Properties

Label 35.10.a.c.1.3
Level $35$
Weight $10$
Character 35.1
Self dual yes
Analytic conductor $18.026$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [35,10,Mod(1,35)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(35, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("35.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 35 = 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 35.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.0262542657\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 648x^{2} + 6926x - 8308 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2\cdot 3^{2}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-29.3917\) of defining polynomial
Character \(\chi\) \(=\) 35.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+15.4436 q^{2} +137.736 q^{3} -273.496 q^{4} -625.000 q^{5} +2127.13 q^{6} -2401.00 q^{7} -12130.9 q^{8} -711.820 q^{9} -9652.23 q^{10} -8060.89 q^{11} -37670.3 q^{12} -137129. q^{13} -37080.0 q^{14} -86084.9 q^{15} -47313.7 q^{16} -23676.1 q^{17} -10993.0 q^{18} +572389. q^{19} +170935. q^{20} -330704. q^{21} -124489. q^{22} -997700. q^{23} -1.67086e6 q^{24} +390625. q^{25} -2.11777e6 q^{26} -2.80910e6 q^{27} +656664. q^{28} +1.97927e6 q^{29} -1.32946e6 q^{30} -8.47740e6 q^{31} +5.48031e6 q^{32} -1.11027e6 q^{33} -365643. q^{34} +1.50062e6 q^{35} +194680. q^{36} -4.33062e6 q^{37} +8.83972e6 q^{38} -1.88876e7 q^{39} +7.58179e6 q^{40} -1.48554e7 q^{41} -5.10725e6 q^{42} +3.14842e7 q^{43} +2.20462e6 q^{44} +444888. q^{45} -1.54081e7 q^{46} +2.31045e7 q^{47} -6.51680e6 q^{48} +5.76480e6 q^{49} +6.03264e6 q^{50} -3.26104e6 q^{51} +3.75044e7 q^{52} -6.79444e6 q^{53} -4.33825e7 q^{54} +5.03805e6 q^{55} +2.91262e7 q^{56} +7.88385e7 q^{57} +3.05671e7 q^{58} +8.85117e7 q^{59} +2.35439e7 q^{60} +1.24823e8 q^{61} -1.30921e8 q^{62} +1.70908e6 q^{63} +1.08860e8 q^{64} +8.57059e7 q^{65} -1.71466e7 q^{66} +9.58712e7 q^{67} +6.47531e6 q^{68} -1.37419e8 q^{69} +2.31750e7 q^{70} -2.16795e8 q^{71} +8.63500e6 q^{72} -1.50701e8 q^{73} -6.68803e7 q^{74} +5.38031e7 q^{75} -1.56546e8 q^{76} +1.93542e7 q^{77} -2.91693e8 q^{78} -3.89487e8 q^{79} +2.95711e7 q^{80} -3.72903e8 q^{81} -2.29420e8 q^{82} -7.43467e8 q^{83} +9.04463e7 q^{84} +1.47975e7 q^{85} +4.86228e8 q^{86} +2.72617e8 q^{87} +9.77855e7 q^{88} +2.64429e8 q^{89} +6.87065e6 q^{90} +3.29248e8 q^{91} +2.72867e8 q^{92} -1.16764e9 q^{93} +3.56816e8 q^{94} -3.57743e8 q^{95} +7.54835e8 q^{96} +1.39343e9 q^{97} +8.90291e7 q^{98} +5.73790e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 19 q^{2} - 18 q^{3} + 1729 q^{4} - 2500 q^{5} - 144 q^{6} - 9604 q^{7} - 30495 q^{8} + 5382 q^{9} + 11875 q^{10} + 82438 q^{11} + 41328 q^{12} - 72962 q^{13} + 45619 q^{14} + 11250 q^{15} + 64257 q^{16}+ \cdots + 1222369524 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 15.4436 0.682516 0.341258 0.939970i \(-0.389147\pi\)
0.341258 + 0.939970i \(0.389147\pi\)
\(3\) 137.736 0.981751 0.490876 0.871230i \(-0.336677\pi\)
0.490876 + 0.871230i \(0.336677\pi\)
\(4\) −273.496 −0.534172
\(5\) −625.000 −0.447214
\(6\) 2127.13 0.670061
\(7\) −2401.00 −0.377964
\(8\) −12130.9 −1.04710
\(9\) −711.820 −0.0361642
\(10\) −9652.23 −0.305230
\(11\) −8060.89 −0.166003 −0.0830015 0.996549i \(-0.526451\pi\)
−0.0830015 + 0.996549i \(0.526451\pi\)
\(12\) −37670.3 −0.524424
\(13\) −137129. −1.33164 −0.665818 0.746114i \(-0.731917\pi\)
−0.665818 + 0.746114i \(0.731917\pi\)
\(14\) −37080.0 −0.257967
\(15\) −86084.9 −0.439053
\(16\) −47313.7 −0.180488
\(17\) −23676.1 −0.0687526 −0.0343763 0.999409i \(-0.510944\pi\)
−0.0343763 + 0.999409i \(0.510944\pi\)
\(18\) −10993.0 −0.0246826
\(19\) 572389. 1.00763 0.503814 0.863812i \(-0.331930\pi\)
0.503814 + 0.863812i \(0.331930\pi\)
\(20\) 170935. 0.238889
\(21\) −330704. −0.371067
\(22\) −124489. −0.113300
\(23\) −997700. −0.743404 −0.371702 0.928352i \(-0.621226\pi\)
−0.371702 + 0.928352i \(0.621226\pi\)
\(24\) −1.67086e6 −1.02799
\(25\) 390625. 0.200000
\(26\) −2.11777e6 −0.908862
\(27\) −2.80910e6 −1.01726
\(28\) 656664. 0.201898
\(29\) 1.97927e6 0.519655 0.259827 0.965655i \(-0.416334\pi\)
0.259827 + 0.965655i \(0.416334\pi\)
\(30\) −1.32946e6 −0.299660
\(31\) −8.47740e6 −1.64867 −0.824337 0.566099i \(-0.808452\pi\)
−0.824337 + 0.566099i \(0.808452\pi\)
\(32\) 5.48031e6 0.923911
\(33\) −1.11027e6 −0.162974
\(34\) −365643. −0.0469247
\(35\) 1.50062e6 0.169031
\(36\) 194680. 0.0193179
\(37\) −4.33062e6 −0.379877 −0.189938 0.981796i \(-0.560829\pi\)
−0.189938 + 0.981796i \(0.560829\pi\)
\(38\) 8.83972e6 0.687721
\(39\) −1.88876e7 −1.30734
\(40\) 7.58179e6 0.468276
\(41\) −1.48554e7 −0.821024 −0.410512 0.911855i \(-0.634650\pi\)
−0.410512 + 0.911855i \(0.634650\pi\)
\(42\) −5.10725e6 −0.253259
\(43\) 3.14842e7 1.40438 0.702189 0.711991i \(-0.252206\pi\)
0.702189 + 0.711991i \(0.252206\pi\)
\(44\) 2.20462e6 0.0886742
\(45\) 444888. 0.0161731
\(46\) −1.54081e7 −0.507385
\(47\) 2.31045e7 0.690647 0.345324 0.938484i \(-0.387769\pi\)
0.345324 + 0.938484i \(0.387769\pi\)
\(48\) −6.51680e6 −0.177194
