0804666 + 0.996757i \(0.474359\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −0.999189 + 0.0402659i −0.999189 + 0.0402659i
\(161\) 0 0
\(162\) 0.316668 + 0.948536i 0.316668 + 0.948536i
\(163\) 0 0 0.774605 0.632445i \(-0.217949\pi\)
−0.774605 + 0.632445i \(0.782051\pi\)
\(164\) 1.72314 0.315777i 1.72314 0.315777i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.278217 0.960518i \(-0.589744\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(168\) 0 0
\(169\) 0.799443 + 0.600742i 0.799443 + 0.600742i
\(170\) −0.439341 + 0.00884883i −0.439341 + 0.00884883i
\(171\) 0 0
\(172\) 0 0
\(173\) −1.53590 0.345912i −1.53590 0.345912i −0.632445 0.774605i \(-0.717949\pi\)
−0.903450 + 0.428693i \(0.858974\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −0.00725961 0.360437i −0.00725961 0.360437i
\(179\) 0 0 −0.948536 0.316668i \(-0.897436\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(180\) 1.00000i 1.00000i
\(181\) −0.329236 0.227255i −0.329236 0.227255i 0.391967 0.919979i \(-0.371795\pi\)
−0.721202 + 0.692724i \(0.756410\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.0570677 0.150475i −0.0570677 0.150475i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0 0
\(193\) −0.490585 + 1.46948i −0.490585 + 1.46948i 0.354605 + 0.935016i \(0.384615\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(194\) −0.663123 1.74851i −0.663123 1.74851i
\(195\) 0 0
\(196\) 0.354605 0.935016i 0.354605 0.935016i
\(197\) 1.53791 + 1.25567i 1.53791 + 1.25567i 0.845190 + 0.534466i \(0.179487\pi\)
0.692724 + 0.721202i \(0.256410\pi\)
\(198\) 0 0
\(199\) 0 0 0.996757 0.0804666i \(-0.0256410\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(200\) −0.316668 + 0.948536i −0.316668 + 0.948536i
\(201\) 0 0
\(202\) 0.295150 + 0.125752i 0.295150 + 0.125752i
\(203\) 0 0
\(204\) 0 0
\(205\) 0.315777 1.72314i 0.315777 1.72314i
\(206\) 0 0
\(207\) 0 0
\(208\) −0.692724 + 0.721202i −0.692724 + 0.721202i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.845190 0.534466i \(-0.820513\pi\)
0.845190 + 0.534466i \(0.179487\pi\)
\(212\) 1.45177 1.04587i 1.45177 1.04587i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −0.589104 0.0835998i −0.589104 0.0835998i
\(219\) 0 0
\(220\) 0 0
\(221\) −0.310724 + 0.310724i −0.310724 + 0.310724i
\(222\) 0 0
\(223\) 0 0 −0.996757 0.0804666i \(-0.974359\pi\)
0.996757 + 0.0804666i \(0.0256410\pi\)
\(224\) 0 0
\(225\) 0.935016 + 0.354605i 0.935016 + 0.354605i
\(226\) 0.528522 0.414071i 0.528522 0.414071i
\(227\) 0 0 −0.534466 0.845190i \(-0.679487\pi\)
0.534466 + 0.845190i \(0.320513\pi\)
\(228\) 0 0
\(229\) 0.819328 1.82047i 0.819328 1.82047i 0.354605 0.935016i \(-0.384615\pi\)
0.464723 0.885456i \(-0.346154\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −0.685430 + 1.44451i −0.685430 + 1.44451i
\(233\) 1.12477 1.43566i 1.12477 1.43566i 0.239316 0.970942i \(-0.423077\pi\)
0.885456 0.464723i \(-0.153846\pi\)
\(234\) 0.692724 + 0.721202i 0.692724 + 0.721202i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(240\) 0 0
\(241\) −1.20212 + 1.41326i −1.20212 + 1.41326i −0.316668 + 0.948536i \(0.602564\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(242\) 0.970942 0.239316i 0.970942 0.239316i
\(243\) 0 0
\(244\) 0.543050 + 0.565375i 0.543050 + 0.565375i
\(245\) −0.748511 0.663123i −0.748511 0.663123i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0.774605 + 0.632445i 0.774605 + 0.632445i
\(251\) 0 0 0.774605 0.632445i \(-0.217949\pi\)
−0.774605 + 0.632445i \(0.782051\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.632445 0.774605i −0.632445 0.774605i
\(257\) −1.22637 1.13135i −1.22637 1.13135i −0.987050 0.160411i \(-0.948718\pi\)
