Properties

Label 3380.1.g.c.3379.6
Level $3380$
Weight $1$
Character 3380.3379
Analytic conductor $1.687$
Analytic rank $0$
Dimension $6$
Projective image $D_{7}$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3380,1,Mod(3379,3380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3380, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3380.3379");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3380 = 2^{2} \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3380.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.68683974270\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{7}\)
Projective field: Galois closure of 7.1.38614472000.1

Embedding invariants

Embedding label 3379.6
Root \(-1.24698i\) of defining polynomial
Character \(\chi\) \(=\) 3380.3379
Dual form 3380.1.g.c.3379.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +1.24698 q^{3} -1.00000 q^{4} +1.00000i q^{5} +1.24698i q^{6} +1.80194i q^{7} -1.00000i q^{8} +0.554958 q^{9} -1.00000 q^{10} -1.24698 q^{12} -1.80194 q^{14} +1.24698i q^{15} +1.00000 q^{16} +0.554958i q^{18} -1.00000i q^{20} +2.24698i q^{21} +0.445042 q^{23} -1.24698i q^{24} -1.00000 q^{25} -0.554958 q^{27} -1.80194i q^{28} +1.24698 q^{29} -1.24698 q^{30} +1.00000i q^{32} -1.80194 q^{35} -0.554958 q^{36} +1.00000 q^{40} -1.80194i q^{41} -2.24698 q^{42} +0.445042 q^{43} +0.554958i q^{45} +0.445042i q^{46} +0.445042i q^{47} +1.24698 q^{48} -2.24698 q^{49} -1.00000i q^{50} -0.554958i q^{54} +1.80194 q^{56} +1.24698i q^{58} -1.24698i q^{60} -1.80194 q^{61} +1.00000i q^{63} -1.00000 q^{64} -0.445042i q^{67} +0.554958 q^{69} -1.80194i q^{70} -0.554958i q^{72} -1.24698 q^{75} +1.00000i q^{80} -1.24698 q^{81} +1.80194 q^{82} +1.24698i q^{83} -2.24698i q^{84} +0.445042i q^{86} +1.55496 q^{87} +0.445042i q^{89} -0.554958 q^{90} -0.445042 q^{92} -0.445042 q^{94} +1.24698i q^{96} -2.24698i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} - 6 q^{4} + 4 q^{9} - 6 q^{10} + 2 q^{12} - 2 q^{14} + 6 q^{16} + 2 q^{23} - 6 q^{25} - 4 q^{27} - 2 q^{29} + 2 q^{30} - 2 q^{35} - 4 q^{36} + 6 q^{40} - 4 q^{42} + 2 q^{43} - 2 q^{48} - 4 q^{49}+ \cdots - 2 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3380\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1691\) \(1861\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 1.00000i
\(3\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(4\) −1.00000 −1.00000
\(5\) 1.00000i 1.00000i
\(6\) 1.24698i 1.24698i
\(7\) 1.80194i 1.80194i 0.433884 + 0.900969i \(0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(8\) − 1.00000i − 1.00000i
\(9\) 0.554958 0.554958
\(10\) −1.00000 −1.00000
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) −1.24698 −1.24698
\(13\) 0 0
\(14\) −1.80194 −1.80194
\(15\) 1.24698i 1.24698i
\(16\) 1.00000 1.00000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0.554958i 0.554958i
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) − 1.00000i − 1.00000i
\(21\) 2.24698i 2.24698i
\(22\) 0 0
\(23\) 0.445042 0.445042 0.222521 0.974928i \(-0.428571\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(24\) − 1.24698i − 1.24698i
\(25\) −1.00000 −1.00000
\(26\) 0 0
\(27\) −0.554958 −0.554958
\(28\) − 1.80194i − 1.80194i
\(29\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(30\) −1.24698 −1.24698
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 1.00000i 1.00000i
\(33\) 0 0
\(34\) 0 0
\(35\) −1.80194 −1.80194
\(36\) −0.554958 −0.554958
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 1.00000 1.00000
\(41\) − 1.80194i − 1.80194i −0.433884 0.900969i \(-0.642857\pi\)
0.433884 0.900969i \(-0.357143\pi\)
\(42\) −2.24698 −2.24698
\(43\) 0.445042 0.445042 0.222521 0.974928i \(-0.428571\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(44\) 0 0
