Properties

Label 345.1.p.a.179.1
Level $345$
Weight $1$
Character 345.179
Analytic conductor $0.172$
Analytic rank $0$
Dimension $10$
Projective image $D_{11}$
CM discriminant -15
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [345,1,Mod(29,345)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(345, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 11, 18]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("345.29");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 345 = 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 345.p (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.172177429358\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{11}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{11} - \cdots)\)

Embedding invariants

Embedding label 179.1
Root \(0.654861 + 0.755750i\) of defining polynomial
Character \(\chi\) \(=\) 345.179
Dual form 345.1.p.a.239.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.25667 + 0.368991i) q^{2} +(-0.654861 + 0.755750i) q^{3} +(0.601808 + 0.386758i) q^{4} +(-0.142315 + 0.989821i) q^{5} +(-1.10181 + 0.708089i) q^{6} +(-0.244123 - 0.281733i) q^{8} +(-0.142315 - 0.989821i) q^{9} +(-0.544078 + 1.19136i) q^{10} +(-0.686393 + 0.201543i) q^{12} +(-0.654861 - 0.755750i) q^{15} +(-0.500000 - 1.09485i) q^{16} +(1.41542 - 0.909632i) q^{17} +(0.186393 - 1.29639i) q^{18} +(0.698939 + 0.449181i) q^{19} +(-0.468468 + 0.540641i) q^{20} +(-0.959493 + 0.281733i) q^{23} +0.372786 q^{24} +(-0.959493 - 0.281733i) q^{25} +(0.841254 + 0.540641i) q^{27} +(-0.544078 - 1.19136i) q^{30} +(-0.544078 - 0.627899i) q^{31} +(-0.171292 - 1.19136i) q^{32} +(2.11435 - 0.620830i) q^{34} +(0.297176 - 0.650724i) q^{36} +(0.712591 + 0.822373i) q^{38} +(0.313607 - 0.201543i) q^{40} +1.00000 q^{45} -1.30972 q^{46} -1.91899 q^{47} +(1.15486 + 0.339098i) q^{48} +(-0.654861 + 0.755750i) q^{49} +(-1.10181 - 0.708089i) q^{50} +(-0.239446 + 1.66538i) q^{51} +(-0.797176 - 1.74557i) q^{53} +(0.857685 + 0.989821i) q^{54} +(-0.797176 + 0.234072i) q^{57} +(-0.101808 - 0.708089i) q^{60} +(1.25667 + 1.45027i) q^{61} +(-0.452036 - 0.989821i) q^{62} +(0.0530529 - 0.368991i) q^{64} +1.20362 q^{68} +(0.415415 - 0.909632i) q^{69} +(-0.244123 + 0.281733i) q^{72} +(0.841254 - 0.540641i) q^{75} +(0.246902 + 0.540641i) q^{76} +(-0.118239 + 0.258908i) q^{79} +(1.15486 - 0.339098i) q^{80} +(-0.959493 + 0.281733i) q^{81} +(0.186393 + 1.29639i) q^{83} +(0.698939 + 1.53046i) q^{85} +(1.25667 + 0.368991i) q^{90} +(-0.686393 - 0.201543i) q^{92} +0.830830 q^{93} +(-2.41153 - 0.708089i) q^{94} +(-0.544078 + 0.627899i) q^{95} +(1.01255 + 0.650724i) q^{96} +(-1.10181 + 0.708089i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{2} - q^{3} - 3 q^{4} - q^{5} - 2 q^{6} + 7 q^{8} - q^{9} - 2 q^{10} - 3 q^{12} - q^{15} - 5 q^{16} + 9 q^{17} - 2 q^{18} - 2 q^{19} - 3 q^{20} - q^{23} - 4 q^{24} - q^{25} - q^{27} - 2 q^{30}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/345\mathbb{Z}\right)^\times\).

