Properties

Label 35.10.a.c.1.3
Level 3535
Weight 1010
Character 35.1
Self dual yes
Analytic conductor 18.02618.026
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [35,10,Mod(1,35)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(35, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("35.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: N N == 35=57 35 = 5 \cdot 7
Weight: k k == 10 10
Character orbit: [χ][\chi] == 35.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 18.026254265718.0262542657
Analytic rank: 11
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3648x2+6926x8308 x^{4} - x^{3} - 648x^{2} + 6926x - 8308 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 2325 2\cdot 3^{2}\cdot 5
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 29.3917-29.3917 of defining polynomial
Character χ\chi == 35.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+15.4436q2+137.736q3273.496q4625.000q5+2127.13q62401.00q712130.9q8711.820q99652.23q108060.89q1137670.3q12137129.q1337080.0q1486084.9q1547313.7q1623676.1q1710993.0q18+572389.q19+170935.q20330704.q21124489.q22997700.q231.67086e6q24+390625.q252.11777e6q262.80910e6q27+656664.q28+1.97927e6q291.32946e6q308.47740e6q31+5.48031e6q321.11027e6q33365643.q34+1.50062e6q35+194680.q364.33062e6q37+8.83972e6q381.88876e7q39+7.58179e6q401.48554e7q415.10725e6q42+3.14842e7q43+2.20462e6q44+444888.q451.54081e7q46+2.31045e7q476.51680e6q48+5.76480e6q49+6.03264e6q503.26104e6q51+3.75044e7q526.79444e6q534.33825e7q54+5.03805e6q55+2.91262e7q56+7.88385e7q57+3.05671e7q58+8.85117e7q59+2.35439e7q60+1.24823e8q611.30921e8q62+1.70908e6q63+1.08860e8q64+8.57059e7q651.71466e7q66+9.58712e7q67+6.47531e6q681.37419e8q69+2.31750e7q702.16795e8q71+8.63500e6q721.50701e8q736.68803e7q74+5.38031e7q751.56546e8q76+1.93542e7q772.91693e8q783.89487e8q79+2.95711e7q803.72903e8q812.29420e8q827.43467e8q83+9.04463e7q84+1.47975e7q85+4.86228e8q86+2.72617e8q87+9.77855e7q88+2.64429e8q89+6.87065e6q90+3.29248e8q91+2.72867e8q921.16764e9q93+3.56816e8q943.57743e8q95+7.54835e8q96+1.39343e9q97+8.90291e7q98+5.73790e6q99+O(q100)q+15.4436 q^{2} +137.736 q^{3} -273.496 q^{4} -625.000 q^{5} +2127.13 q^{6} -2401.00 q^{7} -12130.9 q^{8} -711.820 q^{9} -9652.23 q^{10} -8060.89 q^{11} -37670.3 q^{12} -137129. q^{13} -37080.0 q^{14} -86084.9 q^{15} -47313.7 q^{16} -23676.1 q^{17} -10993.0 q^{18} +572389. q^{19} +170935. q^{20} -330704. q^{21} -124489. q^{22} -997700. q^{23} -1.67086e6 q^{24} +390625. q^{25} -2.11777e6 q^{26} -2.80910e6 q^{27} +656664. q^{28} +1.97927e6 q^{29} -1.32946e6 q^{30} -8.47740e6 q^{31} +5.48031e6 q^{32} -1.11027e6 q^{33} -365643. q^{34} +1.50062e6 q^{35} +194680. q^{36} -4.33062e6 q^{37} +8.83972e6 q^{38} -1.88876e7 q^{39} +7.58179e6 q^{40} -1.48554e7 q^{41} -5.10725e6 q^{42} +3.14842e7 q^{43} +2.20462e6 q^{44} +444888. q^{45} -1.54081e7 q^{46} +2.31045e7 q^{47} -6.51680e6 q^{48} +5.76480e6 q^{49} +6.03264e6 q^{50} -3.26104e6 q^{51} +3.75044e7 q^{52} -6.79444e6 q^{53} -4.33825e7 q^{54} +5.03805e6 q^{55} +2.91262e7 q^{56} +7.88385e7 q^{57} +3.05671e7 q^{58} +8.85117e7 q^{59} +2.35439e7 q^{60} +1.24823e8 q^{61} -1.30921e8 q^{62} +1.70908e6 q^{63} +1.08860e8 q^{64} +8.57059e7 q^{65} -1.71466e7 q^{66} +9.58712e7 q^{67} +6.47531e6 q^{68} -1.37419e8 q^{69} +2.31750e7 q^{70} -2.16795e8 q^{71} +8.63500e6 q^{72} -1.50701e8 q^{73} -6.68803e7 q^{74} +5.38031e7 q^{75} -1.56546e8 q^{76} +1.93542e7 q^{77} -2.91693e8 q^{78} -3.89487e8 q^{79} +2.95711e7 q^{80} -3.72903e8 q^{81} -2.29420e8 q^{82} -7.43467e8 q^{83} +9.04463e7 q^{84} +1.47975e7 q^{85} +4.86228e8 q^{86} +2.72617e8 q^{87} +9.77855e7 q^{88} +2.64429e8 q^{89} +6.87065e6 q^{90} +3.29248e8 q^{91} +2.72867e8 q^{92} -1.16764e9 q^{93} +3.56816e8 q^{94} -3.57743e8 q^{95} +7.54835e8 q^{96} +1.39343e9 q^{97} +8.90291e7 q^{98} +5.73790e6 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q19q218q3+1729q42500q5144q69604q730495q8+5382q9+11875q10+82438q11+41328q1272962q13+45619q14+11250q15+64257q16++1222369524q99+O(q100) 4 q - 19 q^{2} - 18 q^{3} + 1729 q^{4} - 2500 q^{5} - 144 q^{6} - 9604 q^{7} - 30495 q^{8} + 5382 q^{9} + 11875 q^{10} + 82438 q^{11} + 41328 q^{12} - 72962 q^{13} + 45619 q^{14} + 11250 q^{15} + 64257 q^{16}+ \cdots + 1222369524 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 15.4436 0.682516 0.341258 0.939970i 0.389147π-0.389147\pi
0.341258 + 0.939970i 0.389147π0.389147\pi
33 137.736 0.981751 0.490876 0.871230i 0.336677π-0.336677\pi
0.490876 + 0.871230i 0.336677π0.336677\pi
44 −273.496 −0.534172
55 −625.000 −0.447214
66 2127.13 0.670061
77 −2401.00 −0.377964
88 −12130.9 −1.04710
99 −711.820 −0.0361642
1010 −9652.23 −0.305230
1111 −8060.89 −0.166003 −0.0830015 0.996549i 0.526451π-0.526451\pi
−0.0830015 + 0.996549i 0.526451π0.526451\pi
1212 −37670.3 −0.524424
1313 −137129. −1.33164 −0.665818 0.746114i 0.731917π-0.731917\pi
−0.665818 + 0.746114i 0.731917π0.731917\pi
1414 −37080.0 −0.257967
1515 −86084.9 −0.439053
1616 −47313.7 −0.180488
1717 −23676.1 −0.0687526 −0.0343763 0.999409i 0.510944π-0.510944\pi
−0.0343763 + 0.999409i 0.510944π0.510944\pi
1818 −10993.0 −0.0246826
1919 572389. 1.00763 0.503814 0.863812i 0.331930π-0.331930\pi
0.503814 + 0.863812i 0.331930π0.331930\pi
2020 170935. 0.238889
2121 −330704. −0.371067
2222 −124489. −0.113300
2323 −997700. −0.743404 −0.371702 0.928352i 0.621226π-0.621226\pi
−0.371702 + 0.928352i 0.621226π0.621226\pi
2424 −1.67086e6 −1.02799
2525 390625. 0.200000
2626 −2.11777e6 −0.908862
2727 −2.80910e6 −1.01726
2828 656664. 0.201898
2929 1.97927e6 0.519655 0.259827 0.965655i 0.416334π-0.416334\pi
0.259827 + 0.965655i 0.416334π0.416334\pi
3030 −1.32946e6 −0.299660
3131 −8.47740e6 −1.64867 −0.824337 0.566099i 0.808452π-0.808452\pi
−0.824337 + 0.566099i 0.808452π0.808452\pi
3232 5.48031e6 0.923911
3333 −1.11027e6 −0.162974
3434 −365643. −0.0469247
3535 1.50062e6 0.169031