\(45\) 0.554958i 0.554958i
\(46\) 0.445042i 0.445042i
\(47\) 0.445042i 0.445042i 0.974928 + 0.222521i \(0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(48\) 1.24698 1.24698
\(49\) −2.24698 −2.24698
\(50\) − 1.00000i − 1.00000i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) − 0.554958i − 0.554958i
\(55\) 0 0
\(56\) 1.80194 1.80194
\(57\) 0 0
\(58\) 1.24698i 1.24698i
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) − 1.24698i − 1.24698i
\(61\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(62\) 0 0
\(63\) 1.00000i 1.00000i
\(64\) −1.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) − 0.445042i − 0.445042i −0.974928 0.222521i \(-0.928571\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(68\) 0 0
\(69\) 0.554958 0.554958
\(70\) − 1.80194i − 1.80194i
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) − 0.554958i − 0.554958i
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) −1.24698 −1.24698
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 1.00000i 1.00000i
\(81\) −1.24698 −1.24698
\(82\) 1.80194 1.80194
\(83\) 1.24698i 1.24698i 0.781831 + 0.623490i \(0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(84\) − 2.24698i − 2.24698i
\(85\) 0 0
\(86\) 0.445042i 0.445042i
\(87\) 1.55496 1.55496
\(88\) 0 0
\(89\) 0.445042i 0.445042i 0.974928 + 0.222521i \(0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(90\) −0.554958 −0.554958
\(91\) 0 0
\(92\) −0.445042 −0.445042
\(93\) 0 0
\(94\) −0.445042 −0.445042
\(95\) 0 0
\(96\) 1.24698i 1.24698i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) − 2.24698i − 2.24698i
\(99\) 0 0
\(100\) 1.00000 1.00000
\(101\) 0.445042 0.445042 0.222521 0.974928i \(-0.428571\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(102\) 0 0
\(103\) 1.80194 1.80194 0.900969 0.433884i \(-0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(104\) 0 0
\(105\) −2.24698 −2.24698
\(106\) 0 0
\(107\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(108\) 0.554958 0.554958
\(109\) − 1.80194i − 1.80194i −0.433884 0.900969i \(-0.642857\pi\)
0.433884 0.900969i \(-0.357143\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.80194i 1.80194i
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0.445042i 0.445042i
\(116\) −1.24698 −1.24698
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 1.24698 1.24698
\(121\) −1.00000 −1.00000
\(122\) − 1.80194i − 1.80194i
\(123\) − 2.24698i − 2.24698i
\(124\) 0 0
\(125\) − 1.00000i − 1.00000i
\(126\) −1.00000 −1.00000
\(127\) 1.80194 1.80194 0.900969 0.433884i \(-0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(128\) − 1.00000i − 1.00000i
\(129\) 0.554958 0.554958
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0.445042 0.445042
\(135\) − 0.554958i − 0.554958i
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0.554958i 0.554958i
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 1.80194 1.80194
\(141\) 0.554958i 0.554958i
\(142\) 0 0
\(143\) 0 0
\(144\) 0.554958 0.554958
\(145\) 1.24698i 1.24698i
\(146\) 0 0
\(147\) −2.80194 −2.80194
\(148\) 0 0
\(149\) 1.24698i 1.24698i 0.781831 + 0.623490i \(0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(150\) − 1.24698i − 1.24698i
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −1.00000 −1.00000
\(161\) 0.801938i 0.801938i
\(162\) − 1.24698i − 1.24698i
\(163\) − 1.24698i − 1.24698i −0.781831 0.623490i \(-0.785714\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(164\) 1.80194i 1.80194i
\(165\) 0 0
\(166\) −1.24698 −1.24698
\(167\) 1.80194i 1.80194i 0.433884 + 0.900969i \(0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(168\) 2.24698 2.24698
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) −0.445042 −0.445042