\(n\) \(116\) \(166\) \(277\)
\(\chi(n)\) \(-1\) \(e\left(\frac{6}{11}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.25667 + 0.368991i 1.25667 + 0.368991i 0.841254 0.540641i \(-0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(3\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(4\) 0.601808 + 0.386758i 0.601808 + 0.386758i
\(5\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(6\) −1.10181 + 0.708089i −1.10181 + 0.708089i
\(7\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(8\) −0.244123 0.281733i −0.244123 0.281733i
\(9\) −0.142315 0.989821i −0.142315 0.989821i
\(10\) −0.544078 + 1.19136i −0.544078 + 1.19136i
\(11\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(12\) −0.686393 + 0.201543i −0.686393 + 0.201543i
\(13\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(14\) 0 0
\(15\) −0.654861 0.755750i −0.654861 0.755750i
\(16\) −0.500000 1.09485i −0.500000 1.09485i
\(17\) 1.41542 0.909632i 1.41542 0.909632i 0.415415 0.909632i \(-0.363636\pi\)
1.00000 \(0\)
\(18\) 0.186393 1.29639i 0.186393 1.29639i
\(19\) 0.698939 + 0.449181i 0.698939 + 0.449181i 0.841254 0.540641i \(-0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(20\) −0.468468 + 0.540641i −0.468468 + 0.540641i
\(21\) 0 0
\(22\) 0 0
\(23\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(24\) 0.372786 0.372786
\(25\) −0.959493 0.281733i −0.959493 0.281733i
\(26\) 0 0
\(27\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(28\) 0 0
\(29\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(30\) −0.544078 1.19136i −0.544078 1.19136i
\(31\) −0.544078 0.627899i −0.544078 0.627899i 0.415415 0.909632i \(-0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(32\) −0.171292 1.19136i −0.171292 1.19136i
\(33\) 0 0
\(34\) 2.11435 0.620830i 2.11435 0.620830i
\(35\) 0 0
\(36\) 0.297176 0.650724i 0.297176 0.650724i
\(37\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(38\) 0.712591 + 0.822373i 0.712591 + 0.822373i
\(39\) 0 0
\(40\) 0.313607 0.201543i 0.313607 0.201543i
\(41\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(42\) 0 0
\(43\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(44\) 0 0
\(45\) 1.00000 1.00000
\(46\) −1.30972 −1.30972
\(47\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(48\) 1.15486 + 0.339098i 1.15486 + 0.339098i
\(49\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(50\) −1.10181 0.708089i −1.10181 0.708089i
\(51\) −0.239446 + 1.66538i −0.239446 + 1.66538i
\(52\) 0 0
\(53\) −0.797176 1.74557i −0.797176 1.74557i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(54\) 0.857685 + 0.989821i 0.857685 + 0.989821i
\(55\) 0 0
\(56\) 0 0
\(57\) −0.797176 + 0.234072i −0.797176 + 0.234072i
\(58\) 0 0
\(59\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(60\) −0.101808 0.708089i −0.101808 0.708089i
\(61\) 1.25667 + 1.45027i 1.25667 + 1.45027i 0.841254 + 0.540641i \(0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(62\) −0.452036 0.989821i −0.452036 0.989821i
\(63\) 0 0
\(64\) 0.0530529 0.368991i 0.0530529 0.368991i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(68\) 1.20362 1.20362
\(69\) 0.415415 0.909632i 0.415415 0.909632i
\(70\) 0 0
\(71\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(72\) −0.244123 + 0.281733i −0.244123 + 0.281733i
\(73\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(74\) 0 0
\(75\) 0.841254 0.540641i 0.841254 0.540641i
\(76\) 0.246902 + 0.540641i 0.246902 + 0.540641i
\(77\) 0 0
\(78\) 0 0
\(79\) −0.118239 + 0.258908i −0.118239 + 0.258908i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(80\) 1.15486 0.339098i 1.15486 0.339098i
\(81\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(82\) 0 0
\(83\) 0.186393 + 1.29639i 0.186393 + 1.29639i 0.841254 + 0.540641i \(0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(84\) 0 0
\(85\) 0.698939 + 1.53046i 0.698939 + 1.53046i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(90\) 1.25667 + 0.368991i 1.25667 + 0.368991i
\(91\) 0 0
\(92\) −0.686393 0.201543i −0.686393 0.201543i
\(93\) 0.830830 0.830830
\(94\) −2.41153 0.708089i −2.41153 0.708089i
\(95\) −0.544078 + 0.627899i −0.544078 + 0.627899i
\(96\) 1.01255 + 0.650724i 1.01255 + 0.650724i
\(97\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(98\) −1.10181 + 0.708089i −1.10181 + 0.708089i
\(99\) 0 0
\(100\) −0.468468 0.540641i −0.468468 0.540641i
\(101\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(102\) −0.915415 + 2.00448i −0.915415 + 2.00448i
\(103\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −0.357685 2.48775i −0.357685 2.48775i
\(107\) 0.186393 + 0.215109i 0.186393 + 0.215109i 0.841254 0.540641i \(-0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(108\) 0.297176 + 0.650724i 0.297176 + 0.650724i
\(109\) −0.239446 + 0.153882i −0.239446 + 0.153882i −0.654861 0.755750i \(-0.727273\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.25667 + 0.368991i 1.25667 + 0.368991i 0.841254 0.540641i \(-0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(114\) −1.08816 −1.08816
