Properties

Label 6128.2.a.p.1.1
Level $6128$
Weight $2$
Character 6128.1
Self dual yes
Analytic conductor $48.932$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6128,2,Mod(1,6128)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6128, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6128.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6128 = 2^{4} \cdot 383 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6128.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.9323263586\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 383)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 6128.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.08654 q^{3} -0.910566 q^{5} -2.08417 q^{7} +6.52674 q^{9} -1.45014 q^{11} -5.62225 q^{13} +2.81050 q^{15} +2.35320 q^{17} +1.05653 q^{19} +6.43287 q^{21} +5.63172 q^{23} -4.17087 q^{25} -10.8854 q^{27} +4.34646 q^{29} -8.73676 q^{31} +4.47592 q^{33} +1.89777 q^{35} -4.46866 q^{37} +17.3533 q^{39} -10.5553 q^{41} -4.24845 q^{43} -5.94303 q^{45} +8.72689 q^{47} -2.65624 q^{49} -7.26325 q^{51} +1.87073 q^{53} +1.32045 q^{55} -3.26102 q^{57} -4.30187 q^{59} -6.48215 q^{61} -13.6028 q^{63} +5.11943 q^{65} -14.6140 q^{67} -17.3825 q^{69} +5.12074 q^{71} +7.67008 q^{73} +12.8736 q^{75} +3.02234 q^{77} -11.7685 q^{79} +14.0181 q^{81} -7.99857 q^{83} -2.14274 q^{85} -13.4155 q^{87} -2.63315 q^{89} +11.7177 q^{91} +26.9664 q^{93} -0.962038 q^{95} +11.6053 q^{97} -9.46470 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{3} + 3 q^{5} - 17 q^{7} + 34 q^{9} + 28 q^{13} + 2 q^{15} + 16 q^{17} - 13 q^{19} - 4 q^{21} - 7 q^{23} + 67 q^{25} + 10 q^{27} - 2 q^{29} + 24 q^{33} + 10 q^{35} + 35 q^{37} + 12 q^{39} - 34 q^{43}+ \cdots + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.08654 −1.78202 −0.891008 0.453988i \(-0.850001\pi\)
−0.891008 + 0.453988i \(0.850001\pi\)
\(4\) 0 0
\(5\) −0.910566 −0.407218 −0.203609 0.979052i \(-0.565267\pi\)
−0.203609 + 0.979052i \(0.565267\pi\)
\(6\) 0 0
\(7\) −2.08417 −0.787741 −0.393871 0.919166i \(-0.628864\pi\)
−0.393871 + 0.919166i \(0.628864\pi\)
\(8\) 0 0
\(9\) 6.52674 2.17558
\(10\) 0 0
\(11\) −1.45014 −0.437234 −0.218617 0.975811i \(-0.570155\pi\)
−0.218617 + 0.975811i \(0.570155\pi\)
\(12\) 0 0
\(13\) −5.62225 −1.55933 −0.779665 0.626197i \(-0.784611\pi\)
−0.779665 + 0.626197i \(0.784611\pi\)
\(14\) 0 0
\(15\) 2.81050 0.725668
\(16\) 0 0
\(17\) 2.35320 0.570735 0.285367 0.958418i \(-0.407884\pi\)
0.285367 + 0.958418i \(0.407884\pi\)
\(18\) 0 0
\(19\) 1.05653 0.242384 0.121192 0.992629i \(-0.461328\pi\)
0.121192 + 0.992629i \(0.461328\pi\)
\(20\) 0 0
\(21\) 6.43287 1.40377
\(22\) 0 0
\(23\) 5.63172 1.17430 0.587148 0.809480i \(-0.300251\pi\)
0.587148 + 0.809480i \(0.300251\pi\)
\(24\) 0 0
\(25\) −4.17087 −0.834174
\(26\) 0 0
\(27\) −10.8854 −2.09490
\(28\) 0 0
\(29\) 4.34646 0.807117 0.403559 0.914954i \(-0.367773\pi\)
0.403559 + 0.914954i \(0.367773\pi\)
\(30\) 0 0
\(31\) −8.73676 −1.56917 −0.784584 0.620022i \(-0.787124\pi\)
−0.784584 + 0.620022i \(0.787124\pi\)
\(32\) 0 0
\(33\) 4.47592 0.779158
\(34\) 0 0
\(35\) 1.89777 0.320782
\(36\) 0 0
\(37\) −4.46866 −0.734643 −0.367321 0.930094i \(-0.619725\pi\)
−0.367321 + 0.930094i \(0.619725\pi\)
\(38\) 0 0
\(39\) 17.3533 2.77875
\(40\) 0 0
\(41\) −10.5553 −1.64847 −0.824233 0.566251i \(-0.808393\pi\)
−0.824233 + 0.566251i \(0.808393\pi\)
\(42\) 0 0
\(43\) −4.24845 −0.647883 −0.323942 0.946077i \(-0.605008\pi\)
−0.323942 + 0.946077i \(0.605008\pi\)
\(44\) 0 0
\(45\) −5.94303 −0.885934
\(46\) 0 0
\(47\) 8.72689 1.27295 0.636474 0.771298i \(-0.280392\pi\)
0.636474 + 0.771298i \(0.280392\pi\)
\(48\) 0 0
\(49\) −2.65624 −0.379463
\(50\) 0 0
\(51\) −7.26325 −1.01706
\(52\) 0 0
\(53\) 1.87073 0.256965 0.128483 0.991712i \(-0.458989\pi\)
0.128483 + 0.991712i \(0.458989\pi\)
\(54\) 0 0
\(55\) 1.32045 0.178050
\(56\) 0 0
\(57\) −3.26102 −0.431932
\(58\) 0 0
\(59\) −4.30187 −0.560056 −0.280028 0.959992i \(-0.590344\pi\)
−0.280028 + 0.959992i \(0.590344\pi\)
\(60\) 0 0
\(61\) −6.48215 −0.829954 −0.414977 0.909832i \(-0.636210\pi\)
−0.414977 + 0.909832i \(0.636210\pi\)
\(62\) 0 0
\(63\) −13.6028 −1.71379
\(64\) 0 0
\(65\) 5.11943 0.634987