−0.239316 0.970942i \(-0.576923\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.428693 + 0.903450i 0.428693 + 0.903450i
\(261\) 1.41574 + 0.743039i 1.41574 + 0.743039i
\(262\) 0 0
\(263\) 0 0 −0.999797 0.0201371i \(-0.993590\pi\)
0.999797 + 0.0201371i \(0.00641026\pi\)
\(264\) 0 0
\(265\) −0.463097 1.72830i −0.463097 1.72830i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.988802 + 1.31586i −0.988802 + 1.31586i −0.0402659 + 0.999189i \(0.512821\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(270\) 0 0
\(271\) 0 0 0.975564 0.219715i \(-0.0705128\pi\)
−0.975564 + 0.219715i \(0.929487\pi\)
\(272\) −0.271005 0.345912i −0.271005 0.345912i
\(273\) 0 0
\(274\) 0.851134 0.103346i 0.851134 0.103346i
\(275\) 0 0
\(276\) 0 0
\(277\) −0.431843 0.285414i −0.431843 0.285414i 0.316668 0.948536i \(-0.397436\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.551098 + 0.703425i 0.551098 + 0.703425i 0.979791 0.200026i \(-0.0641026\pi\)
−0.428693 + 0.903450i \(0.641026\pi\)
\(282\) 0 0
\(283\) 0 0 −0.811378 0.584522i \(-0.801282\pi\)
0.811378 + 0.584522i \(0.198718\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.799443 + 0.600742i −0.799443 + 0.600742i
\(289\) 0.484739 + 0.645071i 0.484739 + 0.645071i
\(290\) 1.10759 + 1.15312i 1.10759 + 1.15312i
\(291\) 0 0
\(292\) −0.721202 0.692724i −0.721202 0.692724i
\(293\) −1.93421 + 0.394871i −1.93421 + 0.394871i −0.935016 + 0.354605i \(0.884615\pi\)
−0.999189 + 0.0402659i \(0.987179\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.0860133 0.136019i 0.0860133 0.136019i
\(297\) 0 0
\(298\) 1.70289 + 1.02943i 1.70289 + 1.02943i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.721202 0.307276i 0.721202 0.307276i
\(306\) −0.356544 + 0.256857i −0.356544 + 0.256857i
\(307\) 0 0 0.354605 0.935016i \(-0.384615\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.935016 0.354605i \(-0.884615\pi\)
0.935016 + 0.354605i \(0.115385\pi\)
\(312\) 0 0
\(313\) −1.56077 0.702447i −1.56077 0.702447i −0.568065 0.822984i \(-0.692308\pi\)
−0.992709 + 0.120537i \(0.961538\pi\)
\(314\) −0.179861 + 0.0898262i −0.179861 + 0.0898262i
\(315\) 0 0
\(316\) 0 0
\(317\) 1.25799 + 1.41998i 1.25799 + 1.41998i 0.866025 + 0.500000i \(0.166667\pi\)
0.391967 + 0.919979i \(0.371795\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.948536 + 0.316668i −0.948536 + 0.316668i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.568065 + 0.822984i 0.568065 + 0.822984i
\(325\) 0.996757 0.0804666i 0.996757 0.0804666i
\(326\) 0 0
\(327\) 0 0
\(328\) 1.56725 0.782718i 1.56725 0.782718i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.894635 0.446798i \(-0.852564\pi\)
0.894635 + 0.446798i \(0.147436\pi\)
\(332\) 0 0
\(333\) −0.132445 0.0914204i −0.132445 0.0914204i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.826639 0.826639i 0.826639 0.826639i −0.160411 0.987050i \(-0.551282\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(338\) 0.935016 + 0.354605i 0.935016 + 0.354605i
\(339\) 0 0
\(340\) −0.419533 + 0.130732i −0.419533 + 0.130732i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −1.57149 + 0.0950579i −1.57149 + 0.0950579i
\(347\) 0 0 0.999797 0.0201371i \(-0.00641026\pi\)
−0.999797 + 0.0201371i \(0.993590\pi\)
\(348\) 0 0
\(349\) −0.0396144 + 1.96684i −0.0396144 + 1.96684i 0.160411 + 0.987050i \(0.448718\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.391967 + 1.91998i −0.391967 + 1.91998i 1.00000i \(0.5\pi\)
−0.391967 + 0.919979i \(0.628205\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −0.107253 0.344186i −0.107253 0.344186i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.998176 0.0603785i \(-0.980769\pi\)
0.998176 + 0.0603785i \(0.0192308\pi\)
\(360\) 0.278217 + 0.960518i 0.278217 + 0.960518i