\(115\) −0.142315 0.989821i −0.142315 0.989821i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) −0.0530529 + 0.368991i −0.0530529 + 0.368991i
\(121\) 0.841254 0.540641i 0.841254 0.540641i
\(122\) 1.04408 + 2.28621i 1.04408 + 2.28621i
\(123\) 0 0
\(124\) −0.0845850 0.588302i −0.0845850 0.588302i
\(125\) 0.415415 0.909632i 0.415415 0.909632i
\(126\) 0 0
\(127\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(128\) −0.297176 + 0.650724i −0.297176 + 0.650724i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(136\) −0.601808 0.176707i −0.601808 0.176707i
\(137\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(138\) 0.857685 0.989821i 0.857685 0.989821i
\(139\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(140\) 0 0
\(141\) 1.25667 1.45027i 1.25667 1.45027i
\(142\) 0 0
\(143\) 0 0
\(144\) −1.01255 + 0.650724i −1.01255 + 0.650724i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.142315 0.989821i −0.142315 0.989821i
\(148\) 0 0
\(149\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(150\) 1.25667 0.368991i 1.25667 0.368991i
\(151\) 0.698939 1.53046i 0.698939 1.53046i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(152\) −0.0440780 0.306569i −0.0440780 0.306569i
\(153\) −1.10181 1.27155i −1.10181 1.27155i
\(154\) 0 0
\(155\) 0.698939 0.449181i 0.698939 0.449181i
\(156\) 0 0
\(157\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(158\) −0.244123 + 0.281733i −0.244123 + 0.281733i
\(159\) 1.84125 + 0.540641i 1.84125 + 0.540641i
\(160\) 1.20362 1.20362
\(161\) 0 0
\(162\) −1.30972 −1.30972
\(163\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −0.244123 + 1.69791i −0.244123 + 1.69791i
\(167\) −0.239446 + 0.153882i −0.239446 + 0.153882i −0.654861 0.755750i \(-0.727273\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(168\) 0 0
\(169\) −0.654861 0.755750i −0.654861 0.755750i
\(170\) 0.313607 + 2.18119i 0.313607 + 2.18119i
\(171\) 0.345139 0.755750i 0.345139 0.755750i
\(172\) 0 0
\(173\) 1.84125 0.540641i 1.84125 0.540641i 0.841254 0.540641i \(-0.181818\pi\)
1.00000 \(0\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(180\) 0.601808 + 0.386758i 0.601808 + 0.386758i
\(181\) −1.10181 + 1.27155i −1.10181 + 1.27155i −0.142315 + 0.989821i \(0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(182\) 0 0
\(183\) −1.91899 −1.91899
\(184\) 0.313607 + 0.201543i 0.313607 + 0.201543i
\(185\) 0 0
\(186\) 1.04408 + 0.306569i 1.04408 + 0.306569i
\(187\) 0 0
\(188\) −1.15486 0.742184i −1.15486 0.742184i
\(189\) 0 0
\(190\) −0.915415 + 0.588302i −0.915415 + 0.588302i
\(191\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(192\) 0.244123 + 0.281733i 0.244123 + 0.281733i
\(193\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.686393 + 0.201543i −0.686393 + 0.201543i
\(197\) −0.118239 + 0.258908i −0.118239 + 0.258908i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(198\) 0 0
\(199\) 0.857685 + 0.989821i 0.857685 + 0.989821i 1.00000 \(0\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(200\) 0.154861 + 0.339098i 0.154861 + 0.339098i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −0.788201 + 0.909632i −0.788201 + 0.909632i
\(205\) 0 0
\(206\) 0 0
\(207\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1.41542 + 0.909632i 1.41542 + 0.909632i 1.00000 \(0\)
0.415415 + 0.909632i \(0.363636\pi\)
\(212\) 0.195368 1.35881i 0.195368 1.35881i
\(213\) 0 0
\(214\) 0.154861 + 0.339098i 0.154861 + 0.339098i
\(215\) 0 0
\(216\) −0.0530529 0.368991i −0.0530529 0.368991i
\(217\) 0 0
\(218\) −0.357685 + 0.105026i −0.357685 + 0.105026i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(224\) 0 0
\(225\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(226\) 1.44306 + 0.927399i 1.44306 + 0.927399i
\(227\) 1.25667 1.45027i 1.25667 1.45027i 0.415415 0.909632i \(-0.363636\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(228\) −0.570276 0.167448i −0.570276 0.167448i
\(229\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(230\) 0.186393 1.29639i 0.186393 1.29639i
\(231\) 0 0
\(232\) 0 0
\(233\) 0.186393 0.215109i 0.186393 0.215109i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(234\) 0 0
\(235\) 0.273100 1.89945i 0.273100 1.89945i
\(236\) 0 0
\(237\) −0.118239 0.258908i −0.118239 0.258908i
\(238\) 0 0
\(239\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(240\) −0.500000 + 1.09485i −0.500000 + 1.09485i
\(241\) −1.61435 + 0.474017i −1.61435 + 0.474017i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(242\) 1.25667 0.368991i 1.25667 0.368991i
\(243\) 0.415415 0.909632i 0.415415 0.909632i
\(244\) 0.195368 + 1.35881i 0.195368 + 1.35881i
\(245\) −0.654861 0.755750i −0.654861 0.755750i
\(246\) 0 0
\(247\) 0 0
\(248\) −0.0440780 + 0.306569i −0.0440780 + 0.306569i
\(249\) −1.10181 0.708089i −1.10181 0.708089i
\(250\) 0.857685 0.989821i 0.857685 0.989821i
