Properties

Label 3380.1.w.e.1499.6
Level 33803380
Weight 11
Character 3380.1499
Analytic conductor 1.6871.687
Analytic rank 00
Dimension 1212
Projective image D7D_{7}
CM discriminant -20
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3380,1,Mod(699,3380)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3380, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 5])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3380.699"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 3380=225132 3380 = 2^{2} \cdot 5 \cdot 13^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3380.w (of order 66, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-2,6,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.686839742701.68683974270
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: 12.0.17213603549184.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x125x10+19x828x6+31x46x2+1 x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D7D_{7}
Projective field: Galois closure of 7.1.38614472000.1

Embedding invariants

Embedding label 1499.6
Root 0.3854180.222521i0.385418 - 0.222521i of defining polynomial
Character χ\chi == 3380.1499
Dual form 3380.1.w.e.699.6

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+(0.866025+0.500000i)q2+(0.6234901.07992i)q3+(0.500000+0.866025i)q4+1.00000iq5+(1.079920.623490i)q6+(1.56052+0.900969i)q7+1.00000iq8+(0.2774790.480608i)q9+(0.500000+0.866025i)q10+1.24698q121.80194q14+(1.07992+0.623490i)q15+(0.500000+0.866025i)q160.554958iq18+(0.866025+0.500000i)q20+2.24698iq21+(0.2225210.385418i)q23+(1.07992+0.623490i)q241.00000q25+0.554958q27+(1.560520.900969i)q28+(0.623490+1.07992i)q29+(0.623490+1.07992i)q30+(0.866025+0.500000i)q32+(0.9009691.56052i)q35+(0.2774790.480608i)q361.00000q40+(1.56052+0.900969i)q41+(1.12349+1.94594i)q42+(0.222521+0.385418i)q43+(0.4806080.277479i)q45+(0.3854180.222521i)q460.445042iq47+(0.623490+1.07992i)q48+(1.123491.94594i)q49+(0.8660250.500000i)q50+(0.480608+0.277479i)q54+(0.9009691.56052i)q56+(1.07992+0.623490i)q58+1.24698iq60+(0.900969+1.56052i)q61+(0.866025+0.500000i)q631.00000q64+(0.3854180.222521i)q67+(0.2774790.480608i)q691.80194iq70+(0.4806080.277479i)q72+(0.623490+1.07992i)q75+(0.8660250.500000i)q80+(0.6234901.07992i)q81+(0.900969+1.56052i)q821.24698iq83+(1.94594+1.12349i)q84+0.445042iq86+(0.777479+1.34663i)q87+(0.3854180.222521i)q89+0.554958q90+0.445042q92+(0.2225210.385418i)q94+1.24698iq96+(1.945941.12349i)q98+O(q100)q+(0.866025 + 0.500000i) q^{2} +(0.623490 - 1.07992i) q^{3} +(0.500000 + 0.866025i) q^{4} +1.00000i q^{5} +(1.07992 - 0.623490i) q^{6} +(-1.56052 + 0.900969i) q^{7} +1.00000i q^{8} +(-0.277479 - 0.480608i) q^{9} +(-0.500000 + 0.866025i) q^{10} +1.24698 q^{12} -1.80194 q^{14} +(1.07992 + 0.623490i) q^{15} +(-0.500000 + 0.866025i) q^{16} -0.554958i q^{18} +(-0.866025 + 0.500000i) q^{20} +2.24698i q^{21} +(0.222521 - 0.385418i) q^{23} +(1.07992 + 0.623490i) q^{24} -1.00000 q^{25} +0.554958 q^{27} +(-1.56052 - 0.900969i) q^{28} +(-0.623490 + 1.07992i) q^{29} +(0.623490 + 1.07992i) q^{30} +(-0.866025 + 0.500000i) q^{32} +(-0.900969 - 1.56052i) q^{35} +(0.277479 - 0.480608i) q^{36} -1.00000 q^{40} +(1.56052 + 0.900969i) q^{41} +(-1.12349 + 1.94594i) q^{42} +(0.222521 + 0.385418i) q^{43} +(0.480608 - 0.277479i) q^{45} +(0.385418 - 0.222521i) q^{46} -0.445042i q^{47} +(0.623490 + 1.07992i) q^{48} +(1.12349 - 1.94594i) q^{49} +(-0.866025 - 0.500000i) q^{50} +(0.480608 + 0.277479i) q^{54} +(-0.900969 - 1.56052i) q^{56} +(-1.07992 + 0.623490i) q^{58} +1.24698i q^{60} +(0.900969 + 1.56052i) q^{61} +(0.866025 + 0.500000i) q^{63} -1.00000 q^{64} +(-0.385418 - 0.222521i) q^{67} +(-0.277479 - 0.480608i) q^{69} -1.80194i q^{70} +(0.480608 - 0.277479i) q^{72} +(-0.623490 + 1.07992i) q^{75} +(-0.866025 - 0.500000i) q^{80} +(0.623490 - 1.07992i) q^{81} +(0.900969 + 1.56052i) q^{82} -1.24698i q^{83} +(-1.94594 + 1.12349i) q^{84} +0.445042i q^{86} +(0.777479 + 1.34663i) q^{87} +(-0.385418 - 0.222521i) q^{89} +0.554958 q^{90} +0.445042 q^{92} +(0.222521 - 0.385418i) q^{94} +1.24698i q^{96} +(1.94594 - 1.12349i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q2q3+6q44q96q104q124q146q16+2q2312q25+8q27+2q292q302q35+4q3612q404q42+2q432q48++2q94+O(q100) 12 q - 2 q^{3} + 6 q^{4} - 4 q^{9} - 6 q^{10} - 4 q^{12} - 4 q^{14} - 6 q^{16} + 2 q^{23} - 12 q^{25} + 8 q^{27} + 2 q^{29} - 2 q^{30} - 2 q^{35} + 4 q^{36} - 12 q^{40} - 4 q^{42} + 2 q^{43} - 2 q^{48}+ \cdots + 2 q^{94}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3380Z)×\left(\mathbb{Z}/3380\mathbb{Z}\right)^\times.

