Properties

Label 3447.2.a.j.1.9
Level $3447$
Weight $2$
Character 3447.1
Self dual yes
Analytic conductor $27.524$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3447,2,Mod(1,3447)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3447, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3447.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3447 = 3^{2} \cdot 383 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3447.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.5244335767\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 383)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Character \(\chi\) \(=\) 3447.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.30644 q^{2} -0.293212 q^{4} +0.910566 q^{5} +2.08417 q^{7} +2.99595 q^{8} -1.18960 q^{10} -1.45014 q^{11} -5.62225 q^{13} -2.72284 q^{14} -3.32760 q^{16} -2.35320 q^{17} -1.05653 q^{19} -0.266989 q^{20} +1.89453 q^{22} +5.63172 q^{23} -4.17087 q^{25} +7.34513 q^{26} -0.611103 q^{28} -4.34646 q^{29} +8.73676 q^{31} -1.64457 q^{32} +3.07432 q^{34} +1.89777 q^{35} -4.46866 q^{37} +1.38029 q^{38} +2.72801 q^{40} +10.5553 q^{41} +4.24845 q^{43} +0.425199 q^{44} -7.35751 q^{46} +8.72689 q^{47} -2.65624 q^{49} +5.44899 q^{50} +1.64851 q^{52} -1.87073 q^{53} -1.32045 q^{55} +6.24405 q^{56} +5.67839 q^{58} -4.30187 q^{59} -6.48215 q^{61} -11.4141 q^{62} +8.80375 q^{64} -5.11943 q^{65} +14.6140 q^{67} +0.689986 q^{68} -2.47933 q^{70} +5.12074 q^{71} +7.67008 q^{73} +5.83804 q^{74} +0.309786 q^{76} -3.02234 q^{77} +11.7685 q^{79} -3.03000 q^{80} -13.7899 q^{82} -7.99857 q^{83} -2.14274 q^{85} -5.55035 q^{86} -4.34455 q^{88} +2.63315 q^{89} -11.7177 q^{91} -1.65129 q^{92} -11.4012 q^{94} -0.962038 q^{95} +11.6053 q^{97} +3.47023 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 5 q^{2} + 29 q^{4} - 3 q^{5} + 17 q^{7} - 15 q^{8} + q^{10} + 28 q^{13} + 8 q^{14} + 35 q^{16} - 16 q^{17} + 13 q^{19} + 4 q^{20} + 12 q^{22} - 7 q^{23} + 67 q^{25} + 14 q^{26} + 39 q^{28} + 2 q^{29}+ \cdots + 29 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30644 −0.923793 −0.461897 0.886934i \(-0.652831\pi\)
−0.461897 + 0.886934i \(0.652831\pi\)
\(3\) 0 0
\(4\) −0.293212 −0.146606
\(5\) 0.910566 0.407218 0.203609 0.979052i \(-0.434733\pi\)
0.203609 + 0.979052i \(0.434733\pi\)
\(6\) 0 0
\(7\) 2.08417 0.787741 0.393871 0.919166i \(-0.371136\pi\)
0.393871 + 0.919166i \(0.371136\pi\)
\(8\) 2.99595 1.05923
\(9\) 0 0
\(10\) −1.18960 −0.376185
\(11\) −1.45014 −0.437234 −0.218617 0.975811i \(-0.570155\pi\)
−0.218617 + 0.975811i \(0.570155\pi\)
\(12\) 0 0
\(13\) −5.62225 −1.55933 −0.779665 0.626197i \(-0.784611\pi\)
−0.779665 + 0.626197i \(0.784611\pi\)
\(14\) −2.72284 −0.727710
\(15\) 0 0
\(16\) −3.32760 −0.831901
\(17\) −2.35320 −0.570735 −0.285367 0.958418i \(-0.592116\pi\)
−0.285367 + 0.958418i \(0.592116\pi\)
\(18\) 0 0
\(19\) −1.05653 −0.242384 −0.121192 0.992629i \(-0.538672\pi\)
−0.121192 + 0.992629i \(0.538672\pi\)
\(20\) −0.266989 −0.0597005
\(21\) 0 0
\(22\) 1.89453 0.403914
\(23\) 5.63172 1.17430 0.587148 0.809480i \(-0.300251\pi\)
0.587148 + 0.809480i \(0.300251\pi\)
\(24\) 0 0
\(25\) −4.17087 −0.834174
\(26\) 7.34513 1.44050
\(27\) 0 0
\(28\) −0.611103 −0.115488
\(29\) −4.34646 −0.807117 −0.403559 0.914954i \(-0.632227\pi\)
−0.403559 + 0.914954i \(0.632227\pi\)
\(30\) 0 0
\(31\) 8.73676 1.56917 0.784584 0.620022i \(-0.212876\pi\)
0.784584 + 0.620022i \(0.212876\pi\)
\(32\) −1.64457 −0.290722
\(33\) 0 0
\(34\) 3.07432 0.527241
\(35\) 1.89777 0.320782
\(36\) 0 0
\(37\) −4.46866 −0.734643 −0.367321 0.930094i \(-0.619725\pi\)
−0.367321 + 0.930094i \(0.619725\pi\)
\(38\) 1.38029 0.223913
\(39\) 0 0
\(40\) 2.72801 0.431336
\(41\) 10.5553 1.64847 0.824233 0.566251i \(-0.191607\pi\)
0.824233 + 0.566251i \(0.191607\pi\)
\(42\) 0 0
\(43\) 4.24845 0.647883 0.323942 0.946077i \(-0.394992\pi\)
0.323942 + 0.946077i \(0.394992\pi\)
\(44\) 0.425199 0.0641011
\(45\) 0 0
\(46\) −7.35751 −1.08481
\(47\) 8.72689 1.27295 0.636474 0.771298i \(-0.280392\pi\)
0.636474 + 0.771298i \(0.280392\pi\)
\(48\) 0 0
\(49\) −2.65624 −0.379463
\(50\) 5.44899 0.770604
\(51\) 0 0
\(52\) 1.64851 0.228607
\(53\) −1.87073 −0.256965 −0.128483 0.991712i \(-0.541011\pi\)
−0.128483 + 0.991712i \(0.541011\pi\)
\(54\) 0 0
\(55\) −1.32045 −0.178050
\(56\) 6.24405 0.834397
\(57\) 0 0
\(58\) 5.67839 0.745610
\(59\) −4.30187 −0.560056 −0.280028 0.959992i \(-0.590344\pi\)
−0.280028 + 0.959992i \(0.590344\pi\)
\(60\) 0 0
\(61\) −6.48215 −0.829954 −0.414977 0.909832i \(-0.636210\pi\)