\(251\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −1.61435 0.474017i −1.61435 0.474017i
\(256\) −0.857685 + 0.989821i −0.857685 + 0.989821i
\(257\) 1.41542 + 0.909632i 1.41542 + 0.909632i 1.00000 \(0\)
0.415415 + 0.909632i \(0.363636\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.345139 0.755750i 0.345139 0.755750i −0.654861 0.755750i \(-0.727273\pi\)
1.00000 \(0\)
\(264\) 0 0
\(265\) 1.84125 0.540641i 1.84125 0.540641i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(270\) −1.10181 + 0.708089i −1.10181 + 0.708089i
\(271\) 0.273100 1.89945i 0.273100 1.89945i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(272\) −1.70362 1.09485i −1.70362 1.09485i
\(273\) 0 0
\(274\) −0.357685 0.105026i −0.357685 0.105026i
\(275\) 0 0
\(276\) 0.601808 0.386758i 0.601808 0.386758i
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) −2.41153 0.708089i −2.41153 0.708089i
\(279\) −0.544078 + 0.627899i −0.544078 + 0.627899i
\(280\) 0 0
\(281\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(282\) 2.11435 1.35881i 2.11435 1.35881i
\(283\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(284\) 0 0
\(285\) −0.118239 0.822373i −0.118239 0.822373i
\(286\) 0 0
\(287\) 0 0
\(288\) −1.15486 + 0.339098i −1.15486 + 0.339098i
\(289\) 0.760554 1.66538i 0.760554 1.66538i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.10181 + 0.708089i −1.10181 + 0.708089i −0.959493 0.281733i \(-0.909091\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(294\) 0.186393 1.29639i 0.186393 1.29639i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0.715370 0.715370
\(301\) 0 0
\(302\) 1.44306 1.66538i 1.44306 1.66538i
\(303\) 0 0
\(304\) 0.142315 0.989821i 0.142315 0.989821i
\(305\) −1.61435 + 1.03748i −1.61435 + 1.03748i
\(306\) −0.915415 2.00448i −0.915415 2.00448i
\(307\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 1.04408 0.306569i 1.04408 0.306569i
\(311\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(312\) 0 0
\(313\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −0.171292 + 0.110083i −0.171292 + 0.110083i
\(317\) −0.239446 + 1.66538i −0.239446 + 1.66538i 0.415415 + 0.909632i \(0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(318\) 2.11435 + 1.35881i 2.11435 + 1.35881i
\(319\) 0 0
\(320\) 0.357685 + 0.105026i 0.357685 + 0.105026i
\(321\) −0.284630 −0.284630
\(322\) 0 0
\(323\) 1.39788 1.39788
\(324\) −0.686393 0.201543i −0.686393 0.201543i
\(325\) 0 0
\(326\) 0 0
\(327\) 0.0405070 0.281733i 0.0405070 0.281733i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.186393 + 1.29639i 0.186393 + 1.29639i 0.841254 + 0.540641i \(0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(332\) −0.389217 + 0.852267i −0.389217 + 0.852267i
\(333\) 0 0
\(334\) −0.357685 + 0.105026i −0.357685 + 0.105026i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(338\) −0.544078 1.19136i −0.544078 1.19136i
\(339\) −1.10181 + 0.708089i −1.10181 + 0.708089i
\(340\) −0.171292 + 1.19136i −0.171292 + 1.19136i
\(341\) 0 0
\(342\) 0.712591 0.822373i 0.712591 0.822373i
\(343\) 0 0
\(344\) 0 0
\(345\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(346\) 2.51334 2.51334
\(347\) −0.797176 0.234072i −0.797176 0.234072i −0.142315 0.989821i \(-0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(348\) 0 0
\(349\) −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i \(-0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.544078 0.627899i −0.544078 0.627899i 0.415415 0.909632i \(-0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(360\) −0.244123 0.281733i −0.244123 0.281733i
\(361\) −0.128663 0.281733i −0.128663 0.281733i
\(362\) −1.85380 + 1.19136i −1.85380 + 1.19136i
\(363\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(364\) 0 0
\(365\) 0 0
\(366\) −2.41153 0.708089i −2.41153 0.708089i
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0.788201 + 0.909632i 0.788201 + 0.909632i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0.500000 + 0.321330i 0.500000 + 0.321330i
\(373\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(374\) 0 0
\(375\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(376\) 0.468468 + 0.540641i 0.468468 + 0.540641i
\(377\) 0 0
\(378\) 0 0
\(379\) 1.25667 0.368991i 1.25667 0.368991i 0.415415 0.909632i \(-0.363636\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(380\) −0.570276 + 0.167448i −0.570276 + 0.167448i
\(381\) 0 0
\(382\) 0 0
\(383\) 0.857685 + 0.989821i 0.857685 + 0.989821i 1.00000 \(0\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(384\) −0.297176 0.650724i −0.297176 0.650724i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(390\) 0 0
\(391\) −1.10181 + 1.27155i −1.10181 + 1.27155i
\(392\) 0.372786 0.372786
\(393\) 0 0
\(394\) −0.244123 + 0.281733i −0.244123 + 0.281733i
\(395\) −0.239446 0.153882i −0.239446 0.153882i
\(396\) 0 0
\(397\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(398\) 0.712591 + 1.56036i 0.712591 + 1.56036i
\(399\) 0 0
\(400\) 0.171292 + 1.19136i 0.171292 + 1.19136i