nn 677677 16911691 18611861
χ(n)\chi(n) 1-1 1-1 e(16)e\left(\frac{1}{6}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.866025 + 0.500000i 0.866025 + 0.500000i
33 0.623490 1.07992i 0.623490 1.07992i −0.365341 0.930874i 0.619048π-0.619048\pi
0.988831 0.149042i 0.0476190π-0.0476190\pi
44 0.500000 + 0.866025i 0.500000 + 0.866025i
55 1.00000i 1.00000i
66 1.07992 0.623490i 1.07992 0.623490i
77 −1.56052 + 0.900969i −1.56052 + 0.900969i −0.563320 + 0.826239i 0.690476π0.690476\pi
−0.997204 + 0.0747301i 0.976190π0.976190\pi
88 1.00000i 1.00000i
99 −0.277479 0.480608i −0.277479 0.480608i
1010 −0.500000 + 0.866025i −0.500000 + 0.866025i
1111 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
1212 1.24698 1.24698
1313 0 0
1414 −1.80194 −1.80194
1515 1.07992 + 0.623490i 1.07992 + 0.623490i
1616 −0.500000 + 0.866025i −0.500000 + 0.866025i
1717 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
1818 0.554958i 0.554958i
1919 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
2020 −0.866025 + 0.500000i −0.866025 + 0.500000i
2121 2.24698i 2.24698i
2222 0 0
2323 0.222521 0.385418i 0.222521 0.385418i −0.733052 0.680173i 0.761905π-0.761905\pi
0.955573 + 0.294755i 0.0952381π0.0952381\pi
2424 1.07992 + 0.623490i 1.07992 + 0.623490i
2525 −1.00000 −1.00000
2626 0 0
2727 0.554958 0.554958
2828 −1.56052 0.900969i −1.56052 0.900969i
2929 −0.623490 + 1.07992i −0.623490 + 1.07992i 0.365341 + 0.930874i 0.380952π0.380952\pi
−0.988831 + 0.149042i 0.952381π0.952381\pi
3030 0.623490 + 1.07992i 0.623490 + 1.07992i
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 −0.866025 + 0.500000i −0.866025 + 0.500000i
3333 0 0
3434 0 0
3535 −0.900969 1.56052i −0.900969 1.56052i
3636 0.277479 0.480608i 0.277479 0.480608i
3737 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
3838 0 0
3939 0 0
4040 −1.00000 −1.00000
4141 1.56052 + 0.900969i 1.56052 + 0.900969i 0.997204 + 0.0747301i 0.0238095π0.0238095\pi
0.563320 + 0.826239i 0.309524π0.309524\pi
4242 −1.12349 + 1.94594i −1.12349 + 1.94594i
4343 0.222521 + 0.385418i 0.222521 + 0.385418i 0.955573 0.294755i 0.0952381π-0.0952381\pi
−0.733052 + 0.680173i 0.761905π0.761905\pi
4444 0 0
4545 0.480608 0.277479i 0.480608 0.277479i
4646 0.385418 0.222521i 0.385418 0.222521i
4747 0.445042i 0.445042i −0.974928 0.222521i 0.928571π-0.928571\pi
0.974928 0.222521i 0.0714286π-0.0714286\pi
4848 0.623490 + 1.07992i 0.623490 + 1.07992i
4949 1.12349 1.94594i 1.12349 1.94594i
5050 −0.866025 0.500000i −0.866025 0.500000i
5151 0 0
5252 0 0
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0.480608 + 0.277479i 0.480608 + 0.277479i
5555 0 0
5656 −0.900969 1.56052i −0.900969 1.56052i
5757 0 0
5858 −1.07992 + 0.623490i −1.07992 + 0.623490i
5959 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6060 1.24698i 1.24698i
6161 0.900969 + 1.56052i 0.900969 + 1.56052i 0.826239 + 0.563320i 0.190476π0.190476\pi
0.0747301 + 0.997204i 0.476190π0.476190\pi
6262 0 0
6363 0.866025 + 0.500000i 0.866025 + 0.500000i
6464 −1.00000 −1.00000
6565 0 0
6666 0 0
6767 −0.385418 0.222521i −0.385418 0.222521i 0.294755 0.955573i 0.404762π-0.404762\pi
−0.680173 + 0.733052i 0.738095π0.738095\pi
6868 0 0
6969 −0.277479 0.480608i −0.277479 0.480608i
7070 1.80194i 1.80194i
7171 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
7272 0.480608 0.277479i 0.480608 0.277479i
7373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7474 0 0
7575 −0.623490 + 1.07992i −0.623490 + 1.07992i
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 −0.866025 0.500000i −0.866025 0.500000i
8181 0.623490 1.07992i 0.623490 1.07992i
8282 0.900969 + 1.56052i 0.900969 + 1.56052i
8383 1.24698i 1.24698i −0.781831 0.623490i 0.785714π-0.785714\pi
0.781831 0.623490i 0.214286π-0.214286\pi
8484 −1.94594 + 1.12349i −1.94594 + 1.12349i
8585 0 0
8686 0.445042i 0.445042i
8787 0.777479 + 1.34663i 0.777479 + 1.34663i
8888 0 0
8989 −0.385418 0.222521i −0.385418 0.222521i 0.294755 0.955573i 0.404762π-0.404762\pi
−0.680173 + 0.733052i 0.738095π0.738095\pi
9090 0.554958 0.554958
9191 0 0
9292 0.445042 0.445042
9393 0 0
9494 0.222521 0.385418i 0.222521 0.385418i
9595 0 0
9696 1.24698i 1.24698i
9797 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
9898 1.94594 1.12349i 1.94594 1.12349i
9999 0 0
100100 −0.500000 0.866025i −0.500000 0.866025i
101101 −0.222521 + 0.385418i −0.222521 + 0.385418i −0.955573 0.294755i 0.904762π-0.904762\pi
0.733052 + 0.680173i 0.238095π0.238095\pi
102102 0 0
103103 −1.80194 −1.80194 −0.900969 0.433884i 0.857143π-0.857143\pi
−0.900969 + 0.433884i 0.857143π0.857143\pi
104104 0 0
105105 −2.24698 −2.24698
106106 0 0
107107 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
108108 0.277479 + 0.480608i 0.277479 + 0.480608i
109109 1.80194i 1.80194i −0.433884 0.900969i 0.642857π-0.642857\pi
0.433884 0.900969i 0.357143π-0.357143\pi
110110 0 0
111111 0 0
112112 1.80194i 1.80194i
113113 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
114114 0 0
115115 0.385418 + 0.222521i 0.385418 + 0.222521i
116116 −1.24698 −1.24698
117117 0 0
118118 0 0
119119 0 0
120120 −0.623490 + 1.07992i −0.623490 + 1.07992i
121121 0.500000 + 0.866025i 0.500000 + 0.866025i
122122 1.80194i 1.80194i
123123 1.94594 1.12349i 1.94594 1.12349i
124124 0 0
125125 1.00000i 1.00000i
126126 0.500000 + 0.866025i 0.500000 + 0.866025i