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 1.55496i 1.55496i
\(175\) − 1.80194i − 1.80194i
\(176\) 0 0
\(177\) 0 0
\(178\) −0.445042 −0.445042
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) − 0.554958i − 0.554958i
\(181\) 0.445042 0.445042 0.222521 0.974928i \(-0.428571\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(182\) 0 0
\(183\) −2.24698 −2.24698
\(184\) − 0.445042i − 0.445042i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) − 0.445042i − 0.445042i
\(189\) − 1.00000i − 1.00000i
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) −1.24698 −1.24698
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 2.24698 2.24698
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 1.00000i 1.00000i
\(201\) − 0.554958i − 0.554958i
\(202\) 0.445042i 0.445042i
\(203\) 2.24698i 2.24698i
\(204\) 0 0
\(205\) 1.80194 1.80194
\(206\) 1.80194i 1.80194i
\(207\) 0.246980 0.246980
\(208\) 0 0
\(209\) 0 0
\(210\) − 2.24698i − 2.24698i
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 2.00000i 2.00000i
\(215\) 0.445042i 0.445042i
\(216\) 0.554958i 0.554958i
\(217\) 0 0
\(218\) 1.80194 1.80194
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 1.24698i 1.24698i 0.781831 + 0.623490i \(0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(224\) −1.80194 −1.80194
\(225\) −0.554958 −0.554958
\(226\) 0 0
\(227\) 1.24698i 1.24698i 0.781831 + 0.623490i \(0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(228\) 0 0
\(229\) − 1.24698i − 1.24698i −0.781831 0.623490i \(-0.785714\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(230\) −0.445042 −0.445042
\(231\) 0 0
\(232\) − 1.24698i − 1.24698i
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) −0.445042 −0.445042
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 1.24698i 1.24698i
\(241\) 0.445042i 0.445042i 0.974928 + 0.222521i \(0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(242\) − 1.00000i − 1.00000i
\(243\) −1.00000 −1.00000
\(244\) 1.80194 1.80194
\(245\) − 2.24698i − 2.24698i
\(246\) 2.24698 2.24698
\(247\) 0 0
\(248\) 0 0
\(249\) 1.55496i 1.55496i
\(250\) 1.00000 1.00000
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) − 1.00000i − 1.00000i
\(253\) 0 0
\(254\) 1.80194i 1.80194i
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0.554958i 0.554958i
\(259\) 0 0
\(260\) 0 0
\(261\) 0.692021 0.692021
\(262\) 0 0
\(263\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0.554958i 0.554958i
\(268\) 0.445042i 0.445042i
\(269\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(270\) 0.554958 0.554958
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) −0.554958 −0.554958
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 1.80194i 1.80194i
\(281\) − 1.24698i − 1.24698i −0.781831 0.623490i \(-0.785714\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(282\) −0.554958 −0.554958
\(283\) −1.24698 −1.24698 −0.623490 0.781831i \(-0.714286\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.24698 3.24698
\(288\) 0.554958i 0.554958i
\(289\) 1.00000 1.00000
\(290\) −1.24698 −1.24698
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) − 2.80194i − 2.80194i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) −1.24698 −1.24698
\(299\) 0 0
\(300\) 1.24698 1.24698
\(301\) 0.801938i 0.801938i
\(302\) 0 0
\(303\) 0.554958 0.554958
\(304\) 0 0
\(305\) − 1.80194i − 1.80194i
\(306\) 0 0
\(307\) − 1.24698i − 1.24698i −0.781831 0.623490i \(-0.785714\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(308\) 0 0
\(309\) 2.24698 2.24698
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) −1.00000 −1.00000
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) − 1.00000i − 1.00000i
\(321\) 2.49396 2.49396
\(322\) −0.801938 −0.801938
\(323\) 0 0