3636 194680. 0.0193179
3737 −4.33062e6 −0.379877 −0.189938 0.981796i 0.560829π-0.560829\pi
−0.189938 + 0.981796i 0.560829π0.560829\pi
3838 8.83972e6 0.687721
3939 −1.88876e7 −1.30734
4040 7.58179e6 0.468276
4141 −1.48554e7 −0.821024 −0.410512 0.911855i 0.634650π-0.634650\pi
−0.410512 + 0.911855i 0.634650π0.634650\pi
4242 −5.10725e6 −0.253259
4343 3.14842e7 1.40438 0.702189 0.711991i 0.252206π-0.252206\pi
0.702189 + 0.711991i 0.252206π0.252206\pi
4444 2.20462e6 0.0886742
4545 444888. 0.0161731
4646 −1.54081e7 −0.507385
4747 2.31045e7 0.690647 0.345324 0.938484i 0.387769π-0.387769\pi
0.345324 + 0.938484i 0.387769π0.387769\pi
4848 −6.51680e6 −0.177194
4949 5.76480e6 0.142857
5050 6.03264e6 0.136503
5151 −3.26104e6 −0.0674980
5252 3.75044e7 0.711323
5353 −6.79444e6 −0.118280 −0.0591401 0.998250i 0.518836π-0.518836\pi
−0.0591401 + 0.998250i 0.518836π0.518836\pi
5454 −4.33825e7 −0.694293
5555 5.03805e6 0.0742388
5656 2.91262e7 0.395765
5757 7.88385e7 0.989239
5858 3.05671e7 0.354673
5959 8.85117e7 0.950969 0.475485 0.879724i 0.342273π-0.342273\pi
0.475485 + 0.879724i 0.342273π0.342273\pi
6060 2.35439e7 0.234530
6161 1.24823e8 1.15428 0.577138 0.816647i 0.304169π-0.304169\pi
0.577138 + 0.816647i 0.304169π0.304169\pi
6262 −1.30921e8 −1.12525
6363 1.70908e6 0.0136688
6464 1.08860e8 0.811071
6565 8.57059e7 0.595526
6666 −1.71466e7 −0.111232
6767 9.58712e7 0.581235 0.290617 0.956839i 0.406139π-0.406139\pi
0.290617 + 0.956839i 0.406139π0.406139\pi
6868 6.47531e6 0.0367257
6969 −1.37419e8 −0.729838
7070 2.31750e7 0.115366
7171 −2.16795e8 −1.01248 −0.506241 0.862392i 0.668965π-0.668965\pi
−0.506241 + 0.862392i 0.668965π0.668965\pi
7272 8.63500e6 0.0378674
7373 −1.50701e8 −0.621101 −0.310551 0.950557i 0.600513π-0.600513\pi
−0.310551 + 0.950557i 0.600513π0.600513\pi
7474 −6.68803e7 −0.259272
7575 5.38031e7 0.196350
7676 −1.56546e8 −0.538247
7777 1.93542e7 0.0627432
7878 −2.91693e8 −0.892277
7979 −3.89487e8 −1.12505 −0.562523 0.826781i 0.690169π-0.690169\pi
−0.562523 + 0.826781i 0.690169π0.690169\pi
8080 2.95711e7 0.0807165
8181 −3.72903e8 −0.962528
8282 −2.29420e8 −0.560362
8383 −7.43467e8 −1.71953 −0.859766 0.510688i 0.829391π-0.829391\pi
−0.859766 + 0.510688i 0.829391π0.829391\pi
8484 9.04463e7 0.198214
8585 1.47975e7 0.0307471
8686 4.86228e8 0.958510
8787 2.72617e8 0.510172
8888 9.77855e7 0.173821
8989 2.64429e8 0.446739 0.223369 0.974734i 0.428294π-0.428294\pi
0.223369 + 0.974734i 0.428294π0.428294\pi
9090 6.87065e6 0.0110384
9191 3.29248e8 0.503311
9292 2.72867e8 0.397106
9393 −1.16764e9 −1.61859
9494 3.56816e8 0.471378
9595 −3.57743e8 −0.450625
9696 7.54835e8 0.907051
9797 1.39343e9 1.59813 0.799063 0.601248i 0.205329π-0.205329\pi
0.799063 + 0.601248i 0.205329π0.205329\pi
9898 8.90291e7 0.0975022
9999 5.73790e6 0.00600337
100100 −1.06834e8 −0.106834
101101 −6.43863e8 −0.615669 −0.307834 0.951440i 0.599604π-0.599604\pi
−0.307834 + 0.951440i 0.599604π0.599604\pi
102102 −5.03621e7 −0.0460684
103103 −9.64216e8 −0.844125 −0.422063 0.906567i 0.638694π-0.638694\pi
−0.422063 + 0.906567i 0.638694π0.638694\pi
104104 1.66350e9 1.39435
105105 2.06690e8 0.165946
106106 −1.04930e8 −0.0807281
107107 −1.97477e9 −1.45643 −0.728215 0.685348i 0.759650π-0.759650\pi
−0.728215 + 0.685348i 0.759650π0.759650\pi
108108 7.68278e8 0.543390
109109 1.03957e9 0.705401 0.352701 0.935736i 0.385263π-0.385263\pi
0.352701 + 0.935736i 0.385263π0.385263\pi
110110 7.78055e7 0.0506691
111111 −5.96482e8 −0.372944
112112 1.13600e8 0.0682179
113113 5.48265e8 0.316328 0.158164 0.987413i 0.449443π-0.449443\pi
0.158164 + 0.987413i 0.449443π0.449443\pi
114114 1.21755e9 0.675171
115115 6.23563e8 0.332460
116116 −5.41324e8 −0.277585
117117 9.76115e7 0.0481576
118118 1.36694e9 0.649052
119119 5.68462e7 0.0259860
120120 1.04428e9 0.459730
121121 −2.29297e9 −0.972443
122122 1.92771e9 0.787811
123123 −2.04612e9 −0.806042
124124 2.31854e9 0.880676
125125 −2.44141e8 −0.0894427
126126 2.63943e7 0.00932916
127127 −5.40565e9 −1.84387 −0.921936 0.387341i 0.873394π-0.873394\pi
−0.921936 + 0.387341i 0.873394π0.873394\pi
128128 −1.12473e9 −0.370342
129129 4.33650e9 1.37875
130130 1.32360e9 0.406456
131131 −1.81287e9 −0.537832 −0.268916 0.963164i 0.586665π-0.586665\pi
−0.268916 + 0.963164i 0.586665π0.586665\pi
132132 3.03656e8 0.0870560
133133 −1.37431e9 −0.380847
134134 1.48059e9 0.396702
135135 1.75569e9 0.454931
136136 2.87211e8 0.0719906
137137 −7.50191e8 −0.181940 −0.0909702 0.995854i 0.528997π-0.528997\pi
−0.0909702 + 0.995854i 0.528997π0.528997\pi
138138 −2.12224e9 −0.498126
139139 6.59090e9 1.49754 0.748769 0.662831i 0.230645π-0.230645\pi
0.748769 + 0.662831i 0.230645π0.230645\pi
140140 −4.10415e8 −0.0902916
141141 3.18232e9 0.678044
142142 −3.34809e9 −0.691035
143143 1.10538e9 0.221055
144144 3.36789e7 0.00652719
145145 −1.23705e9 −0.232397
146146 −2.32736e9 −0.423911
147147 7.94020e8 0.140250
148148 1.18441e9 0.202920
149149 −3.29437e9 −0.547564 −0.273782 0.961792i 0.588275π-0.588275\pi
−0.273782 + 0.961792i 0.588275π0.588275\pi
150150 8.30912e8 0.134012
151151 −1.04401e10 −1.63421 −0.817103 0.576492i 0.804421π-0.804421\pi
−0.817103 + 0.576492i 0.804421π0.804421\pi
152152 −6.94357e9 −1.05508
153153 1.68531e7 0.00248638
154154 2.98898e8 0.0428232
155155 5.29837e9 0.737310
156156 5.16570e9 0.698342
157157 −4.88247e9 −0.641344 −0.320672 0.947190i 0.603909π-0.603909\pi
−0.320672 + 0.947190i 0.603909π0.603909\pi
158158 −6.01506e9 −0.767862
159159 −9.35838e8 −0.116122
160160 −3.42519e9 −0.413186
161161 2.39548e9 0.280980
162162 −5.75895e9 −0.656940
163163 −1.00685e10 −1.11717 −0.558584 0.829448i 0.688655π-0.688655\pi
−0.558584 + 0.829448i 0.688655π0.688655\pi
164164 4.06289e9 0.438568
165165 6.93921e8 0.0728840
166166 −1.14818e10 −1.17361
167167 1.11826e10 1.11255 0.556273 0.831000i 0.312231π-0.312231\pi