\(49\) 5.76480e6 0.142857
\(50\) 6.03264e6 0.136503
\(51\) −3.26104e6 −0.0674980
\(52\) 3.75044e7 0.711323
\(53\) −6.79444e6 −0.118280 −0.0591401 0.998250i \(-0.518836\pi\)
−0.0591401 + 0.998250i \(0.518836\pi\)
\(54\) −4.33825e7 −0.694293
\(55\) 5.03805e6 0.0742388
\(56\) 2.91262e7 0.395765
\(57\) 7.88385e7 0.989239
\(58\) 3.05671e7 0.354673
\(59\) 8.85117e7 0.950969 0.475485 0.879724i \(-0.342273\pi\)
0.475485 + 0.879724i \(0.342273\pi\)
\(60\) 2.35439e7 0.234530
\(61\) 1.24823e8 1.15428 0.577138 0.816647i \(-0.304169\pi\)
0.577138 + 0.816647i \(0.304169\pi\)
\(62\) −1.30921e8 −1.12525
\(63\) 1.70908e6 0.0136688
\(64\) 1.08860e8 0.811071
\(65\) 8.57059e7 0.595526
\(66\) −1.71466e7 −0.111232
\(67\) 9.58712e7 0.581235 0.290617 0.956839i \(-0.406139\pi\)
0.290617 + 0.956839i \(0.406139\pi\)
\(68\) 6.47531e6 0.0367257
\(69\) −1.37419e8 −0.729838
\(70\) 2.31750e7 0.115366
\(71\) −2.16795e8 −1.01248 −0.506241 0.862392i \(-0.668965\pi\)
−0.506241 + 0.862392i \(0.668965\pi\)
\(72\) 8.63500e6 0.0378674
\(73\) −1.50701e8 −0.621101 −0.310551 0.950557i \(-0.600513\pi\)
−0.310551 + 0.950557i \(0.600513\pi\)
\(74\) −6.68803e7 −0.259272
\(75\) 5.38031e7 0.196350
\(76\) −1.56546e8 −0.538247
\(77\) 1.93542e7 0.0627432
\(78\) −2.91693e8 −0.892277
\(79\) −3.89487e8 −1.12505 −0.562523 0.826781i \(-0.690169\pi\)
−0.562523 + 0.826781i \(0.690169\pi\)
\(80\) 2.95711e7 0.0807165
\(81\) −3.72903e8 −0.962528
\(82\) −2.29420e8 −0.560362
\(83\) −7.43467e8 −1.71953 −0.859766 0.510688i \(-0.829391\pi\)
−0.859766 + 0.510688i \(0.829391\pi\)
\(84\) 9.04463e7 0.198214
\(85\) 1.47975e7 0.0307471
\(86\) 4.86228e8 0.958510
\(87\) 2.72617e8 0.510172
\(88\) 9.77855e7 0.173821
\(89\) 2.64429e8 0.446739 0.223369 0.974734i \(-0.428294\pi\)
0.223369 + 0.974734i \(0.428294\pi\)
\(90\) 6.87065e6 0.0110384
\(91\) 3.29248e8 0.503311
\(92\) 2.72867e8 0.397106
\(93\) −1.16764e9 −1.61859
\(94\) 3.56816e8 0.471378
\(95\) −3.57743e8 −0.450625
\(96\) 7.54835e8 0.907051
\(97\) 1.39343e9 1.59813 0.799063 0.601248i \(-0.205329\pi\)
0.799063 + 0.601248i \(0.205329\pi\)
\(98\) 8.90291e7 0.0975022
\(99\) 5.73790e6 0.00600337
\(100\) −1.06834e8 −0.106834
\(101\) −6.43863e8 −0.615669 −0.307834 0.951440i \(-0.599604\pi\)
−0.307834 + 0.951440i \(0.599604\pi\)
\(102\) −5.03621e7 −0.0460684
\(103\) −9.64216e8 −0.844125 −0.422063 0.906567i \(-0.638694\pi\)
−0.422063 + 0.906567i \(0.638694\pi\)
\(104\) 1.66350e9 1.39435
\(105\) 2.06690e8 0.165946
\(106\) −1.04930e8 −0.0807281
\(107\) −1.97477e9 −1.45643 −0.728215 0.685348i \(-0.759650\pi\)
−0.728215 + 0.685348i \(0.759650\pi\)
\(108\) 7.68278e8 0.543390
\(109\) 1.03957e9 0.705401 0.352701 0.935736i \(-0.385263\pi\)
0.352701 + 0.935736i \(0.385263\pi\)
\(110\) 7.78055e7 0.0506691
\(111\) −5.96482e8 −0.372944
\(112\) 1.13600e8 0.0682179
\(113\) 5.48265e8 0.316328 0.158164 0.987413i \(-0.449443\pi\)
0.158164 + 0.987413i \(0.449443\pi\)
\(114\) 1.21755e9 0.675171
\(115\) 6.23563e8 0.332460
\(116\) −5.41324e8 −0.277585
\(117\) 9.76115e7 0.0481576
\(118\) 1.36694e9 0.649052
\(119\) 5.68462e7 0.0259860
\(120\) 1.04428e9 0.459730
\(121\) −2.29297e9 −0.972443
\(122\) 1.92771e9 0.787811
\(123\) −2.04612e9 −0.806042
\(124\) 2.31854e9 0.880676
\(125\) −2.44141e8 −0.0894427
\(126\) 2.63943e7 0.00932916
\(127\) −5.40565e9 −1.84387 −0.921936 0.387341i \(-0.873394\pi\)
−0.921936 + 0.387341i \(0.873394\pi\)
\(128\) −1.12473e9 −0.370342
\(129\) 4.33650e9 1.37875
\(130\) 1.32360e9 0.406456
\(131\) −1.81287e9 −0.537832 −0.268916 0.963164i \(-0.586665\pi\)
−0.268916 + 0.963164i \(0.586665\pi\)
\(132\) 3.03656e8 0.0870560
\(133\) −1.37431e9 −0.380847
\(134\) 1.48059e9 0.396702
\(135\) 1.75569e9 0.454931
\(136\) 2.87211e8 0.0719906
\(137\) −7.50191e8 −0.181940 −0.0909702 0.995854i \(-0.528997\pi\)
−0.0909702 + 0.995854i \(0.528997\pi\)
\(138\) −2.12224e9 −0.498126
\(139\) 6.59090e9 1.49754 0.748769 0.662831i \(-0.230645\pi\)
0.748769 + 0.662831i \(0.230645\pi\)
\(140\) −4.10415e8 −0.0902916
\(141\) 3.18232e9 0.678044
\(142\) −3.34809e9 −0.691035
\(143\) 1.10538e9 0.221055
\(144\) 3.36789e7 0.00652719
\(145\) −1.23705e9 −0.232397
\(146\) −2.32736e9 −0.423911
\(147\) 7.94020e8 0.140250
\(148\) 1.18441e9 0.202920
\(149\) −3.29437e9 −0.547564 −0.273782 0.961792i \(-0.588275\pi\)
−0.273782 + 0.961792i \(0.588275\pi\)
\(150\) 8.30912e8 0.134012
\(151\) −1.04401e10 −1.63421 −0.817103 0.576492i \(-0.804421\pi\)
−0.817103 + 0.576492i \(0.804421\pi\)
\(152\) −6.94357e9 −1.05508
\(153\) 1.68531e7 0.00248638
\(154\) 2.98898e8 0.0428232
\(155\) 5.29837e9 0.737310
\(156\) 5.16570e9 0.698342
\(157\) −4.88247e9 −0.641344 −0.320672 0.947190i \(-0.603909\pi\)
−0.320672 + 0.947190i \(0.603909\pi\)
\(158\) −6.01506e9 −0.767862
\(159\) −9.35838e8 −0.116122
\(160\) −3.42519e9 −0.413186
\(161\) 2.39548e9 0.280980
\(162\) −5.75895e9 −0.656940
\(163\) −1.00685e10 −1.11717 −0.558584 0.829448i \(-0.688655\pi\)
−0.558584 + 0.829448i \(0.688655\pi\)
\(164\) 4.06289e9 0.438568
\(165\) 6.93921e8 0.0728840
\(166\) −1.14818e10 −1.17361
\(167\) 1.11826e10 1.11255 0.556273 0.831000i \(-0.312231\pi\)