\(324\) 1.24698 1.24698
\(325\) 0 0
\(326\) 1.24698 1.24698
\(327\) − 2.24698i − 2.24698i
\(328\) −1.80194 −1.80194
\(329\) −0.801938 −0.801938
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) − 1.24698i − 1.24698i
\(333\) 0 0
\(334\) −1.80194 −1.80194
\(335\) 0.445042 0.445042
\(336\) 2.24698i 2.24698i
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) − 2.24698i − 2.24698i
\(344\) − 0.445042i − 0.445042i
\(345\) 0.554958i 0.554958i
\(346\) 0 0
\(347\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(348\) −1.55496 −1.55496
\(349\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(350\) 1.80194 1.80194
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) − 0.445042i − 0.445042i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0.554958 0.554958
\(361\) −1.00000 −1.00000
\(362\) 0.445042i 0.445042i
\(363\) −1.24698 −1.24698
\(364\) 0 0
\(365\) 0 0
\(366\) − 2.24698i − 2.24698i
\(367\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(368\) 0.445042 0.445042
\(369\) − 1.00000i − 1.00000i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) − 1.24698i − 1.24698i
\(376\) 0.445042 0.445042
\(377\) 0 0
\(378\) 1.00000 1.00000
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 2.24698 2.24698
\(382\) 0 0
\(383\) 1.24698i 1.24698i 0.781831 + 0.623490i \(0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(384\) − 1.24698i − 1.24698i
\(385\) 0 0
\(386\) 0 0
\(387\) 0.246980 0.246980
\(388\) 0 0
\(389\) 0.445042 0.445042 0.222521 0.974928i \(-0.428571\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 2.24698i 2.24698i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.00000 −1.00000
\(401\) 1.80194i 1.80194i 0.433884 + 0.900969i \(0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(402\) 0.554958 0.554958
\(403\) 0 0
\(404\) −0.445042 −0.445042
\(405\) − 1.24698i − 1.24698i
\(406\) −2.24698 −2.24698
\(407\) 0 0
\(408\) 0 0
\(409\) − 1.80194i − 1.80194i −0.433884 0.900969i \(-0.642857\pi\)
0.433884 0.900969i \(-0.357143\pi\)
\(410\) 1.80194i 1.80194i
\(411\) 0 0
\(412\) −1.80194 −1.80194
\(413\) 0 0
\(414\) 0.246980i 0.246980i
\(415\) −1.24698 −1.24698
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 2.24698 2.24698
\(421\) 1.24698i 1.24698i 0.781831 + 0.623490i \(0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(422\) 0 0
\(423\) 0.246980i 0.246980i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 3.24698i − 3.24698i
\(428\) −2.00000 −2.00000
\(429\) 0 0
\(430\) −0.445042 −0.445042
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) −0.554958 −0.554958
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 1.55496i 1.55496i
\(436\) 1.80194i 1.80194i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −1.24698 −1.24698
\(442\) 0 0
\(443\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(444\) 0 0
\(445\) −0.445042 −0.445042
\(446\) −1.24698 −1.24698
\(447\) 1.55496i 1.55496i
\(448\) − 1.80194i − 1.80194i
\(449\) − 1.24698i − 1.24698i −0.781831 0.623490i \(-0.785714\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(450\) − 0.554958i − 0.554958i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) −1.24698 −1.24698
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 1.24698 1.24698
\(459\) 0 0
\(460\) − 0.445042i − 0.445042i
\(461\) − 0.445042i − 0.445042i −0.974928 0.222521i \(-0.928571\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(462\) 0 0
\(463\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(464\) 1.24698 1.24698
\(465\) 0 0
\(466\) 0 0
\(467\) 0.445042 0.445042 0.222521 0.974928i \(-0.428571\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(468\) 0 0
\(469\) 0.801938 0.801938
\(470\) − 0.445042i − 0.445042i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) −1.24698 −1.24698