0.556273 + 0.831000i 0.312231π0.312231\pi
168168 4.01172e9 0.388543
169169 8.19997e9 0.773254
170170 2.28527e8 0.0209854
171171 −4.07438e8 −0.0364400
172172 −8.61080e9 −0.750180
173173 −1.55595e10 −1.32065 −0.660325 0.750980i 0.729582π-0.729582\pi
−0.660325 + 0.750980i 0.729582π0.729582\pi
174174 4.21018e9 0.348200
175175 −9.37891e8 −0.0755929
176176 3.81391e8 0.0299615
177177 1.21912e10 0.933616
178178 4.08372e9 0.304906
179179 −1.14811e10 −0.835884 −0.417942 0.908474i 0.637248π-0.637248\pi
−0.417942 + 0.908474i 0.637248π0.637248\pi
180180 −1.21675e8 −0.00863924
181181 1.64859e10 1.14172 0.570860 0.821047i 0.306610π-0.306610\pi
0.570860 + 0.821047i 0.306610π0.306610\pi
182182 5.08476e9 0.343518
183183 1.71926e10 1.13321
184184 1.21030e10 0.778416
185185 2.70664e9 0.169886
186186 −1.80326e10 −1.10471
187187 1.90850e8 0.0114131
188188 −6.31900e9 −0.368925
189189 6.74465e9 0.384486
190190 −5.52483e9 −0.307558
191191 1.75186e10 0.952466 0.476233 0.879319i 0.342002π-0.342002\pi
0.476233 + 0.879319i 0.342002π0.342002\pi
192192 1.49940e10 0.796270
193193 −2.51278e10 −1.30361 −0.651805 0.758387i 0.725988π-0.725988\pi
−0.651805 + 0.758387i 0.725988π0.725988\pi
194194 2.15195e10 1.09075
195195 1.18048e10 0.584658
196196 −1.57665e9 −0.0763103
197197 3.28481e10 1.55386 0.776930 0.629587i 0.216776π-0.216776\pi
0.776930 + 0.629587i 0.216776π0.216776\pi
198198 8.86137e7 0.00409739
199199 −3.56924e9 −0.161338 −0.0806691 0.996741i 0.525706π-0.525706\pi
−0.0806691 + 0.996741i 0.525706π0.525706\pi
200200 −4.73862e9 −0.209419
201201 1.32049e10 0.570628
202202 −9.94354e9 −0.420204
203203 −4.75224e9 −0.196411
204204 8.91883e8 0.0360556
205205 9.28460e9 0.367173
206206 −1.48909e10 −0.576129
207207 7.10183e8 0.0268846
208208 6.48810e9 0.240344
209209 −4.61396e9 −0.167269
210210 3.19203e9 0.113261
211211 −8.88255e9 −0.308508 −0.154254 0.988031i 0.549297π-0.549297\pi
−0.154254 + 0.988031i 0.549297π0.549297\pi
212212 1.85825e9 0.0631820
213213 −2.98605e10 −0.994006
214214 −3.04975e10 −0.994037
215215 −1.96776e10 −0.628057
216216 3.40768e10 1.06517
217217 2.03542e10 0.623140
218218 1.60547e10 0.481447
219219 −2.07569e10 −0.609767
220220 −1.37789e9 −0.0396563
221221 3.24668e9 0.0915534
222222 −9.21182e9 −0.254540
223223 1.85138e10 0.501330 0.250665 0.968074i 0.419351π-0.419351\pi
0.250665 + 0.968074i 0.419351π0.419351\pi
224224 −1.31582e10 −0.349206
225225 −2.78055e8 −0.00723284
226226 8.46716e9 0.215899
227227 6.91501e10 1.72853 0.864265 0.503037i 0.167784π-0.167784\pi
0.864265 + 0.503037i 0.167784π0.167784\pi
228228 −2.15620e10 −0.528424
229229 −4.14990e10 −0.997190 −0.498595 0.866835i 0.666150π-0.666150\pi
−0.498595 + 0.866835i 0.666150π0.666150\pi
230230 9.63003e9 0.226909
231231 2.66577e9 0.0615982
232232 −2.40103e10 −0.544129
233233 1.06684e10 0.237136 0.118568 0.992946i 0.462170π-0.462170\pi
0.118568 + 0.992946i 0.462170π0.462170\pi
234234 1.50747e9 0.0328683
235235 −1.44403e10 −0.308867
236236 −2.42076e10 −0.507982
237237 −5.36463e10 −1.10452
238238 8.77908e8 0.0177359
239239 6.89311e9 0.136655 0.0683274 0.997663i 0.478234π-0.478234\pi
0.0683274 + 0.997663i 0.478234π0.478234\pi
240240 4.07300e9 0.0792435
241241 −2.72593e10 −0.520520 −0.260260 0.965539i 0.583808π-0.583808\pi
−0.260260 + 0.965539i 0.583808π0.583808\pi
242242 −3.54116e10 −0.663708
243243 3.92936e9 0.0722925
244244 −3.41386e10 −0.616582
245245 −3.60300e9 −0.0638877
246246 −3.15993e10 −0.550136
247247 −7.84913e10 −1.34179
248248 1.02838e11 1.72632
249249 −1.02402e11 −1.68815
250250 −3.77040e9 −0.0610461
251251 1.11185e11 1.76812 0.884062 0.467370i 0.154798π-0.154798\pi
0.884062 + 0.467370i 0.154798π0.154798\pi
252252 −4.67427e8 −0.00730149
253253 8.04235e9 0.123407
254254 −8.34825e10 −1.25847
255255 2.03815e9 0.0301860
256256 −7.31062e10 −1.06384
257257 −3.84555e10 −0.549869 −0.274935 0.961463i 0.588656π-0.588656\pi
−0.274935 + 0.961463i 0.588656π0.588656\pi
258258 6.69710e10 0.941018
259259 1.03978e10 0.143580
260260 −2.34402e10 −0.318113
261261 −1.40889e9 −0.0187929
262262 −2.79972e10 −0.367079
263263 1.50225e11 1.93616 0.968082 0.250634i 0.0806390π-0.0806390\pi
0.968082 + 0.250634i 0.0806390π0.0806390\pi
264264 1.34686e10 0.170649
265265 4.24653e9 0.0528965
266266 −2.12242e10 −0.259934
267267 3.64213e10 0.438587
268268 −2.62204e10 −0.310479
269269 9.22583e10 1.07429 0.537143 0.843491i 0.319503π-0.319503\pi
0.537143 + 0.843491i 0.319503π0.319503\pi
270270 2.71141e10 0.310497
271271 −1.10392e11 −1.24330 −0.621649 0.783296i 0.713537π-0.713537\pi
−0.621649 + 0.783296i 0.713537π0.713537\pi
272272 1.12020e9 0.0124090
273273 4.53492e10 0.494126
274274 −1.15856e10 −0.124177
275275 −3.14878e9 −0.0332006
276276 3.75836e10 0.389859
277277 1.06151e11 1.08334 0.541672 0.840590i 0.317792π-0.317792\pi
0.541672 + 0.840590i 0.317792π0.317792\pi
278278 1.01787e11 1.02209
279279 6.03438e9 0.0596230
280280 −1.82039e10 −0.176992
281281 1.69943e11 1.62602 0.813008 0.582252i 0.197828π-0.197828\pi
0.813008 + 0.582252i 0.197828π0.197828\pi
282282 4.91464e10 0.462776
283283 −6.63477e10 −0.614875 −0.307438 0.951568i 0.599472π-0.599472\pi
−0.307438 + 0.951568i 0.599472π0.599472\pi
284284 5.92927e10 0.540840
285285 −4.92740e10 −0.442401
286286 1.70711e10 0.150874
287287 3.56677e10 0.310318
288288 −3.90100e9 −0.0334125
289289 −1.18027e11 −0.995273
290290 −1.91044e10 −0.158614
291291 1.91925e11 1.56896
292292 4.12161e10 0.331775
293293 7.54377e9 0.0597976 0.0298988 0.999553i 0.490481π-0.490481\pi
0.0298988 + 0.999553i 0.490481π0.490481\pi
294294 1.22625e10 0.0957230
295295 −5.53198e10 −0.425286
296296 5.25342e10 0.397768
297297 2.26438e10 0.168867
298298 −5.08769e10 −0.373721
299299 1.36814e11 0.989943
300300 −1.47149e10 −0.104885
301301 −7.55935e10 −0.530805
302302 −1.61232e11 −1.11537
303303 −8.86830e10 −0.604434
304304 −2.70818e10 −0.181864
305305 −7.80142e10 −0.516208
