Properties

Label 3380.1.g.c.3379.6
Level 33803380
Weight 11
Character 3380.3379
Analytic conductor 1.6871.687
Analytic rank 00
Dimension 66
Projective image D7D_{7}
CM discriminant -20
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3380,1,Mod(3379,3380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3380, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3380.3379");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3380=225132 3380 = 2^{2} \cdot 5 \cdot 13^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3380.g (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.686839742701.68683974270
Analytic rank: 00
Dimension: 66
Coefficient field: 6.0.153664.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6+5x4+6x2+1 x^{6} + 5x^{4} + 6x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D7D_{7}
Projective field: Galois closure of 7.1.38614472000.1

Embedding invariants

Embedding label 3379.6
Root 1.24698i-1.24698i of defining polynomial
Character χ\chi == 3380.3379
Dual form 3380.1.g.c.3379.3

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000iq2+1.24698q31.00000q4+1.00000iq5+1.24698iq6+1.80194iq71.00000iq8+0.554958q91.00000q101.24698q121.80194q14+1.24698iq15+1.00000q16+0.554958iq181.00000iq20+2.24698iq21+0.445042q231.24698iq241.00000q250.554958q271.80194iq28+1.24698q291.24698q30+1.00000iq321.80194q350.554958q36+1.00000q401.80194iq412.24698q42+0.445042q43+0.554958iq45+0.445042iq46+0.445042iq47+1.24698q482.24698q491.00000iq500.554958iq54+1.80194q56+1.24698iq581.24698iq601.80194q61+1.00000iq631.00000q640.445042iq67+0.554958q691.80194iq700.554958iq721.24698q75+1.00000iq801.24698q81+1.80194q82+1.24698iq832.24698iq84+0.445042iq86+1.55496q87+0.445042iq890.554958q900.445042q920.445042q94+1.24698iq962.24698iq98+O(q100)q+1.00000i q^{2} +1.24698 q^{3} -1.00000 q^{4} +1.00000i q^{5} +1.24698i q^{6} +1.80194i q^{7} -1.00000i q^{8} +0.554958 q^{9} -1.00000 q^{10} -1.24698 q^{12} -1.80194 q^{14} +1.24698i q^{15} +1.00000 q^{16} +0.554958i q^{18} -1.00000i q^{20} +2.24698i q^{21} +0.445042 q^{23} -1.24698i q^{24} -1.00000 q^{25} -0.554958 q^{27} -1.80194i q^{28} +1.24698 q^{29} -1.24698 q^{30} +1.00000i q^{32} -1.80194 q^{35} -0.554958 q^{36} +1.00000 q^{40} -1.80194i q^{41} -2.24698 q^{42} +0.445042 q^{43} +0.554958i q^{45} +0.445042i q^{46} +0.445042i q^{47} +1.24698 q^{48} -2.24698 q^{49} -1.00000i q^{50} -0.554958i q^{54} +1.80194 q^{56} +1.24698i q^{58} -1.24698i q^{60} -1.80194 q^{61} +1.00000i q^{63} -1.00000 q^{64} -0.445042i q^{67} +0.554958 q^{69} -1.80194i q^{70} -0.554958i q^{72} -1.24698 q^{75} +1.00000i q^{80} -1.24698 q^{81} +1.80194 q^{82} +1.24698i q^{83} -2.24698i q^{84} +0.445042i q^{86} +1.55496 q^{87} +0.445042i q^{89} -0.554958 q^{90} -0.445042 q^{92} -0.445042 q^{94} +1.24698i q^{96} -2.24698i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q2q36q4+4q96q10+2q122q14+6q16+2q236q254q272q29+2q302q354q36+6q404q42+2q432q484q49+2q94+O(q100) 6 q - 2 q^{3} - 6 q^{4} + 4 q^{9} - 6 q^{10} + 2 q^{12} - 2 q^{14} + 6 q^{16} + 2 q^{23} - 6 q^{25} - 4 q^{27} - 2 q^{29} + 2 q^{30} - 2 q^{35} - 4 q^{36} + 6 q^{40} - 4 q^{42} + 2 q^{43} - 2 q^{48} - 4 q^{49}+ \cdots - 2 q^{94}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3380Z)×\left(\mathbb{Z}/3380\mathbb{Z}\right)^\times.