−0.414977 + 0.909832i \(0.636210\pi\)
\(62\) −11.4141 −1.44959
\(63\) 0 0
\(64\) 8.80375 1.10047
\(65\) −5.11943 −0.634987
\(66\) 0 0
\(67\) 14.6140 1.78539 0.892693 0.450665i \(-0.148813\pi\)
0.892693 + 0.450665i \(0.148813\pi\)
\(68\) 0.689986 0.0836731
\(69\) 0 0
\(70\) −2.47933 −0.296336
\(71\) 5.12074 0.607720 0.303860 0.952717i \(-0.401724\pi\)
0.303860 + 0.952717i \(0.401724\pi\)
\(72\) 0 0
\(73\) 7.67008 0.897715 0.448858 0.893603i \(-0.351831\pi\)
0.448858 + 0.893603i \(0.351831\pi\)
\(74\) 5.83804 0.678658
\(75\) 0 0
\(76\) 0.309786 0.0355349
\(77\) −3.02234 −0.344428
\(78\) 0 0
\(79\) 11.7685 1.32406 0.662029 0.749479i \(-0.269696\pi\)
0.662029 + 0.749479i \(0.269696\pi\)
\(80\) −3.03000 −0.338765
\(81\) 0 0
\(82\) −13.7899 −1.52284
\(83\) −7.99857 −0.877957 −0.438979 0.898497i \(-0.644660\pi\)
−0.438979 + 0.898497i \(0.644660\pi\)
\(84\) 0 0
\(85\) −2.14274 −0.232413
\(86\) −5.55035 −0.598510
\(87\) 0 0
\(88\) −4.34455 −0.463130
\(89\) 2.63315 0.279113 0.139557 0.990214i \(-0.455432\pi\)
0.139557 + 0.990214i \(0.455432\pi\)
\(90\) 0 0
\(91\) −11.7177 −1.22835
\(92\) −1.65129 −0.172159
\(93\) 0 0
\(94\) −11.4012 −1.17594
\(95\) −0.962038 −0.0987030
\(96\) 0 0
\(97\) 11.6053 1.17834 0.589169 0.808010i \(-0.299455\pi\)
0.589169 + 0.808010i \(0.299455\pi\)
\(98\) 3.47023 0.350546
\(99\) 0 0
\(100\) 1.22295 0.122295
\(101\) 7.93506 0.789568 0.394784 0.918774i \(-0.370819\pi\)
0.394784 + 0.918774i \(0.370819\pi\)
\(102\) 0 0
\(103\) −6.37732 −0.628376 −0.314188 0.949361i \(-0.601732\pi\)
−0.314188 + 0.949361i \(0.601732\pi\)
\(104\) −16.8439 −1.65168
\(105\) 0 0
\(106\) 2.44400 0.237383
\(107\) 0.919710 0.0889117 0.0444559 0.999011i \(-0.485845\pi\)
0.0444559 + 0.999011i \(0.485845\pi\)
\(108\) 0 0
\(109\) −16.3419 −1.56527 −0.782634 0.622482i \(-0.786124\pi\)
−0.782634 + 0.622482i \(0.786124\pi\)
\(110\) 1.72509 0.164481
\(111\) 0 0
\(112\) −6.93528 −0.655323
\(113\) −10.2230 −0.961698 −0.480849 0.876803i \(-0.659671\pi\)
−0.480849 + 0.876803i \(0.659671\pi\)
\(114\) 0 0
\(115\) 5.12806 0.478194
\(116\) 1.27443 0.118328
\(117\) 0 0
\(118\) 5.62014 0.517376
\(119\) −4.90446 −0.449591
\(120\) 0 0
\(121\) −8.89709 −0.808826
\(122\) 8.46855 0.766706
\(123\) 0 0
\(124\) −2.56172 −0.230049
\(125\) −8.35068 −0.746908
\(126\) 0 0
\(127\) 6.20139 0.550284 0.275142 0.961404i \(-0.411275\pi\)
0.275142 + 0.961404i \(0.411275\pi\)
\(128\) −8.21243 −0.725883
\(129\) 0 0
\(130\) 6.68823 0.586597
\(131\) 3.80228 0.332207 0.166104 0.986108i \(-0.446881\pi\)
0.166104 + 0.986108i \(0.446881\pi\)
\(132\) 0 0
\(133\) −2.20198 −0.190936
\(134\) −19.0924 −1.64933
\(135\) 0 0
\(136\) −7.05006 −0.604538
\(137\) 7.18556 0.613904 0.306952 0.951725i \(-0.400691\pi\)
0.306952 + 0.951725i \(0.400691\pi\)
\(138\) 0 0
\(139\) 22.5012 1.90853 0.954264 0.298964i \(-0.0966412\pi\)
0.954264 + 0.298964i \(0.0966412\pi\)
\(140\) −0.556449 −0.0470286
\(141\) 0 0
\(142\) −6.68994 −0.561408
\(143\) 8.15305 0.681793
\(144\) 0 0
\(145\) −3.95774 −0.328672
\(146\) −10.0205 −0.829303
\(147\) 0 0
\(148\) 1.31026 0.107703
\(149\) −10.1145 −0.828608 −0.414304 0.910139i \(-0.635975\pi\)
−0.414304 + 0.910139i \(0.635975\pi\)
\(150\) 0 0
\(151\) 19.4558 1.58329 0.791647 0.610979i \(-0.209224\pi\)
0.791647 + 0.610979i \(0.209224\pi\)
\(152\) −3.16530 −0.256740
\(153\) 0 0
\(154\) 3.94851 0.318180
\(155\) 7.95540 0.638993
\(156\) 0 0
\(157\) 4.94110 0.394343 0.197171 0.980369i \(-0.436824\pi\)
0.197171 + 0.980369i \(0.436824\pi\)
\(158\) −15.3748 −1.22316
\(159\) 0 0
\(160\) −1.49749 −0.118387
\(161\) 11.7375 0.925041
\(162\) 0 0
\(163\) −14.3804 −1.12636 −0.563182 0.826333i \(-0.690423\pi\)
−0.563182 + 0.826333i \(0.690423\pi\)
\(164\) −3.09495 −0.241675
\(165\) 0 0
\(166\) 10.4497 0.811051
\(167\) −22.3066 −1.72613 −0.863067 0.505090i \(-0.831459\pi\)
−0.863067 + 0.505090i \(0.831459\pi\)
\(168\) 0 0
\(169\) 18.6096 1.43151
\(170\) 2.79937 0.214702
\(171\) 0 0
\(172\) −1.24570 −0.0949835
\(173\) 13.2300 1.00586 0.502930 0.864327i \(-0.332255\pi\)
0.502930 + 0.864327i \(0.332255\pi\)
\(174\) 0 0
\(175\) −8.69279 −0.657113
\(176\) 4.82550 0.363736
\(177\) 0 0
\(178\) −3.44005 −0.257843
\(179\) −6.68349 −0.499548 −0.249774 0.968304i \(-0.580356\pi\)
−0.249774 + 0.968304i \(0.580356\pi\)
\(180\) 0 0
\(181\) −9.78911 −0.727619 −0.363809 0.931473i \(-0.618524\pi\)
−0.363809 + 0.931473i \(0.618524\pi\)
\(182\) 15.3085 1.13474
\(183\) 0 0
\(184\) 16.8723 1.24385
\(185\) −4.06901 −0.299159
\(186\) 0 0
\(187\) 3.41247 0.249545
\(188\) −2.55883 −0.186622