\(361\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(362\) −0.379463 0.126683i −0.379463 0.126683i
\(363\) 0 0
\(364\) 0 0
\(365\) −0.903450 + 0.428693i −0.903450 + 0.428693i
\(366\) 0 0
\(367\) 0 0 0.482459 0.875918i \(-0.339744\pi\)
−0.482459 + 0.875918i \(0.660256\pi\)
\(368\) 0 0
\(369\) −0.718976 1.59750i −0.718976 1.59750i
\(370\) −0.0966793 0.128657i −0.0966793 0.128657i
\(371\) 0 0
\(372\) 0 0
\(373\) −0.465534 0.845190i −0.465534 0.845190i 0.534466 0.845190i \(-0.320513\pi\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.59759 + 0.0643806i 1.59759 + 0.0643806i
\(378\) 0 0
\(379\) 0 0 0.373361 0.927686i \(-0.378205\pi\)
−0.373361 + 0.927686i \(0.621795\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.200026 0.979791i \(-0.564103\pi\)
0.200026 + 0.979791i \(0.435897\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −0.0623804 + 1.54795i −0.0623804 + 1.54795i
\(387\) 0 0
\(388\) −1.12341 1.49498i −1.12341 1.49498i
\(389\) −1.49217 + 1.32194i −1.49217 + 1.32194i −0.692724 + 0.721202i \(0.743590\pi\)
−0.799443 + 0.600742i \(0.794872\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.0804666 0.996757i 0.0804666 0.996757i
\(393\) 0 0
\(394\) 1.82654 + 0.778217i 1.82654 + 0.778217i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.205186 0.432420i −0.205186 0.432420i 0.774605 0.632445i \(-0.217949\pi\)
−0.979791 + 0.200026i \(0.935897\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.0402659 + 0.999189i −0.0402659 + 0.999189i
\(401\) 0.544766 + 1.52858i 0.544766 + 1.52858i 0.822984 + 0.568065i \(0.192308\pi\)
−0.278217 + 0.960518i \(0.589744\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0.318483 + 0.0386709i 0.318483 + 0.0386709i
\(405\) 0.970942 0.239316i 0.970942 0.239316i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 1.91269 0.271430i 1.91269 0.271430i 0.919979 0.391967i \(-0.128205\pi\)
0.992709 + 0.120537i \(0.0384615\pi\)
\(410\) −0.176098 1.74296i −0.176098 1.74296i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −0.464723 + 0.885456i −0.464723 + 0.885456i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.999189 0.0402659i \(-0.0128205\pi\)
−0.999189 + 0.0402659i \(0.987179\pi\)
\(420\) 0 0
\(421\) 0.460518 0.587808i 0.460518 0.587808i −0.500000 0.866025i \(-0.666667\pi\)
0.960518 + 0.278217i \(0.0897436\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 1.10348 1.40848i 1.10348 1.40848i
\(425\) −0.0265322 + 0.438629i −0.0265322 + 0.438629i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.678061 0.735006i \(-0.262821\pi\)
−0.678061 + 0.735006i \(0.737179\pi\)
\(432\) 0 0
\(433\) 0.435016 1.22063i 0.435016 1.22063i −0.500000 0.866025i \(-0.666667\pi\)
0.935016 0.354605i \(-0.115385\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.589104 + 0.0835998i −0.589104 + 0.0835998i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.632445 0.774605i \(-0.282051\pi\)
−0.632445 + 0.774605i \(0.717949\pi\)
\(440\) 0 0
\(441\) −0.992709 0.120537i −0.992709 0.120537i
\(442\) −0.212007 + 0.384905i −0.212007 + 0.384905i
\(443\) 0 0 −0.787183 0.616719i \(-0.788462\pi\)
0.787183 + 0.616719i \(0.211538\pi\)
\(444\) 0 0
\(445\) −0.359852 0.0217671i −0.359852 0.0217671i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.00939 + 0.227334i 1.00939 + 0.227334i 0.692724 0.721202i \(-0.256410\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(450\) 0.996757 + 0.0804666i 0.996757 + 0.0804666i
\(451\) 0 0
\(452\) 0.392453 0.544766i 0.392453 0.544766i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.380472 + 0.506316i 0.380472 + 0.506316i 0.948536 0.316668i \(-0.102564\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(458\) 0.280492 1.97655i 0.280492 1.97655i
\(459\) 0 0
\(460\) 0 0