0.556273 + 0.831000i \(0.312231\pi\)
\(168\) 4.01172e9 0.388543
\(169\) 8.19997e9 0.773254
\(170\) 2.28527e8 0.0209854
\(171\) −4.07438e8 −0.0364400
\(172\) −8.61080e9 −0.750180
\(173\) −1.55595e10 −1.32065 −0.660325 0.750980i \(-0.729582\pi\)
−0.660325 + 0.750980i \(0.729582\pi\)
\(174\) 4.21018e9 0.348200
\(175\) −9.37891e8 −0.0755929
\(176\) 3.81391e8 0.0299615
\(177\) 1.21912e10 0.933616
\(178\) 4.08372e9 0.304906
\(179\) −1.14811e10 −0.835884 −0.417942 0.908474i \(-0.637248\pi\)
−0.417942 + 0.908474i \(0.637248\pi\)
\(180\) −1.21675e8 −0.00863924
\(181\) 1.64859e10 1.14172 0.570860 0.821047i \(-0.306610\pi\)
0.570860 + 0.821047i \(0.306610\pi\)
\(182\) 5.08476e9 0.343518
\(183\) 1.71926e10 1.13321
\(184\) 1.21030e10 0.778416
\(185\) 2.70664e9 0.169886
\(186\) −1.80326e10 −1.10471
\(187\) 1.90850e8 0.0114131
\(188\) −6.31900e9 −0.368925
\(189\) 6.74465e9 0.384486
\(190\) −5.52483e9 −0.307558
\(191\) 1.75186e10 0.952466 0.476233 0.879319i \(-0.342002\pi\)
0.476233 + 0.879319i \(0.342002\pi\)
\(192\) 1.49940e10 0.796270
\(193\) −2.51278e10 −1.30361 −0.651805 0.758387i \(-0.725988\pi\)
−0.651805 + 0.758387i \(0.725988\pi\)
\(194\) 2.15195e10 1.09075
\(195\) 1.18048e10 0.584658
\(196\) −1.57665e9 −0.0763103
\(197\) 3.28481e10 1.55386 0.776930 0.629587i \(-0.216776\pi\)
0.776930 + 0.629587i \(0.216776\pi\)
\(198\) 8.86137e7 0.00409739
\(199\) −3.56924e9 −0.161338 −0.0806691 0.996741i \(-0.525706\pi\)
−0.0806691 + 0.996741i \(0.525706\pi\)
\(200\) −4.73862e9 −0.209419
\(201\) 1.32049e10 0.570628
\(202\) −9.94354e9 −0.420204
\(203\) −4.75224e9 −0.196411
\(204\) 8.91883e8 0.0360556
\(205\) 9.28460e9 0.367173
\(206\) −1.48909e10 −0.576129
\(207\) 7.10183e8 0.0268846
\(208\) 6.48810e9 0.240344
\(209\) −4.61396e9 −0.167269
\(210\) 3.19203e9 0.113261
\(211\) −8.88255e9 −0.308508 −0.154254 0.988031i \(-0.549297\pi\)
−0.154254 + 0.988031i \(0.549297\pi\)
\(212\) 1.85825e9 0.0631820
\(213\) −2.98605e10 −0.994006
\(214\) −3.04975e10 −0.994037
\(215\) −1.96776e10 −0.628057
\(216\) 3.40768e10 1.06517
\(217\) 2.03542e10 0.623140
\(218\) 1.60547e10 0.481447
\(219\) −2.07569e10 −0.609767
\(220\) −1.37789e9 −0.0396563
\(221\) 3.24668e9 0.0915534
\(222\) −9.21182e9 −0.254540
\(223\) 1.85138e10 0.501330 0.250665 0.968074i \(-0.419351\pi\)
0.250665 + 0.968074i \(0.419351\pi\)
\(224\) −1.31582e10 −0.349206
\(225\) −2.78055e8 −0.00723284
\(226\) 8.46716e9 0.215899
\(227\) 6.91501e10 1.72853 0.864265 0.503037i \(-0.167784\pi\)
0.864265 + 0.503037i \(0.167784\pi\)
\(228\) −2.15620e10 −0.528424
\(229\) −4.14990e10 −0.997190 −0.498595 0.866835i \(-0.666150\pi\)
−0.498595 + 0.866835i \(0.666150\pi\)
\(230\) 9.63003e9 0.226909
\(231\) 2.66577e9 0.0615982
\(232\) −2.40103e10 −0.544129
\(233\) 1.06684e10 0.237136 0.118568 0.992946i \(-0.462170\pi\)
0.118568 + 0.992946i \(0.462170\pi\)
\(234\) 1.50747e9 0.0328683
\(235\) −1.44403e10 −0.308867
\(236\) −2.42076e10 −0.507982
\(237\) −5.36463e10 −1.10452
\(238\) 8.77908e8 0.0177359
\(239\) 6.89311e9 0.136655 0.0683274 0.997663i \(-0.478234\pi\)
0.0683274 + 0.997663i \(0.478234\pi\)
\(240\) 4.07300e9 0.0792435
\(241\) −2.72593e10 −0.520520 −0.260260 0.965539i \(-0.583808\pi\)
−0.260260 + 0.965539i \(0.583808\pi\)
\(242\) −3.54116e10 −0.663708
\(243\) 3.92936e9 0.0722925
\(244\) −3.41386e10 −0.616582
\(245\) −3.60300e9 −0.0638877
\(246\) −3.15993e10 −0.550136
\(247\) −7.84913e10 −1.34179
\(248\) 1.02838e11 1.72632
\(249\) −1.02402e11 −1.68815
\(250\) −3.77040e9 −0.0610461
\(251\) 1.11185e11 1.76812 0.884062 0.467370i \(-0.154798\pi\)
0.884062 + 0.467370i \(0.154798\pi\)
\(252\) −4.67427e8 −0.00730149
\(253\) 8.04235e9 0.123407
\(254\) −8.34825e10 −1.25847
\(255\) 2.03815e9 0.0301860
\(256\) −7.31062e10 −1.06384
\(257\) −3.84555e10 −0.549869 −0.274935 0.961463i \(-0.588656\pi\)
−0.274935 + 0.961463i \(0.588656\pi\)
\(258\) 6.69710e10 0.941018
\(259\) 1.03978e10 0.143580
\(260\) −2.34402e10 −0.318113
\(261\) −1.40889e9 −0.0187929
\(262\) −2.79972e10 −0.367079
\(263\) 1.50225e11 1.93616 0.968082 0.250634i \(-0.0806390\pi\)
0.968082 + 0.250634i \(0.0806390\pi\)
\(264\) 1.34686e10 0.170649
\(265\) 4.24653e9 0.0528965
\(266\) −2.12242e10 −0.259934
\(267\) 3.64213e10 0.438587
\(268\) −2.62204e10 −0.310479
\(269\) 9.22583e10 1.07429 0.537143 0.843491i \(-0.319503\pi\)
0.537143 + 0.843491i \(0.319503\pi\)
\(270\) 2.71141e10 0.310497
\(271\) −1.10392e11 −1.24330 −0.621649 0.783296i \(-0.713537\pi\)
−0.621649 + 0.783296i \(0.713537\pi\)
\(272\) 1.12020e9 0.0124090
\(273\) 4.53492e10 0.494126
\(274\) −1.15856e10 −0.124177
\(275\) −3.14878e9 −0.0332006
\(276\) 3.75836e10 0.389859
\(277\) 1.06151e11 1.08334 0.541672 0.840590i \(-0.317792\pi\)
0.541672 + 0.840590i \(0.317792\pi\)
\(278\) 1.01787e11 1.02209
\(279\) 6.03438e9 0.0596230
\(280\) −1.82039e10 −0.176992
\(281\) 1.69943e11 1.62602 0.813008 0.582252i \(-0.197828\pi\)
0.813008 + 0.582252i \(0.197828\pi\)
\(282\) 4.91464e10 0.462776
\(283\) −6.63477e10 −0.614875 −0.307438 0.951568i \(-0.599472\pi\)
−0.307438 + 0.951568i \(0.599472\pi\)