nn 677677 16911691 18611861
χ(n)\chi(n) 1-1 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000i 1.00000i
33 1.24698 1.24698 0.623490 0.781831i 0.285714π-0.285714\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
44 −1.00000 −1.00000
55 1.00000i 1.00000i
66 1.24698i 1.24698i
77 1.80194i 1.80194i 0.433884 + 0.900969i 0.357143π0.357143\pi
−0.433884 + 0.900969i 0.642857π0.642857\pi
88 − 1.00000i − 1.00000i
99 0.554958 0.554958
1010 −1.00000 −1.00000
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 −1.24698 −1.24698
1313 0 0
1414 −1.80194 −1.80194
1515 1.24698i 1.24698i
1616 1.00000 1.00000
1717 0 0 1.00000 00
−1.00000 π\pi
1818 0.554958i 0.554958i
1919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2020 − 1.00000i − 1.00000i
2121 2.24698i 2.24698i
2222 0 0
2323 0.445042 0.445042 0.222521 0.974928i 0.428571π-0.428571\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
2424 − 1.24698i − 1.24698i
2525 −1.00000 −1.00000
2626 0 0
2727 −0.554958 −0.554958
2828 − 1.80194i − 1.80194i
2929 1.24698 1.24698 0.623490 0.781831i 0.285714π-0.285714\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
3030 −1.24698 −1.24698
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 1.00000i 1.00000i
3333 0 0
3434 0 0
3535 −1.80194 −1.80194
3636 −0.554958 −0.554958
3737 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3838 0 0
3939 0 0
4040 1.00000 1.00000
4141 − 1.80194i − 1.80194i −0.433884 0.900969i 0.642857π-0.642857\pi
0.433884 0.900969i 0.357143π-0.357143\pi
4242 −2.24698 −2.24698
4343 0.445042 0.445042 0.222521 0.974928i 0.428571π-0.428571\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
4444 0 0
4545 0.554958i 0.554958i
4646 0.445042i 0.445042i
4747 0.445042i 0.445042i 0.974928 + 0.222521i 0.0714286π0.0714286\pi
−0.974928 + 0.222521i 0.928571π0.928571\pi
4848 1.24698 1.24698
4949 −2.24698 −2.24698
5050 − 1.00000i − 1.00000i
5151 0 0
5252 0 0
5353 0 0 1.00000 00
−1.00000 π\pi
5454 − 0.554958i − 0.554958i
5555 0 0
5656 1.80194 1.80194
5757 0 0
5858 1.24698i 1.24698i
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 − 1.24698i − 1.24698i
6161 −1.80194 −1.80194 −0.900969 0.433884i 0.857143π-0.857143\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
6262 0 0
6363 1.00000i 1.00000i
6464 −1.00000 −1.00000
6565 0 0
6666 0 0
6767 − 0.445042i − 0.445042i −0.974928 0.222521i 0.928571π-0.928571\pi
0.974928 0.222521i 0.0714286π-0.0714286\pi
6868 0 0
6969 0.554958 0.554958
7070 − 1.80194i − 1.80194i
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 − 0.554958i − 0.554958i
7373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7474 0 0
7575 −1.24698 −1.24698
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 1.00000i 1.00000i
8181 −1.24698 −1.24698
8282 1.80194 1.80194
8383 1.24698i 1.24698i 0.781831 + 0.623490i 0.214286π0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
8484 − 2.24698i − 2.24698i
8585 0 0
8686 0.445042i 0.445042i
8787 1.55496 1.55496
8888 0 0
8989 0.445042i 0.445042i 0.974928 + 0.222521i 0.0714286π0.0714286\pi
−0.974928 + 0.222521i 0.928571π0.928571\pi
9090 −0.554958 −0.554958
9191 0 0
9292 −0.445042 −0.445042
9393 0 0
9494 −0.445042 −0.445042
9595 0 0
9696 1.24698i 1.24698i
9797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9898 − 2.24698i − 2.24698i
9999 0 0
100100 1.00000 1.00000
101101 0.445042 0.445042 0.222521 0.974928i 0.428571π-0.428571\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
102102 0 0
103103 1.80194 1.80194 0.900969 0.433884i 0.142857π-0.142857\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
104104 0 0
105105 −2.24698 −2.24698
106106 0 0
107107 2.00000 2.00000 1.00000 00
1.00000 00
108108 0.554958 0.554958
109109 − 1.80194i − 1.80194i −0.433884 0.900969i 0.642857π-0.642857\pi
0.433884 0.900969i 0.357143π-0.357143\pi
110110 0 0
111111 0 0
112112 1.80194i 1.80194i
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 0.445042i 0.445042i
116116 −1.24698 −1.24698
117117 0 0
118118 0 0
119119 0 0
120120 1.24698 1.24698
121121 −1.00000 −1.00000
122122 − 1.80194i − 1.80194i
123123 − 2.24698i − 2.24698i
124124 0 0
125125 − 1.00000i − 1.00000i
126126 −1.00000 −1.00000
127127 1.80194 1.80194 0.900969 0.433884i 0.142857π-0.142857\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