\(189\) 0 0
\(190\) 1.25685 0.0911812
\(191\) 21.6986 1.57005 0.785027 0.619462i \(-0.212649\pi\)
0.785027 + 0.619462i \(0.212649\pi\)
\(192\) 0 0
\(193\) 11.3873 0.819674 0.409837 0.912159i \(-0.365586\pi\)
0.409837 + 0.912159i \(0.365586\pi\)
\(194\) −15.1616 −1.08854
\(195\) 0 0
\(196\) 0.778842 0.0556316
\(197\) 5.15003 0.366924 0.183462 0.983027i \(-0.441270\pi\)
0.183462 + 0.983027i \(0.441270\pi\)
\(198\) 0 0
\(199\) 15.9165 1.12829 0.564145 0.825676i \(-0.309206\pi\)
0.564145 + 0.825676i \(0.309206\pi\)
\(200\) −12.4957 −0.883579
\(201\) 0 0
\(202\) −10.3667 −0.729398
\(203\) −9.05875 −0.635800
\(204\) 0 0
\(205\) 9.61133 0.671284
\(206\) 8.33159 0.580489
\(207\) 0 0
\(208\) 18.7086 1.29721
\(209\) 1.53211 0.105979
\(210\) 0 0
\(211\) −4.51738 −0.310989 −0.155494 0.987837i \(-0.549697\pi\)
−0.155494 + 0.987837i \(0.549697\pi\)
\(212\) 0.548521 0.0376726
\(213\) 0 0
\(214\) −1.20155 −0.0821360
\(215\) 3.86850 0.263829
\(216\) 0 0
\(217\) 18.2089 1.23610
\(218\) 21.3497 1.44598
\(219\) 0 0
\(220\) 0.387172 0.0261031
\(221\) 13.2303 0.889964
\(222\) 0 0
\(223\) 13.5001 0.904036 0.452018 0.892009i \(-0.350704\pi\)
0.452018 + 0.892009i \(0.350704\pi\)
\(224\) −3.42757 −0.229014
\(225\) 0 0
\(226\) 13.3557 0.888410
\(227\) 18.5652 1.23222 0.616109 0.787661i \(-0.288708\pi\)
0.616109 + 0.787661i \(0.288708\pi\)
\(228\) 0 0
\(229\) 3.86141 0.255169 0.127584 0.991828i \(-0.459278\pi\)
0.127584 + 0.991828i \(0.459278\pi\)
\(230\) −6.69950 −0.441752
\(231\) 0 0
\(232\) −13.0218 −0.854921
\(233\) −7.30219 −0.478382 −0.239191 0.970973i \(-0.576882\pi\)
−0.239191 + 0.970973i \(0.576882\pi\)
\(234\) 0 0
\(235\) 7.94641 0.518367
\(236\) 1.26136 0.0821075
\(237\) 0 0
\(238\) 6.40739 0.415330
\(239\) 7.87705 0.509524 0.254762 0.967004i \(-0.418003\pi\)
0.254762 + 0.967004i \(0.418003\pi\)
\(240\) 0 0
\(241\) 29.1082 1.87502 0.937511 0.347955i \(-0.113124\pi\)
0.937511 + 0.347955i \(0.113124\pi\)
\(242\) 11.6235 0.747188
\(243\) 0 0
\(244\) 1.90064 0.121676
\(245\) −2.41869 −0.154524
\(246\) 0 0
\(247\) 5.94006 0.377957
\(248\) 26.1749 1.66211
\(249\) 0 0
\(250\) 10.9097 0.689989
\(251\) 16.9063 1.06712 0.533559 0.845763i \(-0.320854\pi\)
0.533559 + 0.845763i \(0.320854\pi\)
\(252\) 0 0
\(253\) −8.16680 −0.513442
\(254\) −8.10175 −0.508349
\(255\) 0 0
\(256\) −6.87844 −0.429903
\(257\) 11.7786 0.734726 0.367363 0.930078i \(-0.380261\pi\)
0.367363 + 0.930078i \(0.380261\pi\)
\(258\) 0 0
\(259\) −9.31343 −0.578709
\(260\) 1.50108 0.0930928
\(261\) 0 0
\(262\) −4.96746 −0.306891
\(263\) 17.2051 1.06091 0.530456 0.847713i \(-0.322021\pi\)
0.530456 + 0.847713i \(0.322021\pi\)
\(264\) 0 0
\(265\) −1.70343 −0.104641
\(266\) 2.87676 0.176385
\(267\) 0 0
\(268\) −4.28500 −0.261748
\(269\) 12.1597 0.741390 0.370695 0.928755i \(-0.379120\pi\)
0.370695 + 0.928755i \(0.379120\pi\)
\(270\) 0 0
\(271\) 0.144543 0.00878034 0.00439017 0.999990i \(-0.498603\pi\)
0.00439017 + 0.999990i \(0.498603\pi\)
\(272\) 7.83052 0.474795
\(273\) 0 0
\(274\) −9.38751 −0.567120
\(275\) 6.04835 0.364729
\(276\) 0 0
\(277\) 4.61563 0.277327 0.138663 0.990340i \(-0.455719\pi\)
0.138663 + 0.990340i \(0.455719\pi\)
\(278\) −29.3965 −1.76309
\(279\) 0 0
\(280\) 5.68563 0.339781
\(281\) −2.37703 −0.141801 −0.0709007 0.997483i \(-0.522587\pi\)
−0.0709007 + 0.997483i \(0.522587\pi\)
\(282\) 0 0
\(283\) 13.4835 0.801513 0.400756 0.916185i \(-0.368747\pi\)
0.400756 + 0.916185i \(0.368747\pi\)
\(284\) −1.50146 −0.0890953
\(285\) 0 0
\(286\) −10.6515 −0.629836
\(287\) 21.9991 1.29856
\(288\) 0 0
\(289\) −11.4624 −0.674262
\(290\) 5.17055 0.303625
\(291\) 0 0
\(292\) −2.24896 −0.131610
\(293\) 29.2780 1.71044 0.855219 0.518268i \(-0.173423\pi\)
0.855219 + 0.518268i \(0.173423\pi\)
\(294\) 0 0
\(295\) −3.91714 −0.228065
\(296\) −13.3879 −0.778153
\(297\) 0 0
\(298\) 13.2139 0.765463
\(299\) −31.6629 −1.83111
\(300\) 0 0
\(301\) 8.85449 0.510364
\(302\) −25.4179 −1.46264
\(303\) 0 0
\(304\) 3.51570 0.201639
\(305\) −5.90243 −0.337972
\(306\) 0 0
\(307\) −27.2949 −1.55780 −0.778901 0.627147i \(-0.784222\pi\)
−0.778901 + 0.627147i \(0.784222\pi\)
\(308\) 0.886186 0.0504951
\(309\) 0 0
\(310\) −10.3933 −0.590297
\(311\) −14.7646 −0.837223 −0.418612 0.908165i \(-0.637483\pi\)
−0.418612 + 0.908165i \(0.637483\pi\)
\(312\) 0 0
\(313\) 4.02085 0.227272 0.113636 0.993522i \(-0.463750\pi\)
0.113636 + 0.993522i \(0.463750\pi\)
\(314\) −6.45526 −0.364291
\(315\) 0 0
\(316\) −3.45066 −0.194115
\(317\) −30.2041 −1.69643 −0.848214 0.529653i \(-0.822322\pi\)