127127 0.900969 1.56052i 0.900969 1.56052i 0.0747301 0.997204i 0.476190π-0.476190\pi
0.826239 0.563320i 0.190476π-0.190476\pi
128128 −0.866025 0.500000i −0.866025 0.500000i
129129 0.554958 0.554958
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 −0.222521 0.385418i −0.222521 0.385418i
135135 0.554958i 0.554958i
136136 0 0
137137 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
138138 0.554958i 0.554958i
139139 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
140140 0.900969 1.56052i 0.900969 1.56052i
141141 −0.480608 0.277479i −0.480608 0.277479i
142142 0 0
143143 0 0
144144 0.554958 0.554958
145145 −1.07992 0.623490i −1.07992 0.623490i
146146 0 0
147147 −1.40097 2.42655i −1.40097 2.42655i
148148 0 0
149149 1.07992 0.623490i 1.07992 0.623490i 0.149042 0.988831i 0.452381π-0.452381\pi
0.930874 + 0.365341i 0.119048π0.119048\pi
150150 −1.07992 + 0.623490i −1.07992 + 0.623490i
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 0 0 1.00000 00
−1.00000 π\pi
158158 0 0
159159 0 0
160160 −0.500000 0.866025i −0.500000 0.866025i
161161 0.801938i 0.801938i
162162 1.07992 0.623490i 1.07992 0.623490i
163163 1.07992 0.623490i 1.07992 0.623490i 0.149042 0.988831i 0.452381π-0.452381\pi
0.930874 + 0.365341i 0.119048π0.119048\pi
164164 1.80194i 1.80194i
165165 0 0
166166 0.623490 1.07992i 0.623490 1.07992i
167167 1.56052 + 0.900969i 1.56052 + 0.900969i 0.997204 + 0.0747301i 0.0238095π0.0238095\pi
0.563320 + 0.826239i 0.309524π0.309524\pi
168168 −2.24698 −2.24698
169169 0 0
170170 0 0
171171 0 0
172172 −0.222521 + 0.385418i −0.222521 + 0.385418i
173173 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
174174 1.55496i 1.55496i
175175 1.56052 0.900969i 1.56052 0.900969i
176176 0 0
177177 0 0
178178 −0.222521 0.385418i −0.222521 0.385418i
179179 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
180180 0.480608 + 0.277479i 0.480608 + 0.277479i
181181 0.445042 0.445042 0.222521 0.974928i 0.428571π-0.428571\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
182182 0 0
183183 2.24698 2.24698
184184 0.385418 + 0.222521i 0.385418 + 0.222521i
185185 0 0
186186 0 0
187187 0 0
188188 0.385418 0.222521i 0.385418 0.222521i
189189 −0.866025 + 0.500000i −0.866025 + 0.500000i
190190 0 0
191191 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
192192 −0.623490 + 1.07992i −0.623490 + 1.07992i
193193 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
194194 0 0
195195 0 0
196196 2.24698 2.24698
197197 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
198198 0 0
199199 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
200200 1.00000i 1.00000i
201201 −0.480608 + 0.277479i −0.480608 + 0.277479i
202202 −0.385418 + 0.222521i −0.385418 + 0.222521i
203203 2.24698i 2.24698i
204204 0 0
205205 −0.900969 + 1.56052i −0.900969 + 1.56052i
206206 −1.56052 0.900969i −1.56052 0.900969i
207207 −0.246980 −0.246980
208208 0 0
209209 0 0
210210 −1.94594 1.12349i −1.94594 1.12349i
211211 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
212212 0 0
213213 0 0
214214 1.73205 1.00000i 1.73205 1.00000i
215215 −0.385418 + 0.222521i −0.385418 + 0.222521i
216216 0.554958i 0.554958i
217217 0 0
218218 0.900969 1.56052i 0.900969 1.56052i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 1.07992 + 0.623490i 1.07992 + 0.623490i 0.930874 0.365341i 0.119048π-0.119048\pi
0.149042 + 0.988831i 0.452381π0.452381\pi
224224 0.900969 1.56052i 0.900969 1.56052i
225225 0.277479 + 0.480608i 0.277479 + 0.480608i
226226 0 0
227227 −1.07992 + 0.623490i −1.07992 + 0.623490i −0.930874 0.365341i 0.880952π-0.880952\pi
−0.149042 + 0.988831i 0.547619π0.547619\pi
228228 0 0
229229 1.24698i 1.24698i −0.781831 0.623490i 0.785714π-0.785714\pi
0.781831 0.623490i 0.214286π-0.214286\pi
230230 0.222521 + 0.385418i 0.222521 + 0.385418i
231231 0 0
232232 −1.07992 0.623490i −1.07992 0.623490i
233233 0 0 1.00000 00
−1.00000 π\pi
234234 0 0
235235 0.445042 0.445042
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 −1.07992 + 0.623490i −1.07992 + 0.623490i
241241 0.385418 0.222521i 0.385418 0.222521i −0.294755 0.955573i 0.595238π-0.595238\pi
0.680173 + 0.733052i 0.261905π0.261905\pi
242242 1.00000i 1.00000i
243243 −0.500000 0.866025i −0.500000 0.866025i
244244 −0.900969 + 1.56052i −0.900969 + 1.56052i
245245 1.94594 + 1.12349i 1.94594 + 1.12349i
246246 2.24698 2.24698
247247 0 0
248248 0 0
249249 −1.34663 0.777479i −1.34663 0.777479i
250250 0.500000 0.866025i 0.500000 0.866025i
251251 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
252252 1.00000i 1.00000i
253253 0 0
254254 1.56052 0.900969i 1.56052 0.900969i
255255 0 0
256256 −0.500000 0.866025i −0.500000 0.866025i
257257 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
258258 0.480608 + 0.277479i 0.480608 + 0.277479i
259259 0 0
260260 0 0
261261 0.692021 0.692021
262262 0 0
263263 −0.900969 + 1.56052i −0.900969 + 1.56052i −0.0747301 + 0.997204i 0.523810π0.523810\pi
−0.826239 + 0.563320i 0.809524π0.809524\pi
264264 0 0
265265 0 0
266266 0 0
267267 −0.480608 + 0.277479i −0.480608 + 0.277479i
268268 0.445042i 0.445042i
269269 −0.623490 1.07992i −0.623490 1.07992i −0.988831 0.149042i 0.952381π-0.952381\pi
0.365341 0.930874i 0.380952π-0.380952\pi
270270 −0.277479 + 0.480608i −0.277479 + 0.480608i