306306 2.60272e8 0.00169700
307307 −9.90848e10 −0.636626 −0.318313 0.947986i 0.603116π-0.603116\pi
−0.318313 + 0.947986i 0.603116π0.603116\pi
308308 −5.29330e9 −0.0335157
309309 −1.32807e11 −0.828721
310310 8.18258e10 0.503225
311311 −2.78000e10 −0.168509 −0.0842545 0.996444i 0.526851π-0.526851\pi
−0.0842545 + 0.996444i 0.526851π0.526851\pi
312312 2.29123e11 1.36891
313313 7.09223e10 0.417670 0.208835 0.977951i 0.433033π-0.433033\pi
0.208835 + 0.977951i 0.433033π0.433033\pi
314314 −7.54027e10 −0.437727
315315 −1.06818e9 −0.00611287
316316 1.06523e11 0.600969
317317 −3.11422e11 −1.73214 −0.866068 0.499926i 0.833360π-0.833360\pi
−0.866068 + 0.499926i 0.833360π0.833360\pi
318318 −1.44527e10 −0.0792550
319319 −1.59547e10 −0.0862643
320320 −6.80376e10 −0.362722
321321 −2.71997e11 −1.42985
322322 3.69947e10 0.191773
323323 −1.35519e10 −0.0692770
324324 1.01988e11 0.514156
325325 −5.35662e10 −0.266327
326326 −1.55493e11 −0.762485
327327 1.43187e11 0.692529
328328 1.80208e11 0.859692
329329 −5.54739e10 −0.261040
330330 1.07166e10 0.0497445
331331 2.94782e11 1.34982 0.674908 0.737902i 0.264183π-0.264183\pi
0.674908 + 0.737902i 0.264183π0.264183\pi
332332 2.03336e11 0.918527
333333 3.08263e9 0.0137379
334334 1.72699e11 0.759330
335335 −5.99195e10 −0.259936
336336 1.56468e10 0.0669730
337337 −2.02609e11 −0.855705 −0.427852 0.903849i 0.640730π-0.640730\pi
−0.427852 + 0.903849i 0.640730π0.640730\pi
338338 1.26637e11 0.527758
339339 7.55158e10 0.310555
340340 −4.04707e9 −0.0164243
341341 6.83353e10 0.273685
342342 −6.29229e9 −0.0248709
343343 −1.38413e10 −0.0539949
344344 −3.81930e11 −1.47052
345345 8.58870e10 0.326393
346346 −2.40294e11 −0.901365
347347 −1.52000e11 −0.562810 −0.281405 0.959589i 0.590800π-0.590800\pi
−0.281405 + 0.959589i 0.590800π0.590800\pi
348348 −7.45598e10 −0.272520
349349 −2.82049e11 −1.01768 −0.508840 0.860861i 0.669925π-0.669925\pi
−0.508840 + 0.860861i 0.669925π0.669925\pi
350350 −1.44844e10 −0.0515933
351351 3.85210e11 1.35461
352352 −4.41762e10 −0.153372
353353 −4.32937e11 −1.48402 −0.742008 0.670391i 0.766126π-0.766126\pi
−0.742008 + 0.670391i 0.766126π0.766126\pi
354354 1.88276e11 0.637207
355355 1.35497e11 0.452796
356356 −7.23203e10 −0.238636
357357 7.82976e9 0.0255118
358358 −1.77310e11 −0.570504
359359 1.35500e10 0.0430542 0.0215271 0.999768i 0.493147π-0.493147\pi
0.0215271 + 0.999768i 0.493147π0.493147\pi
360360 −5.39687e9 −0.0169348
361361 4.94112e9 0.0153124
362362 2.54601e11 0.779242
363363 −3.15824e11 −0.954697
364364 −9.00480e10 −0.268855
365365 9.41879e10 0.277765
366366 2.65515e11 0.773435
367367 −1.26149e11 −0.362984 −0.181492 0.983392i 0.558093π-0.558093\pi
−0.181492 + 0.983392i 0.558093π0.558093\pi
368368 4.72049e10 0.134175
369369 1.05744e10 0.0296917
370370 4.18002e10 0.115950
371371 1.63135e10 0.0447057
372372 3.19346e11 0.864605
373373 −2.45212e11 −0.655923 −0.327961 0.944691i 0.606362π-0.606362\pi
−0.327961 + 0.944691i 0.606362π0.606362\pi
374374 2.94741e9 0.00778964
375375 −3.36269e10 −0.0878105
376376 −2.80278e11 −0.723175
377377 −2.71417e11 −0.691991
378378 1.04161e11 0.262418
379379 3.62591e11 0.902694 0.451347 0.892348i 0.350944π-0.350944\pi
0.451347 + 0.892348i 0.350944π0.350944\pi
380380 9.78413e10 0.240711
381381 −7.44552e11 −1.81022
382382 2.70550e11 0.650073
383383 7.23039e10 0.171699 0.0858494 0.996308i 0.472640π-0.472640\pi
0.0858494 + 0.996308i 0.472640π0.472640\pi
384384 −1.54916e11 −0.363584
385385 −1.20964e10 −0.0280596
386386 −3.88064e11 −0.889734
387387 −2.24111e10 −0.0507882
388388 −3.81097e11 −0.853674
389389 3.00609e11 0.665624 0.332812 0.942993i 0.392002π-0.392002\pi
0.332812 + 0.942993i 0.392002π0.392002\pi
390390 1.82308e11 0.399038
391391 2.36216e10 0.0511110
392392 −6.99320e10 −0.149585
393393 −2.49698e11 −0.528017
394394 5.07291e11 1.06053
395395 2.43429e11 0.503136
396396 −1.56930e9 −0.00320683
397397 −2.86335e11 −0.578518 −0.289259 0.957251i 0.593409π-0.593409\pi
−0.289259 + 0.957251i 0.593409π0.593409\pi
398398 −5.51219e10 −0.110116
399399 −1.89291e11 −0.373897
400400 −1.84819e10 −0.0360975
401401 8.19964e11 1.58360 0.791800 0.610781i 0.209144π-0.209144\pi
0.791800 + 0.610781i 0.209144π0.209144\pi
402402 2.03931e11 0.389462
403403 1.16250e12 2.19543
404404 1.76094e11 0.328873
405405 2.33064e11 0.430456
406406 −7.33915e10 −0.134054
407407 3.49087e10 0.0630607
408408 3.95593e10 0.0706769
409409 9.67528e11 1.70966 0.854828 0.518911i 0.173663π-0.173663\pi
0.854828 + 0.518911i 0.173663π0.173663\pi
410410 1.43387e11 0.250601
411411 −1.03328e11 −0.178620
412412 2.63710e11 0.450908
413413 −2.12517e11 −0.359433
414414 1.09678e10 0.0183492
415415 4.64667e11 0.768998
416416 −7.51511e11 −1.23031
417417 9.07803e11 1.47021
418418 −7.12560e10 −0.114164
419419 −8.51357e10 −0.134942 −0.0674712 0.997721i 0.521493π-0.521493\pi
−0.0674712 + 0.997721i 0.521493π0.521493\pi
420420 −5.65289e10 −0.0886439
421421 5.61043e10 0.0870415 0.0435207 0.999053i 0.486143π-0.486143\pi
0.0435207 + 0.999053i 0.486143π0.486143\pi
422422 −1.37178e11 −0.210562
423423 −1.64463e10 −0.0249767
424424 8.24224e10 0.123851
425425 −9.24846e9 −0.0137505
426426 −4.61153e11 −0.678425
427427 −2.99700e11 −0.436275
428428 5.40093e11 0.777985
429429 1.52251e11 0.217022
430430 −3.03892e11 −0.428659
431431 −1.36440e11 −0.190456 −0.0952278 0.995456i 0.530358π-0.530358\pi
−0.0952278 + 0.995456i 0.530358π0.530358\pi
432432 1.32909e11 0.183602
433433 3.25710e11 0.445282 0.222641 0.974900i 0.428532π-0.428532\pi
0.222641 + 0.974900i 0.428532π0.428532\pi
434434 3.14342e11 0.425303
435435 −1.70386e11 −0.228156
436436 −2.84320e11 −0.376806
437437 −5.71072e11 −0.749074
438438 −3.20560e11 −0.416175
439439 1.44336e11 0.185474 0.0927372 0.995691i 0.470438π-0.470438\pi
0.0927372 + 0.995691i 0.470438π0.470438\pi
440440 −6.11160e10 −0.0777352
441441 −4.10350e9 −0.00516632