−0.848214 + 0.529653i \(0.822322\pi\)
\(318\) 0 0
\(319\) 6.30299 0.352899
\(320\) 8.01639 0.448130
\(321\) 0 0
\(322\) −15.3343 −0.854547
\(323\) 2.48622 0.138337
\(324\) 0 0
\(325\) 23.4496 1.30075
\(326\) 18.7872 1.04053
\(327\) 0 0
\(328\) 31.6232 1.74610
\(329\) 18.1883 1.00275
\(330\) 0 0
\(331\) −18.7445 −1.03029 −0.515145 0.857103i \(-0.672262\pi\)
−0.515145 + 0.857103i \(0.672262\pi\)
\(332\) 2.34528 0.128714
\(333\) 0 0
\(334\) 29.1422 1.59459
\(335\) 13.3070 0.727041
\(336\) 0 0
\(337\) 23.4653 1.27824 0.639119 0.769108i \(-0.279299\pi\)
0.639119 + 0.769108i \(0.279299\pi\)
\(338\) −24.3124 −1.32242
\(339\) 0 0
\(340\) 0.628278 0.0340732
\(341\) −12.6695 −0.686094
\(342\) 0 0
\(343\) −20.1252 −1.08666
\(344\) 12.7281 0.686255
\(345\) 0 0
\(346\) −17.2843 −0.929208
\(347\) −8.14300 −0.437139 −0.218570 0.975821i \(-0.570139\pi\)
−0.218570 + 0.975821i \(0.570139\pi\)
\(348\) 0 0
\(349\) −25.3501 −1.35696 −0.678480 0.734619i \(-0.737361\pi\)
−0.678480 + 0.734619i \(0.737361\pi\)
\(350\) 11.3566 0.607037
\(351\) 0 0
\(352\) 2.38487 0.127114
\(353\) −24.1384 −1.28476 −0.642378 0.766388i \(-0.722052\pi\)
−0.642378 + 0.766388i \(0.722052\pi\)
\(354\) 0 0
\(355\) 4.66277 0.247474
\(356\) −0.772070 −0.0409196
\(357\) 0 0
\(358\) 8.73159 0.461479
\(359\) 36.0517 1.90274 0.951368 0.308055i \(-0.0996782\pi\)
0.951368 + 0.308055i \(0.0996782\pi\)
\(360\) 0 0
\(361\) −17.8837 −0.941250
\(362\) 12.7889 0.672169
\(363\) 0 0
\(364\) 3.43577 0.180083
\(365\) 6.98412 0.365565
\(366\) 0 0
\(367\) −14.3193 −0.747461 −0.373730 0.927537i \(-0.621921\pi\)
−0.373730 + 0.927537i \(0.621921\pi\)
\(368\) −18.7401 −0.976897
\(369\) 0 0
\(370\) 5.31592 0.276362
\(371\) −3.89892 −0.202422
\(372\) 0 0
\(373\) 29.7969 1.54283 0.771413 0.636335i \(-0.219550\pi\)
0.771413 + 0.636335i \(0.219550\pi\)
\(374\) −4.45820 −0.230528
\(375\) 0 0
\(376\) 26.1453 1.34834
\(377\) 24.4369 1.25856
\(378\) 0 0
\(379\) −18.1874 −0.934226 −0.467113 0.884198i \(-0.654706\pi\)
−0.467113 + 0.884198i \(0.654706\pi\)
\(380\) 0.282081 0.0144704
\(381\) 0 0
\(382\) −28.3479 −1.45041
\(383\) −1.00000 −0.0510976
\(384\) 0 0
\(385\) −2.75204 −0.140257
\(386\) −14.8768 −0.757210
\(387\) 0 0
\(388\) −3.40281 −0.172751
\(389\) 12.4224 0.629840 0.314920 0.949118i \(-0.398022\pi\)
0.314920 + 0.949118i \(0.398022\pi\)
\(390\) 0 0
\(391\) −13.2526 −0.670211
\(392\) −7.95796 −0.401938
\(393\) 0 0
\(394\) −6.72821 −0.338962
\(395\) 10.7160 0.539179
\(396\) 0 0
\(397\) −16.8357 −0.844958 −0.422479 0.906373i \(-0.638840\pi\)
−0.422479 + 0.906373i \(0.638840\pi\)
\(398\) −20.7940 −1.04231
\(399\) 0 0
\(400\) 13.8790 0.693950
\(401\) 5.37256 0.268293 0.134146 0.990962i \(-0.457171\pi\)
0.134146 + 0.990962i \(0.457171\pi\)
\(402\) 0 0
\(403\) −49.1202 −2.44685
\(404\) −2.32665 −0.115755
\(405\) 0 0
\(406\) 11.8347 0.587348
\(407\) 6.48019 0.321211
\(408\) 0 0
\(409\) 23.8792 1.18075 0.590375 0.807129i \(-0.298980\pi\)
0.590375 + 0.807129i \(0.298980\pi\)
\(410\) −12.5566 −0.620128
\(411\) 0 0
\(412\) 1.86990 0.0921236
\(413\) −8.96582 −0.441179
\(414\) 0 0
\(415\) −7.28323 −0.357520
\(416\) 9.24620 0.453332
\(417\) 0 0
\(418\) −2.00162 −0.0979023
\(419\) 8.42586 0.411630 0.205815 0.978591i \(-0.434015\pi\)
0.205815 + 0.978591i \(0.434015\pi\)
\(420\) 0 0
\(421\) 23.9189 1.16573 0.582867 0.812567i \(-0.301931\pi\)
0.582867 + 0.812567i \(0.301931\pi\)
\(422\) 5.90168 0.287290
\(423\) 0 0
\(424\) −5.60462 −0.272184
\(425\) 9.81489 0.476092
\(426\) 0 0
\(427\) −13.5099 −0.653789
\(428\) −0.269670 −0.0130350
\(429\) 0 0
\(430\) −5.05397 −0.243724
\(431\) −24.6046 −1.18516 −0.592580 0.805511i \(-0.701891\pi\)
−0.592580 + 0.805511i \(0.701891\pi\)
\(432\) 0 0
\(433\) −21.8659 −1.05081 −0.525404 0.850853i \(-0.676086\pi\)
−0.525404 + 0.850853i \(0.676086\pi\)
\(434\) −23.7888 −1.14190
\(435\) 0 0
\(436\) 4.79163 0.229478
\(437\) −5.95007 −0.284630
\(438\) 0 0
\(439\) −2.76635 −0.132031 −0.0660154 0.997819i \(-0.521029\pi\)
−0.0660154 + 0.997819i \(0.521029\pi\)
\(440\) −3.95600 −0.188595
\(441\) 0 0
\(442\) −17.2846 −0.822143
\(443\) 15.7990 0.750633 0.375316 0.926897i \(-0.377534\pi\)
0.375316 + 0.926897i \(0.377534\pi\)
\(444\) 0 0
\(445\) 2.39766 0.113660
\(446\) −17.6371 −0.835142
\(447\) 0 0
\(448\) 18.3485 0.866884
\(449\) −8.09725 −0.382133 −0.191066 0.981577i \(-0.561195\pi\)
−0.191066 + 0.981577i \(0.561195\pi\)
\(450\) 0 0
\(451\) −15.3067 −0.720766
\(452\) 2.99750 0.140991
\(453\) 0 0
\(454\) −24.2544 −1.13832
\(455\) −10.6697 −0.500205
\(456\) 0 0