271271 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0.277479 0.480608i 0.277479 0.480608i
277277 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
278278 0 0
279279 0 0
280280 1.56052 0.900969i 1.56052 0.900969i
281281 1.24698i 1.24698i −0.781831 0.623490i 0.785714π-0.785714\pi
0.781831 0.623490i 0.214286π-0.214286\pi
282282 −0.277479 0.480608i −0.277479 0.480608i
283283 −0.623490 + 1.07992i −0.623490 + 1.07992i 0.365341 + 0.930874i 0.380952π0.380952\pi
−0.988831 + 0.149042i 0.952381π0.952381\pi
284284 0 0
285285 0 0
286286 0 0
287287 −3.24698 −3.24698
288288 0.480608 + 0.277479i 0.480608 + 0.277479i
289289 −0.500000 + 0.866025i −0.500000 + 0.866025i
290290 −0.623490 1.07992i −0.623490 1.07992i
291291 0 0
292292 0 0
293293 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
294294 2.80194i 2.80194i
295295 0 0
296296 0 0
297297 0 0
298298 1.24698 1.24698
299299 0 0
300300 −1.24698 −1.24698
301301 −0.694498 0.400969i −0.694498 0.400969i
302302 0 0
303303 0.277479 + 0.480608i 0.277479 + 0.480608i
304304 0 0
305305 −1.56052 + 0.900969i −1.56052 + 0.900969i
306306 0 0
307307 1.24698i 1.24698i 0.781831 + 0.623490i 0.214286π0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
308308 0 0
309309 −1.12349 + 1.94594i −1.12349 + 1.94594i
310310 0 0
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 0 0
315315 −0.500000 + 0.866025i −0.500000 + 0.866025i
316316 0 0
317317 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
318318 0 0
319319 0 0
320320 1.00000i 1.00000i
321321 −1.24698 2.15983i −1.24698 2.15983i
322322 −0.400969 + 0.694498i −0.400969 + 0.694498i
323323 0 0
324324 1.24698 1.24698
325325 0 0
326326 1.24698 1.24698
327327 −1.94594 1.12349i −1.94594 1.12349i
328328 −0.900969 + 1.56052i −0.900969 + 1.56052i
329329 0.400969 + 0.694498i 0.400969 + 0.694498i
330330 0 0
331331 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
332332 1.07992 0.623490i 1.07992 0.623490i
333333 0 0
334334 0.900969 + 1.56052i 0.900969 + 1.56052i
335335 0.222521 0.385418i 0.222521 0.385418i
336336 −1.94594 1.12349i −1.94594 1.12349i
337337 0 0 1.00000 00
−1.00000 π\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 2.24698i 2.24698i
344344 −0.385418 + 0.222521i −0.385418 + 0.222521i
345345 0.480608 0.277479i 0.480608 0.277479i
346346 0 0
347347 0.623490 + 1.07992i 0.623490 + 1.07992i 0.988831 + 0.149042i 0.0476190π0.0476190\pi
−0.365341 + 0.930874i 0.619048π0.619048\pi
348348 −0.777479 + 1.34663i −0.777479 + 1.34663i
349349 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
350350 1.80194 1.80194
351351 0 0
352352 0 0
353353 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
354354 0 0
355355 0 0
356356 0.445042i 0.445042i
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0.277479 + 0.480608i 0.277479 + 0.480608i
361361 0.500000 0.866025i 0.500000 0.866025i
362362 0.385418 + 0.222521i 0.385418 + 0.222521i
363363 1.24698 1.24698
364364 0 0
365365 0 0
366366 1.94594 + 1.12349i 1.94594 + 1.12349i
367367 0.623490 1.07992i 0.623490 1.07992i −0.365341 0.930874i 0.619048π-0.619048\pi
0.988831 0.149042i 0.0476190π-0.0476190\pi
368368 0.222521 + 0.385418i 0.222521 + 0.385418i
369369 1.00000i 1.00000i
370370 0 0
371371 0 0
372372 0 0
373373 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
374374 0 0
375375 −1.07992 0.623490i −1.07992 0.623490i
376376 0.445042 0.445042
377377 0 0
378378 −1.00000 −1.00000
379379 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
380380 0 0
381381 −1.12349 1.94594i −1.12349 1.94594i
382382 0 0
383383 −1.07992 + 0.623490i −1.07992 + 0.623490i −0.930874 0.365341i 0.880952π-0.880952\pi
−0.149042 + 0.988831i 0.547619π0.547619\pi
384384 −1.07992 + 0.623490i −1.07992 + 0.623490i
385385 0 0
386386 0 0
387387 0.123490 0.213891i 0.123490 0.213891i
388388 0 0
389389 0.445042 0.445042 0.222521 0.974928i 0.428571π-0.428571\pi
0.222521 + 0.974928i 0.428571π0.428571\pi
390390 0 0
391391 0 0
392392 1.94594 + 1.12349i 1.94594 + 1.12349i
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
398398 0 0
399399 0 0
400400 0.500000 0.866025i 0.500000 0.866025i
401401 −1.56052 0.900969i −1.56052 0.900969i −0.997204 0.0747301i 0.976190π-0.976190\pi
−0.563320 0.826239i 0.690476π-0.690476\pi
402402 −0.554958 −0.554958
403403 0 0
404404 −0.445042 −0.445042
405405 1.07992 + 0.623490i 1.07992 + 0.623490i
406406 1.12349 1.94594i 1.12349 1.94594i
407407 0 0
408408 0 0
409409 −1.56052 + 0.900969i −1.56052 + 0.900969i −0.563320 + 0.826239i 0.690476π0.690476\pi
−0.997204 + 0.0747301i 0.976190π0.976190\pi
410410 −1.56052 + 0.900969i −1.56052 + 0.900969i
411411 0 0
412412 −0.900969 1.56052i −0.900969 1.56052i
413413 0 0
414414 −0.213891 0.123490i −0.213891 0.123490i
415415 1.24698 1.24698
416416 0 0
417417 0 0
418418 0 0
419419 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
420420 −1.12349 1.94594i −1.12349 1.94594i
421421 1.24698i 1.24698i 0.781831 + 0.623490i 0.214286π0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
422422 0 0
423423 −0.213891 + 0.123490i −0.213891 + 0.123490i
424424 0 0
425425 0 0
426426 0 0
427427 −2.81197 1.62349i −2.81197 1.62349i
428428 2.00000 2.00000
429429 0 0
430430 −0.445042 −0.445042
431431 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
432432 −0.277479 + 0.480608i −0.277479 + 0.480608i