442442 5.01404e10 0.0624867
443443 −9.59823e11 −1.18406 −0.592031 0.805915i 0.701674π-0.701674\pi
−0.592031 + 0.805915i 0.701674π0.701674\pi
444444 1.63136e11 0.199217
445445 −1.65268e11 −0.199788
446446 2.85919e11 0.342166
447447 −4.53754e11 −0.537572
448448 −2.61373e11 −0.306556
449449 −1.02004e12 −1.18443 −0.592215 0.805780i 0.701747π-0.701747\pi
−0.592215 + 0.805780i 0.701747π0.701747\pi
450450 −4.29416e9 −0.00493653
451451 1.19747e11 0.136292
452452 −1.49948e11 −0.168974
453453 −1.43797e12 −1.60438
454454 1.06792e12 1.17975
455455 −2.05780e11 −0.225088
456456 −9.56379e11 −1.03583
457457 −6.45199e11 −0.691944 −0.345972 0.938245i 0.612451π-0.612451\pi
−0.345972 + 0.938245i 0.612451π0.612451\pi
458458 −6.40892e11 −0.680598
459459 6.65084e10 0.0699390
460460 −1.70542e11 −0.177591
461461 1.04575e12 1.07838 0.539192 0.842183i 0.318730π-0.318730\pi
0.539192 + 0.842183i 0.318730π0.318730\pi
462462 4.11690e10 0.0420418
463463 6.01465e11 0.608269 0.304134 0.952629i 0.401633π-0.401633\pi
0.304134 + 0.952629i 0.401633π0.401633\pi
464464 −9.36469e10 −0.0937913
465465 7.29776e11 0.723855
466466 1.64758e11 0.161849
467467 9.53000e11 0.927186 0.463593 0.886048i 0.346560π-0.346560\pi
0.463593 + 0.886048i 0.346560π0.346560\pi
468468 −2.66964e10 −0.0257244
469469 −2.30187e11 −0.219686
470470 −2.23010e11 −0.210806
471471 −6.72491e11 −0.629640
472472 −1.07372e12 −0.995757
473473 −2.53790e11 −0.233131
474474 −8.28490e11 −0.753850
475475 2.23589e11 0.201525
476476 −1.55472e10 −0.0138810
477477 4.83642e9 0.00427751
478478 1.06454e11 0.0932690
479479 1.99157e12 1.72857 0.864283 0.503005i 0.167772π-0.167772\pi
0.864283 + 0.503005i 0.167772π0.167772\pi
480480 −4.71772e11 −0.405646
481481 5.93856e11 0.505857
482482 −4.20981e11 −0.355263
483483 3.29943e11 0.275853
484484 6.27119e11 0.519452
485485 −8.70891e11 −0.714703
486486 6.06833e10 0.0493408
487487 −2.40847e12 −1.94027 −0.970134 0.242570i 0.922010π-0.922010\pi
−0.970134 + 0.242570i 0.922010π0.922010\pi
488488 −1.51421e12 −1.20864
489489 −1.38679e12 −1.09678
490490 −5.56432e10 −0.0436043
491491 2.85374e11 0.221589 0.110794 0.993843i 0.464661π-0.464661\pi
0.110794 + 0.993843i 0.464661π0.464661\pi
492492 5.59605e11 0.430565
493493 −4.68614e10 −0.0357276
494494 −1.21219e12 −0.915794
495495 −3.58619e9 −0.00268479
496496 4.01097e11 0.297565
497497 5.20526e11 0.382682
498498 −1.58145e12 −1.15219
499499 2.11594e12 1.52775 0.763873 0.645367i 0.223296π-0.223296\pi
0.763873 + 0.645367i 0.223296π0.223296\pi
500500 6.67715e10 0.0477778
501501 1.54024e12 1.09224
502502 1.71709e12 1.20677
503503 7.41865e11 0.516736 0.258368 0.966047i 0.416815π-0.416815\pi
0.258368 + 0.966047i 0.416815π0.416815\pi
504504 −2.07326e10 −0.0143125
505505 4.02414e11 0.275335
506506 1.24203e11 0.0842274
507507 1.12943e12 0.759143
508508 1.47842e12 0.984946
509509 1.62377e12 1.07225 0.536124 0.844140i 0.319888π-0.319888\pi
0.536124 + 0.844140i 0.319888π0.319888\pi
510510 3.14763e10 0.0206024
511511 3.61832e11 0.234754
512512 −5.53160e11 −0.355742
513513 −1.60790e12 −1.02501
514514 −5.93890e11 −0.375294
515515 6.02635e11 0.377504
516516 −1.18602e12 −0.736490
517517 −1.86243e11 −0.114649
518518 1.60580e11 0.0979955
519519 −2.14310e12 −1.29655
520520 −1.03969e12 −0.623573
521521 1.48817e12 0.884877 0.442439 0.896799i 0.354113π-0.354113\pi
0.442439 + 0.896799i 0.354113π0.354113\pi
522522 −2.17583e10 −0.0128265
523523 2.41360e12 1.41061 0.705306 0.708903i 0.250810π-0.250810\pi
0.705306 + 0.708903i 0.250810π0.250810\pi
524524 4.95814e11 0.287295
525525 −1.29181e11 −0.0742134
526526 2.32001e12 1.32146
527527 2.00711e11 0.113351
528528 5.25312e10 0.0294147
529529 −8.05747e11 −0.447351
530530 6.55815e10 0.0361027
531531 −6.30044e10 −0.0343911
532532 3.75867e11 0.203438
533533 2.03711e12 1.09331
534534 5.62475e11 0.299342
535535 1.23423e12 0.651336
536536 −1.16300e12 −0.608609
537537 −1.58136e12 −0.820630
538538 1.42480e12 0.733218
539539 −4.64694e10 −0.0237147
540540 −4.80174e11 −0.243011
541541 −2.14334e12 −1.07573 −0.537864 0.843032i 0.680769π-0.680769\pi
−0.537864 + 0.843032i 0.680769π0.680769\pi
542542 −1.70484e12 −0.848570
543543 2.27070e12 1.12089
544544 −1.29752e11 −0.0635213
545545 −6.49734e11 −0.315465
546546 7.00354e11 0.337249
547547 1.02462e12 0.489349 0.244675 0.969605i 0.421319π-0.421319\pi
0.244675 + 0.969605i 0.421319π0.421319\pi
548548 2.05174e11 0.0971875
549549 −8.88514e10 −0.0417435
550550 −4.86285e10 −0.0226599
551551 1.13291e12 0.523618
552552 1.66701e12 0.764211
553553 9.35157e11 0.425228
554554 1.63935e12 0.739399
555555 3.72801e11 0.166786
556556 −1.80259e12 −0.799944
557557 −3.18977e12 −1.40414 −0.702070 0.712108i 0.747741π-0.747741\pi
−0.702070 + 0.712108i 0.747741π0.747741\pi
558558 9.31924e10 0.0406936
559559 −4.31740e12 −1.87012
560560 −7.10002e10 −0.0305080
561561 2.62869e10 0.0112049
562562 2.62453e12 1.10978
563563 1.08826e12 0.456503 0.228252 0.973602i 0.426699π-0.426699\pi
0.228252 + 0.973602i 0.426699π0.426699\pi
564564 −8.70353e11 −0.362192
565565 −3.42666e11 −0.141466
566566 −1.02465e12 −0.419662
567567 8.95340e11 0.363801
568568 2.62992e12 1.06017
569569 −3.28834e12 −1.31514 −0.657569 0.753394i 0.728415π-0.728415\pi
−0.657569 + 0.753394i 0.728415π0.728415\pi
570570 −7.60967e11 −0.301946
571571 −1.88806e12 −0.743283 −0.371641 0.928376i 0.621205π-0.621205\pi
−0.371641 + 0.928376i 0.621205π0.621205\pi
572572 −3.02319e11 −0.118082
573573 2.41294e12 0.935084
574574 5.50837e11 0.211797
575575 −3.89727e11 −0.148681
576576 −7.74889e10 −0.0293318
577577 1.12881e12 0.423963 0.211982 0.977274i 0.432008π-0.432008\pi
0.211982 + 0.977274i 0.432008π0.432008\pi
578578 −1.82276e12 −0.679289
579579 −3.46101e12 −1.27982
580580 3.38328e11 0.124140
581581 1.78506e12 0.649922
582582 2.96400e12 1.07084
583583 5.47692e10 0.0196349
584584 1.82813e12 0.650353
585585 −6.10072e10 −0.0215367