\(461\) 1.88355 0.0379369i 1.88355 0.0379369i 0.935016 0.354605i \(-0.115385\pi\)
0.948536 + 0.316668i \(0.102564\pi\)
\(462\) 0 0
\(463\) 0 0 0.239316 0.970942i \(-0.423077\pi\)
−0.239316 + 0.970942i \(0.576923\pi\)
\(464\) −0.256479 + 1.57818i −0.256479 + 1.57818i
\(465\) 0 0
\(466\) 0.680937 1.69191i 0.680937 1.69191i
\(467\) 0 0 0.517338 0.855781i \(-0.326923\pi\)
−0.517338 + 0.855781i \(0.673077\pi\)
\(468\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1.36291 1.15930i −1.36291 1.15930i
\(478\) 0 0
\(479\) 0 0 0.994935 0.100522i \(-0.0320513\pi\)
−0.994935 + 0.100522i \(0.967949\pi\)
\(480\) 0 0
\(481\) −0.158849 0.0258155i −0.158849 0.0258155i
\(482\) −0.761468 + 1.69191i −0.761468 + 1.69191i
\(483\) 0 0
\(484\) 0.866025 0.500000i 0.866025 0.500000i
\(485\) −1.79620 + 0.520276i −1.79620 + 0.520276i
\(486\) 0 0
\(487\) 0 0 −0.999189 0.0402659i \(-0.987179\pi\)
0.999189 + 0.0402659i \(0.0128205\pi\)
\(488\) 0.678906 + 0.391967i 0.678906 + 0.391967i
\(489\) 0 0
\(490\) −0.903450 0.428693i −0.903450 0.428693i
\(491\) 0 0 −0.903450 0.428693i \(-0.858974\pi\)
0.903450 + 0.428693i \(0.141026\pi\)
\(492\) 0 0
\(493\) −0.126647 + 0.691090i −0.126647 + 0.691090i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 0.998176 0.0603785i \(-0.0192308\pi\)
−0.998176 + 0.0603785i \(0.980769\pi\)
\(500\) 0.919979 + 0.391967i 0.919979 + 0.391967i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.219715 0.975564i \(-0.429487\pi\)
−0.219715 + 0.975564i \(0.570513\pi\)
\(504\) 0 0
\(505\) 0.149094 0.284074i 0.149094 0.284074i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.246137 + 0.135573i 0.246137 + 0.135573i 0.600742 0.799443i \(-0.294872\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.822984 0.568065i −0.822984 0.568065i
\(513\) 0 0
\(514\) −1.49271 0.745489i −1.49271 0.745489i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0.663123 + 0.748511i 0.663123 + 0.748511i
\(521\) 1.09127 + 1.58098i 1.09127 + 1.58098i 0.774605 + 0.632445i \(0.217949\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(522\) 1.56657 + 0.319818i 1.56657 + 0.319818i
\(523\) 0 0 −0.335705 0.941967i \(-0.608974\pi\)
0.335705 + 0.941967i \(0.391026\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.866025 0.500000i −0.866025 0.500000i
\(530\) −0.925657 1.53122i −0.925657 1.53122i
\(531\) 0 0
\(532\) 0 0
\(533\) −1.33440 1.13504i −1.33440 1.13504i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −0.583668 + 1.53901i −0.583668 + 1.53901i
\(539\) 0 0
\(540\) 0 0
\(541\) −1.08469 0.198777i −1.08469 0.198777i −0.391967 0.919979i \(-0.628205\pi\)
−0.692724 + 0.721202i \(0.743590\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −0.356544 0.256857i −0.356544 0.256857i
\(545\) −0.130732 + 0.580467i −0.130732 + 0.580467i
\(546\) 0 0
\(547\) 0 0 −0.855781 0.517338i \(-0.826923\pi\)
0.855781 + 0.517338i \(0.173077\pi\)
\(548\) 0.788777 0.336066i 0.788777 0.336066i
\(549\) 0.418986 0.662573i 0.418986 0.662573i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −0.494200 0.153999i −0.494200 0.153999i
\(555\) 0 0
\(556\) 0 0
\(557\) −1.38468 + 1.04052i −1.38468 + 1.04052i −0.391967 + 0.919979i \(0.628205\pi\)
−0.992709 + 0.120537i \(0.961538\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0.725045 + 0.522327i 0.725045 + 0.522327i
\(563\) 0 0 −0.373361 0.927686i \(-0.621795\pi\)
0.373361 + 0.927686i \(0.378205\pi\)
\(564\) 0 0
\(565\) −0.370200 0.560127i −0.370200 0.560127i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0.926432 + 0.0747894i 0.926432 + 0.0747894i 0.534466 0.845190i \(-0.320513\pi\)
0.391967 + 0.919979i \(0.371795\pi\)
\(570\) 0 0
\(571\) 0 0 0.992709 0.120537i \(-0.0384615\pi\)