\(66\) 0 0
\(67\) −14.6140 −1.78539 −0.892693 0.450665i \(-0.851187\pi\)
−0.892693 + 0.450665i \(0.851187\pi\)
\(68\) 0 0
\(69\) −17.3825 −2.09261
\(70\) 0 0
\(71\) 5.12074 0.607720 0.303860 0.952717i \(-0.401724\pi\)
0.303860 + 0.952717i \(0.401724\pi\)
\(72\) 0 0
\(73\) 7.67008 0.897715 0.448858 0.893603i \(-0.351831\pi\)
0.448858 + 0.893603i \(0.351831\pi\)
\(74\) 0 0
\(75\) 12.8736 1.48651
\(76\) 0 0
\(77\) 3.02234 0.344428
\(78\) 0 0
\(79\) −11.7685 −1.32406 −0.662029 0.749479i \(-0.730304\pi\)
−0.662029 + 0.749479i \(0.730304\pi\)
\(80\) 0 0
\(81\) 14.0181 1.55757
\(82\) 0 0
\(83\) −7.99857 −0.877957 −0.438979 0.898497i \(-0.644660\pi\)
−0.438979 + 0.898497i \(0.644660\pi\)
\(84\) 0 0
\(85\) −2.14274 −0.232413
\(86\) 0 0
\(87\) −13.4155 −1.43830
\(88\) 0 0
\(89\) −2.63315 −0.279113 −0.139557 0.990214i \(-0.544568\pi\)
−0.139557 + 0.990214i \(0.544568\pi\)
\(90\) 0 0
\(91\) 11.7177 1.22835
\(92\) 0 0
\(93\) 26.9664 2.79628
\(94\) 0 0
\(95\) −0.962038 −0.0987030
\(96\) 0 0
\(97\) 11.6053 1.17834 0.589169 0.808010i \(-0.299455\pi\)
0.589169 + 0.808010i \(0.299455\pi\)
\(98\) 0 0
\(99\) −9.46470 −0.951238
\(100\) 0 0
\(101\) −7.93506 −0.789568 −0.394784 0.918774i \(-0.629181\pi\)
−0.394784 + 0.918774i \(0.629181\pi\)
\(102\) 0 0
\(103\) 6.37732 0.628376 0.314188 0.949361i \(-0.398268\pi\)
0.314188 + 0.949361i \(0.398268\pi\)
\(104\) 0 0
\(105\) −5.85756 −0.571639
\(106\) 0 0
\(107\) 0.919710 0.0889117 0.0444559 0.999011i \(-0.485845\pi\)
0.0444559 + 0.999011i \(0.485845\pi\)
\(108\) 0 0
\(109\) −16.3419 −1.56527 −0.782634 0.622482i \(-0.786124\pi\)
−0.782634 + 0.622482i \(0.786124\pi\)
\(110\) 0 0
\(111\) 13.7927 1.30914
\(112\) 0 0
\(113\) 10.2230 0.961698 0.480849 0.876803i \(-0.340329\pi\)
0.480849 + 0.876803i \(0.340329\pi\)
\(114\) 0 0
\(115\) −5.12806 −0.478194
\(116\) 0 0
\(117\) −36.6949 −3.39245
\(118\) 0 0
\(119\) −4.90446 −0.449591
\(120\) 0 0
\(121\) −8.89709 −0.808826
\(122\) 0 0
\(123\) 32.5795 2.93759
\(124\) 0 0
\(125\) 8.35068 0.746908
\(126\) 0 0
\(127\) −6.20139 −0.550284 −0.275142 0.961404i \(-0.588725\pi\)
−0.275142 + 0.961404i \(0.588725\pi\)
\(128\) 0 0
\(129\) 13.1130 1.15454
\(130\) 0 0
\(131\) 3.80228 0.332207 0.166104 0.986108i \(-0.446881\pi\)
0.166104 + 0.986108i \(0.446881\pi\)
\(132\) 0 0
\(133\) −2.20198 −0.190936
\(134\) 0 0
\(135\) 9.91190 0.853081
\(136\) 0 0
\(137\) −7.18556 −0.613904 −0.306952 0.951725i \(-0.599309\pi\)
−0.306952 + 0.951725i \(0.599309\pi\)
\(138\) 0 0
\(139\) −22.5012 −1.90853 −0.954264 0.298964i \(-0.903359\pi\)
−0.954264 + 0.298964i \(0.903359\pi\)
\(140\) 0 0
\(141\) −26.9359 −2.26841
\(142\) 0 0
\(143\) 8.15305 0.681793
\(144\) 0 0
\(145\) −3.95774 −0.328672
\(146\) 0 0
\(147\) 8.19861 0.676210
\(148\) 0 0
\(149\) 10.1145 0.828608 0.414304 0.910139i \(-0.364025\pi\)
0.414304 + 0.910139i \(0.364025\pi\)
\(150\) 0 0
\(151\) −19.4558 −1.58329 −0.791647 0.610979i \(-0.790776\pi\)
−0.791647 + 0.610979i \(0.790776\pi\)
\(152\) 0 0
\(153\) 15.3587 1.24168
\(154\) 0 0
\(155\) 7.95540 0.638993
\(156\) 0 0
\(157\) 4.94110 0.394343 0.197171 0.980369i \(-0.436824\pi\)
0.197171 + 0.980369i \(0.436824\pi\)
\(158\) 0 0
\(159\) −5.77410 −0.457916
\(160\) 0 0
\(161\) −11.7375 −0.925041
\(162\) 0 0
\(163\) 14.3804 1.12636 0.563182 0.826333i \(-0.309577\pi\)
0.563182 + 0.826333i \(0.309577\pi\)
\(164\) 0 0
\(165\) −4.07563 −0.317287
\(166\) 0 0
\(167\) −22.3066 −1.72613 −0.863067 0.505090i \(-0.831459\pi\)
−0.863067 + 0.505090i \(0.831459\pi\)
\(168\) 0 0
\(169\) 18.6096 1.43151
\(170\) 0 0
\(171\) 6.89568 0.527326
\(172\) 0 0
\(173\) −13.2300 −1.00586 −0.502930 0.864327i \(-0.667745\pi\)
−0.502930 + 0.864327i \(0.667745\pi\)
\(174\) 0 0
\(175\) 8.69279 0.657113
\(176\) 0 0
\(177\) 13.2779 0.998029
\(178\) 0 0
\(179\) −6.68349 −0.499548 −0.249774 0.968304i \(-0.580356\pi\)
−0.249774 + 0.968304i \(0.580356\pi\)
\(180\) 0 0
\(181\) −9.78911 −0.727619 −0.363809 0.931473i \(-0.618524\pi\)
−0.363809 + 0.931473i \(0.618524\pi\)
\(182\) 0 0
\(183\) 20.0074 1.47899
\(184\) 0 0
\(185\) 4.06901 0.299159
\(186\) 0 0
\(187\) −3.41247 −0.249545
\(188\) 0 0
\(189\) 22.6871 1.65024
\(190\) 0 0