\(284\) 5.92927e10 0.540840
\(285\) −4.92740e10 −0.442401
\(286\) 1.70711e10 0.150874
\(287\) 3.56677e10 0.310318
\(288\) −3.90100e9 −0.0334125
\(289\) −1.18027e11 −0.995273
\(290\) −1.91044e10 −0.158614
\(291\) 1.91925e11 1.56896
\(292\) 4.12161e10 0.331775
\(293\) 7.54377e9 0.0597976 0.0298988 0.999553i \(-0.490481\pi\)
0.0298988 + 0.999553i \(0.490481\pi\)
\(294\) 1.22625e10 0.0957230
\(295\) −5.53198e10 −0.425286
\(296\) 5.25342e10 0.397768
\(297\) 2.26438e10 0.168867
\(298\) −5.08769e10 −0.373721
\(299\) 1.36814e11 0.989943
\(300\) −1.47149e10 −0.104885
\(301\) −7.55935e10 −0.530805
\(302\) −1.61232e11 −1.11537
\(303\) −8.86830e10 −0.604434
\(304\) −2.70818e10 −0.181864
\(305\) −7.80142e10 −0.516208
\(306\) 2.60272e8 0.00169700
\(307\) −9.90848e10 −0.636626 −0.318313 0.947986i \(-0.603116\pi\)
−0.318313 + 0.947986i \(0.603116\pi\)
\(308\) −5.29330e9 −0.0335157
\(309\) −1.32807e11 −0.828721
\(310\) 8.18258e10 0.503225
\(311\) −2.78000e10 −0.168509 −0.0842545 0.996444i \(-0.526851\pi\)
−0.0842545 + 0.996444i \(0.526851\pi\)
\(312\) 2.29123e11 1.36891
\(313\) 7.09223e10 0.417670 0.208835 0.977951i \(-0.433033\pi\)
0.208835 + 0.977951i \(0.433033\pi\)
\(314\) −7.54027e10 −0.437727
\(315\) −1.06818e9 −0.00611287
\(316\) 1.06523e11 0.600969
\(317\) −3.11422e11 −1.73214 −0.866068 0.499926i \(-0.833360\pi\)
−0.866068 + 0.499926i \(0.833360\pi\)
\(318\) −1.44527e10 −0.0792550
\(319\) −1.59547e10 −0.0862643
\(320\) −6.80376e10 −0.362722
\(321\) −2.71997e11 −1.42985
\(322\) 3.69947e10 0.191773
\(323\) −1.35519e10 −0.0692770
\(324\) 1.01988e11 0.514156
\(325\) −5.35662e10 −0.266327
\(326\) −1.55493e11 −0.762485
\(327\) 1.43187e11 0.692529
\(328\) 1.80208e11 0.859692
\(329\) −5.54739e10 −0.261040
\(330\) 1.07166e10 0.0497445
\(331\) 2.94782e11 1.34982 0.674908 0.737902i \(-0.264183\pi\)
0.674908 + 0.737902i \(0.264183\pi\)
\(332\) 2.03336e11 0.918527
\(333\) 3.08263e9 0.0137379
\(334\) 1.72699e11 0.759330
\(335\) −5.99195e10 −0.259936
\(336\) 1.56468e10 0.0669730
\(337\) −2.02609e11 −0.855705 −0.427852 0.903849i \(-0.640730\pi\)
−0.427852 + 0.903849i \(0.640730\pi\)
\(338\) 1.26637e11 0.527758
\(339\) 7.55158e10 0.310555
\(340\) −4.04707e9 −0.0164243
\(341\) 6.83353e10 0.273685
\(342\) −6.29229e9 −0.0248709
\(343\) −1.38413e10 −0.0539949
\(344\) −3.81930e11 −1.47052
\(345\) 8.58870e10 0.326393
\(346\) −2.40294e11 −0.901365
\(347\) −1.52000e11 −0.562810 −0.281405 0.959589i \(-0.590800\pi\)
−0.281405 + 0.959589i \(0.590800\pi\)
\(348\) −7.45598e10 −0.272520
\(349\) −2.82049e11 −1.01768 −0.508840 0.860861i \(-0.669925\pi\)
−0.508840 + 0.860861i \(0.669925\pi\)
\(350\) −1.44844e10 −0.0515933
\(351\) 3.85210e11 1.35461
\(352\) −4.41762e10 −0.153372
\(353\) −4.32937e11 −1.48402 −0.742008 0.670391i \(-0.766126\pi\)
−0.742008 + 0.670391i \(0.766126\pi\)
\(354\) 1.88276e11 0.637207
\(355\) 1.35497e11 0.452796
\(356\) −7.23203e10 −0.238636
\(357\) 7.82976e9 0.0255118
\(358\) −1.77310e11 −0.570504
\(359\) 1.35500e10 0.0430542 0.0215271 0.999768i \(-0.493147\pi\)
0.0215271 + 0.999768i \(0.493147\pi\)
\(360\) −5.39687e9 −0.0169348
\(361\) 4.94112e9 0.0153124
\(362\) 2.54601e11 0.779242
\(363\) −3.15824e11 −0.954697
\(364\) −9.00480e10 −0.268855
\(365\) 9.41879e10 0.277765
\(366\) 2.65515e11 0.773435
\(367\) −1.26149e11 −0.362984 −0.181492 0.983392i \(-0.558093\pi\)
−0.181492 + 0.983392i \(0.558093\pi\)
\(368\) 4.72049e10 0.134175
\(369\) 1.05744e10 0.0296917
\(370\) 4.18002e10 0.115950
\(371\) 1.63135e10 0.0447057
\(372\) 3.19346e11 0.864605
\(373\) −2.45212e11 −0.655923 −0.327961 0.944691i \(-0.606362\pi\)
−0.327961 + 0.944691i \(0.606362\pi\)
\(374\) 2.94741e9 0.00778964
\(375\) −3.36269e10 −0.0878105
\(376\) −2.80278e11 −0.723175
\(377\) −2.71417e11 −0.691991
\(378\) 1.04161e11 0.262418
\(379\) 3.62591e11 0.902694 0.451347 0.892348i \(-0.350944\pi\)
0.451347 + 0.892348i \(0.350944\pi\)
\(380\) 9.78413e10 0.240711
\(381\) −7.44552e11 −1.81022
\(382\) 2.70550e11 0.650073
\(383\) 7.23039e10 0.171699 0.0858494 0.996308i \(-0.472640\pi\)
0.0858494 + 0.996308i \(0.472640\pi\)
\(384\) −1.54916e11 −0.363584
\(385\) −1.20964e10 −0.0280596
\(386\) −3.88064e11 −0.889734
\(387\) −2.24111e10 −0.0507882
\(388\) −3.81097e11 −0.853674
\(389\) 3.00609e11 0.665624 0.332812 0.942993i \(-0.392002\pi\)
0.332812 + 0.942993i \(0.392002\pi\)
\(390\) 1.82308e11 0.399038
\(391\) 2.36216e10 0.0511110
\(392\) −6.99320e10 −0.149585
\(393\) −2.49698e11 −0.528017
\(394\) 5.07291e11 1.06053
\(395\) 2.43429e11 0.503136
\(396\) −1.56930e9 −0.00320683
\(397\) −2.86335e11 −0.578518 −0.289259 0.957251i \(-0.593409\pi\)
−0.289259 + 0.957251i \(0.593409\pi\)
\(398\) −5.51219e10 −0.110116
\(399\) −1.89291e11 −0.373897
\(400\) −1.84819e10 −0.0360975
\(401\) 8.19964e11 1.58360 0.791800 0.610781i \(-0.209144\pi\)
0.791800 + 0.610781i \(0.209144\pi\)
\(402\) 2.03931e11 0.389462
\(403\) 1.16250e12 2.19543
\(404\) 1.76094e11 0.328873
\(405\) 2.33064e11 0.430456
\(406\) −7.33915e10 −0.134054
\(407\) 3.49087e10 0.0630607
\(408\) 3.95593e10 0.0706769
\(409\) 9.67528e11 1.70966 0.854828 0.518911i \(-0.173663\pi\)