−0.992709 + 0.120537i \(0.961538\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.600742 + 0.799443i −0.600742 + 0.799443i
\(577\) 0.0805319i 0.0805319i −0.999189 0.0402659i \(-0.987179\pi\)
0.999189 0.0402659i \(-0.0128205\pi\)
\(578\) 0.645071 + 0.484739i 0.645071 + 0.484739i
\(579\) 0 0
\(580\) 1.38468 + 0.799443i 1.38468 + 0.799443i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −0.885456 0.464723i −0.885456 0.464723i
\(585\) 0.774605 0.632445i 0.774605 0.632445i
\(586\) −1.74798 + 0.917410i −1.74798 + 0.917410i
\(587\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0.0447744 0.154579i 0.0447744 0.154579i
\(593\) −1.98381 + 0.240878i −1.98381 + 0.240878i −0.987050 + 0.160411i \(0.948718\pi\)
−0.996757 + 0.0804666i \(0.974359\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.92207 + 0.515016i 1.92207 + 0.515016i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.464723 0.885456i \(-0.346154\pi\)
−0.464723 + 0.885456i \(0.653846\pi\)
\(600\) 0 0
\(601\) −1.27458 1.32698i −1.27458 1.32698i −0.919979 0.391967i \(-0.871795\pi\)
−0.354605 0.935016i \(-0.615385\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.160411 0.987050i −0.160411 0.987050i
\(606\) 0 0
\(607\) 0 0 −0.140502 0.990080i \(-0.544872\pi\)
0.140502 + 0.990080i \(0.455128\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0.607239 0.495795i 0.607239 0.495795i
\(611\) 0 0
\(612\) −0.271005 + 0.345912i −0.271005 + 0.345912i
\(613\) −0.788777 + 1.66231i −0.788777 + 1.66231i −0.0402659 + 0.999189i \(0.512821\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.08548 0.515067i 1.08548 0.515067i 0.200026 0.979791i \(-0.435897\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(618\) 0 0
\(619\) 0 0 0.787183 0.616719i \(-0.211538\pi\)
−0.787183 + 0.616719i \(0.788462\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.692724 0.721202i 0.692724 0.721202i
\(626\) −1.69458 0.240479i −1.69458 0.240479i
\(627\) 0 0
\(628\) −0.147768 + 0.136320i −0.147768 + 0.136320i
\(629\) 0.0210391 0.0675168i 0.0210391 0.0675168i
\(630\) 0 0
\(631\) 0 0 −0.834256 0.551377i \(-0.814103\pi\)
0.834256 + 0.551377i \(0.185897\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 1.60339 + 1.01392i 1.60339 + 1.01392i
\(635\) 0 0
\(636\) 0 0
\(637\) −0.948536 + 0.316668i −0.948536 + 0.316668i
\(638\) 0 0
\(639\) 0 0
\(640\) −0.822984 + 0.568065i −0.822984 + 0.568065i
\(641\) −1.66367 0.481887i −1.66367 0.481887i −0.692724 0.721202i \(-0.743590\pi\)
−0.970942 + 0.239316i \(0.923077\pi\)
\(642\) 0 0
\(643\) 0 0 −0.919979 0.391967i \(-0.871795\pi\)
0.919979 + 0.391967i \(0.128205\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.875918 0.482459i \(-0.839744\pi\)
0.875918 + 0.482459i \(0.160256\pi\)
\(648\) 0.774605 + 0.632445i 0.774605 + 0.632445i
\(649\) 0 0
\(650\) 0.935016 0.354605i 0.935016 0.354605i
\(651\) 0 0
\(652\) 0 0
\(653\) 0.116642 + 0.0312542i 0.116642 + 0.0312542i 0.316668 0.948536i \(-0.397436\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.28761 1.18785i 1.28761 1.18785i
\(657\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(658\) 0 0
\(659\) 0 0 −0.316668 0.948536i \(-0.602564\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(660\) 0 0
\(661\) −0.810531 1.22637i −0.810531 1.22637i −0.970942 0.239316i \(-0.923077\pi\)
0.160411 0.987050i \(-0.448718\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −0.152651 0.0509624i −0.152651 0.0509624i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.02301 + 0.411726i 1.02301 + 0.411726i 0.822984 0.568065i \(-0.192308\pi\)
0.200026 + 0.979791i \(0.435897\pi\)
\(674\) 0.564016 1.02399i 0.564016 1.02399i
\(675\) 0 0
\(676\) 0.996757 + 0.0804666i 0.996757 + 0.0804666i
\(677\) −1.35018 1.35018i −1.35018 1.35018i −0.885456 0.464723i \(-0.846154\pi\)