\(191\) 21.6986 1.57005 0.785027 0.619462i \(-0.212649\pi\)
0.785027 + 0.619462i \(0.212649\pi\)
\(192\) 0 0
\(193\) 11.3873 0.819674 0.409837 0.912159i \(-0.365586\pi\)
0.409837 + 0.912159i \(0.365586\pi\)
\(194\) 0 0
\(195\) −15.8013 −1.13156
\(196\) 0 0
\(197\) −5.15003 −0.366924 −0.183462 0.983027i \(-0.558730\pi\)
−0.183462 + 0.983027i \(0.558730\pi\)
\(198\) 0 0
\(199\) −15.9165 −1.12829 −0.564145 0.825676i \(-0.690794\pi\)
−0.564145 + 0.825676i \(0.690794\pi\)
\(200\) 0 0
\(201\) 45.1068 3.18159
\(202\) 0 0
\(203\) −9.05875 −0.635800
\(204\) 0 0
\(205\) 9.61133 0.671284
\(206\) 0 0
\(207\) 36.7568 2.55477
\(208\) 0 0
\(209\) −1.53211 −0.105979
\(210\) 0 0
\(211\) 4.51738 0.310989 0.155494 0.987837i \(-0.450303\pi\)
0.155494 + 0.987837i \(0.450303\pi\)
\(212\) 0 0
\(213\) −15.8054 −1.08297
\(214\) 0 0
\(215\) 3.86850 0.263829
\(216\) 0 0
\(217\) 18.2089 1.23610
\(218\) 0 0
\(219\) −23.6740 −1.59974
\(220\) 0 0
\(221\) −13.2303 −0.889964
\(222\) 0 0
\(223\) −13.5001 −0.904036 −0.452018 0.892009i \(-0.649296\pi\)
−0.452018 + 0.892009i \(0.649296\pi\)
\(224\) 0 0
\(225\) −27.2222 −1.81481
\(226\) 0 0
\(227\) 18.5652 1.23222 0.616109 0.787661i \(-0.288708\pi\)
0.616109 + 0.787661i \(0.288708\pi\)
\(228\) 0 0
\(229\) 3.86141 0.255169 0.127584 0.991828i \(-0.459278\pi\)
0.127584 + 0.991828i \(0.459278\pi\)
\(230\) 0 0
\(231\) −9.32858 −0.613775
\(232\) 0 0
\(233\) 7.30219 0.478382 0.239191 0.970973i \(-0.423118\pi\)
0.239191 + 0.970973i \(0.423118\pi\)
\(234\) 0 0
\(235\) −7.94641 −0.518367
\(236\) 0 0
\(237\) 36.3239 2.35949
\(238\) 0 0
\(239\) 7.87705 0.509524 0.254762 0.967004i \(-0.418003\pi\)
0.254762 + 0.967004i \(0.418003\pi\)
\(240\) 0 0
\(241\) 29.1082 1.87502 0.937511 0.347955i \(-0.113124\pi\)
0.937511 + 0.347955i \(0.113124\pi\)
\(242\) 0 0
\(243\) −10.6112 −0.680707
\(244\) 0 0
\(245\) 2.41869 0.154524
\(246\) 0 0
\(247\) −5.94006 −0.377957
\(248\) 0 0
\(249\) 24.6879 1.56453
\(250\) 0 0
\(251\) 16.9063 1.06712 0.533559 0.845763i \(-0.320854\pi\)
0.533559 + 0.845763i \(0.320854\pi\)
\(252\) 0 0
\(253\) −8.16680 −0.513442
\(254\) 0 0
\(255\) 6.61367 0.414164
\(256\) 0 0
\(257\) −11.7786 −0.734726 −0.367363 0.930078i \(-0.619739\pi\)
−0.367363 + 0.930078i \(0.619739\pi\)
\(258\) 0 0
\(259\) 9.31343 0.578709
\(260\) 0 0
\(261\) 28.3682 1.75595
\(262\) 0 0
\(263\) 17.2051 1.06091 0.530456 0.847713i \(-0.322021\pi\)
0.530456 + 0.847713i \(0.322021\pi\)
\(264\) 0 0
\(265\) −1.70343 −0.104641
\(266\) 0 0
\(267\) 8.12732 0.497384
\(268\) 0 0
\(269\) −12.1597 −0.741390 −0.370695 0.928755i \(-0.620880\pi\)
−0.370695 + 0.928755i \(0.620880\pi\)
\(270\) 0 0
\(271\) −0.144543 −0.00878034 −0.00439017 0.999990i \(-0.501397\pi\)
−0.00439017 + 0.999990i \(0.501397\pi\)
\(272\) 0 0
\(273\) −36.1672 −2.18894
\(274\) 0 0
\(275\) 6.04835 0.364729
\(276\) 0 0
\(277\) 4.61563 0.277327 0.138663 0.990340i \(-0.455719\pi\)
0.138663 + 0.990340i \(0.455719\pi\)
\(278\) 0 0
\(279\) −57.0225 −3.41385
\(280\) 0 0
\(281\) 2.37703 0.141801 0.0709007 0.997483i \(-0.477413\pi\)
0.0709007 + 0.997483i \(0.477413\pi\)
\(282\) 0 0
\(283\) −13.4835 −0.801513 −0.400756 0.916185i \(-0.631253\pi\)
−0.400756 + 0.916185i \(0.631253\pi\)
\(284\) 0 0
\(285\) 2.96937 0.175890
\(286\) 0 0
\(287\) 21.9991 1.29856
\(288\) 0 0
\(289\) −11.4624 −0.674262
\(290\) 0 0
\(291\) −35.8202 −2.09982
\(292\) 0 0
\(293\) −29.2780 −1.71044 −0.855219 0.518268i \(-0.826577\pi\)
−0.855219 + 0.518268i \(0.826577\pi\)
\(294\) 0 0
\(295\) 3.91714 0.228065
\(296\) 0 0
\(297\) 15.7854 0.915963
\(298\) 0 0
\(299\) −31.6629 −1.83111
\(300\) 0 0
\(301\) 8.85449 0.510364
\(302\) 0 0
\(303\) 24.4919 1.40702
\(304\) 0 0
\(305\) 5.90243 0.337972
\(306\) 0 0
\(307\) 27.2949 1.55780 0.778901 0.627147i \(-0.215778\pi\)
0.778901 + 0.627147i \(0.215778\pi\)
\(308\) 0 0
\(309\) −19.6839 −1.11978
\(310\) 0 0
\(311\) −14.7646 −0.837223 −0.418612 0.908165i \(-0.637483\pi\)
−0.418612 + 0.908165i \(0.637483\pi\)
\(312\) 0 0
\(313\) 4.02085 0.227272 0.113636 0.993522i \(-0.463750\pi\)
0.113636 + 0.993522i \(0.463750\pi\)
\(314\) 0 0
\(315\) 12.3863 0.697887
\(316\) 0 0
\(317\) 30.2041 1.69643 0.848214 0.529653i \(-0.177678\pi\)
0.848214 + 0.529653i \(0.177678\pi\)