\(457\) 16.4155 0.767885 0.383943 0.923357i \(-0.374566\pi\)
0.383943 + 0.923357i \(0.374566\pi\)
\(458\) −5.04470 −0.235723
\(459\) 0 0
\(460\) −1.50361 −0.0701060
\(461\) 11.4672 0.534082 0.267041 0.963685i \(-0.413954\pi\)
0.267041 + 0.963685i \(0.413954\pi\)
\(462\) 0 0
\(463\) 11.8489 0.550666 0.275333 0.961349i \(-0.411212\pi\)
0.275333 + 0.961349i \(0.411212\pi\)
\(464\) 14.4633 0.671442
\(465\) 0 0
\(466\) 9.53988 0.441926
\(467\) 21.6852 1.00347 0.501735 0.865021i \(-0.332695\pi\)
0.501735 + 0.865021i \(0.332695\pi\)
\(468\) 0 0
\(469\) 30.4581 1.40642
\(470\) −10.3815 −0.478864
\(471\) 0 0
\(472\) −12.8882 −0.593226
\(473\) −6.16086 −0.283277
\(474\) 0 0
\(475\) 4.40664 0.202190
\(476\) 1.43805 0.0659128
\(477\) 0 0
\(478\) −10.2909 −0.470695
\(479\) 38.7480 1.77044 0.885220 0.465173i \(-0.154008\pi\)
0.885220 + 0.465173i \(0.154008\pi\)
\(480\) 0 0
\(481\) 25.1239 1.14555
\(482\) −38.0281 −1.73213
\(483\) 0 0
\(484\) 2.60873 0.118579
\(485\) 10.5674 0.479840
\(486\) 0 0
\(487\) 12.6258 0.572129 0.286065 0.958210i \(-0.407653\pi\)
0.286065 + 0.958210i \(0.407653\pi\)
\(488\) −19.4202 −0.879110
\(489\) 0 0
\(490\) 3.15987 0.142748
\(491\) 17.3101 0.781193 0.390597 0.920562i \(-0.372269\pi\)
0.390597 + 0.920562i \(0.372269\pi\)
\(492\) 0 0
\(493\) 10.2281 0.460650
\(494\) −7.76033 −0.349154
\(495\) 0 0
\(496\) −29.0725 −1.30539
\(497\) 10.6725 0.478726
\(498\) 0 0
\(499\) −27.8854 −1.24832 −0.624160 0.781296i \(-0.714559\pi\)
−0.624160 + 0.781296i \(0.714559\pi\)
\(500\) 2.44852 0.109501
\(501\) 0 0
\(502\) −22.0871 −0.985796
\(503\) 12.9536 0.577572 0.288786 0.957394i \(-0.406748\pi\)
0.288786 + 0.957394i \(0.406748\pi\)
\(504\) 0 0
\(505\) 7.22540 0.321526
\(506\) 10.6694 0.474314
\(507\) 0 0
\(508\) −1.81832 −0.0806749
\(509\) 42.3593 1.87754 0.938772 0.344540i \(-0.111965\pi\)
0.938772 + 0.344540i \(0.111965\pi\)
\(510\) 0 0
\(511\) 15.9857 0.707167
\(512\) 25.4111 1.12302
\(513\) 0 0
\(514\) −15.3880 −0.678735
\(515\) −5.80697 −0.255886
\(516\) 0 0
\(517\) −12.6552 −0.556577
\(518\) 12.1675 0.534607
\(519\) 0 0
\(520\) −15.3375 −0.672595
\(521\) 24.9719 1.09404 0.547019 0.837120i \(-0.315762\pi\)
0.547019 + 0.837120i \(0.315762\pi\)
\(522\) 0 0
\(523\) −39.9277 −1.74592 −0.872958 0.487795i \(-0.837801\pi\)
−0.872958 + 0.487795i \(0.837801\pi\)
\(524\) −1.11487 −0.0487035
\(525\) 0 0
\(526\) −22.4774 −0.980063
\(527\) −20.5593 −0.895579
\(528\) 0 0
\(529\) 8.71630 0.378970
\(530\) 2.22543 0.0966664
\(531\) 0 0
\(532\) 0.645647 0.0279923
\(533\) −59.3446 −2.57050
\(534\) 0 0
\(535\) 0.837457 0.0362064
\(536\) 43.7828 1.89113
\(537\) 0 0
\(538\) −15.8859 −0.684891
\(539\) 3.85193 0.165914
\(540\) 0 0
\(541\) 16.6446 0.715607 0.357804 0.933797i \(-0.383526\pi\)
0.357804 + 0.933797i \(0.383526\pi\)
\(542\) −0.188837 −0.00811122
\(543\) 0 0
\(544\) 3.87001 0.165925
\(545\) −14.8804 −0.637405
\(546\) 0 0
\(547\) 38.3956 1.64168 0.820839 0.571159i \(-0.193506\pi\)
0.820839 + 0.571159i \(0.193506\pi\)
\(548\) −2.10689 −0.0900019
\(549\) 0 0
\(550\) −7.90182 −0.336935
\(551\) 4.59216 0.195632
\(552\) 0 0
\(553\) 24.5275 1.04301
\(554\) −6.03005 −0.256192
\(555\) 0 0
\(556\) −6.59762 −0.279802
\(557\) −30.1962 −1.27945 −0.639726 0.768603i \(-0.720952\pi\)
−0.639726 + 0.768603i \(0.720952\pi\)
\(558\) 0 0
\(559\) −23.8859 −1.01026
\(560\) −6.31504 −0.266859
\(561\) 0 0
\(562\) 3.10544 0.130995
\(563\) 36.1995 1.52563 0.762814 0.646618i \(-0.223817\pi\)
0.762814 + 0.646618i \(0.223817\pi\)
\(564\) 0 0
\(565\) −9.30871 −0.391620
\(566\) −17.6154 −0.740432
\(567\) 0 0
\(568\) 15.3415 0.643713
\(569\) −31.1371 −1.30533 −0.652667 0.757645i \(-0.726350\pi\)
−0.652667 + 0.757645i \(0.726350\pi\)
\(570\) 0 0
\(571\) −9.41933 −0.394187 −0.197093 0.980385i \(-0.563150\pi\)
−0.197093 + 0.980385i \(0.563150\pi\)
\(572\) −2.39057 −0.0999548
\(573\) 0 0
\(574\) −28.7405 −1.19961
\(575\) −23.4892 −0.979566
\(576\) 0 0
\(577\) −27.0205 −1.12488 −0.562438 0.826839i \(-0.690137\pi\)
−0.562438 + 0.826839i \(0.690137\pi\)
\(578\) 14.9750 0.622878
\(579\) 0 0
\(580\) 1.16046 0.0481853
\(581\) −16.6704 −0.691603
\(582\) 0 0
\(583\) 2.71283 0.112354
\(584\) 22.9791 0.950884
\(585\) 0 0
\(586\) −38.2499 −1.58009
\(587\) −32.0201 −1.32161 −0.660806 0.750557i \(-0.729785\pi\)
−0.660806 + 0.750557i \(0.729785\pi\)
\(588\) 0 0
\(589\) −9.23063 −0.380341
\(590\) 5.11751 0.210685
\(591\) 0 0
\(592\) 14.8699 0.611150
\(593\) −20.8329 −0.855503 −0.427751 0.903896i \(-0.640694\pi\)
−0.427751 + 0.903896i \(0.640694\pi\)
\(594\) 0 0