586586 1.16503e11 0.0408128
587587 6.31776e11 0.219630 0.109815 0.993952i 0.464974π-0.464974\pi
0.109815 + 0.993952i 0.464974π0.464974\pi
588588 −2.17162e11 −0.0749178
589589 −4.85237e12 −1.66125
590590 −8.54335e11 −0.290265
591591 4.52436e12 1.52550
592592 2.04898e11 0.0685630
593593 −4.97504e12 −1.65215 −0.826077 0.563557i 0.809432π-0.809432\pi
−0.826077 + 0.563557i 0.809432π0.809432\pi
594594 3.49702e11 0.115255
595595 −3.55289e10 −0.0116213
596596 9.00999e11 0.292493
597597 −4.91613e11 −0.158394
598598 2.11290e12 0.675652
599599 −4.55686e12 −1.44626 −0.723128 0.690714i 0.757296π-0.757296\pi
−0.723128 + 0.690714i 0.757296π0.757296\pi
600600 −6.52678e11 −0.205598
601601 −5.78188e12 −1.80773 −0.903866 0.427815i 0.859283π-0.859283\pi
−0.903866 + 0.427815i 0.859283π0.859283\pi
602602 −1.16743e12 −0.362283
603603 −6.82431e10 −0.0210199
604604 2.85532e12 0.872948
605605 1.43311e12 0.434890
606606 −1.36958e12 −0.412536
607607 −7.37332e11 −0.220452 −0.110226 0.993907i 0.535157π-0.535157\pi
−0.110226 + 0.993907i 0.535157π0.535157\pi
608608 3.13687e12 0.930958
609609 −6.54554e11 −0.192827
610610 −1.20482e12 −0.352320
611611 −3.16831e12 −0.919691
612612 −4.60926e9 −0.00132816
613613 −3.50587e12 −1.00282 −0.501410 0.865210i 0.667185π-0.667185\pi
−0.501410 + 0.865210i 0.667185π0.667185\pi
614614 −1.53022e12 −0.434507
615615 1.27882e12 0.360473
616616 −2.34783e11 −0.0656982
617617 2.47222e12 0.686759 0.343380 0.939197i 0.388428π-0.388428\pi
0.343380 + 0.939197i 0.388428π0.388428\pi
618618 −2.05102e12 −0.565615
619619 −1.57589e12 −0.431436 −0.215718 0.976456i 0.569209π-0.569209\pi
−0.215718 + 0.976456i 0.569209π0.569209\pi
620620 −1.44908e12 −0.393850
621621 2.80264e12 0.756232
622622 −4.29331e11 −0.115010
623623 −6.34894e11 −0.168851
624624 8.93645e11 0.235958
625625 1.52588e11 0.0400000
626626 1.09529e12 0.285066
627627 −6.35508e11 −0.164217
628628 1.33534e12 0.342588
629629 1.02532e11 0.0261175
630630 −1.64964e10 −0.00417213
631631 4.95895e11 0.124525 0.0622627 0.998060i 0.480168π-0.480168\pi
0.0622627 + 0.998060i 0.480168π0.480168\pi
632632 4.72481e12 1.17803
633633 −1.22345e12 −0.302878
634634 −4.80946e12 −1.18221
635635 3.37853e12 0.824605
636636 2.55948e11 0.0620291
637637 −7.90524e11 −0.190234
638638 −2.46398e11 −0.0588767
639639 1.54319e11 0.0366156
640640 7.02956e11 0.165622
641641 1.72054e12 0.402535 0.201268 0.979536i 0.435494π-0.435494\pi
0.201268 + 0.979536i 0.435494π0.435494\pi
642642 −4.20060e12 −0.975897
643643 8.19457e12 1.89050 0.945250 0.326346i 0.105818π-0.105818\pi
0.945250 + 0.326346i 0.105818π0.105818\pi
644644 −6.55154e11 −0.150092
645645 −2.71031e12 −0.616596
646646 −2.09290e11 −0.0472826
647647 −2.56336e12 −0.575097 −0.287549 0.957766i 0.592840π-0.592840\pi
−0.287549 + 0.957766i 0.592840π0.592840\pi
648648 4.52364e12 1.00786
649649 −7.13483e11 −0.157864
650650 −8.27253e11 −0.181772
651651 2.80351e12 0.611769
652652 2.75368e12 0.596760
653653 −2.23256e12 −0.480499 −0.240250 0.970711i 0.577229π-0.577229\pi
−0.240250 + 0.970711i 0.577229π0.577229\pi
654654 2.21131e12 0.472662
655655 1.13305e12 0.240526
656656 7.02863e11 0.148185
657657 1.07272e11 0.0224616
658658 −8.56715e11 −0.178164
659659 6.47077e12 1.33651 0.668254 0.743933i 0.267042π-0.267042\pi
0.668254 + 0.743933i 0.267042π0.267042\pi
660660 −1.89785e11 −0.0389326
661661 −2.35514e12 −0.479856 −0.239928 0.970791i 0.577124π-0.577124\pi
−0.239928 + 0.970791i 0.577124π0.577124\pi
662662 4.55248e12 0.921270
663663 4.47185e11 0.0898827
664664 9.01890e12 1.80052
665665 8.58941e11 0.170320
666666 4.76067e10 0.00937636
667667 −1.97472e12 −0.386314
668668 −3.05839e12 −0.594291
669669 2.55002e12 0.492182
670670 −9.25371e11 −0.177410
671671 −1.00618e12 −0.191613
672672 −1.81236e12 −0.342833
673673 −1.00068e13 −1.88030 −0.940149 0.340764i 0.889314π-0.889314\pi
−0.940149 + 0.340764i 0.889314π0.889314\pi
674674 −3.12900e12 −0.584032
675675 −1.09730e12 −0.203451
676676 −2.24266e12 −0.413051
677677 −4.75925e12 −0.870742 −0.435371 0.900251i 0.643383π-0.643383\pi
−0.435371 + 0.900251i 0.643383π0.643383\pi
678678 1.16623e12 0.211959
679679 −3.34561e12 −0.604035
680680 −1.79507e11 −0.0321952
681681 9.52446e12 1.69699
682682 1.05534e12 0.186794
683683 5.44016e11 0.0956575 0.0478287 0.998856i 0.484770π-0.484770\pi
0.0478287 + 0.998856i 0.484770π0.484770\pi
684684 1.11433e11 0.0194653
685685 4.68869e11 0.0813662
686686 −2.13759e11 −0.0368524
687687 −5.71590e12 −0.978992
688688 −1.48963e12 −0.253473
689689 9.31717e11 0.157506
690690 1.32640e12 0.222769
691691 8.57339e12 1.43054 0.715272 0.698846i 0.246303π-0.246303\pi
0.715272 + 0.698846i 0.246303π0.246303\pi
692692 4.25546e12 0.705455
693693 −1.37767e10 −0.00226906
694694 −2.34743e12 −0.384127
695695 −4.11931e12 −0.669720
696696 −3.30708e12 −0.534199
697697 3.51716e11 0.0564476
698698 −4.35585e12 −0.694582
699699 1.46942e12 0.232809
700700 2.56510e11 0.0403796
701701 1.25396e13 1.96133 0.980666 0.195687i 0.0626935π-0.0626935\pi
0.980666 + 0.195687i 0.0626935π0.0626935\pi
702702 5.94902e12 0.924545
703703 −2.47880e12 −0.382774
704704 −8.77510e11 −0.134640
705705 −1.98895e12 −0.303230
706706 −6.68609e12 −1.01286
707707 1.54591e12 0.232701
708708 −3.33426e12 −0.498712
709709 4.37869e12 0.650782 0.325391 0.945580i 0.394504π-0.394504\pi
0.325391 + 0.945580i 0.394504π0.394504\pi
710710 2.09256e12 0.309040
711711 2.77244e11 0.0406864
712712 −3.20775e12 −0.467779
713713 8.45790e12 1.22563
714714 1.20919e11 0.0174122
715715 −6.90865e11 −0.0988590
716716 3.14004e12 0.446506
717717 9.49429e11 0.134161
718718 2.09261e11 0.0293852
719719 7.76448e12 1.08351 0.541754 0.840537i 0.317760π-0.317760\pi
0.541754 + 0.840537i 0.317760π0.317760\pi
720720 −2.10493e10 −0.00291905
721721 2.31508e12 0.319049
722722 7.63086e10 0.0104510
723723 −3.75458e12 −0.511022
724724 −4.50884e12 −0.609875