128128 − 1.00000i − 1.00000i
129129 0.554958 0.554958
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 0.445042 0.445042
135135 − 0.554958i − 0.554958i
136136 0 0
137137 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
138138 0.554958i 0.554958i
139139 0 0 1.00000 00
−1.00000 π\pi
140140 1.80194 1.80194
141141 0.554958i 0.554958i
142142 0 0
143143 0 0
144144 0.554958 0.554958
145145 1.24698i 1.24698i
146146 0 0
147147 −2.80194 −2.80194
148148 0 0
149149 1.24698i 1.24698i 0.781831 + 0.623490i 0.214286π0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
150150 − 1.24698i − 1.24698i
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 0 0 1.00000 00
−1.00000 π\pi
158158 0 0
159159 0 0
160160 −1.00000 −1.00000
161161 0.801938i 0.801938i
162162 − 1.24698i − 1.24698i
163163 − 1.24698i − 1.24698i −0.781831 0.623490i 0.785714π-0.785714\pi
0.781831 0.623490i 0.214286π-0.214286\pi
164164 1.80194i 1.80194i
165165 0 0
166166 −1.24698 −1.24698
167167 1.80194i 1.80194i 0.433884 + 0.900969i 0.357143π0.357143\pi
−0.433884 + 0.900969i 0.642857π0.642857\pi
168168 2.24698 2.24698
169169 0 0
170170 0 0
171171 0 0
172172 −0.445042 −0.445042
173173 0 0 1.00000 00
−1.00000 π\pi
174174 1.55496i 1.55496i
175175 − 1.80194i − 1.80194i
176176 0 0
177177 0 0
178178 −0.445042 −0.445042
179179 0 0 1.00000 00
−1.00000 π\pi
180180 − 0.554958i − 0.554958i
181181 0.445042 0.445042 0.222521 0.974928i 0.428571π-0.428571\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
182182 0 0
183183 −2.24698 −2.24698
184184 − 0.445042i − 0.445042i
185185 0 0
186186 0 0
187187 0 0
188188 − 0.445042i − 0.445042i
189189 − 1.00000i − 1.00000i
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 −1.24698 −1.24698
193193 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
194194 0 0
195195 0 0
196196 2.24698 2.24698
197197 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 1.00000i 1.00000i
201201 − 0.554958i − 0.554958i
202202 0.445042i 0.445042i
203203 2.24698i 2.24698i
204204 0 0
205205 1.80194 1.80194
206206 1.80194i 1.80194i
207207 0.246980 0.246980
208208 0 0
209209 0 0
210210 − 2.24698i − 2.24698i
211211 0 0 1.00000 00
−1.00000 π\pi
212212 0 0
213213 0 0
214214 2.00000i 2.00000i
215215 0.445042i 0.445042i
216216 0.554958i 0.554958i
217217 0 0
218218 1.80194 1.80194
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 1.24698i 1.24698i 0.781831 + 0.623490i 0.214286π0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
224224 −1.80194 −1.80194
225225 −0.554958 −0.554958
226226 0 0
227227 1.24698i 1.24698i 0.781831 + 0.623490i 0.214286π0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
228228 0 0
229229 − 1.24698i − 1.24698i −0.781831 0.623490i 0.785714π-0.785714\pi
0.781831 0.623490i 0.214286π-0.214286\pi
230230 −0.445042 −0.445042
231231 0 0
232232 − 1.24698i − 1.24698i
233233 0 0 1.00000 00
−1.00000 π\pi
234234 0 0
235235 −0.445042 −0.445042
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 1.24698i 1.24698i
241241 0.445042i 0.445042i 0.974928 + 0.222521i 0.0714286π0.0714286\pi
−0.974928 + 0.222521i 0.928571π0.928571\pi
242242 − 1.00000i − 1.00000i
243243 −1.00000 −1.00000
244244 1.80194 1.80194
245245 − 2.24698i − 2.24698i
246246 2.24698 2.24698
247247 0 0
248248 0 0
249249 1.55496i 1.55496i
250250 1.00000 1.00000
251251 0 0 1.00000 00
−1.00000 π\pi
252252 − 1.00000i − 1.00000i
253253 0 0
254254 1.80194i 1.80194i
255255 0 0
256256 1.00000 1.00000
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0.554958i 0.554958i
259259 0 0
260260 0 0
261261 0.692021 0.692021
262262 0 0
263263 −1.80194 −1.80194 −0.900969 0.433884i 0.857143π-0.857143\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
264264 0 0
265265 0 0
266266 0 0
267267 0.554958i 0.554958i
268268 0.445042i 0.445042i
269269 1.24698 1.24698 0.623490 0.781831i 0.285714π-0.285714\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
270270 0.554958 0.554958
271271 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 −0.554958 −0.554958
277277 0 0 1.00000 00
−1.00000 π\pi
278278 0 0
279279 0 0
280280 1.80194i 1.80194i
281281 − 1.24698i − 1.24698i −0.781831 0.623490i 0.785714π-0.785714\pi
0.781831 0.623490i 0.214286π-0.214286\pi
282282 −0.554958 −0.554958
283283 −1.24698 −1.24698 −0.623490 0.781831i 0.714286π-0.714286\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