433433 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
434434 0 0
435435 −1.34663 + 0.777479i −1.34663 + 0.777479i
436436 1.56052 0.900969i 1.56052 0.900969i
437437 0 0
438438 0 0
439439 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
440440 0 0
441441 −1.24698 −1.24698
442442 0 0
443443 −1.24698 −1.24698 −0.623490 0.781831i 0.714286π-0.714286\pi
−0.623490 + 0.781831i 0.714286π0.714286\pi
444444 0 0
445445 0.222521 0.385418i 0.222521 0.385418i
446446 0.623490 + 1.07992i 0.623490 + 1.07992i
447447 1.55496i 1.55496i
448448 1.56052 0.900969i 1.56052 0.900969i
449449 −1.07992 + 0.623490i −1.07992 + 0.623490i −0.930874 0.365341i 0.880952π-0.880952\pi
−0.149042 + 0.988831i 0.547619π0.547619\pi
450450 0.554958i 0.554958i
451451 0 0
452452 0 0
453453 0 0
454454 −1.24698 −1.24698
455455 0 0
456456 0 0
457457 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
458458 0.623490 1.07992i 0.623490 1.07992i
459459 0 0
460460 0.445042i 0.445042i
461461 −0.385418 + 0.222521i −0.385418 + 0.222521i −0.680173 0.733052i 0.738095π-0.738095\pi
0.294755 + 0.955573i 0.404762π0.404762\pi
462462 0 0
463463 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
464464 −0.623490 1.07992i −0.623490 1.07992i
465465 0 0
466466 0 0
467467 −0.445042 −0.445042 −0.222521 0.974928i 0.571429π-0.571429\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
468468 0 0
469469 0.801938 0.801938
470470 0.385418 + 0.222521i 0.385418 + 0.222521i
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
480480 −1.24698 −1.24698
481481 0 0
482482 0.445042 0.445042
483483 0.866025 + 0.500000i 0.866025 + 0.500000i
484484 −0.500000 + 0.866025i −0.500000 + 0.866025i
485485 0 0
486486 1.00000i 1.00000i
487487 0.385418 0.222521i 0.385418 0.222521i −0.294755 0.955573i 0.595238π-0.595238\pi
0.680173 + 0.733052i 0.261905π0.261905\pi
488488 −1.56052 + 0.900969i −1.56052 + 0.900969i
489489 1.55496i 1.55496i
490490 1.12349 + 1.94594i 1.12349 + 1.94594i
491491 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
492492 1.94594 + 1.12349i 1.94594 + 1.12349i
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 −0.777479 1.34663i −0.777479 1.34663i
499499 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
500500 0.866025 0.500000i 0.866025 0.500000i
501501 1.94594 1.12349i 1.94594 1.12349i
502502 0 0
503503 −0.900969 1.56052i −0.900969 1.56052i −0.826239 0.563320i 0.809524π-0.809524\pi
−0.0747301 0.997204i 0.523810π-0.523810\pi
504504 −0.500000 + 0.866025i −0.500000 + 0.866025i
505505 −0.385418 0.222521i −0.385418 0.222521i
506506 0 0
507507 0 0
508508 1.80194 1.80194
509509 −1.07992 0.623490i −1.07992 0.623490i −0.149042 0.988831i 0.547619π-0.547619\pi
−0.930874 + 0.365341i 0.880952π0.880952\pi
510510 0 0
511511 0 0
512512 1.00000i 1.00000i
513513 0 0
514514 0 0
515515 1.80194i 1.80194i
516516 0.277479 + 0.480608i 0.277479 + 0.480608i
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 −0.445042 −0.445042 −0.222521 0.974928i 0.571429π-0.571429\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
522522 0.599308 + 0.346011i 0.599308 + 0.346011i
523523 −0.222521 + 0.385418i −0.222521 + 0.385418i −0.955573 0.294755i 0.904762π-0.904762\pi
0.733052 + 0.680173i 0.238095π0.238095\pi
524524 0 0
525525 2.24698i 2.24698i
526526 −1.56052 + 0.900969i −1.56052 + 0.900969i
527527 0 0
528528 0 0
529529 0.400969 + 0.694498i 0.400969 + 0.694498i
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 −0.554958 −0.554958
535535 1.73205 + 1.00000i 1.73205 + 1.00000i
536536 0.222521 0.385418i 0.222521 0.385418i
537537 0 0
538538 1.24698i 1.24698i
539539 0 0
540540 −0.480608 + 0.277479i −0.480608 + 0.277479i
541541 1.24698i 1.24698i −0.781831 0.623490i 0.785714π-0.785714\pi
0.781831 0.623490i 0.214286π-0.214286\pi
542542 0 0
543543 0.277479 0.480608i 0.277479 0.480608i
544544 0 0
545545 1.80194 1.80194
546546 0 0
547547 1.80194 1.80194 0.900969 0.433884i 0.142857π-0.142857\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
548548 0 0
549549 0.500000 0.866025i 0.500000 0.866025i
550550 0 0
551551 0 0
552552 0.480608 0.277479i 0.480608 0.277479i
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
558558 0 0
559559 0 0
560560 1.80194 1.80194
561561 0 0
562562 0.623490 1.07992i 0.623490 1.07992i
563563 0.900969 + 1.56052i 0.900969 + 1.56052i 0.826239 + 0.563320i 0.190476π0.190476\pi
0.0747301 + 0.997204i 0.476190π0.476190\pi
564564 0.554958i 0.554958i
565565 0 0
566566 −1.07992 + 0.623490i −1.07992 + 0.623490i
567567 2.24698i 2.24698i
568568 0 0
569569 −0.900969 + 1.56052i −0.900969 + 1.56052i −0.0747301 + 0.997204i 0.523810π0.523810\pi
−0.826239 + 0.563320i 0.809524π0.809524\pi
570570 0 0
571571 0 0 1.00000 00
−1.00000 π\pi
572572 0 0
573573 0 0
574574 −2.81197 1.62349i −2.81197 1.62349i
575575 −0.222521 + 0.385418i −0.222521 + 0.385418i
576576 0.277479 + 0.480608i 0.277479 + 0.480608i
577577 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
578578 −0.866025 + 0.500000i −0.866025 + 0.500000i
579579 0 0
580580 1.24698i 1.24698i
581581 1.12349 + 1.94594i 1.12349 + 1.94594i
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 −1.56052 0.900969i −1.56052 0.900969i −0.997204 0.0747301i 0.976190π-0.976190\pi
−0.563320 0.826239i 0.690476π-0.690476\pi
588588 1.40097 2.42655i 1.40097 2.42655i