\(481\) 0 0
\(482\) −0.445042 −0.445042
\(483\) 1.00000i 1.00000i
\(484\) 1.00000 1.00000
\(485\) 0 0
\(486\) − 1.00000i − 1.00000i
\(487\) − 0.445042i − 0.445042i −0.974928 0.222521i \(-0.928571\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(488\) 1.80194i 1.80194i
\(489\) − 1.55496i − 1.55496i
\(490\) 2.24698 2.24698
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 2.24698i 2.24698i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −1.55496 −1.55496
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 1.00000i 1.00000i
\(501\) 2.24698i 2.24698i
\(502\) 0 0
\(503\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(504\) 1.00000 1.00000
\(505\) 0.445042i 0.445042i
\(506\) 0 0
\(507\) 0 0
\(508\) −1.80194 −1.80194
\(509\) 1.24698i 1.24698i 0.781831 + 0.623490i \(0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 1.00000i
\(513\) 0 0
\(514\) 0 0
\(515\) 1.80194i 1.80194i
\(516\) −0.554958 −0.554958
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(522\) 0.692021i 0.692021i
\(523\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(524\) 0 0
\(525\) − 2.24698i − 2.24698i
\(526\) − 1.80194i − 1.80194i
\(527\) 0 0
\(528\) 0 0
\(529\) −0.801938 −0.801938
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) −0.554958 −0.554958
\(535\) 2.00000i 2.00000i
\(536\) −0.445042 −0.445042
\(537\) 0 0
\(538\) 1.24698i 1.24698i
\(539\) 0 0
\(540\) 0.554958i 0.554958i
\(541\) − 1.24698i − 1.24698i −0.781831 0.623490i \(-0.785714\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(542\) 0 0
\(543\) 0.554958 0.554958
\(544\) 0 0
\(545\) 1.80194 1.80194
\(546\) 0 0
\(547\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(548\) 0 0
\(549\) −1.00000 −1.00000
\(550\) 0 0
\(551\) 0 0
\(552\) − 0.554958i − 0.554958i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −1.80194 −1.80194
\(561\) 0 0
\(562\) 1.24698 1.24698
\(563\) 1.80194 1.80194 0.900969 0.433884i \(-0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(564\) − 0.554958i − 0.554958i
\(565\) 0 0
\(566\) − 1.24698i − 1.24698i
\(567\) − 2.24698i − 2.24698i
\(568\) 0 0
\(569\) 1.80194 1.80194 0.900969 0.433884i \(-0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 3.24698i 3.24698i
\(575\) −0.445042 −0.445042
\(576\) −0.554958 −0.554958
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 1.00000i 1.00000i
\(579\) 0 0
\(580\) − 1.24698i − 1.24698i
\(581\) −2.24698 −2.24698
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 1.80194i − 1.80194i −0.433884 0.900969i \(-0.642857\pi\)
0.433884 0.900969i \(-0.357143\pi\)
\(588\) 2.80194 2.80194
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 1.24698i − 1.24698i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 1.24698i 1.24698i
\(601\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(602\) −0.801938 −0.801938
\(603\) − 0.246980i − 0.246980i
\(604\) 0 0
\(605\) − 1.00000i − 1.00000i
\(606\) 0.554958i 0.554958i
\(607\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(608\) 0 0
\(609\) 2.80194i 2.80194i
\(610\) 1.80194 1.80194
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 1.24698 1.24698
\(615\) 2.24698 2.24698
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 2.24698i 2.24698i
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) −0.246980 −0.246980
\(622\) 0 0
\(623\) −0.801938 −0.801938
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) − 1.00000i − 1.00000i
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.80194i 1.80194i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 1.00000 1.00000
\(641\) 1.80194 1.80194 0.900969 0.433884i \(-0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(642\) 2.49396i 2.49396i