−0.464723 0.885456i \(-0.653846\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −0.366598 + 0.242292i −0.366598 + 0.242292i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.316668 0.948536i \(-0.602564\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(684\) 0 0
\(685\) −0.0345234 0.856690i −0.0345234 0.856690i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.72830 0.463097i −1.72830 0.463097i
\(690\) 0 0
\(691\) 0 0 0.834256 0.551377i \(-0.185897\pi\)
−0.834256 + 0.551377i \(0.814103\pi\)
\(692\) −1.48300 + 0.528522i −1.48300 + 0.528522i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0.576211 0.510479i 0.576211 0.510479i
\(698\) 0.509159 + 1.90021i 0.509159 + 1.90021i
\(699\) 0 0
\(700\) 0 0
\(701\) −1.24006 + 0.470293i −1.24006 + 0.470293i −0.885456 0.464723i \(-0.846154\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0.157681 + 1.95323i 0.157681 + 1.95323i
\(707\) 0 0
\(708\) 0 0
\(709\) 0.506324 + 1.25806i 0.506324 + 1.25806i 0.935016 + 0.354605i \(0.115385\pi\)
−0.428693 + 0.903450i \(0.641026\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −0.198777 0.300758i −0.198777 0.300758i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.987050 0.160411i \(-0.948718\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(720\) 0.534466 + 0.845190i 0.534466 + 0.845190i
\(721\) 0 0
\(722\) −0.692724 + 0.721202i −0.692724 + 0.721202i
\(723\) 0 0
\(724\) −0.399727 0.0161084i −0.399727 0.0161084i
\(725\) 1.23850 1.01121i 1.23850 1.01121i
\(726\) 0 0
\(727\) 0 0 0.0603785 0.998176i \(-0.480769\pi\)
−0.0603785 + 0.998176i \(0.519231\pi\)
\(728\) 0 0
\(729\) 0.663123 0.748511i 0.663123 0.748511i
\(730\) −0.748511 + 0.663123i −0.748511 + 0.663123i
\(731\) 0 0
\(732\) 0 0
\(733\) 0.152466 1.25567i 0.152466 1.25567i −0.692724 0.721202i \(-0.743590\pi\)
0.845190 0.534466i \(-0.179487\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −1.13504 1.33440i −1.13504 1.33440i
\(739\) 0 0 0.941967 0.335705i \(-0.108974\pi\)
−0.941967 + 0.335705i \(0.891026\pi\)
\(740\) −0.128657 0.0966793i −0.128657 0.0966793i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.845190 0.534466i \(-0.820513\pi\)
0.845190 + 0.534466i \(0.179487\pi\)
\(744\) 0 0
\(745\) 1.16312 1.61454i 1.16312 1.61454i
\(746\) −0.682301 0.682301i −0.682301 0.682301i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.721202 0.692724i \(-0.243590\pi\)
−0.721202 + 0.692724i \(0.756410\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 1.55242 0.382638i 1.55242 0.382638i
\(755\) 0 0
\(756\) 0 0
\(757\) −0.836346 + 0.906584i −0.836346 + 0.906584i −0.996757 0.0804666i \(-0.974359\pi\)
0.160411 + 0.987050i \(0.448718\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.0582603 + 0.105773i 0.0582603 + 0.105773i 0.903450 0.428693i \(-0.141026\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0.227334 + 0.376056i 0.227334 + 0.376056i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0.906584 + 0.836346i 0.906584 + 0.836346i 0.987050 0.160411i \(-0.0512821\pi\)
−0.0804666 + 0.996757i \(0.525641\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.370750 + 1.50419i 0.370750 + 1.50419i
\(773\) 0.926432 0.0747894i 0.926432 0.0747894i 0.391967 0.919979i \(-0.371795\pi\)
0.534466 + 0.845190i \(0.320513\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −1.49498 1.12341i −1.49498 1.12341i
\(777\) 0 0
\(778\) −1.06547 + 1.68490i −1.06547 + 1.68490i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.200026 0.979791i −0.200026 0.979791i
\(785\) 0.0750621 + 0.186506i 0.0750621 + 0.186506i
\(786\) 0 0
\(787\) 0 0 0.845190 0.534466i \(-0.179487\pi\)
−0.845190 + 0.534466i \(0.820513\pi\)
\(788\) 1.97094 + 0.239316i 1.97094 + 0.239316i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0.0944927 0.778217i 0.0944927 0.778217i