\(318\) 0 0
\(319\) −6.30299 −0.352899
\(320\) 0 0
\(321\) −2.83872 −0.158442
\(322\) 0 0
\(323\) 2.48622 0.138337
\(324\) 0 0
\(325\) 23.4496 1.30075
\(326\) 0 0
\(327\) 50.4399 2.78933
\(328\) 0 0
\(329\) −18.1883 −1.00275
\(330\) 0 0
\(331\) 18.7445 1.03029 0.515145 0.857103i \(-0.327738\pi\)
0.515145 + 0.857103i \(0.327738\pi\)
\(332\) 0 0
\(333\) −29.1658 −1.59827
\(334\) 0 0
\(335\) 13.3070 0.727041
\(336\) 0 0
\(337\) 23.4653 1.27824 0.639119 0.769108i \(-0.279299\pi\)
0.639119 + 0.769108i \(0.279299\pi\)
\(338\) 0 0
\(339\) −31.5537 −1.71376
\(340\) 0 0
\(341\) 12.6695 0.686094
\(342\) 0 0
\(343\) 20.1252 1.08666
\(344\) 0 0
\(345\) 15.8280 0.852149
\(346\) 0 0
\(347\) −8.14300 −0.437139 −0.218570 0.975821i \(-0.570139\pi\)
−0.218570 + 0.975821i \(0.570139\pi\)
\(348\) 0 0
\(349\) −25.3501 −1.35696 −0.678480 0.734619i \(-0.737361\pi\)
−0.678480 + 0.734619i \(0.737361\pi\)
\(350\) 0 0
\(351\) 61.2005 3.26664
\(352\) 0 0
\(353\) 24.1384 1.28476 0.642378 0.766388i \(-0.277948\pi\)
0.642378 + 0.766388i \(0.277948\pi\)
\(354\) 0 0
\(355\) −4.66277 −0.247474
\(356\) 0 0
\(357\) 15.1378 0.801179
\(358\) 0 0
\(359\) 36.0517 1.90274 0.951368 0.308055i \(-0.0996782\pi\)
0.951368 + 0.308055i \(0.0996782\pi\)
\(360\) 0 0
\(361\) −17.8837 −0.941250
\(362\) 0 0
\(363\) 27.4612 1.44134
\(364\) 0 0
\(365\) −6.98412 −0.365565
\(366\) 0 0
\(367\) 14.3193 0.747461 0.373730 0.927537i \(-0.378079\pi\)
0.373730 + 0.927537i \(0.378079\pi\)
\(368\) 0 0
\(369\) −68.8919 −3.58637
\(370\) 0 0
\(371\) −3.89892 −0.202422
\(372\) 0 0
\(373\) 29.7969 1.54283 0.771413 0.636335i \(-0.219550\pi\)
0.771413 + 0.636335i \(0.219550\pi\)
\(374\) 0 0
\(375\) −25.7747 −1.33100
\(376\) 0 0
\(377\) −24.4369 −1.25856
\(378\) 0 0
\(379\) 18.1874 0.934226 0.467113 0.884198i \(-0.345294\pi\)
0.467113 + 0.884198i \(0.345294\pi\)
\(380\) 0 0
\(381\) 19.1409 0.980615
\(382\) 0 0
\(383\) −1.00000 −0.0510976
\(384\) 0 0
\(385\) −2.75204 −0.140257
\(386\) 0 0
\(387\) −27.7285 −1.40952
\(388\) 0 0
\(389\) −12.4224 −0.629840 −0.314920 0.949118i \(-0.601978\pi\)
−0.314920 + 0.949118i \(0.601978\pi\)
\(390\) 0 0
\(391\) 13.2526 0.670211
\(392\) 0 0
\(393\) −11.7359 −0.591998
\(394\) 0 0
\(395\) 10.7160 0.539179
\(396\) 0 0
\(397\) −16.8357 −0.844958 −0.422479 0.906373i \(-0.638840\pi\)
−0.422479 + 0.906373i \(0.638840\pi\)
\(398\) 0 0
\(399\) 6.79650 0.340251
\(400\) 0 0
\(401\) −5.37256 −0.268293 −0.134146 0.990962i \(-0.542829\pi\)
−0.134146 + 0.990962i \(0.542829\pi\)
\(402\) 0 0
\(403\) 49.1202 2.44685
\(404\) 0 0
\(405\) −12.7644 −0.634269
\(406\) 0 0
\(407\) 6.48019 0.321211
\(408\) 0 0
\(409\) 23.8792 1.18075 0.590375 0.807129i \(-0.298980\pi\)
0.590375 + 0.807129i \(0.298980\pi\)
\(410\) 0 0
\(411\) 22.1785 1.09399
\(412\) 0 0
\(413\) 8.96582 0.441179
\(414\) 0 0
\(415\) 7.28323 0.357520
\(416\) 0 0
\(417\) 69.4509 3.40103
\(418\) 0 0
\(419\) 8.42586 0.411630 0.205815 0.978591i \(-0.434015\pi\)
0.205815 + 0.978591i \(0.434015\pi\)
\(420\) 0 0
\(421\) 23.9189 1.16573 0.582867 0.812567i \(-0.301931\pi\)
0.582867 + 0.812567i \(0.301931\pi\)
\(422\) 0 0
\(423\) 56.9581 2.76940
\(424\) 0 0
\(425\) −9.81489 −0.476092
\(426\) 0 0
\(427\) 13.5099 0.653789
\(428\) 0 0
\(429\) −25.1647 −1.21497
\(430\) 0 0
\(431\) −24.6046 −1.18516 −0.592580 0.805511i \(-0.701891\pi\)
−0.592580 + 0.805511i \(0.701891\pi\)
\(432\) 0 0
\(433\) −21.8659 −1.05081 −0.525404 0.850853i \(-0.676086\pi\)
−0.525404 + 0.850853i \(0.676086\pi\)
\(434\) 0 0
\(435\) 12.2157 0.585699
\(436\) 0 0
\(437\) 5.95007 0.284630
\(438\) 0 0
\(439\) 2.76635 0.132031 0.0660154 0.997819i \(-0.478971\pi\)
0.0660154 + 0.997819i \(0.478971\pi\)
\(440\) 0 0
\(441\) −17.3366 −0.825553
\(442\) 0 0
\(443\) 15.7990 0.750633 0.375316 0.926897i \(-0.377534\pi\)
0.375316 + 0.926897i \(0.377534\pi\)
\(444\) 0 0
\(445\) 2.39766 0.113660
\(446\) 0 0
\(447\) −31.2187 −1.47659
\(448\) 0 0
\(449\) 8.09725 0.382133 0.191066 0.981577i \(-0.438805\pi\)
0.191066 + 0.981577i \(0.438805\pi\)
\(450\) 0 0
\(451\) 15.3067 0.720766
\(452\) 0 0
\(453\) 60.0512 2.82145
\(454\) 0 0
\(455\) −10.6697 −0.500205
\(456\) 0 0
\(457\) 16.4155 0.767885 0.383943 0.923357i \(-0.374566\pi\)