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 1.07992 + 0.623490i 1.07992 + 0.623490i
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 −1.07992 0.623490i −1.07992 0.623490i
601601 0.900969 1.56052i 0.900969 1.56052i 0.0747301 0.997204i 0.476190π-0.476190\pi
0.826239 0.563320i 0.190476π-0.190476\pi
602602 −0.400969 0.694498i −0.400969 0.694498i
603603 0.246980i 0.246980i
604604 0 0
605605 −0.866025 + 0.500000i −0.866025 + 0.500000i
606606 0.554958i 0.554958i
607607 −0.222521 0.385418i −0.222521 0.385418i 0.733052 0.680173i 0.238095π-0.238095\pi
−0.955573 + 0.294755i 0.904762π0.904762\pi
608608 0 0
609609 −2.42655 1.40097i −2.42655 1.40097i
610610 −1.80194 −1.80194
611611 0 0
612612 0 0
613613 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
614614 −0.623490 + 1.07992i −0.623490 + 1.07992i
615615 1.12349 + 1.94594i 1.12349 + 1.94594i
616616 0 0
617617 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
618618 −1.94594 + 1.12349i −1.94594 + 1.12349i
619619 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
620620 0 0
621621 0.123490 0.213891i 0.123490 0.213891i
622622 0 0
623623 0.801938 0.801938
624624 0 0
625625 1.00000 1.00000
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 −0.866025 + 0.500000i −0.866025 + 0.500000i
631631 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
632632 0 0
633633 0 0
634634 0 0
635635 1.56052 + 0.900969i 1.56052 + 0.900969i
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0.500000 0.866025i 0.500000 0.866025i
641641 −0.900969 1.56052i −0.900969 1.56052i −0.826239 0.563320i 0.809524π-0.809524\pi
−0.0747301 0.997204i 0.523810π-0.523810\pi
642642 2.49396i 2.49396i
643643 −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i 0.833333π0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
644644 −0.694498 + 0.400969i −0.694498 + 0.400969i
645645 0.554958i 0.554958i
646646 0 0
647647 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
648648 1.07992 + 0.623490i 1.07992 + 0.623490i
649649 0 0
650650 0 0
651651 0 0
652652 1.07992 + 0.623490i 1.07992 + 0.623490i
653653 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
654654 −1.12349 1.94594i −1.12349 1.94594i
655655 0 0
656656 −1.56052 + 0.900969i −1.56052 + 0.900969i
657657 0 0
658658 0.801938i 0.801938i
659659 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
660660 0 0
661661 −0.385418 0.222521i −0.385418 0.222521i 0.294755 0.955573i 0.404762π-0.404762\pi
−0.680173 + 0.733052i 0.738095π0.738095\pi
662662 0 0
663663 0 0
664664 1.24698 1.24698
665665 0 0
666666 0 0
667667 0.277479 + 0.480608i 0.277479 + 0.480608i
668668 1.80194i 1.80194i
669669 1.34663 0.777479i 1.34663 0.777479i
670670 0.385418 0.222521i 0.385418 0.222521i
671671 0 0
672672 −1.12349 1.94594i −1.12349 1.94594i
673673 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
674674 0 0
675675 −0.554958 −0.554958
676676 0 0
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 0 0
680680 0 0
681681 1.55496i 1.55496i
682682 0 0
683683 −0.385418 + 0.222521i −0.385418 + 0.222521i −0.680173 0.733052i 0.738095π-0.738095\pi
0.294755 + 0.955573i 0.404762π0.404762\pi
684684 0 0
685685 0 0
686686 −1.12349 + 1.94594i −1.12349 + 1.94594i
687687 −1.34663 0.777479i −1.34663 0.777479i
688688 −0.445042 −0.445042
689689 0 0
690690 0.554958 0.554958
691691 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
692692 0 0
693693 0 0
694694 1.24698i 1.24698i
695695 0 0
696696 −1.34663 + 0.777479i −1.34663 + 0.777479i
697697 0 0
698698 1.00000 + 1.73205i 1.00000 + 1.73205i
699699 0 0
700700 1.56052 + 0.900969i 1.56052 + 0.900969i
701701 1.80194 1.80194 0.900969 0.433884i 0.142857π-0.142857\pi
0.900969 + 0.433884i 0.142857π0.142857\pi
702702 0 0
703703 0 0
704704 0 0
705705 0.277479 0.480608i 0.277479 0.480608i
706706 0 0
707707 0.801938i 0.801938i
708708 0 0
709709 1.56052 0.900969i 1.56052 0.900969i 0.563320 0.826239i 0.309524π-0.309524\pi
0.997204 0.0747301i 0.0238095π-0.0238095\pi
710710 0 0
711711 0 0
712712 0.222521 0.385418i 0.222521 0.385418i
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
720720 0.554958i 0.554958i
721721 2.81197 1.62349i 2.81197 1.62349i
722722 0.866025 0.500000i 0.866025 0.500000i
723723 0.554958i 0.554958i
724724 0.222521 + 0.385418i 0.222521 + 0.385418i
725725 0.623490 1.07992i 0.623490 1.07992i
726726 1.07992 + 0.623490i 1.07992 + 0.623490i
727727 −0.445042 −0.445042 −0.222521 0.974928i 0.571429π-0.571429\pi
−0.222521 + 0.974928i 0.571429π0.571429\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 1.12349 + 1.94594i 1.12349 + 1.94594i
733733 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
734734 1.07992 0.623490i 1.07992 0.623490i
735735 2.42655 1.40097i 2.42655 1.40097i
736736 0.445042i 0.445042i
737737 0 0
738738 0.500000 0.866025i 0.500000 0.866025i
739739 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
740740 0 0
741741 0 0
742742 0 0
743743 −1.56052 0.900969i −1.56052 0.900969i −0.997204 0.0747301i 0.976190π-0.976190\pi
−0.563320 0.826239i 0.690476π-0.690476\pi
744744 0 0
745745 0.623490 + 1.07992i 0.623490 + 1.07992i
746746 0 0
747747 −0.599308 + 0.346011i −0.599308 + 0.346011i
748748 0 0
749749 3.60388i 3.60388i
750750 −0.623490 1.07992i −0.623490 1.07992i
751751 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