284284 0 0
285285 0 0
286286 0 0
287287 3.24698 3.24698
288288 0.554958i 0.554958i
289289 1.00000 1.00000
290290 −1.24698 −1.24698
291291 0 0
292292 0 0
293293 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
294294 − 2.80194i − 2.80194i
295295 0 0
296296 0 0
297297 0 0
298298 −1.24698 −1.24698
299299 0 0
300300 1.24698 1.24698
301301 0.801938i 0.801938i
302302 0 0
303303 0.554958 0.554958
304304 0 0
305305 − 1.80194i − 1.80194i
306306 0 0
307307 − 1.24698i − 1.24698i −0.781831 0.623490i 0.785714π-0.785714\pi
0.781831 0.623490i 0.214286π-0.214286\pi
308308 0 0
309309 2.24698 2.24698
310310 0 0
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 0 0
315315 −1.00000 −1.00000
316316 0 0
317317 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
318318 0 0
319319 0 0
320320 − 1.00000i − 1.00000i
321321 2.49396 2.49396
322322 −0.801938 −0.801938
323323 0 0
324324 1.24698 1.24698
325325 0 0
326326 1.24698 1.24698
327327 − 2.24698i − 2.24698i
328328 −1.80194 −1.80194
329329 −0.801938 −0.801938
330330 0 0
331331 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
332332 − 1.24698i − 1.24698i
333333 0 0
334334 −1.80194 −1.80194
335335 0.445042 0.445042
336336 2.24698i 2.24698i
337337 0 0 1.00000 00
−1.00000 π\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 − 2.24698i − 2.24698i
344344 − 0.445042i − 0.445042i
345345 0.554958i 0.554958i
346346 0 0
347347 1.24698 1.24698 0.623490 0.781831i 0.285714π-0.285714\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
348348 −1.55496 −1.55496
349349 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
350350 1.80194 1.80194
351351 0 0
352352 0 0
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 0 0
356356 − 0.445042i − 0.445042i
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0.554958 0.554958
361361 −1.00000 −1.00000
362362 0.445042i 0.445042i
363363 −1.24698 −1.24698
364364 0 0
365365 0 0
366366 − 2.24698i − 2.24698i
367367 1.24698 1.24698 0.623490 0.781831i 0.285714π-0.285714\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
368368 0.445042 0.445042
369369 − 1.00000i − 1.00000i
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0 0
375375 − 1.24698i − 1.24698i
376376 0.445042 0.445042
377377 0 0
378378 1.00000 1.00000
379379 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
380380 0 0
381381 2.24698 2.24698
382382 0 0
383383 1.24698i 1.24698i 0.781831 + 0.623490i 0.214286π0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
384384 − 1.24698i − 1.24698i
385385 0 0
386386 0 0
387387 0.246980 0.246980
388388 0 0
389389 0.445042 0.445042 0.222521 0.974928i 0.428571π-0.428571\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
390390 0 0
391391 0 0
392392 2.24698i 2.24698i
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
398398 0 0
399399 0 0
400400 −1.00000 −1.00000
401401 1.80194i 1.80194i 0.433884 + 0.900969i 0.357143π0.357143\pi
−0.433884 + 0.900969i 0.642857π0.642857\pi
402402 0.554958 0.554958
403403 0 0
404404 −0.445042 −0.445042
405405 − 1.24698i − 1.24698i
406406 −2.24698 −2.24698
407407 0 0
408408 0 0
409409 − 1.80194i − 1.80194i −0.433884 0.900969i 0.642857π-0.642857\pi
0.433884 0.900969i 0.357143π-0.357143\pi
410410 1.80194i 1.80194i
411411 0 0
412412 −1.80194 −1.80194
413413 0 0
414414 0.246980i 0.246980i
415415 −1.24698 −1.24698
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 2.24698 2.24698
421421 1.24698i 1.24698i 0.781831 + 0.623490i 0.214286π0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
422422 0 0
423423 0.246980i 0.246980i
424424 0 0
425425 0 0
426426 0 0
427427 − 3.24698i − 3.24698i
428428 −2.00000 −2.00000
429429 0 0
430430 −0.445042 −0.445042
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 −0.554958 −0.554958
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 1.55496i 1.55496i
436436 1.80194i 1.80194i
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 −1.24698 −1.24698
442442 0 0
443443 1.24698 1.24698 0.623490 0.781831i 0.285714π-0.285714\pi
0.623490 + 0.781831i 0.285714π0.285714\pi
444444 0 0
445445 −0.445042 −0.445042
446446 −1.24698 −1.24698
447447 1.55496i 1.55496i
448448 − 1.80194i − 1.80194i
449449 − 1.24698i − 1.24698i −0.781831 0.623490i 0.785714π-0.785714\pi
0.781831 0.623490i 0.214286π-0.214286\pi