0.854828 + 0.518911i \(0.173663\pi\)
\(410\) 1.43387e11 0.250601
\(411\) −1.03328e11 −0.178620
\(412\) 2.63710e11 0.450908
\(413\) −2.12517e11 −0.359433
\(414\) 1.09678e10 0.0183492
\(415\) 4.64667e11 0.768998
\(416\) −7.51511e11 −1.23031
\(417\) 9.07803e11 1.47021
\(418\) −7.12560e10 −0.114164
\(419\) −8.51357e10 −0.134942 −0.0674712 0.997721i \(-0.521493\pi\)
−0.0674712 + 0.997721i \(0.521493\pi\)
\(420\) −5.65289e10 −0.0886439
\(421\) 5.61043e10 0.0870415 0.0435207 0.999053i \(-0.486143\pi\)
0.0435207 + 0.999053i \(0.486143\pi\)
\(422\) −1.37178e11 −0.210562
\(423\) −1.64463e10 −0.0249767
\(424\) 8.24224e10 0.123851
\(425\) −9.24846e9 −0.0137505
\(426\) −4.61153e11 −0.678425
\(427\) −2.99700e11 −0.436275
\(428\) 5.40093e11 0.777985
\(429\) 1.52251e11 0.217022
\(430\) −3.03892e11 −0.428659
\(431\) −1.36440e11 −0.190456 −0.0952278 0.995456i \(-0.530358\pi\)
−0.0952278 + 0.995456i \(0.530358\pi\)
\(432\) 1.32909e11 0.183602
\(433\) 3.25710e11 0.445282 0.222641 0.974900i \(-0.428532\pi\)
0.222641 + 0.974900i \(0.428532\pi\)
\(434\) 3.14342e11 0.425303
\(435\) −1.70386e11 −0.228156
\(436\) −2.84320e11 −0.376806
\(437\) −5.71072e11 −0.749074
\(438\) −3.20560e11 −0.416175
\(439\) 1.44336e11 0.185474 0.0927372 0.995691i \(-0.470438\pi\)
0.0927372 + 0.995691i \(0.470438\pi\)
\(440\) −6.11160e10 −0.0777352
\(441\) −4.10350e9 −0.00516632
\(442\) 5.01404e10 0.0624867
\(443\) −9.59823e11 −1.18406 −0.592031 0.805915i \(-0.701674\pi\)
−0.592031 + 0.805915i \(0.701674\pi\)
\(444\) 1.63136e11 0.199217
\(445\) −1.65268e11 −0.199788
\(446\) 2.85919e11 0.342166
\(447\) −4.53754e11 −0.537572
\(448\) −2.61373e11 −0.306556
\(449\) −1.02004e12 −1.18443 −0.592215 0.805780i \(-0.701747\pi\)
−0.592215 + 0.805780i \(0.701747\pi\)
\(450\) −4.29416e9 −0.00493653
\(451\) 1.19747e11 0.136292
\(452\) −1.49948e11 −0.168974
\(453\) −1.43797e12 −1.60438
\(454\) 1.06792e12 1.17975
\(455\) −2.05780e11 −0.225088
\(456\) −9.56379e11 −1.03583
\(457\) −6.45199e11 −0.691944 −0.345972 0.938245i \(-0.612451\pi\)
−0.345972 + 0.938245i \(0.612451\pi\)
\(458\) −6.40892e11 −0.680598
\(459\) 6.65084e10 0.0699390
\(460\) −1.70542e11 −0.177591
\(461\) 1.04575e12 1.07838 0.539192 0.842183i \(-0.318730\pi\)
0.539192 + 0.842183i \(0.318730\pi\)
\(462\) 4.11690e10 0.0420418
\(463\) 6.01465e11 0.608269 0.304134 0.952629i \(-0.401633\pi\)
0.304134 + 0.952629i \(0.401633\pi\)
\(464\) −9.36469e10 −0.0937913
\(465\) 7.29776e11 0.723855
\(466\) 1.64758e11 0.161849
\(467\) 9.53000e11 0.927186 0.463593 0.886048i \(-0.346560\pi\)
0.463593 + 0.886048i \(0.346560\pi\)
\(468\) −2.66964e10 −0.0257244
\(469\) −2.30187e11 −0.219686
\(470\) −2.23010e11 −0.210806
\(471\) −6.72491e11 −0.629640
\(472\) −1.07372e12 −0.995757
\(473\) −2.53790e11 −0.233131
\(474\) −8.28490e11 −0.753850
\(475\) 2.23589e11 0.201525
\(476\) −1.55472e10 −0.0138810
\(477\) 4.83642e9 0.00427751
\(478\) 1.06454e11 0.0932690
\(479\) 1.99157e12 1.72857 0.864283 0.503005i \(-0.167772\pi\)
0.864283 + 0.503005i \(0.167772\pi\)
\(480\) −4.71772e11 −0.405646
\(481\) 5.93856e11 0.505857
\(482\) −4.20981e11 −0.355263
\(483\) 3.29943e11 0.275853
\(484\) 6.27119e11 0.519452
\(485\) −8.70891e11 −0.714703
\(486\) 6.06833e10 0.0493408
\(487\) −2.40847e12 −1.94027 −0.970134 0.242570i \(-0.922010\pi\)
−0.970134 + 0.242570i \(0.922010\pi\)
\(488\) −1.51421e12 −1.20864
\(489\) −1.38679e12 −1.09678
\(490\) −5.56432e10 −0.0436043
\(491\) 2.85374e11 0.221589 0.110794 0.993843i \(-0.464661\pi\)
0.110794 + 0.993843i \(0.464661\pi\)
\(492\) 5.59605e11 0.430565
\(493\) −4.68614e10 −0.0357276
\(494\) −1.21219e12 −0.915794
\(495\) −3.58619e9 −0.00268479
\(496\) 4.01097e11 0.297565
\(497\) 5.20526e11 0.382682
\(498\) −1.58145e12 −1.15219
\(499\) 2.11594e12 1.52775 0.763873 0.645367i \(-0.223296\pi\)
0.763873 + 0.645367i \(0.223296\pi\)
\(500\) 6.67715e10 0.0477778
\(501\) 1.54024e12 1.09224
\(502\) 1.71709e12 1.20677
\(503\) 7.41865e11 0.516736 0.258368 0.966047i \(-0.416815\pi\)
0.258368 + 0.966047i \(0.416815\pi\)
\(504\) −2.07326e10 −0.0143125
\(505\) 4.02414e11 0.275335
\(506\) 1.24203e11 0.0842274
\(507\) 1.12943e12 0.759143
\(508\) 1.47842e12 0.984946
\(509\) 1.62377e12 1.07225 0.536124 0.844140i \(-0.319888\pi\)
0.536124 + 0.844140i \(0.319888\pi\)
\(510\) 3.14763e10 0.0206024
\(511\) 3.61832e11 0.234754
\(512\) −5.53160e11 −0.355742
\(513\) −1.60790e12 −1.02501
\(514\) −5.93890e11 −0.375294
\(515\) 6.02635e11 0.377504
\(516\) −1.18602e12 −0.736490
\(517\) −1.86243e11 −0.114649
\(518\) 1.60580e11 0.0979955
\(519\) −2.14310e12 −1.29655
\(520\) −1.03969e12 −0.623573
\(521\) 1.48817e12 0.884877 0.442439 0.896799i \(-0.354113\pi\)
0.442439 + 0.896799i \(0.354113\pi\)
\(522\) −2.17583e10 −0.0128265
\(523\) 2.41360e12 1.41061 0.705306 0.708903i \(-0.250810\pi\)
0.705306 + 0.708903i \(0.250810\pi\)
\(524\) 4.95814e11 0.287295
\(525\) −1.29181e11 −0.0742134
\(526\) 2.32001e12 1.32146
\(527\) 2.00711e11 0.113351
\(528\) 5.25312e10 0.0294147
\(529\) −8.05747e11 −0.447351
\(530\) 6.55815e10 0.0361027