\(643\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) − 0.801938i − 0.801938i
\(645\) 0.554958i 0.554958i
\(646\) 0 0
\(647\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(648\) 1.24698i 1.24698i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 1.24698i 1.24698i
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 2.24698 2.24698
\(655\) 0 0
\(656\) − 1.80194i − 1.80194i
\(657\) 0 0
\(658\) − 0.801938i − 0.801938i
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0.445042i 0.445042i 0.974928 + 0.222521i \(0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 1.24698 1.24698
\(665\) 0 0
\(666\) 0 0
\(667\) 0.554958 0.554958
\(668\) − 1.80194i − 1.80194i
\(669\) 1.55496i 1.55496i
\(670\) 0.445042i 0.445042i
\(671\) 0 0
\(672\) −2.24698 −2.24698
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0.554958 0.554958
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.55496i 1.55496i
\(682\) 0 0
\(683\) 0.445042i 0.445042i 0.974928 + 0.222521i \(0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 2.24698 2.24698
\(687\) − 1.55496i − 1.55496i
\(688\) 0.445042 0.445042
\(689\) 0 0
\(690\) −0.554958 −0.554958
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 1.24698i 1.24698i
\(695\) 0 0
\(696\) − 1.55496i − 1.55496i
\(697\) 0 0
\(698\) 2.00000 2.00000
\(699\) 0 0
\(700\) 1.80194i 1.80194i
\(701\) 1.80194 1.80194 0.900969 0.433884i \(-0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −0.554958 −0.554958
\(706\) 0 0
\(707\) 0.801938i 0.801938i
\(708\) 0 0
\(709\) 1.80194i 1.80194i 0.433884 + 0.900969i \(0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0.445042 0.445042
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0.554958i 0.554958i
\(721\) 3.24698i 3.24698i
\(722\) − 1.00000i − 1.00000i
\(723\) 0.554958i 0.554958i
\(724\) −0.445042 −0.445042
\(725\) −1.24698 −1.24698
\(726\) − 1.24698i − 1.24698i
\(727\) 0.445042 0.445042 0.222521 0.974928i \(-0.428571\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 2.24698 2.24698
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 1.24698i 1.24698i
\(735\) − 2.80194i − 2.80194i
\(736\) 0.445042i 0.445042i
\(737\) 0 0
\(738\) 1.00000 1.00000
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 1.80194i − 1.80194i −0.433884 0.900969i \(-0.642857\pi\)
0.433884 0.900969i \(-0.357143\pi\)
\(744\) 0 0
\(745\) −1.24698 −1.24698
\(746\) 0 0
\(747\) 0.692021i 0.692021i
\(748\) 0 0
\(749\) 3.60388i 3.60388i
\(750\) 1.24698 1.24698
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0.445042i 0.445042i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 1.00000i 1.00000i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 1.24698i − 1.24698i −0.781831 0.623490i \(-0.785714\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(762\) 2.24698i 2.24698i
\(763\) 3.24698 3.24698
\(764\) 0 0
\(765\) 0 0
\(766\) −1.24698 −1.24698
\(767\) 0 0
\(768\) 1.24698 1.24698
\(769\) − 1.80194i − 1.80194i −0.433884 0.900969i \(-0.642857\pi\)
0.433884 0.900969i \(-0.357143\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0.246980i 0.246980i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0.445042i 0.445042i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −0.692021 −0.692021
\(784\) −2.24698 −2.24698
\(785\) 0 0
\(786\) 0 0
\(787\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(788\) 0 0
\(789\) −2.24698 −2.24698
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) − 1.00000i − 1.00000i
\(801\) 0.246980i 0.246980i
\(802\) −1.80194 −1.80194
\(803\) 0 0
\(804\) 0.554958i 0.554958i
\(805\) −0.801938 −0.801938
\(806\) 0 0
\(807\) 1.55496 1.55496
\(808\) − 0.445042i − 0.445042i
\(809\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(810\) 1.24698 1.24698