\(595\) −4.46584 −0.183082
\(596\) 2.96568 0.121479
\(597\) 0 0
\(598\) 41.3657 1.69157
\(599\) −22.7908 −0.931208 −0.465604 0.884993i \(-0.654163\pi\)
−0.465604 + 0.884993i \(0.654163\pi\)
\(600\) 0 0
\(601\) −17.4469 −0.711672 −0.355836 0.934548i \(-0.615804\pi\)
−0.355836 + 0.934548i \(0.615804\pi\)
\(602\) −11.5679 −0.471471
\(603\) 0 0
\(604\) −5.70468 −0.232120
\(605\) −8.10139 −0.329368
\(606\) 0 0
\(607\) 36.8843 1.49709 0.748543 0.663086i \(-0.230754\pi\)
0.748543 + 0.663086i \(0.230754\pi\)
\(608\) 1.73754 0.0704665
\(609\) 0 0
\(610\) 7.71117 0.312216
\(611\) −49.0647 −1.98495
\(612\) 0 0
\(613\) 9.45500 0.381884 0.190942 0.981601i \(-0.438846\pi\)
0.190942 + 0.981601i \(0.438846\pi\)
\(614\) 35.6592 1.43909
\(615\) 0 0
\(616\) −9.05477 −0.364827
\(617\) 31.2901 1.25969 0.629846 0.776720i \(-0.283118\pi\)
0.629846 + 0.776720i \(0.283118\pi\)
\(618\) 0 0
\(619\) 27.7405 1.11498 0.557492 0.830182i \(-0.311764\pi\)
0.557492 + 0.830182i \(0.311764\pi\)
\(620\) −2.33262 −0.0936801
\(621\) 0 0
\(622\) 19.2891 0.773421
\(623\) 5.48792 0.219869
\(624\) 0 0
\(625\) 13.2505 0.530020
\(626\) −5.25300 −0.209952
\(627\) 0 0
\(628\) −1.44879 −0.0578130
\(629\) 10.5156 0.419286
\(630\) 0 0
\(631\) −5.80111 −0.230938 −0.115469 0.993311i \(-0.536837\pi\)
−0.115469 + 0.993311i \(0.536837\pi\)
\(632\) 35.2577 1.40248
\(633\) 0 0
\(634\) 39.4598 1.56715
\(635\) 5.64678 0.224086
\(636\) 0 0
\(637\) 14.9341 0.591709
\(638\) −8.23448 −0.326006
\(639\) 0 0
\(640\) −7.47796 −0.295592
\(641\) 12.6431 0.499374 0.249687 0.968327i \(-0.419672\pi\)
0.249687 + 0.968327i \(0.419672\pi\)
\(642\) 0 0
\(643\) 0.739741 0.0291725 0.0145863 0.999894i \(-0.495357\pi\)
0.0145863 + 0.999894i \(0.495357\pi\)
\(644\) −3.44156 −0.135616
\(645\) 0 0
\(646\) −3.24810 −0.127795
\(647\) 5.76141 0.226505 0.113252 0.993566i \(-0.463873\pi\)
0.113252 + 0.993566i \(0.463873\pi\)
\(648\) 0 0
\(649\) 6.23833 0.244876
\(650\) −30.6356 −1.20163
\(651\) 0 0
\(652\) 4.21652 0.165132
\(653\) 23.8932 0.935015 0.467507 0.883989i \(-0.345152\pi\)
0.467507 + 0.883989i \(0.345152\pi\)
\(654\) 0 0
\(655\) 3.46223 0.135281
\(656\) −35.1239 −1.37136
\(657\) 0 0
\(658\) −23.7620 −0.926337
\(659\) −0.450480 −0.0175482 −0.00877410 0.999962i \(-0.502793\pi\)
−0.00877410 + 0.999962i \(0.502793\pi\)
\(660\) 0 0
\(661\) −27.4188 −1.06647 −0.533234 0.845968i \(-0.679023\pi\)
−0.533234 + 0.845968i \(0.679023\pi\)
\(662\) 24.4886 0.951775
\(663\) 0 0
\(664\) −23.9633 −0.929956
\(665\) −2.00505 −0.0777525
\(666\) 0 0
\(667\) −24.4781 −0.947794
\(668\) 6.54055 0.253061
\(669\) 0 0
\(670\) −17.3849 −0.671636
\(671\) 9.40004 0.362884
\(672\) 0 0
\(673\) −39.9618 −1.54041 −0.770207 0.637794i \(-0.779847\pi\)
−0.770207 + 0.637794i \(0.779847\pi\)
\(674\) −30.6561 −1.18083
\(675\) 0 0
\(676\) −5.45657 −0.209868
\(677\) −22.5667 −0.867308 −0.433654 0.901079i \(-0.642776\pi\)
−0.433654 + 0.901079i \(0.642776\pi\)
\(678\) 0 0
\(679\) 24.1874 0.928226
\(680\) −6.41955 −0.246178
\(681\) 0 0
\(682\) 16.5520 0.633809
\(683\) −38.1485 −1.45971 −0.729855 0.683602i \(-0.760412\pi\)
−0.729855 + 0.683602i \(0.760412\pi\)
\(684\) 0 0
\(685\) 6.54293 0.249992
\(686\) 26.2924 1.00385
\(687\) 0 0
\(688\) −14.1372 −0.538975
\(689\) 10.5177 0.400693
\(690\) 0 0
\(691\) −6.53892 −0.248752 −0.124376 0.992235i \(-0.539693\pi\)
−0.124376 + 0.992235i \(0.539693\pi\)
\(692\) −3.87920 −0.147465
\(693\) 0 0
\(694\) 10.6383 0.403826
\(695\) 20.4889 0.777186
\(696\) 0 0
\(697\) −24.8388 −0.940837
\(698\) 33.1184 1.25355
\(699\) 0 0
\(700\) 2.54883 0.0963367
\(701\) −10.4051 −0.392996 −0.196498 0.980504i \(-0.562957\pi\)
−0.196498 + 0.980504i \(0.562957\pi\)
\(702\) 0 0
\(703\) 4.72126 0.178066
\(704\) −12.7667 −0.481162
\(705\) 0 0
\(706\) 31.5354 1.18685
\(707\) 16.5380 0.621975
\(708\) 0 0
\(709\) 12.9924 0.487938 0.243969 0.969783i \(-0.421550\pi\)
0.243969 + 0.969783i \(0.421550\pi\)
\(710\) −6.09164 −0.228615
\(711\) 0 0
\(712\) 7.88877 0.295644
\(713\) 49.2030 1.84267
\(714\) 0 0
\(715\) 7.42390 0.277638
\(716\) 1.95968 0.0732366
\(717\) 0 0
\(718\) −47.0994 −1.75774
\(719\) −36.1495 −1.34815 −0.674074 0.738663i \(-0.735457\pi\)
−0.674074 + 0.738663i \(0.735457\pi\)
\(720\) 0 0
\(721\) −13.2914 −0.494998
\(722\) 23.3641 0.869520
\(723\) 0 0
\(724\) 2.87028 0.106673
\(725\) 18.1285 0.673276
\(726\) 0 0
\(727\) −18.2522 −0.676935 −0.338468 0.940978i \(-0.609909\pi\)
−0.338468 + 0.940978i \(0.609909\pi\)
\(728\) −35.1056 −1.30110
\(729\) 0 0
\(730\) −9.12434 −0.337707
\(731\) −9.99746 −0.369769