450450 − 0.554958i − 0.554958i
451451 0 0
452452 0 0
453453 0 0
454454 −1.24698 −1.24698
455455 0 0
456456 0 0
457457 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
458458 1.24698 1.24698
459459 0 0
460460 − 0.445042i − 0.445042i
461461 − 0.445042i − 0.445042i −0.974928 0.222521i 0.928571π-0.928571\pi
0.974928 0.222521i 0.0714286π-0.0714286\pi
462462 0 0
463463 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
464464 1.24698 1.24698
465465 0 0
466466 0 0
467467 0.445042 0.445042 0.222521 0.974928i 0.428571π-0.428571\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
468468 0 0
469469 0.801938 0.801938
470470 − 0.445042i − 0.445042i
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 −1.24698 −1.24698
481481 0 0
482482 −0.445042 −0.445042
483483 1.00000i 1.00000i
484484 1.00000 1.00000
485485 0 0
486486 − 1.00000i − 1.00000i
487487 − 0.445042i − 0.445042i −0.974928 0.222521i 0.928571π-0.928571\pi
0.974928 0.222521i 0.0714286π-0.0714286\pi
488488 1.80194i 1.80194i
489489 − 1.55496i − 1.55496i
490490 2.24698 2.24698
491491 0 0 1.00000 00
−1.00000 π\pi
492492 2.24698i 2.24698i
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 −1.55496 −1.55496
499499 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
500500 1.00000i 1.00000i
501501 2.24698i 2.24698i
502502 0 0
503503 −1.80194 −1.80194 −0.900969 0.433884i 0.857143π-0.857143\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
504504 1.00000 1.00000
505505 0.445042i 0.445042i
506506 0 0
507507 0 0
508508 −1.80194 −1.80194
509509 1.24698i 1.24698i 0.781831 + 0.623490i 0.214286π0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
510510 0 0
511511 0 0
512512 1.00000i 1.00000i
513513 0 0
514514 0 0
515515 1.80194i 1.80194i
516516 −0.554958 −0.554958
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 −0.445042 −0.445042 −0.222521 0.974928i 0.571429π-0.571429\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
522522 0.692021i 0.692021i
523523 −0.445042 −0.445042 −0.222521 0.974928i 0.571429π-0.571429\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
524524 0 0
525525 − 2.24698i − 2.24698i
526526 − 1.80194i − 1.80194i
527527 0 0
528528 0 0
529529 −0.801938 −0.801938
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 −0.554958 −0.554958
535535 2.00000i 2.00000i
536536 −0.445042 −0.445042
537537 0 0
538538 1.24698i 1.24698i
539539 0 0
540540 0.554958i 0.554958i
541541 − 1.24698i − 1.24698i −0.781831 0.623490i 0.785714π-0.785714\pi
0.781831 0.623490i 0.214286π-0.214286\pi
542542 0 0
543543 0.554958 0.554958
544544 0 0
545545 1.80194 1.80194
546546 0 0
547547 −1.80194 −1.80194 −0.900969 0.433884i 0.857143π-0.857143\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
548548 0 0
549549 −1.00000 −1.00000
550550 0 0
551551 0 0
552552 − 0.554958i − 0.554958i
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
558558 0 0
559559 0 0
560560 −1.80194 −1.80194
561561 0 0
562562 1.24698 1.24698
563563 1.80194 1.80194 0.900969 0.433884i 0.142857π-0.142857\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
564564 − 0.554958i − 0.554958i
565565 0 0
566566 − 1.24698i − 1.24698i
567567 − 2.24698i − 2.24698i
568568 0 0
569569 1.80194 1.80194 0.900969 0.433884i 0.142857π-0.142857\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
570570 0 0
571571 0 0 1.00000 00
−1.00000 π\pi
572572 0 0
573573 0 0
574574 3.24698i 3.24698i
575575 −0.445042 −0.445042
576576 −0.554958 −0.554958
577577 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
578578 1.00000i 1.00000i
579579 0 0
580580 − 1.24698i − 1.24698i
581581 −2.24698 −2.24698
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 − 1.80194i − 1.80194i −0.433884 0.900969i 0.642857π-0.642857\pi
0.433884 0.900969i 0.357143π-0.357143\pi
588588 2.80194 2.80194
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 − 1.24698i − 1.24698i
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 1.24698i 1.24698i
601601 −1.80194 −1.80194 −0.900969 0.433884i 0.857143π-0.857143\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
602602 −0.801938 −0.801938
603603 − 0.246980i − 0.246980i
604604 0 0
605605 − 1.00000i − 1.00000i
606606 0.554958i 0.554958i
607607 −0.445042 −0.445042 −0.222521 0.974928i 0.571429π-0.571429\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