\(531\) −6.30044e10 −0.0343911
\(532\) 3.75867e11 0.203438
\(533\) 2.03711e12 1.09331
\(534\) 5.62475e11 0.299342
\(535\) 1.23423e12 0.651336
\(536\) −1.16300e12 −0.608609
\(537\) −1.58136e12 −0.820630
\(538\) 1.42480e12 0.733218
\(539\) −4.64694e10 −0.0237147
\(540\) −4.80174e11 −0.243011
\(541\) −2.14334e12 −1.07573 −0.537864 0.843032i \(-0.680769\pi\)
−0.537864 + 0.843032i \(0.680769\pi\)
\(542\) −1.70484e12 −0.848570
\(543\) 2.27070e12 1.12089
\(544\) −1.29752e11 −0.0635213
\(545\) −6.49734e11 −0.315465
\(546\) 7.00354e11 0.337249
\(547\) 1.02462e12 0.489349 0.244675 0.969605i \(-0.421319\pi\)
0.244675 + 0.969605i \(0.421319\pi\)
\(548\) 2.05174e11 0.0971875
\(549\) −8.88514e10 −0.0417435
\(550\) −4.86285e10 −0.0226599
\(551\) 1.13291e12 0.523618
\(552\) 1.66701e12 0.764211
\(553\) 9.35157e11 0.425228
\(554\) 1.63935e12 0.739399
\(555\) 3.72801e11 0.166786
\(556\) −1.80259e12 −0.799944
\(557\) −3.18977e12 −1.40414 −0.702070 0.712108i \(-0.747741\pi\)
−0.702070 + 0.712108i \(0.747741\pi\)
\(558\) 9.31924e10 0.0406936
\(559\) −4.31740e12 −1.87012
\(560\) −7.10002e10 −0.0305080
\(561\) 2.62869e10 0.0112049
\(562\) 2.62453e12 1.10978
\(563\) 1.08826e12 0.456503 0.228252 0.973602i \(-0.426699\pi\)
0.228252 + 0.973602i \(0.426699\pi\)
\(564\) −8.70353e11 −0.362192
\(565\) −3.42666e11 −0.141466
\(566\) −1.02465e12 −0.419662
\(567\) 8.95340e11 0.363801
\(568\) 2.62992e12 1.06017
\(569\) −3.28834e12 −1.31514 −0.657569 0.753394i \(-0.728415\pi\)
−0.657569 + 0.753394i \(0.728415\pi\)
\(570\) −7.60967e11 −0.301946
\(571\) −1.88806e12 −0.743283 −0.371641 0.928376i \(-0.621205\pi\)
−0.371641 + 0.928376i \(0.621205\pi\)
\(572\) −3.02319e11 −0.118082
\(573\) 2.41294e12 0.935084
\(574\) 5.50837e11 0.211797
\(575\) −3.89727e11 −0.148681
\(576\) −7.74889e10 −0.0293318
\(577\) 1.12881e12 0.423963 0.211982 0.977274i \(-0.432008\pi\)
0.211982 + 0.977274i \(0.432008\pi\)
\(578\) −1.82276e12 −0.679289
\(579\) −3.46101e12 −1.27982
\(580\) 3.38328e11 0.124140
\(581\) 1.78506e12 0.649922
\(582\) 2.96400e12 1.07084
\(583\) 5.47692e10 0.0196349
\(584\) 1.82813e12 0.650353
\(585\) −6.10072e10 −0.0215367
\(586\) 1.16503e11 0.0408128
\(587\) 6.31776e11 0.219630 0.109815 0.993952i \(-0.464974\pi\)
0.109815 + 0.993952i \(0.464974\pi\)
\(588\) −2.17162e11 −0.0749178
\(589\) −4.85237e12 −1.66125
\(590\) −8.54335e11 −0.290265
\(591\) 4.52436e12 1.52550
\(592\) 2.04898e11 0.0685630
\(593\) −4.97504e12 −1.65215 −0.826077 0.563557i \(-0.809432\pi\)
−0.826077 + 0.563557i \(0.809432\pi\)
\(594\) 3.49702e11 0.115255
\(595\) −3.55289e10 −0.0116213
\(596\) 9.00999e11 0.292493
\(597\) −4.91613e11 −0.158394
\(598\) 2.11290e12 0.675652
\(599\) −4.55686e12 −1.44626 −0.723128 0.690714i \(-0.757296\pi\)
−0.723128 + 0.690714i \(0.757296\pi\)
\(600\) −6.52678e11 −0.205598
\(601\) −5.78188e12 −1.80773 −0.903866 0.427815i \(-0.859283\pi\)
−0.903866 + 0.427815i \(0.859283\pi\)
\(602\) −1.16743e12 −0.362283
\(603\) −6.82431e10 −0.0210199
\(604\) 2.85532e12 0.872948
\(605\) 1.43311e12 0.434890
\(606\) −1.36958e12 −0.412536
\(607\) −7.37332e11 −0.220452 −0.110226 0.993907i \(-0.535157\pi\)
−0.110226 + 0.993907i \(0.535157\pi\)
\(608\) 3.13687e12 0.930958
\(609\) −6.54554e11 −0.192827
\(610\) −1.20482e12 −0.352320
\(611\) −3.16831e12 −0.919691
\(612\) −4.60926e9 −0.00132816
\(613\) −3.50587e12 −1.00282 −0.501410 0.865210i \(-0.667185\pi\)
−0.501410 + 0.865210i \(0.667185\pi\)
\(614\) −1.53022e12 −0.434507
\(615\) 1.27882e12 0.360473
\(616\) −2.34783e11 −0.0656982
\(617\) 2.47222e12 0.686759 0.343380 0.939197i \(-0.388428\pi\)
0.343380 + 0.939197i \(0.388428\pi\)
\(618\) −2.05102e12 −0.565615
\(619\) −1.57589e12 −0.431436 −0.215718 0.976456i \(-0.569209\pi\)
−0.215718 + 0.976456i \(0.569209\pi\)
\(620\) −1.44908e12 −0.393850
\(621\) 2.80264e12 0.756232
\(622\) −4.29331e11 −0.115010
\(623\) −6.34894e11 −0.168851
\(624\) 8.93645e11 0.235958
\(625\) 1.52588e11 0.0400000
\(626\) 1.09529e12 0.285066
\(627\) −6.35508e11 −0.164217
\(628\) 1.33534e12 0.342588
\(629\) 1.02532e11 0.0261175
\(630\) −1.64964e10 −0.00417213
\(631\) 4.95895e11 0.124525 0.0622627 0.998060i \(-0.480168\pi\)
0.0622627 + 0.998060i \(0.480168\pi\)
\(632\) 4.72481e12 1.17803
\(633\) −1.22345e12 −0.302878
\(634\) −4.80946e12 −1.18221
\(635\) 3.37853e12 0.824605
\(636\) 2.55948e11 0.0620291
\(637\) −7.90524e11 −0.190234
\(638\) −2.46398e11 −0.0588767
\(639\) 1.54319e11 0.0366156
\(640\) 7.02956e11 0.165622
\(641\) 1.72054e12 0.402535 0.201268 0.979536i \(-0.435494\pi\)
0.201268 + 0.979536i \(0.435494\pi\)
\(642\) −4.20060e12 −0.975897
\(643\) 8.19457e12 1.89050 0.945250 0.326346i \(-0.105818\pi\)
0.945250 + 0.326346i \(0.105818\pi\)
\(644\) −6.55154e11 −0.150092
\(645\) −2.71031e12 −0.616596
\(646\) −2.09290e11 −0.0472826
\(647\) −2.56336e12 −0.575097 −0.287549 0.957766i \(-0.592840\pi\)
−0.287549 + 0.957766i \(0.592840\pi\)
\(648\) 4.52364e12 1.00786
\(649\) −7.13483e11 −0.157864
\(650\) −8.27253e11 −0.181772
\(651\) 2.80351e12 0.611769
\(652\) 2.75368e12 0.596760
\(653\) −2.23256e12 −0.480499 −0.240250 0.970711i \(-0.577229\pi\)