\(794\) −0.317391 0.358261i −0.317391 0.358261i
\(795\) 0 0
\(796\) 0 0
\(797\) 0.701573 + 0.760492i 0.701573 + 0.760492i 0.979791 0.200026i \(-0.0641026\pi\)
−0.278217 + 0.960518i \(0.589744\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.239316 + 0.970942i 0.239316 + 0.970942i
\(801\) −0.308518 + 0.186505i −0.308518 + 0.186505i
\(802\) 0.948536 + 1.31667i 0.948536 + 1.31667i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0.316668 0.0514636i 0.316668 0.0514636i
\(809\) −1.23933 0.253011i −1.23933 0.253011i −0.464723 0.885456i \(-0.653846\pi\)
−0.774605 + 0.632445i \(0.782051\pi\)
\(810\) 0.866025 0.500000i 0.866025 0.500000i
\(811\) 0 0 0.180255 0.983620i \(-0.442308\pi\)
−0.180255 + 0.983620i \(0.557692\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 1.76166 0.792857i 1.76166 0.792857i
\(819\) 0 0
\(820\) −0.654068 1.62515i −0.654068 1.62515i
\(821\) −0.366744 0.734339i −0.366744 0.734339i 0.632445 0.774605i \(-0.282051\pi\)
−0.999189 + 0.0402659i \(0.987179\pi\)
\(822\) 0 0
\(823\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.885456 0.464723i \(-0.846154\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(828\) 0 0
\(829\) −0.271506 + 0.572188i −0.271506 + 0.572188i −0.992709 0.120537i \(-0.961538\pi\)
0.721202 + 0.692724i \(0.243590\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −0.200026 + 0.979791i −0.200026 + 0.979791i
\(833\) −0.0792096 0.432233i −0.0792096 0.432233i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.100522 0.994935i \(-0.467949\pi\)
−0.100522 + 0.994935i \(0.532051\pi\)
\(840\) 0 0
\(841\) 1.31548 0.831861i 1.31548 0.831861i
\(842\) 0.278798 0.692724i 0.278798 0.692724i
\(843\) 0 0
\(844\) 0 0
\(845\) 0.428693 0.903450i 0.428693 0.903450i
\(846\) 0 0
\(847\) 0 0
\(848\) 0.668044 1.65988i 0.668044 1.65988i
\(849\) 0 0
\(850\) 0.0965496 + 0.428693i 0.0965496 + 0.428693i
\(851\) 0 0
\(852\) 0 0
\(853\) −1.12093 + 1.26527i −1.12093 + 1.26527i −0.160411 + 0.987050i \(0.551282\pi\)
−0.960518 + 0.278217i \(0.910256\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −0.134601 0.734492i −0.134601 0.734492i −0.979791 0.200026i \(-0.935897\pi\)
0.845190 0.534466i \(-0.179487\pi\)
\(858\) 0 0
\(859\) 0 0 0.822984 0.568065i \(-0.192308\pi\)
−0.822984 + 0.568065i \(0.807692\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.885456 0.464723i \(-0.846154\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(864\) 0 0
\(865\) −0.0317031 + 1.57405i −0.0317031 + 1.57405i
\(866\) 0.0782403 1.29347i 0.0782403 1.29347i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −0.542586 + 0.244198i −0.542586 + 0.244198i
\(873\) −1.18269 + 1.44854i −1.18269 + 1.44854i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0.308156 1.89616i 0.308156 1.89616i −0.120537 0.992709i \(-0.538462\pi\)
0.428693 0.903450i \(-0.358974\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0.545190 + 0.111301i 0.545190 + 0.111301i 0.464723 0.885456i \(-0.346154\pi\)
0.0804666 + 0.996757i \(0.474359\pi\)
\(882\) −0.987050 + 0.160411i −0.987050 + 0.160411i
\(883\) 0 0 −0.517338 0.855781i \(-0.673077\pi\)
0.517338 + 0.855781i \(0.326923\pi\)
\(884\) −0.0965496 + 0.428693i −0.0965496 + 0.428693i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.219715 0.975564i \(-0.570513\pi\)
0.219715 + 0.975564i \(0.429487\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −0.351701 + 0.0792096i −0.351701 + 0.0792096i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 1.03279 0.0624722i 1.03279 0.0624722i
\(899\) 0 0
\(900\) 0.979791 0.200026i 0.979791 0.200026i
\(901\) 0.308187 0.723343i 0.308187 0.723343i
\(902\) 0 0
\(903\) 0 0
\(904\) 0.225395 0.632445i 0.225395 0.632445i