752752 0.385418 + 0.222521i 0.385418 + 0.222521i
753753 0 0
754754 0 0
755755 0 0
756756 −0.866025 0.500000i −0.866025 0.500000i
757757 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
758758 0 0
759759 0 0
760760 0 0
761761 −1.07992 + 0.623490i −1.07992 + 0.623490i −0.930874 0.365341i 0.880952π-0.880952\pi
−0.149042 + 0.988831i 0.547619π0.547619\pi
762762 2.24698i 2.24698i
763763 1.62349 + 2.81197i 1.62349 + 2.81197i
764764 0 0
765765 0 0
766766 −1.24698 −1.24698
767767 0 0
768768 −1.24698 −1.24698
769769 1.56052 + 0.900969i 1.56052 + 0.900969i 0.997204 + 0.0747301i 0.0238095π0.0238095\pi
0.563320 + 0.826239i 0.309524π0.309524\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
774774 0.213891 0.123490i 0.213891 0.123490i
775775 0 0
776776 0 0
777777 0 0
778778 0.385418 + 0.222521i 0.385418 + 0.222521i
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 −0.346011 + 0.599308i −0.346011 + 0.599308i
784784 1.12349 + 1.94594i 1.12349 + 1.94594i
785785 0 0
786786 0 0
787787 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
788788 0 0
789789 1.12349 + 1.94594i 1.12349 + 1.94594i
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
798798 0 0
799799 0 0
800800 0.866025 0.500000i 0.866025 0.500000i
801801 0.246980i 0.246980i
802802 −0.900969 1.56052i −0.900969 1.56052i
803803 0 0
804804 −0.480608 0.277479i −0.480608 0.277479i
805805 −0.801938 −0.801938
806806 0 0
807807 −1.55496 −1.55496
808808 −0.385418 0.222521i −0.385418 0.222521i
809809 0.900969 1.56052i 0.900969 1.56052i 0.0747301 0.997204i 0.476190π-0.476190\pi
0.826239 0.563320i 0.190476π-0.190476\pi
810810 0.623490 + 1.07992i 0.623490 + 1.07992i
811811 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
812812 1.94594 1.12349i 1.94594 1.12349i
813813 0 0
814814 0 0
815815 0.623490 + 1.07992i 0.623490 + 1.07992i
816816 0 0
817817 0 0
818818 −1.80194 −1.80194
819819 0 0
820820 −1.80194 −1.80194
821821 0.385418 + 0.222521i 0.385418 + 0.222521i 0.680173 0.733052i 0.261905π-0.261905\pi
−0.294755 + 0.955573i 0.595238π0.595238\pi
822822 0 0
823823 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
824824 1.80194i 1.80194i
825825 0 0
826826 0 0
827827 1.24698i 1.24698i 0.781831 + 0.623490i 0.214286π0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
828828 −0.123490 0.213891i −0.123490 0.213891i
829829 0.623490 1.07992i 0.623490 1.07992i −0.365341 0.930874i 0.619048π-0.619048\pi
0.988831 0.149042i 0.0476190π-0.0476190\pi
830830 1.07992 + 0.623490i 1.07992 + 0.623490i
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 −0.900969 + 1.56052i −0.900969 + 1.56052i
836836 0 0
837837 0 0
838838 0 0
839839 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
840840 2.24698i 2.24698i
841841 −0.277479 0.480608i −0.277479 0.480608i
842842 −0.623490 + 1.07992i −0.623490 + 1.07992i
843843 −1.34663 0.777479i −1.34663 0.777479i
844844 0 0
845845 0 0
846846 −0.246980 −0.246980
847847 −1.56052 0.900969i −1.56052 0.900969i
848848 0 0
849849 0.777479 + 1.34663i 0.777479 + 1.34663i
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
854854 −1.62349 2.81197i −1.62349 2.81197i
855855 0 0
856856 1.73205 + 1.00000i 1.73205 + 1.00000i
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 −0.385418 0.222521i −0.385418 0.222521i
861861 −2.02446 + 3.50647i −2.02446 + 3.50647i
862862 0 0
863863 1.24698i 1.24698i −0.781831 0.623490i 0.785714π-0.785714\pi
0.781831 0.623490i 0.214286π-0.214286\pi
864864 −0.480608 + 0.277479i −0.480608 + 0.277479i
865865 0 0
866866 0 0
867867 0.623490 + 1.07992i 0.623490 + 1.07992i
868868 0 0
869869 0 0
870870 −1.55496 −1.55496
871871 0 0
872872 1.80194 1.80194
873873 0 0
874874 0 0
875875 0.900969 + 1.56052i 0.900969 + 1.56052i
876876 0 0
877877 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
878878 0 0
879879 0 0
880880 0 0
881881 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
882882 −1.07992 0.623490i −1.07992 0.623490i
883883 2.00000 2.00000 1.00000 00
1.00000 00
884884 0 0
885885 0 0
886886 −1.07992 0.623490i −1.07992 0.623490i
887887 −0.900969 + 1.56052i −0.900969 + 1.56052i −0.0747301 + 0.997204i 0.523810π0.523810\pi
−0.826239 + 0.563320i 0.809524π0.809524\pi
888888 0 0
889889 3.24698i 3.24698i
890890 0.385418 0.222521i 0.385418 0.222521i
891891 0 0
892892 1.24698i 1.24698i
893893 0 0
894894 0.777479 1.34663i 0.777479 1.34663i
895895 0 0
896896 1.80194 1.80194
897897 0 0
898898 −1.24698 −1.24698
899899 0 0
900900 −0.277479 + 0.480608i −0.277479 + 0.480608i
901901 0 0
902902 0 0
903903 −0.866025 + 0.500000i −0.866025 + 0.500000i
904904 0 0
905905 0.445042i 0.445042i
906906 0 0
907907 0.900969 1.56052i 0.900969 1.56052i 0.0747301 0.997204i 0.476190π-0.476190\pi
0.826239 0.563320i 0.190476π-0.190476\pi
908908 −1.07992 0.623490i −1.07992 0.623490i
909909 0.246980 0.246980
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 2.24698i 2.24698i
916916 1.07992 0.623490i 1.07992 0.623490i
917917 0 0
918918 0 0
919919 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
920920 −0.222521 + 0.385418i −0.222521 + 0.385418i
921921 1.34663 + 0.777479i 1.34663 + 0.777479i
922922 −0.445042 −0.445042
923923 0 0
924924 0 0
925925 0 0
926926 −1.00000 + 1.73205i −1.00000 + 1.73205i
927927 0.500000 + 0.866025i 0.500000 + 0.866025i
928928 1.24698i 1.24698i