−0.240250 + 0.970711i \(0.577229\pi\)
\(654\) 2.21131e12 0.472662
\(655\) 1.13305e12 0.240526
\(656\) 7.02863e11 0.148185
\(657\) 1.07272e11 0.0224616
\(658\) −8.56715e11 −0.178164
\(659\) 6.47077e12 1.33651 0.668254 0.743933i \(-0.267042\pi\)
0.668254 + 0.743933i \(0.267042\pi\)
\(660\) −1.89785e11 −0.0389326
\(661\) −2.35514e12 −0.479856 −0.239928 0.970791i \(-0.577124\pi\)
−0.239928 + 0.970791i \(0.577124\pi\)
\(662\) 4.55248e12 0.921270
\(663\) 4.47185e11 0.0898827
\(664\) 9.01890e12 1.80052
\(665\) 8.58941e11 0.170320
\(666\) 4.76067e10 0.00937636
\(667\) −1.97472e12 −0.386314
\(668\) −3.05839e12 −0.594291
\(669\) 2.55002e12 0.492182
\(670\) −9.25371e11 −0.177410
\(671\) −1.00618e12 −0.191613
\(672\) −1.81236e12 −0.342833
\(673\) −1.00068e13 −1.88030 −0.940149 0.340764i \(-0.889314\pi\)
−0.940149 + 0.340764i \(0.889314\pi\)
\(674\) −3.12900e12 −0.584032
\(675\) −1.09730e12 −0.203451
\(676\) −2.24266e12 −0.413051
\(677\) −4.75925e12 −0.870742 −0.435371 0.900251i \(-0.643383\pi\)
−0.435371 + 0.900251i \(0.643383\pi\)
\(678\) 1.16623e12 0.211959
\(679\) −3.34561e12 −0.604035
\(680\) −1.79507e11 −0.0321952
\(681\) 9.52446e12 1.69699
\(682\) 1.05534e12 0.186794
\(683\) 5.44016e11 0.0956575 0.0478287 0.998856i \(-0.484770\pi\)
0.0478287 + 0.998856i \(0.484770\pi\)
\(684\) 1.11433e11 0.0194653
\(685\) 4.68869e11 0.0813662
\(686\) −2.13759e11 −0.0368524
\(687\) −5.71590e12 −0.978992
\(688\) −1.48963e12 −0.253473
\(689\) 9.31717e11 0.157506
\(690\) 1.32640e12 0.222769
\(691\) 8.57339e12 1.43054 0.715272 0.698846i \(-0.246303\pi\)
0.715272 + 0.698846i \(0.246303\pi\)
\(692\) 4.25546e12 0.705455
\(693\) −1.37767e10 −0.00226906
\(694\) −2.34743e12 −0.384127
\(695\) −4.11931e12 −0.669720
\(696\) −3.30708e12 −0.534199
\(697\) 3.51716e11 0.0564476
\(698\) −4.35585e12 −0.694582
\(699\) 1.46942e12 0.232809
\(700\) 2.56510e11 0.0403796
\(701\) 1.25396e13 1.96133 0.980666 0.195687i \(-0.0626935\pi\)
0.980666 + 0.195687i \(0.0626935\pi\)
\(702\) 5.94902e12 0.924545
\(703\) −2.47880e12 −0.382774
\(704\) −8.77510e11 −0.134640
\(705\) −1.98895e12 −0.303230
\(706\) −6.68609e12 −1.01286
\(707\) 1.54591e12 0.232701
\(708\) −3.33426e12 −0.498712
\(709\) 4.37869e12 0.650782 0.325391 0.945580i \(-0.394504\pi\)
0.325391 + 0.945580i \(0.394504\pi\)
\(710\) 2.09256e12 0.309040
\(711\) 2.77244e11 0.0406864
\(712\) −3.20775e12 −0.467779
\(713\) 8.45790e12 1.22563
\(714\) 1.20919e11 0.0174122
\(715\) −6.90865e11 −0.0988590
\(716\) 3.14004e12 0.446506
\(717\) 9.49429e11 0.134161
\(718\) 2.09261e11 0.0293852
\(719\) 7.76448e12 1.08351 0.541754 0.840537i \(-0.317760\pi\)
0.541754 + 0.840537i \(0.317760\pi\)
\(720\) −2.10493e10 −0.00291905
\(721\) 2.31508e12 0.319049
\(722\) 7.63086e10 0.0104510
\(723\) −3.75458e12 −0.511022
\(724\) −4.50884e12 −0.609875
\(725\) 7.73154e11 0.103931
\(726\) −4.87745e12 −0.651596
\(727\) 7.08318e11 0.0940423 0.0470211 0.998894i \(-0.485027\pi\)
0.0470211 + 0.998894i \(0.485027\pi\)
\(728\) −3.99406e12 −0.527015
\(729\) 7.88106e12 1.03350
\(730\) 1.45460e12 0.189579
\(731\) −7.45421e11 −0.0965547
\(732\) −4.70211e12 −0.605331
\(733\) 6.81304e12 0.871712 0.435856 0.900017i \(-0.356446\pi\)
0.435856 + 0.900017i \(0.356446\pi\)
\(734\) −1.94820e12 −0.247743
\(735\) −4.96263e11 −0.0627218
\(736\) −5.46771e12 −0.686839
\(737\) −7.72807e11 −0.0964866
\(738\) 1.63306e11 0.0202651
\(739\) 9.20369e12 1.13517 0.567586 0.823314i \(-0.307877\pi\)
0.567586 + 0.823314i \(0.307877\pi\)
\(740\) −7.40256e11 −0.0907484
\(741\) −1.08111e13 −1.31731
\(742\) 2.51938e11 0.0305124
\(743\) −8.72196e12 −1.04994 −0.524970 0.851121i \(-0.675923\pi\)
−0.524970 + 0.851121i \(0.675923\pi\)
\(744\) 1.41645e13 1.69482
\(745\) 2.05898e12 0.244878
\(746\) −3.78695e12 −0.447678
\(747\) 5.29215e11 0.0621856
\(748\) −5.21968e10 −0.00609658
\(749\) 4.74143e12 0.550479
\(750\) −5.19320e11 −0.0599321
\(751\) −1.63201e13 −1.87216 −0.936078 0.351793i \(-0.885572\pi\)
−0.936078 + 0.351793i \(0.885572\pi\)
\(752\) −1.09316e12 −0.124653
\(753\) 1.53141e13 1.73586
\(754\) −4.19164e12 −0.472295
\(755\) 6.52504e12 0.730839
\(756\) −1.84464e12 −0.205382
\(757\) −3.23287e12 −0.357813 −0.178907 0.983866i \(-0.557256\pi\)
−0.178907 + 0.983866i \(0.557256\pi\)
\(758\) 5.59970e12 0.616103
\(759\) 1.10772e12 0.121155
\(760\) 4.33973e12 0.471847
\(761\) −6.46766e11 −0.0699063 −0.0349531 0.999389i \(-0.511128\pi\)
−0.0349531 + 0.999389i \(0.511128\pi\)
\(762\) −1.14985e13 −1.23551
\(763\) −2.49602e12 −0.266617
\(764\) −4.79127e12 −0.508781
\(765\) −1.05332e10 −0.00111195
\(766\) 1.11663e12 0.117187
\(767\) −1.21376e13 −1.26634
\(768\) −1.00694e13 −1.04442
\(769\) −2.42101e12 −0.249648 −0.124824 0.992179i \(-0.539837\pi\)
−0.124824 + 0.992179i \(0.539837\pi\)
\(770\) −1.86811e11 −0.0191511
\(771\) −5.29670e12 −0.539835
\(772\) 6.87237e12 0.696352
\(773\) −4.43910e12 −0.447185 −0.223592 0.974683i \(-0.571778\pi\)
−0.223592 + 0.974683i \(0.571778\pi\)
\(774\) −3.46107e11 −0.0346638
\(775\) −3.31148e12 −0.329735
\(776\) −1.69035e13 −1.67339