\(732\) 0 0
\(733\) −33.7251 −1.24567 −0.622833 0.782355i \(-0.714018\pi\)
−0.622833 + 0.782355i \(0.714018\pi\)
\(734\) 18.7073 0.690499
\(735\) 0 0
\(736\) −9.26179 −0.341394
\(737\) −21.1924 −0.780632
\(738\) 0 0
\(739\) 31.2341 1.14897 0.574483 0.818516i \(-0.305203\pi\)
0.574483 + 0.818516i \(0.305203\pi\)
\(740\) 1.19308 0.0438585
\(741\) 0 0
\(742\) 5.09371 0.186996
\(743\) −21.4211 −0.785865 −0.392932 0.919567i \(-0.628539\pi\)
−0.392932 + 0.919567i \(0.628539\pi\)
\(744\) 0 0
\(745\) −9.20988 −0.337424
\(746\) −38.9279 −1.42525
\(747\) 0 0
\(748\) −1.00058 −0.0365847
\(749\) 1.91683 0.0700394
\(750\) 0 0
\(751\) −15.0581 −0.549479 −0.274740 0.961519i \(-0.588592\pi\)
−0.274740 + 0.961519i \(0.588592\pi\)
\(752\) −29.0396 −1.05897
\(753\) 0 0
\(754\) −31.9253 −1.16265
\(755\) 17.7158 0.644745
\(756\) 0 0
\(757\) 5.16450 0.187707 0.0938534 0.995586i \(-0.470082\pi\)
0.0938534 + 0.995586i \(0.470082\pi\)
\(758\) 23.7608 0.863032
\(759\) 0 0
\(760\) −2.88221 −0.104549
\(761\) −29.8494 −1.08204 −0.541021 0.841009i \(-0.681962\pi\)
−0.541021 + 0.841009i \(0.681962\pi\)
\(762\) 0 0
\(763\) −34.0592 −1.23303
\(764\) −6.36228 −0.230179
\(765\) 0 0
\(766\) 1.30644 0.0472036
\(767\) 24.1862 0.873312
\(768\) 0 0
\(769\) 15.6136 0.563042 0.281521 0.959555i \(-0.409161\pi\)
0.281521 + 0.959555i \(0.409161\pi\)
\(770\) 3.59538 0.129568
\(771\) 0 0
\(772\) −3.33888 −0.120169
\(773\) −33.2962 −1.19758 −0.598790 0.800906i \(-0.704352\pi\)
−0.598790 + 0.800906i \(0.704352\pi\)
\(774\) 0 0
\(775\) −36.4399 −1.30896
\(776\) 34.7688 1.24813
\(777\) 0 0
\(778\) −16.2291 −0.581842
\(779\) −11.1520 −0.399562
\(780\) 0 0
\(781\) −7.42580 −0.265716
\(782\) 17.3137 0.619137
\(783\) 0 0
\(784\) 8.83893 0.315676
\(785\) 4.49920 0.160583
\(786\) 0 0
\(787\) 25.0491 0.892905 0.446453 0.894807i \(-0.352687\pi\)
0.446453 + 0.894807i \(0.352687\pi\)
\(788\) −1.51005 −0.0537933
\(789\) 0 0
\(790\) −13.9998 −0.498090
\(791\) −21.3064 −0.757569
\(792\) 0 0
\(793\) 36.4442 1.29417
\(794\) 21.9948 0.780566
\(795\) 0 0
\(796\) −4.66690 −0.165414
\(797\) 51.0298 1.80757 0.903785 0.427987i \(-0.140777\pi\)
0.903785 + 0.427987i \(0.140777\pi\)
\(798\) 0 0
\(799\) −20.5361 −0.726516
\(800\) 6.85930 0.242513
\(801\) 0 0
\(802\) −7.01893 −0.247847
\(803\) −11.1227 −0.392512
\(804\) 0 0
\(805\) 10.6877 0.376693
\(806\) 64.1727 2.26039
\(807\) 0 0
\(808\) 23.7730 0.836332
\(809\) −25.1705 −0.884947 −0.442473 0.896782i \(-0.645899\pi\)
−0.442473 + 0.896782i \(0.645899\pi\)
\(810\) 0 0
\(811\) −5.64533 −0.198235 −0.0991173 0.995076i \(-0.531602\pi\)
−0.0991173 + 0.995076i \(0.531602\pi\)
\(812\) 2.65613 0.0932120
\(813\) 0 0
\(814\) −8.46598 −0.296733
\(815\) −13.0944 −0.458675
\(816\) 0 0
\(817\) −4.48861 −0.157037
\(818\) −31.1967 −1.09077
\(819\) 0 0
\(820\) −2.81815 −0.0984142
\(821\) −10.6903 −0.373096 −0.186548 0.982446i \(-0.559730\pi\)
−0.186548 + 0.982446i \(0.559730\pi\)
\(822\) 0 0
\(823\) 12.4143 0.432734 0.216367 0.976312i \(-0.430579\pi\)
0.216367 + 0.976312i \(0.430579\pi\)
\(824\) −19.1061 −0.665593
\(825\) 0 0
\(826\) 11.7133 0.407558
\(827\) 44.5662 1.54972 0.774859 0.632134i \(-0.217821\pi\)
0.774859 + 0.632134i \(0.217821\pi\)
\(828\) 0 0
\(829\) −18.5663 −0.644834 −0.322417 0.946598i \(-0.604495\pi\)
−0.322417 + 0.946598i \(0.604495\pi\)
\(830\) 9.51511 0.330274
\(831\) 0 0
\(832\) −49.4968 −1.71599
\(833\) 6.25067 0.216573
\(834\) 0 0
\(835\) −20.3116 −0.702912
\(836\) −0.449234 −0.0155371
\(837\) 0 0
\(838\) −11.0079 −0.380261
\(839\) −43.3676 −1.49722 −0.748608 0.663012i \(-0.769278\pi\)
−0.748608 + 0.663012i \(0.769278\pi\)
\(840\) 0 0
\(841\) −10.1083 −0.348561
\(842\) −31.2486 −1.07690
\(843\) 0 0
\(844\) 1.32455 0.0455928
\(845\) 16.9453 0.582937
\(846\) 0 0
\(847\) −18.5430 −0.637146
\(848\) 6.22506 0.213769
\(849\) 0 0
\(850\) −12.8226 −0.439811
\(851\) −25.1662 −0.862688
\(852\) 0 0
\(853\) 19.3360 0.662050 0.331025 0.943622i \(-0.392605\pi\)
0.331025 + 0.943622i \(0.392605\pi\)
\(854\) 17.6499 0.603966
\(855\) 0 0
\(856\) 2.75540 0.0941777
\(857\) 33.8462 1.15616 0.578082 0.815979i \(-0.303801\pi\)
0.578082 + 0.815979i \(0.303801\pi\)
\(858\) 0 0
\(859\) −12.4242 −0.423908 −0.211954 0.977280i \(-0.567983\pi\)
−0.211954 + 0.977280i \(0.567983\pi\)
\(860\) −1.13429 −0.0386790
\(861\) 0 0
\(862\) 32.1444 1.09484
\(863\) 46.9463 1.59807 0.799035 0.601284i \(-0.205344\pi\)
0.799035 + 0.601284i \(0.205344\pi\)
\(864\) 0 0
\(865\) 12.0468 0.409604
\(866\) 28.5665 0.970729
\(867\) 0 0
\(868\) −5.33906 −0.181219