608608 0 0
609609 2.80194i 2.80194i
610610 1.80194 1.80194
611611 0 0
612612 0 0
613613 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
614614 1.24698 1.24698
615615 2.24698 2.24698
616616 0 0
617617 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
618618 2.24698i 2.24698i
619619 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
620620 0 0
621621 −0.246980 −0.246980
622622 0 0
623623 −0.801938 −0.801938
624624 0 0
625625 1.00000 1.00000
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 − 1.00000i − 1.00000i
631631 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
632632 0 0
633633 0 0
634634 0 0
635635 1.80194i 1.80194i
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 1.00000 1.00000
641641 1.80194 1.80194 0.900969 0.433884i 0.142857π-0.142857\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
642642 2.49396i 2.49396i
643643 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
644644 − 0.801938i − 0.801938i
645645 0.554958i 0.554958i
646646 0 0
647647 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
648648 1.24698i 1.24698i
649649 0 0
650650 0 0
651651 0 0
652652 1.24698i 1.24698i
653653 0 0 1.00000 00
−1.00000 π\pi
654654 2.24698 2.24698
655655 0 0
656656 − 1.80194i − 1.80194i
657657 0 0
658658 − 0.801938i − 0.801938i
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 0.445042i 0.445042i 0.974928 + 0.222521i 0.0714286π0.0714286\pi
−0.974928 + 0.222521i 0.928571π0.928571\pi
662662 0 0
663663 0 0
664664 1.24698 1.24698
665665 0 0
666666 0 0
667667 0.554958 0.554958
668668 − 1.80194i − 1.80194i
669669 1.55496i 1.55496i
670670 0.445042i 0.445042i
671671 0 0
672672 −2.24698 −2.24698
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 0.554958 0.554958
676676 0 0
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 0 0
680680 0 0
681681 1.55496i 1.55496i
682682 0 0
683683 0.445042i 0.445042i 0.974928 + 0.222521i 0.0714286π0.0714286\pi
−0.974928 + 0.222521i 0.928571π0.928571\pi
684684 0 0
685685 0 0
686686 2.24698 2.24698
687687 − 1.55496i − 1.55496i
688688 0.445042 0.445042
689689 0 0
690690 −0.554958 −0.554958
691691 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
692692 0 0
693693 0 0
694694 1.24698i 1.24698i
695695 0 0
696696 − 1.55496i − 1.55496i
697697 0 0
698698 2.00000 2.00000
699699 0 0
700700 1.80194i 1.80194i
701701 1.80194 1.80194 0.900969 0.433884i 0.142857π-0.142857\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
702702 0 0
703703 0 0
704704 0 0
705705 −0.554958 −0.554958
706706 0 0
707707 0.801938i 0.801938i
708708 0 0
709709 1.80194i 1.80194i 0.433884 + 0.900969i 0.357143π0.357143\pi
−0.433884 + 0.900969i 0.642857π0.642857\pi
710710 0 0
711711 0 0
712712 0.445042 0.445042
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0.554958i 0.554958i
721721 3.24698i 3.24698i
722722 − 1.00000i − 1.00000i
723723 0.554958i 0.554958i
724724 −0.445042 −0.445042
725725 −1.24698 −1.24698
726726 − 1.24698i − 1.24698i
727727 0.445042 0.445042 0.222521 0.974928i 0.428571π-0.428571\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 2.24698 2.24698
733733 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
734734 1.24698i 1.24698i
735735 − 2.80194i − 2.80194i
736736 0.445042i 0.445042i
737737 0 0
738738 1.00000 1.00000
739739 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
740740 0 0
741741 0 0
742742 0 0
743743 − 1.80194i − 1.80194i −0.433884 0.900969i 0.642857π-0.642857\pi
0.433884 0.900969i 0.357143π-0.357143\pi
744744 0 0
745745 −1.24698 −1.24698
746746 0 0
747747 0.692021i 0.692021i
748748 0 0
749749 3.60388i 3.60388i
750750 1.24698 1.24698
751751 0 0 1.00000 00
−1.00000 π\pi
752752 0.445042i 0.445042i
753753 0 0
754754 0 0
755755 0 0
756756 1.00000i 1.00000i
757757 0 0 1.00000 00
−1.00000 π\pi
758758 0 0
759759 0 0
760760 0 0
761761 − 1.24698i − 1.24698i −0.781831 0.623490i 0.785714π-0.785714\pi
0.781831 0.623490i 0.214286π-0.214286\pi
762762 2.24698i 2.24698i
763763 3.24698 3.24698
764764 0 0
765765 0 0
766766 −1.24698 −1.24698
767767 0 0
768768 1.24698 1.24698
769769 − 1.80194i − 1.80194i −0.433884 0.900969i 0.642857π-0.642857\pi
0.433884 0.900969i 0.357143π-0.357143\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
774774 0.246980i 0.246980i
775775 0 0
776776 0 0