\(401\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −0.142315 0.989821i −0.142315 0.989821i
\(406\) 0 0
\(407\) 0 0
\(408\) 0.527646 0.339098i 0.527646 0.339098i
\(409\) −0.239446 + 1.66538i −0.239446 + 1.66538i 0.415415 + 0.909632i \(0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(410\) 0 0
\(411\) 0.186393 0.215109i 0.186393 0.215109i
\(412\) 0 0
\(413\) 0 0
\(414\) 0.186393 + 1.29639i 0.186393 + 1.29639i
\(415\) −1.30972 −1.30972
\(416\) 0 0
\(417\) 1.25667 1.45027i 1.25667 1.45027i
\(418\) 0 0
\(419\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(420\) 0 0
\(421\) 0.345139 + 0.755750i 0.345139 + 0.755750i 1.00000 \(0\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(422\) 1.44306 + 1.66538i 1.44306 + 1.66538i
\(423\) 0.273100 + 1.89945i 0.273100 + 1.89945i
\(424\) −0.297176 + 0.650724i −0.297176 + 0.650724i
\(425\) −1.61435 + 0.474017i −1.61435 + 0.474017i
\(426\) 0 0
\(427\) 0 0
\(428\) 0.0289775 + 0.201543i 0.0289775 + 0.201543i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(432\) 0.171292 1.19136i 0.171292 1.19136i
\(433\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.203616 −0.203616
\(437\) −0.797176 0.234072i −0.797176 0.234072i
\(438\) 0 0
\(439\) 1.25667 + 0.368991i 1.25667 + 0.368991i 0.841254 0.540641i \(-0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(440\) 0 0
\(441\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(442\) 0 0
\(443\) 1.41542 0.909632i 1.41542 0.909632i 0.415415 0.909632i \(-0.363636\pi\)
1.00000 \(0\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(450\) −0.544078 + 1.19136i −0.544078 + 1.19136i
\(451\) 0 0
\(452\) 0.613563 + 0.708089i 0.613563 + 0.708089i
\(453\) 0.698939 + 1.53046i 0.698939 + 1.53046i
\(454\) 2.11435 1.35881i 2.11435 1.35881i
\(455\) 0 0
\(456\) 0.260554 + 0.167448i 0.260554 + 0.167448i
\(457\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(458\) −1.64589 0.483276i −1.64589 0.483276i
\(459\) 1.68251 1.68251
\(460\) 0.297176 0.650724i 0.297176 0.650724i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(464\) 0 0
\(465\) −0.118239 + 0.822373i −0.118239 + 0.822373i
\(466\) 0.313607 0.201543i 0.313607 0.201543i
\(467\) 0.698939 + 1.53046i 0.698939 + 1.53046i 0.841254 + 0.540641i \(0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 1.04408 2.28621i 1.04408 2.28621i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) −0.0530529 0.368991i −0.0530529 0.368991i
\(475\) −0.544078 0.627899i −0.544078 0.627899i
\(476\) 0 0
\(477\) −1.61435 + 1.03748i −1.61435 + 1.03748i
\(478\) 0 0
\(479\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(480\) −0.788201 + 0.909632i −0.788201 + 0.909632i
\(481\) 0 0
\(482\) −2.20362 −2.20362
\(483\) 0 0
\(484\) 0.715370 0.715370
\(485\) 0 0
\(486\) 0.857685 0.989821i 0.857685 0.989821i
\(487\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(488\) 0.101808 0.708089i 0.101808 0.708089i
\(489\) 0 0
\(490\) −0.544078 1.19136i −0.544078 1.19136i
\(491\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −0.415415 + 0.909632i −0.415415 + 0.909632i
\(497\) 0 0
\(498\) −1.12333 1.29639i −1.12333 1.29639i
\(499\) −0.118239 0.258908i −0.118239 0.258908i 0.841254 0.540641i \(-0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(500\) 0.601808 0.386758i 0.601808 0.386758i
\(501\) 0.0405070 0.281733i 0.0405070 0.281733i
\(502\) 0 0
\(503\) −0.544078 + 0.627899i −0.544078 + 0.627899i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.00000 1.00000
\(508\) 0 0
\(509\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(510\) −1.85380 1.19136i −1.85380 1.19136i
\(511\) 0 0
\(512\) −0.841254 + 0.540641i −0.841254 + 0.540641i
\(513\) 0.345139 + 0.755750i 0.345139 + 0.755750i
\(514\) 1.44306 + 1.66538i 1.44306 + 1.66538i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −0.797176 + 1.74557i −0.797176 + 1.74557i
\(520\) 0 0
\(521\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(522\) 0 0
\(523\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0.712591 0.822373i 0.712591 0.822373i
\(527\) −1.34125 0.393828i −1.34125 0.393828i
\(528\) 0 0
\(529\) 0.841254 0.540641i 0.841254 0.540641i
\(530\) 2.51334 2.51334
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −0.239446 + 0.153882i −0.239446 + 0.153882i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) −0.686393 + 0.201543i −0.686393 + 0.201543i
\(541\) −0.797176 + 0.234072i −0.797176 + 0.234072i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(542\) 1.04408 2.28621i 1.04408 2.28621i
\(543\) −0.239446 1.66538i −0.239446 1.66538i
\(544\) −1.32615 1.53046i −1.32615 1.53046i
\(545\) −0.118239 0.258908i −0.118239 0.258908i
\(546\) 0 0
\(547\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(548\) −0.171292 0.110083i −0.171292 0.110083i
\(549\) 1.25667 1.45027i 1.25667 1.45027i
\(550\) 0 0
\(551\) 0 0
\(552\) −0.357685 + 0.105026i −0.357685 + 0.105026i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −1.15486 0.742184i −1.15486 0.742184i