0.383943 + 0.923357i \(0.374566\pi\)
\(458\) 0 0
\(459\) −25.6156 −1.19563
\(460\) 0 0
\(461\) −11.4672 −0.534082 −0.267041 0.963685i \(-0.586046\pi\)
−0.267041 + 0.963685i \(0.586046\pi\)
\(462\) 0 0
\(463\) −11.8489 −0.550666 −0.275333 0.961349i \(-0.588788\pi\)
−0.275333 + 0.961349i \(0.588788\pi\)
\(464\) 0 0
\(465\) −24.5547 −1.13870
\(466\) 0 0
\(467\) 21.6852 1.00347 0.501735 0.865021i \(-0.332695\pi\)
0.501735 + 0.865021i \(0.332695\pi\)
\(468\) 0 0
\(469\) 30.4581 1.40642
\(470\) 0 0
\(471\) −15.2509 −0.702725
\(472\) 0 0
\(473\) 6.16086 0.283277
\(474\) 0 0
\(475\) −4.40664 −0.202190
\(476\) 0 0
\(477\) 12.2098 0.559048
\(478\) 0 0
\(479\) 38.7480 1.77044 0.885220 0.465173i \(-0.154008\pi\)
0.885220 + 0.465173i \(0.154008\pi\)
\(480\) 0 0
\(481\) 25.1239 1.14555
\(482\) 0 0
\(483\) 36.2281 1.64844
\(484\) 0 0
\(485\) −10.5674 −0.479840
\(486\) 0 0
\(487\) −12.6258 −0.572129 −0.286065 0.958210i \(-0.592347\pi\)
−0.286065 + 0.958210i \(0.592347\pi\)
\(488\) 0 0
\(489\) −44.3859 −2.00720
\(490\) 0 0
\(491\) 17.3101 0.781193 0.390597 0.920562i \(-0.372269\pi\)
0.390597 + 0.920562i \(0.372269\pi\)
\(492\) 0 0
\(493\) 10.2281 0.460650
\(494\) 0 0
\(495\) 8.61824 0.387361
\(496\) 0 0
\(497\) −10.6725 −0.478726
\(498\) 0 0
\(499\) 27.8854 1.24832 0.624160 0.781296i \(-0.285441\pi\)
0.624160 + 0.781296i \(0.285441\pi\)
\(500\) 0 0
\(501\) 68.8501 3.07600
\(502\) 0 0
\(503\) 12.9536 0.577572 0.288786 0.957394i \(-0.406748\pi\)
0.288786 + 0.957394i \(0.406748\pi\)
\(504\) 0 0
\(505\) 7.22540 0.321526
\(506\) 0 0
\(507\) −57.4394 −2.55098
\(508\) 0 0
\(509\) −42.3593 −1.87754 −0.938772 0.344540i \(-0.888035\pi\)
−0.938772 + 0.344540i \(0.888035\pi\)
\(510\) 0 0
\(511\) −15.9857 −0.707167
\(512\) 0 0
\(513\) −11.5008 −0.507771
\(514\) 0 0
\(515\) −5.80697 −0.255886
\(516\) 0 0
\(517\) −12.6552 −0.556577
\(518\) 0 0
\(519\) 40.8351 1.79246
\(520\) 0 0
\(521\) −24.9719 −1.09404 −0.547019 0.837120i \(-0.684238\pi\)
−0.547019 + 0.837120i \(0.684238\pi\)
\(522\) 0 0
\(523\) 39.9277 1.74592 0.872958 0.487795i \(-0.162199\pi\)
0.872958 + 0.487795i \(0.162199\pi\)
\(524\) 0 0
\(525\) −26.8307 −1.17099
\(526\) 0 0
\(527\) −20.5593 −0.895579
\(528\) 0 0
\(529\) 8.71630 0.378970
\(530\) 0 0
\(531\) −28.0772 −1.21845
\(532\) 0 0
\(533\) 59.3446 2.57050
\(534\) 0 0
\(535\) −0.837457 −0.0362064
\(536\) 0 0
\(537\) 20.6289 0.890202
\(538\) 0 0
\(539\) 3.85193 0.165914
\(540\) 0 0
\(541\) 16.6446 0.715607 0.357804 0.933797i \(-0.383526\pi\)
0.357804 + 0.933797i \(0.383526\pi\)
\(542\) 0 0
\(543\) 30.2145 1.29663
\(544\) 0 0
\(545\) 14.8804 0.637405
\(546\) 0 0
\(547\) −38.3956 −1.64168 −0.820839 0.571159i \(-0.806494\pi\)
−0.820839 + 0.571159i \(0.806494\pi\)
\(548\) 0 0
\(549\) −42.3073 −1.80563
\(550\) 0 0
\(551\) 4.59216 0.195632
\(552\) 0 0
\(553\) 24.5275 1.04301
\(554\) 0 0
\(555\) −12.5592 −0.533107
\(556\) 0 0
\(557\) 30.1962 1.27945 0.639726 0.768603i \(-0.279048\pi\)
0.639726 + 0.768603i \(0.279048\pi\)
\(558\) 0 0
\(559\) 23.8859 1.01026
\(560\) 0 0
\(561\) 10.5327 0.444693
\(562\) 0 0
\(563\) 36.1995 1.52563 0.762814 0.646618i \(-0.223817\pi\)
0.762814 + 0.646618i \(0.223817\pi\)
\(564\) 0 0
\(565\) −9.30871 −0.391620
\(566\) 0 0
\(567\) −29.2161 −1.22696
\(568\) 0 0
\(569\) 31.1371 1.30533 0.652667 0.757645i \(-0.273650\pi\)
0.652667 + 0.757645i \(0.273650\pi\)
\(570\) 0 0
\(571\) 9.41933 0.394187 0.197093 0.980385i \(-0.436850\pi\)
0.197093 + 0.980385i \(0.436850\pi\)
\(572\) 0 0
\(573\) −66.9735 −2.79786
\(574\) 0 0
\(575\) −23.4892 −0.979566
\(576\) 0 0
\(577\) −27.0205 −1.12488 −0.562438 0.826839i \(-0.690137\pi\)
−0.562438 + 0.826839i \(0.690137\pi\)
\(578\) 0 0
\(579\) −35.1473 −1.46067
\(580\) 0 0
\(581\) 16.6704 0.691603
\(582\) 0 0
\(583\) −2.71283 −0.112354
\(584\) 0 0
\(585\) 33.4132 1.38146
\(586\) 0 0
\(587\) −32.0201 −1.32161 −0.660806 0.750557i \(-0.729785\pi\)
−0.660806 + 0.750557i \(0.729785\pi\)
\(588\) 0 0
\(589\) −9.23063 −0.380341
\(590\) 0 0
\(591\) 15.8958 0.653865
\(592\) 0 0
\(593\) 20.8329 0.855503 0.427751 0.903896i \(-0.359306\pi\)
0.427751 + 0.903896i \(0.359306\pi\)
\(594\) 0 0
\(595\) 4.46584 0.183082
\(596\) 0 0