725725 7.73154e11 0.103931
726726 −4.87745e12 −0.651596
727727 7.08318e11 0.0940423 0.0470211 0.998894i 0.485027π-0.485027\pi
0.0470211 + 0.998894i 0.485027π0.485027\pi
728728 −3.99406e12 −0.527015
729729 7.88106e12 1.03350
730730 1.45460e12 0.189579
731731 −7.45421e11 −0.0965547
732732 −4.70211e12 −0.605331
733733 6.81304e12 0.871712 0.435856 0.900017i 0.356446π-0.356446\pi
0.435856 + 0.900017i 0.356446π0.356446\pi
734734 −1.94820e12 −0.247743
735735 −4.96263e11 −0.0627218
736736 −5.46771e12 −0.686839
737737 −7.72807e11 −0.0964866
738738 1.63306e11 0.0202651
739739 9.20369e12 1.13517 0.567586 0.823314i 0.307877π-0.307877\pi
0.567586 + 0.823314i 0.307877π0.307877\pi
740740 −7.40256e11 −0.0907484
741741 −1.08111e13 −1.31731
742742 2.51938e11 0.0305124
743743 −8.72196e12 −1.04994 −0.524970 0.851121i 0.675923π-0.675923\pi
−0.524970 + 0.851121i 0.675923π0.675923\pi
744744 1.41645e13 1.69482
745745 2.05898e12 0.244878
746746 −3.78695e12 −0.447678
747747 5.29215e11 0.0621856
748748 −5.21968e10 −0.00609658
749749 4.74143e12 0.550479
750750 −5.19320e11 −0.0599321
751751 −1.63201e13 −1.87216 −0.936078 0.351793i 0.885572π-0.885572\pi
−0.936078 + 0.351793i 0.885572π0.885572\pi
752752 −1.09316e12 −0.124653
753753 1.53141e13 1.73586
754754 −4.19164e12 −0.472295
755755 6.52504e12 0.730839
756756 −1.84464e12 −0.205382
757757 −3.23287e12 −0.357813 −0.178907 0.983866i 0.557256π-0.557256\pi
−0.178907 + 0.983866i 0.557256π0.557256\pi
758758 5.59970e12 0.616103
759759 1.10772e12 0.121155
760760 4.33973e12 0.471847
761761 −6.46766e11 −0.0699063 −0.0349531 0.999389i 0.511128π-0.511128\pi
−0.0349531 + 0.999389i 0.511128π0.511128\pi
762762 −1.14985e13 −1.23551
763763 −2.49602e12 −0.266617
764764 −4.79127e12 −0.508781
765765 −1.05332e10 −0.00111195
766766 1.11663e12 0.117187
767767 −1.21376e13 −1.26634
768768 −1.00694e13 −1.04442
769769 −2.42101e12 −0.249648 −0.124824 0.992179i 0.539837π-0.539837\pi
−0.124824 + 0.992179i 0.539837π0.539837\pi
770770 −1.86811e11 −0.0191511
771771 −5.29670e12 −0.539835
772772 6.87237e12 0.696352
773773 −4.43910e12 −0.447185 −0.223592 0.974683i 0.571778π-0.571778\pi
−0.223592 + 0.974683i 0.571778π0.571778\pi
774774 −3.46107e11 −0.0346638
775775 −3.31148e12 −0.329735
776776 −1.69035e13 −1.67339
777777 1.43215e12 0.140960
778778 4.64248e12 0.454299
779779 −8.50304e12 −0.827286
780780 −3.22856e12 −0.312308
781781 1.74756e12 0.168075
782782 3.64802e11 0.0348840
783783 −5.55998e12 −0.528622
784784 −2.72754e11 −0.0257839
785785 3.05154e12 0.286818
786786 −3.85622e12 −0.360380
787787 −1.72989e13 −1.60744 −0.803718 0.595011i 0.797148π-0.797148\pi
−0.803718 + 0.595011i 0.797148π0.797148\pi
788788 −8.98382e12 −0.830029
789789 2.06914e13 1.90083
790790 3.75941e12 0.343398
791791 −1.31638e12 −0.119561
792792 −6.96057e10 −0.00628611
793793 −1.71169e13 −1.53708
794794 −4.42203e12 −0.394848
795795 5.84899e11 0.0519313
796796 9.76175e11 0.0861825
797797 −1.37776e13 −1.20951 −0.604756 0.796410i 0.706730π-0.706730\pi
−0.604756 + 0.796410i 0.706730π0.706730\pi
798798 −2.92333e12 −0.255191
799799 −5.47024e11 −0.0474838
800800 2.14075e12 0.184782
801801 −1.88226e11 −0.0161560
802802 1.26632e13 1.08083
803803 1.21478e12 0.103105
804804 −3.61149e12 −0.304814
805805 −1.49717e12 −0.125658
806806 1.79531e13 1.49842
807807 1.27073e13 1.05468
808808 7.81061e12 0.644665
809809 1.38369e13 1.13572 0.567860 0.823125i 0.307772π-0.307772\pi
0.567860 + 0.823125i 0.307772π0.307772\pi
810810 3.59935e12 0.293793
811811 −1.96078e13 −1.59161 −0.795804 0.605555i 0.792951π-0.792951\pi
−0.795804 + 0.605555i 0.792951π0.792951\pi
812812 1.29972e12 0.104917
813813 −1.52049e13 −1.22061
814814 5.39114e11 0.0430399
815815 6.29278e12 0.499613
816816 1.54292e11 0.0121825
817817 1.80212e13 1.41509
818818 1.49421e13 1.16687
819819 −2.34365e11 −0.0182019
820820 −2.53930e12 −0.196134
821821 2.41017e13 1.85142 0.925708 0.378239i 0.123470π-0.123470\pi
0.925708 + 0.378239i 0.123470π0.123470\pi
822822 −1.59576e12 −0.121911
823823 8.20762e12 0.623617 0.311809 0.950145i 0.399065π-0.399065\pi
0.311809 + 0.950145i 0.399065π0.399065\pi
824824 1.16968e13 0.883881
825825 −4.33701e11 −0.0325947
826826 −3.28201e12 −0.245318
827827 2.84612e12 0.211582 0.105791 0.994388i 0.466263π-0.466263\pi
0.105791 + 0.994388i 0.466263π0.466263\pi
828828 −1.94233e11 −0.0143610
829829 −5.88562e12 −0.432809 −0.216405 0.976304i 0.569433π-0.569433\pi
−0.216405 + 0.976304i 0.569433π0.569433\pi
830830 7.17612e12 0.524853
831831 1.46208e13 1.06357
832832 −1.49279e13 −1.08005
833833 −1.36488e11 −0.00982180
834834 1.40197e13 1.00344
835835 −6.98911e12 −0.497546
836836 1.26190e12 0.0893505
837837 2.38138e13 1.67712
838838 −1.31480e12 −0.0921003
839839 −8.44799e12 −0.588606 −0.294303 0.955712i 0.595087π-0.595087\pi
−0.294303 + 0.955712i 0.595087π0.595087\pi
840840 −2.50733e12 −0.173762
841841 −1.05896e13 −0.729959
842842 8.66450e11 0.0594072
843843 2.34073e13 1.59634
844844 2.42934e12 0.164796
845845 −5.12498e12 −0.345810
846846 −2.53989e11 −0.0170470
847847 5.50542e12 0.367549
848848 3.21470e11 0.0213481
849849 −9.13847e12 −0.603655
850850 −1.42829e11 −0.00938495
851851 4.32066e12 0.282402
852852 8.16674e12 0.530970
853853 −7.17311e12 −0.463913 −0.231957 0.972726i 0.574513π-0.574513\pi
−0.231957 + 0.972726i 0.574513π0.574513\pi
854854 −4.62843e12 −0.297765
855855 2.54649e11 0.0162965
856856 2.39557e13 1.52502
857857 2.17636e13 1.37821 0.689107 0.724660i 0.258003π-0.258003\pi
0.689107 + 0.724660i 0.258003π0.258003\pi
858858 2.35130e12 0.148121
859859 −9.02945e12 −0.565838 −0.282919 0.959144i 0.591303π-0.591303\pi
−0.282919 + 0.959144i 0.591303π0.591303\pi
860860 5.38175e12 0.335491
861861 4.91273e12 0.304655
862862 −2.10712e12 −0.129989
863863 −1.84428e13 −1.13182 −0.565910 0.824467i 0.691475π-0.691475\pi
−0.565910 + 0.824467i 0.691475π0.691475\pi