\(557\) −0.118239 + 0.822373i −0.118239 + 0.822373i 0.841254 + 0.540641i \(0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(558\) −0.915415 + 0.588302i −0.915415 + 0.588302i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.84125 0.540641i 1.84125 0.540641i 0.841254 0.540641i \(-0.181818\pi\)
1.00000 \(0\)
\(564\) 1.31718 0.386758i 1.31718 0.386758i
\(565\) −0.544078 + 1.19136i −0.544078 + 1.19136i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(570\) 0.154861 1.07708i 0.154861 1.07708i
\(571\) −1.61435 1.03748i −1.61435 1.03748i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.00000 1.00000
\(576\) −0.372786 −0.372786
\(577\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(578\) 1.57028 1.81219i 1.57028 1.81219i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −1.64589 + 0.483276i −1.64589 + 0.483276i
\(587\) −0.797176 + 0.234072i −0.797176 + 0.234072i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(588\) 0.297176 0.650724i 0.297176 0.650724i
\(589\) −0.0982369 0.683252i −0.0982369 0.683252i
\(590\) 0 0
\(591\) −0.118239 0.258908i −0.118239 0.258908i
\(592\) 0 0
\(593\) −0.118239 + 0.822373i −0.118239 + 0.822373i 0.841254 + 0.540641i \(0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.30972 −1.30972
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) −0.357685 0.105026i −0.357685 0.105026i
\(601\) 0.186393 0.215109i 0.186393 0.215109i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1.01255 0.650724i 1.01255 0.650724i
\(605\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(606\) 0 0
\(607\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(608\) 0.415415 0.909632i 0.415415 0.909632i
\(609\) 0 0
\(610\) −2.41153 + 0.708089i −2.41153 + 0.708089i
\(611\) 0 0
\(612\) −0.171292 1.19136i −0.171292 1.19136i
\(613\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.61435 1.03748i −1.61435 1.03748i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(618\) 0 0
\(619\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i \(-0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(620\) 0.594351 0.594351
\(621\) −0.959493 0.281733i −0.959493 0.281733i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.698939 1.53046i 0.698939 1.53046i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(632\) 0.101808 0.0298935i 0.101808 0.0298935i
\(633\) −1.61435 + 0.474017i −1.61435 + 0.474017i
\(634\) −0.915415 + 2.00448i −0.915415 + 2.00448i
\(635\) 0 0
\(636\) 0.898983 + 1.03748i 0.898983 + 1.03748i
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −0.601808 0.386758i −0.601808 0.386758i
\(641\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(642\) −0.357685 0.105026i −0.357685 0.105026i
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.75667 + 0.515804i 1.75667 + 0.515804i
\(647\) −1.10181 + 1.27155i −1.10181 + 1.27155i −0.142315 + 0.989821i \(0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(648\) 0.313607 + 0.201543i 0.313607 + 0.201543i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i 1.00000 \(0\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(654\) 0.154861 0.339098i 0.154861 0.339098i
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(660\) 0 0
\(661\) 0.698939 0.449181i 0.698939 0.449181i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(662\) −0.244123 + 1.69791i −0.244123 + 1.69791i
\(663\) 0 0
\(664\) 0.319733 0.368991i 0.319733 0.368991i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −0.203616 −0.203616
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(674\) 0 0
\(675\) −0.654861 0.755750i −0.654861 0.755750i
\(676\) −0.101808 0.708089i −0.101808 0.708089i
\(677\) −0.118239 + 0.258908i −0.118239 + 0.258908i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(678\) −1.64589 + 0.483276i −1.64589 + 0.483276i
\(679\) 0 0
\(680\) 0.260554 0.570534i 0.260554 0.570534i
\(681\) 0.273100 + 1.89945i 0.273100 + 1.89945i
\(682\) 0 0
\(683\) −0.797176 1.74557i −0.797176 1.74557i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(684\) 0.500000 0.321330i 0.500000 0.321330i
\(685\) 0.0405070 0.281733i 0.0405070 0.281733i
\(686\) 0 0
\(687\) 0.857685 0.989821i 0.857685 0.989821i
\(688\) 0 0
\(689\) 0 0
\(690\) 0.857685 + 0.989821i 0.857685 + 0.989821i
\(691\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(692\) 1.31718 + 0.386758i 1.31718 + 0.386758i
\(693\) 0 0
\(694\) −0.915415 0.588302i −0.915415 0.588302i
\(695\) 0.273100 1.89945i 0.273100 1.89945i
\(696\) 0 0
\(697\) 0 0
\(698\) −1.12333 1.29639i −1.12333 1.29639i
\(699\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i
\(700\) 0 0
\(701\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 1.25667 + 1.45027i 1.25667 + 1.45027i
\(706\) −0.452036 0.989821i −0.452036 0.989821i
\(707\) 0 0
\(708\) 0 0
\(709\) 1.41542 + 0.909632i 1.41542 + 0.909632i 1.00000 \(0\)
0.415415 + 0.909632i \(0.363636\pi\)
\(710\) 0 0
\(711\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i