\(597\) 49.1269 2.01063
\(598\) 0 0
\(599\) −22.7908 −0.931208 −0.465604 0.884993i \(-0.654163\pi\)
−0.465604 + 0.884993i \(0.654163\pi\)
\(600\) 0 0
\(601\) −17.4469 −0.711672 −0.355836 0.934548i \(-0.615804\pi\)
−0.355836 + 0.934548i \(0.615804\pi\)
\(602\) 0 0
\(603\) −95.3819 −3.88425
\(604\) 0 0
\(605\) 8.10139 0.329368
\(606\) 0 0
\(607\) −36.8843 −1.49709 −0.748543 0.663086i \(-0.769246\pi\)
−0.748543 + 0.663086i \(0.769246\pi\)
\(608\) 0 0
\(609\) 27.9602 1.13301
\(610\) 0 0
\(611\) −49.0647 −1.98495
\(612\) 0 0
\(613\) 9.45500 0.381884 0.190942 0.981601i \(-0.438846\pi\)
0.190942 + 0.981601i \(0.438846\pi\)
\(614\) 0 0
\(615\) −29.6658 −1.19624
\(616\) 0 0
\(617\) −31.2901 −1.25969 −0.629846 0.776720i \(-0.716882\pi\)
−0.629846 + 0.776720i \(0.716882\pi\)
\(618\) 0 0
\(619\) −27.7405 −1.11498 −0.557492 0.830182i \(-0.688236\pi\)
−0.557492 + 0.830182i \(0.688236\pi\)
\(620\) 0 0
\(621\) −61.3037 −2.46003
\(622\) 0 0
\(623\) 5.48792 0.219869
\(624\) 0 0
\(625\) 13.2505 0.530020
\(626\) 0 0
\(627\) 4.72894 0.188856
\(628\) 0 0
\(629\) −10.5156 −0.419286
\(630\) 0 0
\(631\) 5.80111 0.230938 0.115469 0.993311i \(-0.463163\pi\)
0.115469 + 0.993311i \(0.463163\pi\)
\(632\) 0 0
\(633\) −13.9431 −0.554187
\(634\) 0 0
\(635\) 5.64678 0.224086
\(636\) 0 0
\(637\) 14.9341 0.591709
\(638\) 0 0
\(639\) 33.4217 1.32214
\(640\) 0 0
\(641\) −12.6431 −0.499374 −0.249687 0.968327i \(-0.580328\pi\)
−0.249687 + 0.968327i \(0.580328\pi\)
\(642\) 0 0
\(643\) −0.739741 −0.0291725 −0.0145863 0.999894i \(-0.504643\pi\)
−0.0145863 + 0.999894i \(0.504643\pi\)
\(644\) 0 0
\(645\) −11.9403 −0.470148
\(646\) 0 0
\(647\) 5.76141 0.226505 0.113252 0.993566i \(-0.463873\pi\)
0.113252 + 0.993566i \(0.463873\pi\)
\(648\) 0 0
\(649\) 6.23833 0.244876
\(650\) 0 0
\(651\) −56.2024 −2.20275
\(652\) 0 0
\(653\) −23.8932 −0.935015 −0.467507 0.883989i \(-0.654848\pi\)
−0.467507 + 0.883989i \(0.654848\pi\)
\(654\) 0 0
\(655\) −3.46223 −0.135281
\(656\) 0 0
\(657\) 50.0606 1.95305
\(658\) 0 0
\(659\) −0.450480 −0.0175482 −0.00877410 0.999962i \(-0.502793\pi\)
−0.00877410 + 0.999962i \(0.502793\pi\)
\(660\) 0 0
\(661\) −27.4188 −1.06647 −0.533234 0.845968i \(-0.679023\pi\)
−0.533234 + 0.845968i \(0.679023\pi\)
\(662\) 0 0
\(663\) 40.8358 1.58593
\(664\) 0 0
\(665\) 2.00505 0.0777525
\(666\) 0 0
\(667\) 24.4781 0.947794
\(668\) 0 0
\(669\) 41.6687 1.61101
\(670\) 0 0
\(671\) 9.40004 0.362884
\(672\) 0 0
\(673\) −39.9618 −1.54041 −0.770207 0.637794i \(-0.779847\pi\)
−0.770207 + 0.637794i \(0.779847\pi\)
\(674\) 0 0
\(675\) 45.4017 1.74751
\(676\) 0 0
\(677\) 22.5667 0.867308 0.433654 0.901079i \(-0.357224\pi\)
0.433654 + 0.901079i \(0.357224\pi\)
\(678\) 0 0
\(679\) −24.1874 −0.928226
\(680\) 0 0
\(681\) −57.3024 −2.19583
\(682\) 0 0
\(683\) −38.1485 −1.45971 −0.729855 0.683602i \(-0.760412\pi\)
−0.729855 + 0.683602i \(0.760412\pi\)
\(684\) 0 0
\(685\) 6.54293 0.249992
\(686\) 0 0
\(687\) −11.9184 −0.454715
\(688\) 0 0
\(689\) −10.5177 −0.400693
\(690\) 0 0
\(691\) 6.53892 0.248752 0.124376 0.992235i \(-0.460307\pi\)
0.124376 + 0.992235i \(0.460307\pi\)
\(692\) 0 0
\(693\) 19.7260 0.749330
\(694\) 0 0
\(695\) 20.4889 0.777186
\(696\) 0 0
\(697\) −24.8388 −0.940837
\(698\) 0 0
\(699\) −22.5385 −0.852485
\(700\) 0 0
\(701\) 10.4051 0.392996 0.196498 0.980504i \(-0.437043\pi\)
0.196498 + 0.980504i \(0.437043\pi\)
\(702\) 0 0
\(703\) −4.72126 −0.178066
\(704\) 0 0
\(705\) 24.5269 0.923738
\(706\) 0 0
\(707\) 16.5380 0.621975
\(708\) 0 0
\(709\) 12.9924 0.487938 0.243969 0.969783i \(-0.421550\pi\)
0.243969 + 0.969783i \(0.421550\pi\)
\(710\) 0 0
\(711\) −76.8098 −2.88059
\(712\) 0 0
\(713\) −49.2030 −1.84267
\(714\) 0 0
\(715\) −7.42390 −0.277638
\(716\) 0 0
\(717\) −24.3128 −0.907980
\(718\) 0 0
\(719\) −36.1495 −1.34815 −0.674074 0.738663i \(-0.735457\pi\)
−0.674074 + 0.738663i \(0.735457\pi\)
\(720\) 0 0
\(721\) −13.2914 −0.494998
\(722\) 0 0
\(723\) −89.8436 −3.34132
\(724\) 0 0
\(725\) −18.1285 −0.673276
\(726\) 0 0
\(727\) 18.2522 0.676935 0.338468 0.940978i \(-0.390091\pi\)
0.338468 + 0.940978i \(0.390091\pi\)
\(728\) 0 0
\(729\) −9.30247 −0.344536
\(730\) 0 0
\(731\) −9.99746 −0.369769
\(732\) 0 0