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) − 2.24698i − 2.24698i
\(813\) 0 0
\(814\) 0 0
\(815\) 1.24698 1.24698
\(816\) 0 0
\(817\) 0 0
\(818\) 1.80194 1.80194
\(819\) 0 0
\(820\) −1.80194 −1.80194
\(821\) − 0.445042i − 0.445042i −0.974928 0.222521i \(-0.928571\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(822\) 0 0
\(823\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(824\) − 1.80194i − 1.80194i
\(825\) 0 0
\(826\) 0 0
\(827\) − 1.24698i − 1.24698i −0.781831 0.623490i \(-0.785714\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(828\) −0.246980 −0.246980
\(829\) −1.24698 −1.24698 −0.623490 0.781831i \(-0.714286\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(830\) − 1.24698i − 1.24698i
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −1.80194 −1.80194
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 2.24698i 2.24698i
\(841\) 0.554958 0.554958
\(842\) −1.24698 −1.24698
\(843\) − 1.55496i − 1.55496i
\(844\) 0 0
\(845\) 0 0
\(846\) −0.246980 −0.246980
\(847\) − 1.80194i − 1.80194i
\(848\) 0 0
\(849\) −1.55496 −1.55496
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 3.24698 3.24698
\(855\) 0 0
\(856\) − 2.00000i − 2.00000i
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) − 0.445042i − 0.445042i
\(861\) 4.04892 4.04892
\(862\) 0 0
\(863\) 1.24698i 1.24698i 0.781831 + 0.623490i \(0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(864\) − 0.554958i − 0.554958i
\(865\) 0 0
\(866\) 0 0
\(867\) 1.24698 1.24698
\(868\) 0 0
\(869\) 0 0
\(870\) −1.55496 −1.55496
\(871\) 0 0
\(872\) −1.80194 −1.80194
\(873\) 0 0
\(874\) 0 0
\(875\) 1.80194 1.80194
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(882\) − 1.24698i − 1.24698i
\(883\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 1.24698i 1.24698i
\(887\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(888\) 0 0
\(889\) 3.24698i 3.24698i
\(890\) − 0.445042i − 0.445042i
\(891\) 0 0
\(892\) − 1.24698i − 1.24698i
\(893\) 0 0
\(894\) −1.55496 −1.55496
\(895\) 0 0
\(896\) 1.80194 1.80194
\(897\) 0 0
\(898\) 1.24698 1.24698
\(899\) 0 0
\(900\) 0.554958 0.554958
\(901\) 0 0
\(902\) 0 0
\(903\) 1.00000i 1.00000i
\(904\) 0 0
\(905\) 0.445042i 0.445042i
\(906\) 0 0
\(907\) 1.80194 1.80194 0.900969 0.433884i \(-0.142857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(908\) − 1.24698i − 1.24698i
\(909\) 0.246980 0.246980
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) − 2.24698i − 2.24698i
\(916\) 1.24698i 1.24698i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0.445042 0.445042
\(921\) − 1.55496i − 1.55496i
\(922\) 0.445042 0.445042
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 2.00000 2.00000
\(927\) 1.00000 1.00000
\(928\) 1.24698i 1.24698i
\(929\) − 0.445042i − 0.445042i −0.974928 0.222521i \(-0.928571\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0.445042i 0.445042i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0.801938i 0.801938i
\(939\) 0 0
\(940\) 0.445042 0.445042
\(941\) − 1.80194i − 1.80194i −0.433884 0.900969i \(-0.642857\pi\)
0.433884 0.900969i \(-0.357143\pi\)
\(942\) 0 0
\(943\) − 0.801938i − 0.801938i
\(944\) 0 0
\(945\) 1.00000 1.00000
\(946\) 0 0
\(947\) 1.80194i 1.80194i 0.433884 + 0.900969i \(0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) − 1.24698i − 1.24698i
\(961\) −1.00000 −1.00000
\(962\) 0 0
\(963\) 1.10992 1.10992
\(964\) − 0.445042i − 0.445042i
\(965\) 0 0
\(966\) −1.00000 −1.00000
\(967\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 1.00000i 1.00000i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 1.00000 1.00000
\(973\) 0 0
\(974\) 0.445042 0.445042
\(975\) 0 0
\(976\) −1.80194 −1.80194
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 1.55496 1.55496
\(979\) 0 0