864864 −1.53947e13 −0.939854
865865 9.72468e12 0.590613
866866 5.03012e12 0.303912
867867 −1.62566e13 −0.977111
868868 −5.56680e12 −0.332864
869869 3.13961e12 0.186761
870870 −2.63136e12 −0.155720
871871 −1.31468e13 −0.773993
872872 −1.26109e13 −0.738623
873873 −9.91868e11 −0.0577950
874874 −8.81940e12 −0.511255
875875 5.86182e11 0.0338062
876876 5.67693e12 0.325721
877877 −1.12140e13 −0.640120 −0.320060 0.947397i 0.603703π-0.603703\pi
−0.320060 + 0.947397i 0.603703π0.603703\pi
878878 2.22906e12 0.126589
879879 1.03905e12 0.0587064
880880 −2.38369e11 −0.0133992
881881 3.00664e13 1.68147 0.840735 0.541446i 0.182123π-0.182123\pi
0.840735 + 0.541446i 0.182123π0.182123\pi
882882 −6.33727e10 −0.00352609
883883 −1.58968e13 −0.880007 −0.440004 0.897996i 0.645023π-0.645023\pi
−0.440004 + 0.897996i 0.645023π0.645023\pi
884884 −8.87956e11 −0.0489053
885885 −7.61952e12 −0.417526
886886 −1.48231e13 −0.808141
887887 1.46131e13 0.792658 0.396329 0.918109i 0.370284π-0.370284\pi
0.396329 + 0.918109i 0.370284π0.370284\pi
888888 7.23585e12 0.390509
889889 1.29790e13 0.696918
890890 −2.55233e12 −0.136358
891891 3.00593e12 0.159782
892892 −5.06346e12 −0.267797
893893 1.32248e13 0.695915
894894 −7.00758e12 −0.366901
895895 7.17570e12 0.373819
896896 2.70047e12 0.139976
897897 1.88442e13 0.971878
898898 −1.57531e13 −0.808393
899899 −1.67791e13 −0.856742
900900 7.60469e10 0.00386359
901901 1.60866e11 0.00813208
902902 1.84933e12 0.0930217
903903 −1.04119e13 −0.521118
904904 −6.65093e12 −0.331226
905905 −1.03037e13 −0.510593
906906 −2.22074e13 −1.09502
907907 1.41504e12 0.0694281 0.0347141 0.999397i 0.488948π-0.488948\pi
0.0347141 + 0.999397i 0.488948π0.488948\pi
908908 −1.89123e13 −0.923333
909909 4.58315e11 0.0222652
910910 −3.17797e12 −0.153626
911911 −1.61901e13 −0.778784 −0.389392 0.921072i 0.627315π-0.627315\pi
−0.389392 + 0.921072i 0.627315π0.627315\pi
912912 −3.73014e12 −0.178545
913913 5.99301e12 0.285447
914914 −9.96417e12 −0.472262
915915 −1.07454e13 −0.506788
916916 1.13498e13 0.532671
917917 4.35271e12 0.203281
918918 1.02713e12 0.0477345
919919 −1.60413e13 −0.741858 −0.370929 0.928661i 0.620961π-0.620961\pi
−0.370929 + 0.928661i 0.620961π0.620961\pi
920920 −7.56435e12 −0.348118
921921 −1.36475e13 −0.625008
922922 1.61501e13 0.736014
923923 2.97290e13 1.34826
924924 −7.29077e11 −0.0329041
925925 −1.69165e12 −0.0759753
926926 9.28876e12 0.415153
927927 6.86349e11 0.0305271
928928 1.08470e13 0.480115
929929 −3.98759e13 −1.75647 −0.878233 0.478233i 0.841277π-0.841277\pi
−0.878233 + 0.478233i 0.841277π0.841277\pi
930930 1.12703e13 0.494042
931931 3.29971e12 0.143947
932932 −2.91777e12 −0.126672
933933 −3.82906e12 −0.165434
934934 1.47177e13 0.632819
935935 −1.19281e11 −0.00510411
936936 −1.18411e12 −0.0504256
937937 −5.95427e12 −0.252348 −0.126174 0.992008i 0.540270π-0.540270\pi
−0.126174 + 0.992008i 0.540270π0.540270\pi
938938 −3.55490e12 −0.149939
939939 9.76855e12 0.410048
940940 3.94937e12 0.164988
941941 9.86055e12 0.409966 0.204983 0.978766i 0.434286π-0.434286\pi
0.204983 + 0.978766i 0.434286π0.434286\pi
942942 −1.03857e13 −0.429739
943943 1.48212e13 0.610353
944944 −4.18782e12 −0.171638
945945 −4.21540e12 −0.171948
946946 −3.91943e12 −0.159115
947947 −2.10061e13 −0.848732 −0.424366 0.905491i 0.639503π-0.639503\pi
−0.424366 + 0.905491i 0.639503π0.639503\pi
948948 1.46721e13 0.590002
949949 2.06655e13 0.827080
950950 3.45302e12 0.137544
951951 −4.28939e13 −1.70053
952952 −6.89594e11 −0.0272099
953953 −4.25218e13 −1.66991 −0.834955 0.550318i 0.814506π-0.814506\pi
−0.834955 + 0.550318i 0.814506π0.814506\pi
954954 7.46916e10 0.00291947
955955 −1.09491e13 −0.425956
956956 −1.88524e12 −0.0729972
957957 −2.19754e12 −0.0846901
958958 3.07570e13 1.17977
959959 1.80121e12 0.0687670
960960 −9.37122e12 −0.356103
961961 4.54266e13 1.71813
962962 9.17125e12 0.345256
963963 1.40568e12 0.0526707
964964 7.45531e12 0.278048
965965 1.57049e13 0.582992
966966 5.09550e12 0.188274
967967 −1.21906e13 −0.448338 −0.224169 0.974550i 0.571967π-0.571967\pi
−0.224169 + 0.974550i 0.571967π0.571967\pi
968968 2.78157e13 1.01824
969969 −1.86658e12 −0.0680128
970970 −1.34497e13 −0.487796
971971 5.38639e12 0.194452 0.0972258 0.995262i 0.469003π-0.469003\pi
0.0972258 + 0.995262i 0.469003π0.469003\pi
972972 −1.07466e12 −0.0386167
973973 −1.58247e13 −0.566016
974974 −3.71954e13 −1.32426
975975 −7.37798e12 −0.261467
976976 −5.90583e12 −0.208332
977977 −1.89284e13 −0.664643 −0.332321 0.943166i 0.607832π-0.607832\pi
−0.332321 + 0.943166i 0.607832π0.607832\pi
978978 −2.14169e13 −0.748570
979979 −2.13153e12 −0.0741600
980980 9.85407e11 0.0341270
981981 −7.39990e11 −0.0255103
982982 4.40719e12 0.151238
983983 3.98513e13 1.36129 0.680647 0.732612i 0.261699π-0.261699\pi
0.680647 + 0.732612i 0.261699π0.261699\pi
984984 2.48212e13 0.844004
985985 −2.05300e13 −0.694907
986986 −7.23708e11 −0.0243847
987987 −7.64075e12 −0.256277
988988 2.14671e13 0.716748
989989 −3.14118e13 −1.04402
990990 −5.53836e10 −0.00183241
991991 −3.44424e13 −1.13439 −0.567194 0.823584i 0.691971π-0.691971\pi
−0.567194 + 0.823584i 0.691971π0.691971\pi
992992 −4.64588e13 −1.52323
993993 4.06020e13 1.32518
994994 8.03877e12 0.261187
995995 2.23078e12 0.0721527
996996 2.80066e13 0.901765
997997 4.12406e13 1.32189 0.660947 0.750433i 0.270155π-0.270155\pi
0.660947 + 0.750433i 0.270155π0.270155\pi
998998 3.26777e13 1.04271
999999 1.21652e13 0.386432
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 35.10.a.c.1.3 4
3.2 odd 2 315.10.a.g.1.2 4
5.2 odd 4 175.10.b.e.99.5 8
5.3 odd 4 175.10.b.e.99.4 8
5.4 even 2 175.10.a.e.1.2 4
7.6 odd 2 245.10.a.e.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.c.1.3 4 1.1 even 1 trivial
175.10.a.e.1.2 4 5.4 even 2
175.10.b.e.99.4 8 5.3 odd 4
175.10.b.e.99.5 8 5.2 odd 4
245.10.a.e.1.3 4 7.6 odd 2
315.10.a.g.1.2 4 3.2 odd 2