\(733\) −33.7251 −1.24567 −0.622833 0.782355i \(-0.714018\pi\)
−0.622833 + 0.782355i \(0.714018\pi\)
\(734\) 0 0
\(735\) −7.46538 −0.275365
\(736\) 0 0
\(737\) 21.1924 0.780632
\(738\) 0 0
\(739\) −31.2341 −1.14897 −0.574483 0.818516i \(-0.694797\pi\)
−0.574483 + 0.818516i \(0.694797\pi\)
\(740\) 0 0
\(741\) 18.3342 0.673525
\(742\) 0 0
\(743\) −21.4211 −0.785865 −0.392932 0.919567i \(-0.628539\pi\)
−0.392932 + 0.919567i \(0.628539\pi\)
\(744\) 0 0
\(745\) −9.20988 −0.337424
\(746\) 0 0
\(747\) −52.2046 −1.91007
\(748\) 0 0
\(749\) −1.91683 −0.0700394
\(750\) 0 0
\(751\) 15.0581 0.549479 0.274740 0.961519i \(-0.411408\pi\)
0.274740 + 0.961519i \(0.411408\pi\)
\(752\) 0 0
\(753\) −52.1821 −1.90162
\(754\) 0 0
\(755\) 17.7158 0.644745
\(756\) 0 0
\(757\) 5.16450 0.187707 0.0938534 0.995586i \(-0.470082\pi\)
0.0938534 + 0.995586i \(0.470082\pi\)
\(758\) 0 0
\(759\) 25.2072 0.914962
\(760\) 0 0
\(761\) 29.8494 1.08204 0.541021 0.841009i \(-0.318038\pi\)
0.541021 + 0.841009i \(0.318038\pi\)
\(762\) 0 0
\(763\) 34.0592 1.23303
\(764\) 0 0
\(765\) −13.9851 −0.505634
\(766\) 0 0
\(767\) 24.1862 0.873312
\(768\) 0 0
\(769\) 15.6136 0.563042 0.281521 0.959555i \(-0.409161\pi\)
0.281521 + 0.959555i \(0.409161\pi\)
\(770\) 0 0
\(771\) 36.3550 1.30929
\(772\) 0 0
\(773\) 33.2962 1.19758 0.598790 0.800906i \(-0.295648\pi\)
0.598790 + 0.800906i \(0.295648\pi\)
\(774\) 0 0
\(775\) 36.4399 1.30896
\(776\) 0 0
\(777\) −28.7463 −1.03127
\(778\) 0 0
\(779\) −11.1520 −0.399562
\(780\) 0 0
\(781\) −7.42580 −0.265716
\(782\) 0 0
\(783\) −47.3131 −1.69083
\(784\) 0 0
\(785\) −4.49920 −0.160583
\(786\) 0 0
\(787\) −25.0491 −0.892905 −0.446453 0.894807i \(-0.647313\pi\)
−0.446453 + 0.894807i \(0.647313\pi\)
\(788\) 0 0
\(789\) −53.1042 −1.89056
\(790\) 0 0
\(791\) −21.3064 −0.757569
\(792\) 0 0
\(793\) 36.4442 1.29417
\(794\) 0 0
\(795\) 5.25770 0.186471
\(796\) 0 0
\(797\) −51.0298 −1.80757 −0.903785 0.427987i \(-0.859223\pi\)
−0.903785 + 0.427987i \(0.859223\pi\)
\(798\) 0 0
\(799\) 20.5361 0.726516
\(800\) 0 0
\(801\) −17.1859 −0.607233
\(802\) 0 0
\(803\) −11.1227 −0.392512
\(804\) 0 0
\(805\) 10.6877 0.376693
\(806\) 0 0
\(807\) 37.5314 1.32117
\(808\) 0 0
\(809\) 25.1705 0.884947 0.442473 0.896782i \(-0.354101\pi\)
0.442473 + 0.896782i \(0.354101\pi\)
\(810\) 0 0
\(811\) 5.64533 0.198235 0.0991173 0.995076i \(-0.468398\pi\)
0.0991173 + 0.995076i \(0.468398\pi\)
\(812\) 0 0
\(813\) 0.446137 0.0156467
\(814\) 0 0
\(815\) −13.0944 −0.458675
\(816\) 0 0
\(817\) −4.48861 −0.157037
\(818\) 0 0
\(819\) 76.4784 2.67237
\(820\) 0 0
\(821\) 10.6903 0.373096 0.186548 0.982446i \(-0.440270\pi\)
0.186548 + 0.982446i \(0.440270\pi\)
\(822\) 0 0
\(823\) −12.4143 −0.432734 −0.216367 0.976312i \(-0.569421\pi\)
−0.216367 + 0.976312i \(0.569421\pi\)
\(824\) 0 0
\(825\) −18.6685 −0.649953
\(826\) 0 0
\(827\) 44.5662 1.54972 0.774859 0.632134i \(-0.217821\pi\)
0.774859 + 0.632134i \(0.217821\pi\)
\(828\) 0 0
\(829\) −18.5663 −0.644834 −0.322417 0.946598i \(-0.604495\pi\)
−0.322417 + 0.946598i \(0.604495\pi\)
\(830\) 0 0
\(831\) −14.2463 −0.494200
\(832\) 0 0
\(833\) −6.25067 −0.216573
\(834\) 0 0
\(835\) 20.3116 0.702912
\(836\) 0 0
\(837\) 95.1033 3.28725
\(838\) 0 0
\(839\) −43.3676 −1.49722 −0.748608 0.663012i \(-0.769278\pi\)
−0.748608 + 0.663012i \(0.769278\pi\)
\(840\) 0 0
\(841\) −10.1083 −0.348561
\(842\) 0 0
\(843\) −7.33679 −0.252692
\(844\) 0 0
\(845\) −16.9453 −0.582937
\(846\) 0 0
\(847\) 18.5430 0.637146
\(848\) 0 0
\(849\) 41.6175 1.42831
\(850\) 0 0
\(851\) −25.1662 −0.862688
\(852\) 0 0
\(853\) 19.3360 0.662050 0.331025 0.943622i \(-0.392605\pi\)
0.331025 + 0.943622i \(0.392605\pi\)
\(854\) 0 0
\(855\) −6.27897 −0.214736
\(856\) 0 0
\(857\) −33.8462 −1.15616 −0.578082 0.815979i \(-0.696199\pi\)
−0.578082 + 0.815979i \(0.696199\pi\)
\(858\) 0 0
\(859\) 12.4242 0.423908 0.211954 0.977280i \(-0.432017\pi\)
0.211954 + 0.977280i \(0.432017\pi\)
\(860\) 0 0
\(861\) −67.9011 −2.31406
\(862\) 0 0
\(863\) 46.9463 1.59807 0.799035 0.601284i \(-0.205344\pi\)
0.799035 + 0.601284i \(0.205344\pi\)
\(864\) 0 0
\(865\) 12.0468 0.409604
\(866\) 0 0
\(867\) 35.3793 1.20154
\(868\) 0 0
\(869\) 17.0660 0.578923