\(980\) 2.24698i 2.24698i
\(981\) − 1.00000i − 1.00000i
\(982\) 0 0
\(983\) − 1.24698i − 1.24698i −0.781831 0.623490i \(-0.785714\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(984\) −2.24698 −2.24698
\(985\) 0 0
\(986\) 0 0
\(987\) −1.00000 −1.00000
\(988\) 0 0
\(989\) 0.198062 0.198062
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) − 1.55496i − 1.55496i
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3380.1.g.c.3379.6 6
4.3 odd 2 3380.1.g.d.3379.1 6
5.4 even 2 3380.1.g.d.3379.1 6
13.2 odd 12 3380.1.v.e.2219.1 6
13.3 even 3 3380.1.w.f.1499.1 12
13.4 even 6 3380.1.w.f.699.1 12
13.5 odd 4 3380.1.h.d.339.3 yes 3
13.6 odd 12 3380.1.v.e.3019.1 6
13.7 odd 12 3380.1.v.g.3019.1 6
13.8 odd 4 3380.1.h.b.339.3 3
13.9 even 3 3380.1.w.f.699.4 12
13.10 even 6 3380.1.w.f.1499.4 12
13.11 odd 12 3380.1.v.g.2219.1 6
13.12 even 2 inner 3380.1.g.c.3379.3 6
20.19 odd 2 CM 3380.1.g.c.3379.6 6
52.3 odd 6 3380.1.w.e.1499.6 12
52.7 even 12 3380.1.v.d.3019.3 6
52.11 even 12 3380.1.v.d.2219.3 6
52.15 even 12 3380.1.v.f.2219.3 6
52.19 even 12 3380.1.v.f.3019.3 6
52.23 odd 6 3380.1.w.e.1499.3 12
52.31 even 4 3380.1.h.c.339.1 yes 3
52.35 odd 6 3380.1.w.e.699.3 12
52.43 odd 6 3380.1.w.e.699.6 12
52.47 even 4 3380.1.h.e.339.1 yes 3
52.51 odd 2 3380.1.g.d.3379.4 6
65.4 even 6 3380.1.w.e.699.6 12
65.9 even 6 3380.1.w.e.699.3 12
65.19 odd 12 3380.1.v.f.3019.3 6
65.24 odd 12 3380.1.v.d.2219.3 6
65.29 even 6 3380.1.w.e.1499.6 12
65.34 odd 4 3380.1.h.e.339.1 yes 3
65.44 odd 4 3380.1.h.c.339.1 yes 3
65.49 even 6 3380.1.w.e.1499.3 12
65.54 odd 12 3380.1.v.f.2219.3 6
65.59 odd 12 3380.1.v.d.3019.3 6
65.64 even 2 3380.1.g.d.3379.4 6
260.19 even 12 3380.1.v.e.3019.1 6
260.59 even 12 3380.1.v.g.3019.1 6
260.99 even 4 3380.1.h.b.339.3 3
260.119 even 12 3380.1.v.e.2219.1 6
260.139 odd 6 3380.1.w.f.699.4 12
260.159 odd 6 3380.1.w.f.1499.1 12
260.179 odd 6 3380.1.w.f.1499.4 12
260.199 odd 6 3380.1.w.f.699.1 12
260.219 even 12 3380.1.v.g.2219.1 6
260.239 even 4 3380.1.h.d.339.3 yes 3
260.259 odd 2 inner 3380.1.g.c.3379.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3380.1.g.c.3379.3 6 13.12 even 2 inner
3380.1.g.c.3379.3 6 260.259 odd 2 inner
3380.1.g.c.3379.6 6 1.1 even 1 trivial
3380.1.g.c.3379.6 6 20.19 odd 2 CM
3380.1.g.d.3379.1 6 4.3 odd 2
3380.1.g.d.3379.1 6 5.4 even 2
3380.1.g.d.3379.4 6 52.51 odd 2
3380.1.g.d.3379.4 6 65.64 even 2
3380.1.h.b.339.3 3 13.8 odd 4
3380.1.h.b.339.3 3 260.99 even 4
3380.1.h.c.339.1 yes 3 52.31 even 4
3380.1.h.c.339.1 yes 3 65.44 odd 4
3380.1.h.d.339.3 yes 3 13.5 odd 4
3380.1.h.d.339.3 yes 3 260.239 even 4
3380.1.h.e.339.1 yes 3 52.47 even 4
3380.1.h.e.339.1 yes 3 65.34 odd 4
3380.1.v.d.2219.3 6 52.11 even 12
3380.1.v.d.2219.3 6 65.24 odd 12
3380.1.v.d.3019.3 6 52.7 even 12
3380.1.v.d.3019.3 6 65.59 odd 12
3380.1.v.e.2219.1 6 13.2 odd 12
3380.1.v.e.2219.1 6 260.119 even 12
3380.1.v.e.3019.1 6 13.6 odd 12
3380.1.v.e.3019.1 6 260.19 even 12
3380.1.v.f.2219.3 6 52.15 even 12
3380.1.v.f.2219.3 6 65.54 odd 12
3380.1.v.f.3019.3 6 52.19 even 12
3380.1.v.f.3019.3 6 65.19 odd 12
3380.1.v.g.2219.1 6 13.11 odd 12
3380.1.v.g.2219.1 6 260.219 even 12
3380.1.v.g.3019.1 6 13.7 odd 12
3380.1.v.g.3019.1 6 260.59 even 12
3380.1.w.e.699.3 12 52.35 odd 6
3380.1.w.e.699.3 12 65.9 even 6
3380.1.w.e.699.6 12 52.43 odd 6
3380.1.w.e.699.6 12 65.4 even 6
3380.1.w.e.1499.3 12 52.23 odd 6
3380.1.w.e.1499.3 12 65.49 even 6
3380.1.w.e.1499.6 12 52.3 odd 6
3380.1.w.e.1499.6 12 65.29 even 6
3380.1.w.f.699.1 12 13.4 even 6
3380.1.w.f.699.1 12 260.199 odd 6
3380.1.w.f.699.4 12 13.9 even 3
3380.1.w.f.699.4 12 260.139 odd 6
3380.1.w.f.1499.1 12 13.3 even 3
3380.1.w.f.1499.1 12 260.159 odd 6
3380.1.w.f.1499.4 12 13.10 even 6
3380.1.w.f.1499.4 12 260.179 odd 6