929929 −0.385418 + 0.222521i −0.385418 + 0.222521i −0.680173 0.733052i 0.738095π-0.738095\pi
0.294755 + 0.955573i 0.404762π0.404762\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 −0.385418 0.222521i −0.385418 0.222521i
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0.694498 + 0.400969i 0.694498 + 0.400969i
939939 0 0
940940 0.222521 + 0.385418i 0.222521 + 0.385418i
941941 1.80194i 1.80194i −0.433884 0.900969i 0.642857π-0.642857\pi
0.433884 0.900969i 0.357143π-0.357143\pi
942942 0 0
943943 0.694498 0.400969i 0.694498 0.400969i
944944 0 0
945945 −0.500000 0.866025i −0.500000 0.866025i
946946 0 0
947947 1.56052 + 0.900969i 1.56052 + 0.900969i 0.997204 + 0.0747301i 0.0238095π0.0238095\pi
0.563320 + 0.826239i 0.309524π0.309524\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 −1.07992 0.623490i −1.07992 0.623490i
961961 −1.00000 −1.00000
962962 0 0
963963 −1.10992 −1.10992
964964 0.385418 + 0.222521i 0.385418 + 0.222521i
965965 0 0
966966 0.500000 + 0.866025i 0.500000 + 0.866025i
967967 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
968968 −0.866025 + 0.500000i −0.866025 + 0.500000i
969969 0 0
970970 0 0
971971 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
972972 0.500000 0.866025i 0.500000 0.866025i
973973 0 0
974974 0.445042 0.445042
975975 0 0
976976 −1.80194 −1.80194
977977 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
978978 0.777479 1.34663i 0.777479 1.34663i
979979 0 0
980980 2.24698i 2.24698i
981981 −0.866025 + 0.500000i −0.866025 + 0.500000i
982982 0 0
983983 1.24698i 1.24698i 0.781831 + 0.623490i 0.214286π0.214286\pi
−0.781831 + 0.623490i 0.785714π0.785714\pi
984984 1.12349 + 1.94594i 1.12349 + 1.94594i
985985 0 0
986986 0 0
987987 1.00000 1.00000
988988 0 0
989989 0.198062 0.198062
990990 0 0
991991 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 1.55496i 1.55496i
997997 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3380.1.w.e.1499.6 12
4.3 odd 2 3380.1.w.f.1499.1 12
5.4 even 2 3380.1.w.f.1499.1 12
13.2 odd 12 3380.1.v.f.3019.3 6
13.3 even 3 inner 3380.1.w.e.699.3 12
13.4 even 6 3380.1.g.d.3379.4 6
13.5 odd 4 3380.1.v.f.2219.3 6
13.6 odd 12 3380.1.h.c.339.1 yes 3
13.7 odd 12 3380.1.h.e.339.1 yes 3
13.8 odd 4 3380.1.v.d.2219.3 6
13.9 even 3 3380.1.g.d.3379.1 6
13.10 even 6 inner 3380.1.w.e.699.6 12
13.11 odd 12 3380.1.v.d.3019.3 6
13.12 even 2 inner 3380.1.w.e.1499.3 12
20.19 odd 2 CM 3380.1.w.e.1499.6 12
52.3 odd 6 3380.1.w.f.699.4 12
52.7 even 12 3380.1.h.b.339.3 3
52.11 even 12 3380.1.v.g.3019.1 6
52.15 even 12 3380.1.v.e.3019.1 6
52.19 even 12 3380.1.h.d.339.3 yes 3
52.23 odd 6 3380.1.w.f.699.1 12
52.31 even 4 3380.1.v.e.2219.1 6
52.35 odd 6 3380.1.g.c.3379.6 6
52.43 odd 6 3380.1.g.c.3379.3 6
52.47 even 4 3380.1.v.g.2219.1 6
52.51 odd 2 3380.1.w.f.1499.4 12
65.4 even 6 3380.1.g.c.3379.3 6
65.9 even 6 3380.1.g.c.3379.6 6
65.19 odd 12 3380.1.h.d.339.3 yes 3
65.24 odd 12 3380.1.v.g.3019.1 6
65.29 even 6 3380.1.w.f.699.4 12
65.34 odd 4 3380.1.v.g.2219.1 6
65.44 odd 4 3380.1.v.e.2219.1 6
65.49 even 6 3380.1.w.f.699.1 12
65.54 odd 12 3380.1.v.e.3019.1 6
65.59 odd 12 3380.1.h.b.339.3 3
65.64 even 2 3380.1.w.f.1499.4 12
260.19 even 12 3380.1.h.c.339.1 yes 3
260.59 even 12 3380.1.h.e.339.1 yes 3
260.99 even 4 3380.1.v.d.2219.3 6
260.119 even 12 3380.1.v.f.3019.3 6
260.139 odd 6 3380.1.g.d.3379.1 6
260.159 odd 6 inner 3380.1.w.e.699.3 12
260.179 odd 6 inner 3380.1.w.e.699.6 12
260.199 odd 6 3380.1.g.d.3379.4 6
260.219 even 12 3380.1.v.d.3019.3 6
260.239 even 4 3380.1.v.f.2219.3 6
260.259 odd 2 inner 3380.1.w.e.1499.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3380.1.g.c.3379.3 6 52.43 odd 6
3380.1.g.c.3379.3 6 65.4 even 6
3380.1.g.c.3379.6 6 52.35 odd 6
3380.1.g.c.3379.6 6 65.9 even 6
3380.1.g.d.3379.1 6 13.9 even 3
3380.1.g.d.3379.1 6 260.139 odd 6
3380.1.g.d.3379.4 6 13.4 even 6
3380.1.g.d.3379.4 6 260.199 odd 6
3380.1.h.b.339.3 3 52.7 even 12
3380.1.h.b.339.3 3 65.59 odd 12
3380.1.h.c.339.1 yes 3 13.6 odd 12
3380.1.h.c.339.1 yes 3 260.19 even 12
3380.1.h.d.339.3 yes 3 52.19 even 12
3380.1.h.d.339.3 yes 3 65.19 odd 12
3380.1.h.e.339.1 yes 3 13.7 odd 12
3380.1.h.e.339.1 yes 3 260.59 even 12
3380.1.v.d.2219.3 6 13.8 odd 4
3380.1.v.d.2219.3 6 260.99 even 4
3380.1.v.d.3019.3 6 13.11 odd 12
3380.1.v.d.3019.3 6 260.219 even 12
3380.1.v.e.2219.1 6 52.31 even 4
3380.1.v.e.2219.1 6 65.44 odd 4
3380.1.v.e.3019.1 6 52.15 even 12
3380.1.v.e.3019.1 6 65.54 odd 12
3380.1.v.f.2219.3 6 13.5 odd 4
3380.1.v.f.2219.3 6 260.239 even 4
3380.1.v.f.3019.3 6 13.2 odd 12
3380.1.v.f.3019.3 6 260.119 even 12
3380.1.v.g.2219.1 6 52.47 even 4
3380.1.v.g.2219.1 6 65.34 odd 4
3380.1.v.g.3019.1 6 52.11 even 12
3380.1.v.g.3019.1 6 65.24 odd 12
3380.1.w.e.699.3 12 13.3 even 3 inner
3380.1.w.e.699.3 12 260.159 odd 6 inner
3380.1.w.e.699.6 12 13.10 even 6 inner
3380.1.w.e.699.6 12 260.179 odd 6 inner
3380.1.w.e.1499.3 12 13.12 even 2 inner
3380.1.w.e.1499.3 12 260.259 odd 2 inner
3380.1.w.e.1499.6 12 1.1 even 1 trivial
3380.1.w.e.1499.6 12 20.19 odd 2 CM
3380.1.w.f.699.1 12 52.23 odd 6
3380.1.w.f.699.1 12 65.49 even 6
3380.1.w.f.699.4 12 52.3 odd 6
3380.1.w.f.699.4 12 65.29 even 6
3380.1.w.f.1499.1 12 4.3 odd 2
3380.1.w.f.1499.1 12 5.4 even 2
3380.1.w.f.1499.4 12 52.51 odd 2
3380.1.w.f.1499.4 12 65.64 even 2