\(869\) −17.0660 −0.578923
\(870\) 0 0
\(871\) −82.1636 −2.78401
\(872\) −48.9594 −1.65797
\(873\) 0 0
\(874\) 7.77342 0.262940
\(875\) −17.4042 −0.588370
\(876\) 0 0
\(877\) 32.6960 1.10407 0.552033 0.833822i \(-0.313852\pi\)
0.552033 + 0.833822i \(0.313852\pi\)
\(878\) 3.61408 0.121969
\(879\) 0 0
\(880\) 4.39394 0.148120
\(881\) 12.2877 0.413982 0.206991 0.978343i \(-0.433633\pi\)
0.206991 + 0.978343i \(0.433633\pi\)
\(882\) 0 0
\(883\) −2.03500 −0.0684831 −0.0342415 0.999414i \(-0.510902\pi\)
−0.0342415 + 0.999414i \(0.510902\pi\)
\(884\) −3.87927 −0.130474
\(885\) 0 0
\(886\) −20.6405 −0.693430
\(887\) −47.0813 −1.58083 −0.790417 0.612569i \(-0.790136\pi\)
−0.790417 + 0.612569i \(0.790136\pi\)
\(888\) 0 0
\(889\) 12.9247 0.433482
\(890\) −3.13240 −0.104998
\(891\) 0 0
\(892\) −3.95840 −0.132537
\(893\) −9.22020 −0.308542
\(894\) 0 0
\(895\) −6.08576 −0.203425
\(896\) −17.1161 −0.571808
\(897\) 0 0
\(898\) 10.5786 0.353012
\(899\) −37.9740 −1.26650
\(900\) 0 0
\(901\) 4.40221 0.146659
\(902\) 19.9973 0.665838
\(903\) 0 0
\(904\) −30.6275 −1.01866
\(905\) −8.91363 −0.296299
\(906\) 0 0
\(907\) −21.3028 −0.707349 −0.353674 0.935369i \(-0.615068\pi\)
−0.353674 + 0.935369i \(0.615068\pi\)
\(908\) −5.44355 −0.180651
\(909\) 0 0
\(910\) 13.9394 0.462086
\(911\) 14.2825 0.473199 0.236600 0.971607i \(-0.423967\pi\)
0.236600 + 0.971607i \(0.423967\pi\)
\(912\) 0 0
\(913\) 11.5991 0.383873
\(914\) −21.4459 −0.709367
\(915\) 0 0
\(916\) −1.13221 −0.0374093
\(917\) 7.92460 0.261693
\(918\) 0 0
\(919\) 10.2972 0.339673 0.169837 0.985472i \(-0.445676\pi\)
0.169837 + 0.985472i \(0.445676\pi\)
\(920\) 15.3634 0.506516
\(921\) 0 0
\(922\) −14.9813 −0.493381
\(923\) −28.7901 −0.947636
\(924\) 0 0
\(925\) 18.6382 0.612820
\(926\) −15.4799 −0.508702
\(927\) 0 0
\(928\) 7.14808 0.234647
\(929\) −3.77218 −0.123761 −0.0618806 0.998084i \(-0.519710\pi\)
−0.0618806 + 0.998084i \(0.519710\pi\)
\(930\) 0 0
\(931\) 2.80640 0.0919759
\(932\) 2.14109 0.0701337
\(933\) 0 0
\(934\) −28.3304 −0.926999
\(935\) 3.10728 0.101619
\(936\) 0 0
\(937\) 55.6015 1.81642 0.908211 0.418513i \(-0.137449\pi\)
0.908211 + 0.418513i \(0.137449\pi\)
\(938\) −39.7917 −1.29924
\(939\) 0 0
\(940\) −2.32998 −0.0759956
\(941\) −1.44384 −0.0470680 −0.0235340 0.999723i \(-0.507492\pi\)
−0.0235340 + 0.999723i \(0.507492\pi\)
\(942\) 0 0
\(943\) 59.4447 1.93579
\(944\) 14.3149 0.465911
\(945\) 0 0
\(946\) 8.04880 0.261689
\(947\) −41.0784 −1.33487 −0.667434 0.744669i \(-0.732607\pi\)
−0.667434 + 0.744669i \(0.732607\pi\)
\(948\) 0 0
\(949\) −43.1231 −1.39983
\(950\) −5.75701 −0.186782
\(951\) 0 0
\(952\) −14.6935 −0.476219
\(953\) −26.5179 −0.859000 −0.429500 0.903067i \(-0.641310\pi\)
−0.429500 + 0.903067i \(0.641310\pi\)
\(954\) 0 0
\(955\) 19.7580 0.639354
\(956\) −2.30964 −0.0746992
\(957\) 0 0
\(958\) −50.6219 −1.63552
\(959\) 14.9759 0.483597
\(960\) 0 0
\(961\) 45.3310 1.46229
\(962\) −32.8229 −1.05825
\(963\) 0 0
\(964\) −8.53486 −0.274889
\(965\) 10.3689 0.333786
\(966\) 0 0
\(967\) 30.1124 0.968349 0.484175 0.874971i \(-0.339120\pi\)
0.484175 + 0.874971i \(0.339120\pi\)
\(968\) −26.6552 −0.856730
\(969\) 0 0
\(970\) −13.8057 −0.443273
\(971\) −3.49524 −0.112168 −0.0560838 0.998426i \(-0.517861\pi\)
−0.0560838 + 0.998426i \(0.517861\pi\)
\(972\) 0 0
\(973\) 46.8963 1.50343
\(974\) −16.4949 −0.528529
\(975\) 0 0
\(976\) 21.5700 0.690439
\(977\) −55.8789 −1.78772 −0.893862 0.448341i \(-0.852015\pi\)
−0.893862 + 0.448341i \(0.852015\pi\)
\(978\) 0 0
\(979\) −3.81844 −0.122038
\(980\) 0.709187 0.0226542
\(981\) 0 0
\(982\) −22.6146 −0.721661
\(983\) −52.8623 −1.68604 −0.843022 0.537879i \(-0.819226\pi\)
−0.843022 + 0.537879i \(0.819226\pi\)
\(984\) 0 0
\(985\) 4.68944 0.149418
\(986\) −13.3624 −0.425545
\(987\) 0 0
\(988\) −1.74169 −0.0554107
\(989\) 23.9261 0.760806
\(990\) 0 0
\(991\) 8.06158 0.256084 0.128042 0.991769i \(-0.459131\pi\)
0.128042 + 0.991769i \(0.459131\pi\)
\(992\) −14.3683 −0.456192
\(993\) 0 0
\(994\) −13.9430 −0.442244
\(995\) 14.4930 0.459460
\(996\) 0 0
\(997\) −18.7766 −0.594662 −0.297331 0.954775i \(-0.596096\pi\)
−0.297331 + 0.954775i \(0.596096\pi\)
\(998\) 36.4306 1.15319
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3447.2.a.j.1.9 24
3.2 odd 2 383.2.a.c.1.16 24
12.11 even 2 6128.2.a.p.1.1 24
15.14 odd 2 9575.2.a.e.1.9 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
383.2.a.c.1.16 24 3.2 odd 2
3447.2.a.j.1.9 24 1.1 even 1 trivial
6128.2.a.p.1.1 24 12.11 even 2
9575.2.a.e.1.9 24 15.14 odd 2