\(712\) 0 0
\(713\) 0.698939 + 0.449181i 0.698939 + 0.449181i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(720\) −0.500000 1.09485i −0.500000 1.09485i
\(721\) 0 0
\(722\) −0.0577299 0.401520i −0.0577299 0.401520i
\(723\) 0.698939 1.53046i 0.698939 1.53046i
\(724\) −1.15486 + 0.339098i −1.15486 + 0.339098i
\(725\) 0 0
\(726\) −0.544078 + 1.19136i −0.544078 + 1.19136i
\(727\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(728\) 0 0
\(729\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(730\) 0 0
\(731\) 0 0
\(732\) −1.15486 0.742184i −1.15486 0.742184i
\(733\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(734\) 0 0
\(735\) 1.00000 1.00000
\(736\) 0.500000 + 1.09485i 0.500000 + 1.09485i
\(737\) 0 0
\(738\) 0 0
\(739\) 0.857685 0.989821i 0.857685 0.989821i −0.142315 0.989821i \(-0.545455\pi\)
1.00000 \(0\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −0.544078 1.19136i −0.544078 1.19136i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(744\) −0.202824 0.234072i −0.202824 0.234072i
\(745\) 0 0
\(746\) 0 0
\(747\) 1.25667 0.368991i 1.25667 0.368991i
\(748\) 0 0
\(749\) 0 0
\(750\) 0.186393 + 1.29639i 0.186393 + 1.29639i
\(751\) −1.10181 1.27155i −1.10181 1.27155i −0.959493 0.281733i \(-0.909091\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(752\) 0.959493 + 2.10100i 0.959493 + 2.10100i
\(753\) 0 0
\(754\) 0 0
\(755\) 1.41542 + 0.909632i 1.41542 + 0.909632i
\(756\) 0 0
\(757\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(758\) 1.71537 1.71537
\(759\) 0 0
\(760\) 0.309721 0.309721
\(761\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.41542 0.909632i 1.41542 0.909632i
\(766\) 0.712591 + 1.56036i 0.712591 + 1.56036i
\(767\) 0 0
\(768\) −0.186393 1.29639i −0.186393 1.29639i
\(769\) 0.830830 1.81926i 0.830830 1.81926i 0.415415 0.909632i \(-0.363636\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(770\) 0 0
\(771\) −1.61435 + 0.474017i −1.61435 + 0.474017i
\(772\) 0 0
\(773\) −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(774\) 0 0
\(775\) 0.345139 + 0.755750i 0.345139 + 0.755750i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) −1.85380 + 1.19136i −1.85380 + 1.19136i
\(783\) 0 0
\(784\) 1.15486 + 0.339098i 1.15486 + 0.339098i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(788\) −0.171292 + 0.110083i −0.171292 + 0.110083i
\(789\) 0.345139 + 0.755750i 0.345139 + 0.755750i
\(790\) −0.244123 0.281733i −0.244123 0.281733i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −0.797176 + 1.74557i −0.797176 + 1.74557i
\(796\) 0.133340 + 0.927399i 0.133340 + 0.927399i
\(797\) −0.544078 0.627899i −0.544078 0.627899i 0.415415 0.909632i \(-0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(798\) 0 0
\(799\) −2.71616 + 1.74557i −2.71616 + 1.74557i
\(800\) −0.171292 + 1.19136i −0.171292 + 1.19136i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(810\) 0.186393 1.29639i 0.186393 1.29639i
\(811\) −0.239446 + 0.153882i −0.239446 + 0.153882i −0.654861 0.755750i \(-0.727273\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(812\) 0 0
\(813\) 1.25667 + 1.45027i 1.25667 + 1.45027i
\(814\) 0 0
\(815\) 0 0
\(816\) 1.94306 0.570534i 1.94306 0.570534i
\(817\) 0 0
\(818\) −0.915415 + 2.00448i −0.915415 + 2.00448i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(822\) 0.313607 0.201543i 0.313607 0.201543i
\(823\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(828\) −0.101808 + 0.708089i −0.101808 + 0.708089i
\(829\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(830\) −1.64589 0.483276i −1.64589 0.483276i
\(831\) 0 0
\(832\) 0 0
\(833\) −0.239446 + 1.66538i −0.239446 + 1.66538i
\(834\) 2.11435 1.35881i 2.11435 1.35881i
\(835\) −0.118239 0.258908i −0.118239 0.258908i
\(836\) 0 0
\(837\) −0.118239 0.822373i −0.118239 0.822373i
\(838\) 0 0
\(839\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(840\) 0 0
\(841\) 0.415415 0.909632i 0.415415 0.909632i
\(842\) 0.154861 + 1.07708i 0.154861 + 1.07708i
\(843\) 0 0
\(844\) 0.500000 + 1.09485i 0.500000 + 1.09485i
\(845\) 0.841254 0.540641i 0.841254 0.540641i
\(846\) −0.357685 + 2.48775i −0.357685 + 2.48775i
\(847\) 0 0
\(848\) −1.51255 + 1.74557i −1.51255 + 1.74557i
\(849\) 0 0
\(850\) −2.20362 −2.20362
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(854\) 0 0
\(855\) 0.698939 + 0.449181i 0.698939 + 0.449181i
\(856\) 0.0151004 0.105026i 0.0151004 0.105026i
\(857\) 0.698939 0.449181i 0.698939 0.449181i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(858\) 0 0
\(859\) −1.10181 1.27155i −1.10181 1.27155i −0.959493 0.281733i \(-0.909091\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.273100 0.0801894i 0.273100 0.0801894i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(864\) 0.500000 1.09485i 0.500000 1.09485i
\(865\) 0.273100 + 1.89945i 0.273100 + 1.89945i
\(866\) 0 0
\(867\) 0.760554 + 1.66538i 0.760554 + 1.66538i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0.101808 + 0.0298935i 0.101808 + 0.0298935i