\(870\) 0 0
\(871\) 82.1636 2.78401
\(872\) 0 0
\(873\) 75.7447 2.56357
\(874\) 0 0
\(875\) −17.4042 −0.588370
\(876\) 0 0
\(877\) 32.6960 1.10407 0.552033 0.833822i \(-0.313852\pi\)
0.552033 + 0.833822i \(0.313852\pi\)
\(878\) 0 0
\(879\) 90.3677 3.04803
\(880\) 0 0
\(881\) −12.2877 −0.413982 −0.206991 0.978343i \(-0.566367\pi\)
−0.206991 + 0.978343i \(0.566367\pi\)
\(882\) 0 0
\(883\) 2.03500 0.0684831 0.0342415 0.999414i \(-0.489098\pi\)
0.0342415 + 0.999414i \(0.489098\pi\)
\(884\) 0 0
\(885\) −12.0904 −0.406415
\(886\) 0 0
\(887\) −47.0813 −1.58083 −0.790417 0.612569i \(-0.790136\pi\)
−0.790417 + 0.612569i \(0.790136\pi\)
\(888\) 0 0
\(889\) 12.9247 0.433482
\(890\) 0 0
\(891\) −20.3282 −0.681022
\(892\) 0 0
\(893\) 9.22020 0.308542
\(894\) 0 0
\(895\) 6.08576 0.203425
\(896\) 0 0
\(897\) 97.7289 3.26307
\(898\) 0 0
\(899\) −37.9740 −1.26650
\(900\) 0 0
\(901\) 4.40221 0.146659
\(902\) 0 0
\(903\) −27.3298 −0.909477
\(904\) 0 0
\(905\) 8.91363 0.296299
\(906\) 0 0
\(907\) 21.3028 0.707349 0.353674 0.935369i \(-0.384932\pi\)
0.353674 + 0.935369i \(0.384932\pi\)
\(908\) 0 0
\(909\) −51.7901 −1.71777
\(910\) 0 0
\(911\) 14.2825 0.473199 0.236600 0.971607i \(-0.423967\pi\)
0.236600 + 0.971607i \(0.423967\pi\)
\(912\) 0 0
\(913\) 11.5991 0.383873
\(914\) 0 0
\(915\) −18.2181 −0.602271
\(916\) 0 0
\(917\) −7.92460 −0.261693
\(918\) 0 0
\(919\) −10.2972 −0.339673 −0.169837 0.985472i \(-0.554324\pi\)
−0.169837 + 0.985472i \(0.554324\pi\)
\(920\) 0 0
\(921\) −84.2468 −2.77603
\(922\) 0 0
\(923\) −28.7901 −0.947636
\(924\) 0 0
\(925\) 18.6382 0.612820
\(926\) 0 0
\(927\) 41.6231 1.36708
\(928\) 0 0
\(929\) 3.77218 0.123761 0.0618806 0.998084i \(-0.480290\pi\)
0.0618806 + 0.998084i \(0.480290\pi\)
\(930\) 0 0
\(931\) −2.80640 −0.0919759
\(932\) 0 0
\(933\) 45.5715 1.49194
\(934\) 0 0
\(935\) 3.10728 0.101619
\(936\) 0 0
\(937\) 55.6015 1.81642 0.908211 0.418513i \(-0.137449\pi\)
0.908211 + 0.418513i \(0.137449\pi\)
\(938\) 0 0
\(939\) −12.4105 −0.405002
\(940\) 0 0
\(941\) 1.44384 0.0470680 0.0235340 0.999723i \(-0.492508\pi\)
0.0235340 + 0.999723i \(0.492508\pi\)
\(942\) 0 0
\(943\) −59.4447 −1.93579
\(944\) 0 0
\(945\) −20.6581 −0.672007
\(946\) 0 0
\(947\) −41.0784 −1.33487 −0.667434 0.744669i \(-0.732607\pi\)
−0.667434 + 0.744669i \(0.732607\pi\)
\(948\) 0 0
\(949\) −43.1231 −1.39983
\(950\) 0 0
\(951\) −93.2261 −3.02306
\(952\) 0 0
\(953\) 26.5179 0.859000 0.429500 0.903067i \(-0.358690\pi\)
0.429500 + 0.903067i \(0.358690\pi\)
\(954\) 0 0
\(955\) −19.7580 −0.639354
\(956\) 0 0
\(957\) 19.4544 0.628872
\(958\) 0 0
\(959\) 14.9759 0.483597
\(960\) 0 0
\(961\) 45.3310 1.46229
\(962\) 0 0
\(963\) 6.00271 0.193434
\(964\) 0 0
\(965\) −10.3689 −0.333786
\(966\) 0 0
\(967\) −30.1124 −0.968349 −0.484175 0.874971i \(-0.660880\pi\)
−0.484175 + 0.874971i \(0.660880\pi\)
\(968\) 0 0
\(969\) −7.67382 −0.246519
\(970\) 0 0
\(971\) −3.49524 −0.112168 −0.0560838 0.998426i \(-0.517861\pi\)
−0.0560838 + 0.998426i \(0.517861\pi\)
\(972\) 0 0
\(973\) 46.8963 1.50343
\(974\) 0 0
\(975\) −72.3783 −2.31796
\(976\) 0 0
\(977\) 55.8789 1.78772 0.893862 0.448341i \(-0.147985\pi\)
0.893862 + 0.448341i \(0.147985\pi\)
\(978\) 0 0
\(979\) 3.81844 0.122038
\(980\) 0 0
\(981\) −106.659 −3.40537
\(982\) 0 0
\(983\) −52.8623 −1.68604 −0.843022 0.537879i \(-0.819226\pi\)
−0.843022 + 0.537879i \(0.819226\pi\)
\(984\) 0 0
\(985\) 4.68944 0.149418
\(986\) 0 0
\(987\) 56.1390 1.78692
\(988\) 0 0
\(989\) −23.9261 −0.760806
\(990\) 0 0
\(991\) −8.06158 −0.256084 −0.128042 0.991769i \(-0.540869\pi\)
−0.128042 + 0.991769i \(0.540869\pi\)
\(992\) 0 0
\(993\) −57.8556 −1.83599
\(994\) 0 0
\(995\) 14.4930 0.459460
\(996\) 0 0
\(997\) −18.7766 −0.594662 −0.297331 0.954775i \(-0.596096\pi\)
−0.297331 + 0.954775i \(0.596096\pi\)
\(998\) 0 0
\(999\) 48.6432 1.53900
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6128.2.a.p.1.1 24
4.3 odd 2 383.2.a.c.1.16 24
12.11 even 2 3447.2.a.j.1.9 24
20.19 odd 2 9575.2.a.e.1.9 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
383.2.a.c.1.16 24 4.3 odd 2
3447.2.a.j.1.9 24 12.11 even 2
6128.2.a.p.1.1 24 1.1 even 1 trivial
9575.2.a.e.1.9 24 20.19 odd 2