\(905\) −0.156807 + 0.368039i −0.156807 + 0.368039i
\(906\) 0 0
\(907\) 0 0 0.761712 0.647915i \(-0.224359\pi\)
−0.761712 + 0.647915i \(0.775641\pi\)
\(908\) 0 0
\(909\) −0.0386709 0.318483i −0.0386709 0.318483i
\(910\) 0 0
\(911\) 0 0 0.120537 0.992709i \(-0.461538\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0.506316 + 0.380472i 0.506316 + 0.380472i
\(915\) 0 0
\(916\) −0.280492 1.97655i −0.280492 1.97655i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.903450 0.428693i \(-0.141026\pi\)
−0.903450 + 0.428693i \(0.858974\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.79863 0.560476i 1.79863 0.560476i
\(923\) 0 0
\(924\) 0 0
\(925\) −0.136019 + 0.0860133i −0.136019 + 0.0860133i
\(926\) 0 0
\(927\) 0 0
\(928\) 0.192724 + 1.58723i 0.192724 + 1.58723i
\(929\) 0.941340 + 1.70903i 0.941340 + 1.70903i 0.663123 + 0.748511i \(0.269231\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.183332 1.81456i 0.183332 1.81456i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0.970942 + 0.239316i 0.970942 + 0.239316i
\(937\) −0.574732 1.84438i −0.574732 1.84438i −0.534466 0.845190i \(-0.679487\pi\)
−0.0402659 0.999189i \(-0.512821\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.05555 0.638104i −1.05555 0.638104i −0.120537 0.992709i \(-0.538462\pi\)
−0.935016 + 0.354605i \(0.884615\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.845190 0.534466i \(-0.820513\pi\)
0.845190 + 0.534466i \(0.179487\pi\)
\(948\) 0 0
\(949\) −0.0804666 + 0.996757i −0.0804666 + 0.996757i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0.680089 1.02900i 0.680089 1.02900i −0.316668 0.948536i \(-0.602564\pi\)
0.996757 0.0804666i \(-0.0256410\pi\)
\(954\) −1.63163 0.734339i −1.63163 0.734339i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0.663123 0.748511i 0.663123 0.748511i
\(962\) −0.159760 + 0.0193983i −0.159760 + 0.0193983i
\(963\) 0 0
\(964\) −0.260684 + 1.83697i −0.260684 + 1.83697i
\(965\) 1.53791 + 0.186737i 1.53791 + 0.186737i
\(966\) 0 0
\(967\) 0 0 −0.464723 0.885456i \(-0.653846\pi\)
0.464723 + 0.885456i \(0.346154\pi\)
\(968\) 0.692724 0.721202i 0.692724 0.721202i
\(969\) 0 0
\(970\) −1.58053 + 0.999468i −1.58053 + 0.999468i
\(971\) 0 0 −0.987050 0.160411i \(-0.948718\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0.761154 + 0.187607i 0.761154 + 0.187607i
\(977\) −0.202903 1.24851i −0.202903 1.24851i −0.866025 0.500000i \(-0.833333\pi\)
0.663123 0.748511i \(-0.269231\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −0.987050 0.160411i −0.987050 0.160411i
\(981\) 0.222152 + 0.551979i 0.222152 + 0.551979i
\(982\) 0 0
\(983\) 0 0 −0.935016 0.354605i \(-0.884615\pi\)
0.935016 + 0.354605i \(0.115385\pi\)
\(984\) 0 0
\(985\) 0.922670 1.75800i 0.922670 1.75800i
\(986\) 0.0706267 + 0.699040i 0.0706267 + 0.699040i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1.68543 0.841739i −1.68543 0.841739i −0.992709 0.120537i \(-0.961538\pi\)
−0.692724 0.721202i \(-0.743590\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3380.1.cs.a.687.1 yes 48
4.3 odd 2 CM 3380.1.cs.a.687.1 yes 48
5.3 odd 4 3380.1.cz.a.1363.1 yes 48
20.3 even 4 3380.1.cz.a.1363.1 yes 48
169.123 odd 156 3380.1.cz.a.2827.1 yes 48
676.123 even 156 3380.1.cz.a.2827.1 yes 48
845.123 even 156 inner 3380.1.cs.a.123.1 48
3380.123 odd 156 inner 3380.1.cs.a.123.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3380.1.cs.a.123.1 48 845.123 even 156 inner
3380.1.cs.a.123.1 48 3380.123 odd 156 inner
3380.1.cs.a.687.1 yes 48 1.1 even 1 trivial
3380.1.cs.a.687.1 yes 48 4.3 odd 2 CM
3380.1.cz.a.1363.1 yes 48 5.3 odd 4
3380.1.cz.a.1363.1 yes 48 20.3 even 4
3380.1.cz.a.2827.1 yes 48 169.123 odd 156
3380.1.cz.a.2827.1 yes 48 676.123 even 156