777777 0 0
778778 0.445042i 0.445042i
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 −0.692021 −0.692021
784784 −2.24698 −2.24698
785785 0 0
786786 0 0
787787 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
788788 0 0
789789 −2.24698 −2.24698
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 0 0
800800 − 1.00000i − 1.00000i
801801 0.246980i 0.246980i
802802 −1.80194 −1.80194
803803 0 0
804804 0.554958i 0.554958i
805805 −0.801938 −0.801938
806806 0 0
807807 1.55496 1.55496
808808 − 0.445042i − 0.445042i
809809 −1.80194 −1.80194 −0.900969 0.433884i 0.857143π-0.857143\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
810810 1.24698 1.24698
811811 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
812812 − 2.24698i − 2.24698i
813813 0 0
814814 0 0
815815 1.24698 1.24698
816816 0 0
817817 0 0
818818 1.80194 1.80194
819819 0 0
820820 −1.80194 −1.80194
821821 − 0.445042i − 0.445042i −0.974928 0.222521i 0.928571π-0.928571\pi
0.974928 0.222521i 0.0714286π-0.0714286\pi
822822 0 0
823823 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
824824 − 1.80194i − 1.80194i
825825 0 0
826826 0 0
827827 − 1.24698i − 1.24698i −0.781831 0.623490i 0.785714π-0.785714\pi
0.781831 0.623490i 0.214286π-0.214286\pi
828828 −0.246980 −0.246980
829829 −1.24698 −1.24698 −0.623490 0.781831i 0.714286π-0.714286\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
830830 − 1.24698i − 1.24698i
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 −1.80194 −1.80194
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 2.24698i 2.24698i
841841 0.554958 0.554958
842842 −1.24698 −1.24698
843843 − 1.55496i − 1.55496i
844844 0 0
845845 0 0
846846 −0.246980 −0.246980
847847 − 1.80194i − 1.80194i
848848 0 0
849849 −1.55496 −1.55496
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
854854 3.24698 3.24698
855855 0 0
856856 − 2.00000i − 2.00000i
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 − 0.445042i − 0.445042i
861861 4.04892 4.04892
862862 0 0
863863 1.24698i 1.24698i 0.781831 + 0.623490i 0.214286π0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
864864 − 0.554958i − 0.554958i
865865 0 0
866866 0 0
867867 1.24698 1.24698
868868 0 0
869869 0 0
870870 −1.55496 −1.55496
871871 0 0
872872 −1.80194 −1.80194
873873 0 0
874874 0 0
875875 1.80194 1.80194
876876 0 0
877877 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
878878 0 0
879879 0 0
880880 0 0
881881 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
882882 − 1.24698i − 1.24698i
883883 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
884884 0 0
885885 0 0
886886 1.24698i 1.24698i
887887 −1.80194 −1.80194 −0.900969 0.433884i 0.857143π-0.857143\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
888888 0 0
889889 3.24698i 3.24698i
890890 − 0.445042i − 0.445042i
891891 0 0
892892 − 1.24698i − 1.24698i
893893 0 0
894894 −1.55496 −1.55496
895895 0 0
896896 1.80194 1.80194
897897 0 0
898898 1.24698 1.24698
899899 0 0
900900 0.554958 0.554958
901901 0 0
902902 0 0
903903 1.00000i 1.00000i
904904 0 0
905905 0.445042i 0.445042i
906906 0 0
907907 1.80194 1.80194 0.900969 0.433884i 0.142857π-0.142857\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
908908 − 1.24698i − 1.24698i
909909 0.246980 0.246980
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 − 2.24698i − 2.24698i
916916 1.24698i 1.24698i
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0.445042 0.445042
921921 − 1.55496i − 1.55496i
922922 0.445042 0.445042
923923 0 0
924924 0 0
925925 0 0
926926 2.00000 2.00000
927927 1.00000 1.00000
928928 1.24698i 1.24698i
929929 − 0.445042i − 0.445042i −0.974928 0.222521i 0.928571π-0.928571\pi
0.974928 0.222521i 0.0714286π-0.0714286\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0.445042i 0.445042i
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0.801938i 0.801938i
939939 0 0
940940 0.445042 0.445042
941941 − 1.80194i − 1.80194i −0.433884 0.900969i 0.642857π-0.642857\pi
0.433884 0.900969i 0.357143π-0.357143\pi
942942 0 0
943943 − 0.801938i − 0.801938i
944944 0 0
945945 1.00000 1.00000
946946 0 0
947947 1.80194i 1.80194i 0.433884 + 0.900969i 0.357143π0.357143\pi
−0.433884 + 0.900969i 0.642857π0.642857\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000 00