\(873\) 0 0
\(874\) −0.915415 0.588302i −0.915415 0.588302i
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(878\) 1.44306 + 0.927399i 1.44306 + 0.927399i
\(879\) 0.186393 1.29639i 0.186393 1.29639i
\(880\) 0 0
\(881\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(882\) 0.857685 + 0.989821i 0.857685 + 0.989821i
\(883\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 2.11435 0.620830i 2.11435 0.620830i
\(887\) 0.698939 1.53046i 0.698939 1.53046i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.34125 0.861971i −1.34125 0.861971i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −0.468468 + 0.540641i −0.468468 + 0.540641i
\(901\) −2.71616 1.74557i −2.71616 1.74557i
\(902\) 0 0
\(903\) 0 0
\(904\) −0.202824 0.444124i −0.202824 0.444124i
\(905\) −1.10181 1.27155i −1.10181 1.27155i
\(906\) 0.313607 + 2.18119i 0.313607 + 2.18119i
\(907\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(908\) 1.31718 0.386758i 1.31718 0.386758i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(912\) 0.654861 + 0.755750i 0.654861 + 0.755750i
\(913\) 0 0
\(914\) 0 0
\(915\) 0.273100 1.89945i 0.273100 1.89945i
\(916\) −0.788201 0.506546i −0.788201 0.506546i
\(917\) 0 0
\(918\) 2.11435 + 0.620830i 2.11435 + 0.620830i
\(919\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(920\) −0.244123 + 0.281733i −0.244123 + 0.281733i
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(930\) −0.452036 + 0.989821i −0.452036 + 0.989821i
\(931\) −0.797176 + 0.234072i −0.797176 + 0.234072i
\(932\) 0.195368 0.0573652i 0.195368 0.0573652i
\(933\) 0 0
\(934\) 0.313607 + 2.18119i 0.313607 + 2.18119i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0.898983 1.03748i 0.898983 1.03748i
\(941\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.61435 1.03748i −1.61435 1.03748i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(948\) 0.0289775 0.201543i 0.0289775 0.201543i
\(949\) 0 0
\(950\) −0.452036 0.989821i −0.452036 0.989821i
\(951\) −1.10181 1.27155i −1.10181 1.27155i
\(952\) 0 0
\(953\) −0.797176 + 1.74557i −0.797176 + 1.74557i −0.142315 + 0.989821i \(0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(954\) −2.41153 + 0.708089i −2.41153 + 0.708089i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −0.313607 + 0.201543i −0.313607 + 0.201543i
\(961\) 0.0440780 0.306569i 0.0440780 0.306569i
\(962\) 0 0
\(963\) 0.186393 0.215109i 0.186393 0.215109i
\(964\) −1.15486 0.339098i −1.15486 0.339098i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) −0.357685 0.105026i −0.357685 0.105026i
\(969\) −0.915415 + 1.05645i −0.915415 + 1.05645i
\(970\) 0 0
\(971\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(972\) 0.601808 0.386758i 0.601808 0.386758i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0.959493 2.10100i 0.959493 2.10100i
\(977\) 0.273100 0.0801894i 0.273100 0.0801894i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −0.101808 0.708089i −0.101808 0.708089i
\(981\) 0.186393 + 0.215109i 0.186393 + 0.215109i
\(982\) 0 0
\(983\) −0.239446 + 0.153882i −0.239446 + 0.153882i −0.654861 0.755750i \(-0.727273\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(984\) 0 0
\(985\) −0.239446 0.153882i −0.239446 0.153882i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i \(-0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(992\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(993\) −1.10181 0.708089i −1.10181 0.708089i
\(994\) 0 0
\(995\) −1.10181 + 0.708089i −1.10181 + 0.708089i
\(996\) −0.389217 0.852267i −0.389217 0.852267i
\(997\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(998\) −0.0530529 0.368991i −0.0530529 0.368991i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 345.1.p.a.179.1 10
3.2 odd 2 345.1.p.b.179.1 yes 10
5.2 odd 4 1725.1.bc.a.1076.1 20
5.3 odd 4 1725.1.bc.a.1076.2 20
5.4 even 2 345.1.p.b.179.1 yes 10
15.2 even 4 1725.1.bc.a.1076.2 20
15.8 even 4 1725.1.bc.a.1076.1 20
15.14 odd 2 CM 345.1.p.a.179.1 10
23.9 even 11 inner 345.1.p.a.239.1 yes 10
69.32 odd 22 345.1.p.b.239.1 yes 10
115.9 even 22 345.1.p.b.239.1 yes 10
115.32 odd 44 1725.1.bc.a.101.2 20
115.78 odd 44 1725.1.bc.a.101.1 20
345.32 even 44 1725.1.bc.a.101.1 20
345.239 odd 22 inner 345.1.p.a.239.1 yes 10
345.308 even 44 1725.1.bc.a.101.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
345.1.p.a.179.1 10 1.1 even 1 trivial
345.1.p.a.179.1 10 15.14 odd 2 CM
345.1.p.a.239.1 yes 10 23.9 even 11 inner
345.1.p.a.239.1 yes 10 345.239 odd 22 inner
345.1.p.b.179.1 yes 10 3.2 odd 2
345.1.p.b.179.1 yes 10 5.4 even 2
345.1.p.b.239.1 yes 10 69.32 odd 22
345.1.p.b.239.1 yes 10 115.9 even 22
1725.1.bc.a.101.1 20 115.78 odd 44
1725.1.bc.a.101.1 20 345.32 even 44
1725.1.bc.a.101.2 20 115.32 odd 44
1725.1.bc.a.101.2 20 345.308 even 44
1725.1.bc.a.1076.1 20 5.2 odd 4
1725.1.bc.a.1076.1 20 15.8 even 4
1725.1.bc.a.1076.2 20 5.3 odd 4
1725.1.bc.a.1076.2 20 15.2 even 4