−1.00000 π\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 − 1.24698i − 1.24698i
961961 −1.00000 −1.00000
962962 0 0
963963 1.10992 1.10992
964964 − 0.445042i − 0.445042i
965965 0 0
966966 −1.00000 −1.00000
967967 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
968968 1.00000i 1.00000i
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 1.00000 1.00000
973973 0 0
974974 0.445042 0.445042
975975 0 0
976976 −1.80194 −1.80194
977977 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
978978 1.55496 1.55496
979979 0 0
980980 2.24698i 2.24698i
981981 − 1.00000i − 1.00000i
982982 0 0
983983 − 1.24698i − 1.24698i −0.781831 0.623490i 0.785714π-0.785714\pi
0.781831 0.623490i 0.214286π-0.214286\pi
984984 −2.24698 −2.24698
985985 0 0
986986 0 0
987987 −1.00000 −1.00000
988988 0 0
989989 0.198062 0.198062
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 − 1.55496i − 1.55496i
997997 0 0 1.00000 00
−1.00000 π\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3380.1.g.c.3379.6 6
4.3 odd 2 3380.1.g.d.3379.1 6
5.4 even 2 3380.1.g.d.3379.1 6
13.2 odd 12 3380.1.v.e.2219.1 6
13.3 even 3 3380.1.w.f.1499.1 12
13.4 even 6 3380.1.w.f.699.1 12
13.5 odd 4 3380.1.h.d.339.3 yes 3
13.6 odd 12 3380.1.v.e.3019.1 6
13.7 odd 12 3380.1.v.g.3019.1 6
13.8 odd 4 3380.1.h.b.339.3 3
13.9 even 3 3380.1.w.f.699.4 12
13.10 even 6 3380.1.w.f.1499.4 12
13.11 odd 12 3380.1.v.g.2219.1 6
13.12 even 2 inner 3380.1.g.c.3379.3 6
20.19 odd 2 CM 3380.1.g.c.3379.6 6
52.3 odd 6 3380.1.w.e.1499.6 12
52.7 even 12 3380.1.v.d.3019.3 6
52.11 even 12 3380.1.v.d.2219.3 6
52.15 even 12 3380.1.v.f.2219.3 6
52.19 even 12 3380.1.v.f.3019.3 6
52.23 odd 6 3380.1.w.e.1499.3 12
52.31 even 4 3380.1.h.c.339.1 yes 3
52.35 odd 6 3380.1.w.e.699.3 12
52.43 odd 6 3380.1.w.e.699.6 12
52.47 even 4 3380.1.h.e.339.1 yes 3
52.51 odd 2 3380.1.g.d.3379.4 6
65.4 even 6 3380.1.w.e.699.6 12
65.9 even 6 3380.1.w.e.699.3 12
65.19 odd 12 3380.1.v.f.3019.3 6
65.24 odd 12 3380.1.v.d.2219.3 6
65.29 even 6 3380.1.w.e.1499.6 12
65.34 odd 4 3380.1.h.e.339.1 yes 3
65.44 odd 4 3380.1.h.c.339.1 yes 3
65.49 even 6 3380.1.w.e.1499.3 12
65.54 odd 12 3380.1.v.f.2219.3 6
65.59 odd 12 3380.1.v.d.3019.3 6
65.64 even 2 3380.1.g.d.3379.4 6
260.19 even 12 3380.1.v.e.3019.1 6
260.59 even 12 3380.1.v.g.3019.1 6
260.99 even 4 3380.1.h.b.339.3 3
260.119 even 12 3380.1.v.e.2219.1 6
260.139 odd 6 3380.1.w.f.699.4 12
260.159 odd 6 3380.1.w.f.1499.1 12
260.179 odd 6 3380.1.w.f.1499.4 12
260.199 odd 6 3380.1.w.f.699.1 12
260.219 even 12 3380.1.v.g.2219.1 6
260.239 even 4 3380.1.h.d.339.3 yes 3
260.259 odd 2 inner 3380.1.g.c.3379.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3380.1.g.c.3379.3 6 13.12 even 2 inner
3380.1.g.c.3379.3 6 260.259 odd 2 inner
3380.1.g.c.3379.6 6 1.1 even 1 trivial
3380.1.g.c.3379.6 6 20.19 odd 2 CM
3380.1.g.d.3379.1 6 4.3 odd 2
3380.1.g.d.3379.1 6 5.4 even 2
3380.1.g.d.3379.4 6 52.51 odd 2
3380.1.g.d.3379.4 6 65.64 even 2
3380.1.h.b.339.3 3 13.8 odd 4
3380.1.h.b.339.3 3 260.99 even 4
3380.1.h.c.339.1 yes 3 52.31 even 4
3380.1.h.c.339.1 yes 3 65.44 odd 4
3380.1.h.d.339.3 yes 3 13.5 odd 4
3380.1.h.d.339.3 yes 3 260.239 even 4
3380.1.h.e.339.1 yes 3 52.47 even 4
3380.1.h.e.339.1 yes 3 65.34 odd 4
3380.1.v.d.2219.3 6 52.11 even 12
3380.1.v.d.2219.3 6 65.24 odd 12
3380.1.v.d.3019.3 6 52.7 even 12
3380.1.v.d.3019.3 6 65.59 odd 12
3380.1.v.e.2219.1 6 13.2 odd 12
3380.1.v.e.2219.1 6 260.119 even 12
3380.1.v.e.3019.1 6 13.6 odd 12
3380.1.v.e.3019.1 6 260.19 even 12
3380.1.v.f.2219.3 6 52.15 even 12
3380.1.v.f.2219.3 6 65.54 odd 12
3380.1.v.f.3019.3 6 52.19 even 12
3380.1.v.f.3019.3 6 65.19 odd 12
3380.1.v.g.2219.1 6 13.11 odd 12
3380.1.v.g.2219.1 6 260.219 even 12
3380.1.v.g.3019.1 6 13.7 odd 12
3380.1.v.g.3019.1 6 260.59 even 12
3380.1.w.e.699.3 12 52.35 odd 6
3380.1.w.e.699.3 12 65.9 even 6
3380.1.w.e.699.6 12 52.43 odd 6
3380.1.w.e.699.6 12 65.4 even 6
3380.1.w.e.1499.3 12 52.23 odd 6
3380.1.w.e.1499.3 12 65.49 even 6
3380.1.w.e.1499.6 12 52.3 odd 6
3380.1.w.e.1499.6 12 65.29 even 6
3380.1.w.f.699.1 12 13.4 even 6
3380.1.w.f.699.1 12 260.199 odd 6
3380.1.w.f.699.4 12 13.9 even 3
3380.1.w.f.699.4 12 260.139 odd 6
3380.1.w.f.1499.1 12 13.3 even 3
3380.1.w.f.1499.1 12 260.159 odd 6
3380.1.w.f.1499.4 12 13.10 even 6
3380.1.w.f.1499.4 12 260.179 odd 6