\(777\) 1.43215e12 0.140960
\(778\) 4.64248e12 0.454299
\(779\) −8.50304e12 −0.827286
\(780\) −3.22856e12 −0.312308
\(781\) 1.74756e12 0.168075
\(782\) 3.64802e11 0.0348840
\(783\) −5.55998e12 −0.528622
\(784\) −2.72754e11 −0.0257839
\(785\) 3.05154e12 0.286818
\(786\) −3.85622e12 −0.360380
\(787\) −1.72989e13 −1.60744 −0.803718 0.595011i \(-0.797148\pi\)
−0.803718 + 0.595011i \(0.797148\pi\)
\(788\) −8.98382e12 −0.830029
\(789\) 2.06914e13 1.90083
\(790\) 3.75941e12 0.343398
\(791\) −1.31638e12 −0.119561
\(792\) −6.96057e10 −0.00628611
\(793\) −1.71169e13 −1.53708
\(794\) −4.42203e12 −0.394848
\(795\) 5.84899e11 0.0519313
\(796\) 9.76175e11 0.0861825
\(797\) −1.37776e13 −1.20951 −0.604756 0.796410i \(-0.706730\pi\)
−0.604756 + 0.796410i \(0.706730\pi\)
\(798\) −2.92333e12 −0.255191
\(799\) −5.47024e11 −0.0474838
\(800\) 2.14075e12 0.184782
\(801\) −1.88226e11 −0.0161560
\(802\) 1.26632e13 1.08083
\(803\) 1.21478e12 0.103105
\(804\) −3.61149e12 −0.304814
\(805\) −1.49717e12 −0.125658
\(806\) 1.79531e13 1.49842
\(807\) 1.27073e13 1.05468
\(808\) 7.81061e12 0.644665
\(809\) 1.38369e13 1.13572 0.567860 0.823125i \(-0.307772\pi\)
0.567860 + 0.823125i \(0.307772\pi\)
\(810\) 3.59935e12 0.293793
\(811\) −1.96078e13 −1.59161 −0.795804 0.605555i \(-0.792951\pi\)
−0.795804 + 0.605555i \(0.792951\pi\)
\(812\) 1.29972e12 0.104917
\(813\) −1.52049e13 −1.22061
\(814\) 5.39114e11 0.0430399
\(815\) 6.29278e12 0.499613
\(816\) 1.54292e11 0.0121825
\(817\) 1.80212e13 1.41509
\(818\) 1.49421e13 1.16687
\(819\) −2.34365e11 −0.0182019
\(820\) −2.53930e12 −0.196134
\(821\) 2.41017e13 1.85142 0.925708 0.378239i \(-0.123470\pi\)
0.925708 + 0.378239i \(0.123470\pi\)
\(822\) −1.59576e12 −0.121911
\(823\) 8.20762e12 0.623617 0.311809 0.950145i \(-0.399065\pi\)
0.311809 + 0.950145i \(0.399065\pi\)
\(824\) 1.16968e13 0.883881
\(825\) −4.33701e11 −0.0325947
\(826\) −3.28201e12 −0.245318
\(827\) 2.84612e12 0.211582 0.105791 0.994388i \(-0.466263\pi\)
0.105791 + 0.994388i \(0.466263\pi\)
\(828\) −1.94233e11 −0.0143610
\(829\) −5.88562e12 −0.432809 −0.216405 0.976304i \(-0.569433\pi\)
−0.216405 + 0.976304i \(0.569433\pi\)
\(830\) 7.17612e12 0.524853
\(831\) 1.46208e13 1.06357
\(832\) −1.49279e13 −1.08005
\(833\) −1.36488e11 −0.00982180
\(834\) 1.40197e13 1.00344
\(835\) −6.98911e12 −0.497546
\(836\) 1.26190e12 0.0893505
\(837\) 2.38138e13 1.67712
\(838\) −1.31480e12 −0.0921003
\(839\) −8.44799e12 −0.588606 −0.294303 0.955712i \(-0.595087\pi\)
−0.294303 + 0.955712i \(0.595087\pi\)
\(840\) −2.50733e12 −0.173762
\(841\) −1.05896e13 −0.729959
\(842\) 8.66450e11 0.0594072
\(843\) 2.34073e13 1.59634
\(844\) 2.42934e12 0.164796
\(845\) −5.12498e12 −0.345810
\(846\) −2.53989e11 −0.0170470
\(847\) 5.50542e12 0.367549
\(848\) 3.21470e11 0.0213481
\(849\) −9.13847e12 −0.603655
\(850\) −1.42829e11 −0.00938495
\(851\) 4.32066e12 0.282402
\(852\) 8.16674e12 0.530970
\(853\) −7.17311e12 −0.463913 −0.231957 0.972726i \(-0.574513\pi\)
−0.231957 + 0.972726i \(0.574513\pi\)
\(854\) −4.62843e12 −0.297765
\(855\) 2.54649e11 0.0162965
\(856\) 2.39557e13 1.52502
\(857\) 2.17636e13 1.37821 0.689107 0.724660i \(-0.258003\pi\)
0.689107 + 0.724660i \(0.258003\pi\)
\(858\) 2.35130e12 0.148121
\(859\) −9.02945e12 −0.565838 −0.282919 0.959144i \(-0.591303\pi\)
−0.282919 + 0.959144i \(0.591303\pi\)
\(860\) 5.38175e12 0.335491
\(861\) 4.91273e12 0.304655
\(862\) −2.10712e12 −0.129989
\(863\) −1.84428e13 −1.13182 −0.565910 0.824467i \(-0.691475\pi\)
−0.565910 + 0.824467i \(0.691475\pi\)
\(864\) −1.53947e13 −0.939854
\(865\) 9.72468e12 0.590613
\(866\) 5.03012e12 0.303912
\(867\) −1.62566e13 −0.977111
\(868\) −5.56680e12 −0.332864
\(869\) 3.13961e12 0.186761
\(870\) −2.63136e12 −0.155720
\(871\) −1.31468e13 −0.773993
\(872\) −1.26109e13 −0.738623
\(873\) −9.91868e11 −0.0577950
\(874\) −8.81940e12 −0.511255
\(875\) 5.86182e11 0.0338062
\(876\) 5.67693e12 0.325721
\(877\) −1.12140e13 −0.640120 −0.320060 0.947397i \(-0.603703\pi\)
−0.320060 + 0.947397i \(0.603703\pi\)
\(878\) 2.22906e12 0.126589
\(879\) 1.03905e12 0.0587064
\(880\) −2.38369e11 −0.0133992
\(881\) 3.00664e13 1.68147 0.840735 0.541446i \(-0.182123\pi\)
0.840735 + 0.541446i \(0.182123\pi\)
\(882\) −6.33727e10 −0.00352609
\(883\) −1.58968e13 −0.880007 −0.440004 0.897996i \(-0.645023\pi\)
−0.440004 + 0.897996i \(0.645023\pi\)
\(884\) −8.87956e11 −0.0489053
\(885\) −7.61952e12 −0.417526
\(886\) −1.48231e13 −0.808141
\(887\) 1.46131e13 0.792658 0.396329 0.918109i \(-0.370284\pi\)
0.396329 + 0.918109i \(0.370284\pi\)
\(888\) 7.23585e12 0.390509
\(889\) 1.29790e13 0.696918
\(890\) −2.55233e12 −0.136358
\(891\) 3.00593e12 0.159782
\(892\) −5.06346e12 −0.267797
\(893\) 1.32248e13 0.695915
\(894\) −7.00758e12 −0.366901
\(895\) 7.17570e12 0.373819
\(896\) 2.70047e12 0.139976
\(897\) 1.88442e13 0.971878
\(898\) −1.57531e13 −0.808393
\(899\) −1.67791e13 −0.856742
\(900\) 7.60469e10 0.00386359
\(901\) 1.60866e11 0.00813208
\(902\) 1.84933e12 0.0930217
\(903\) −1.04119e13 −0.521118
\(904\) −6.65093e12 −0.331226
\(905\) −1.03037e13 −0.510593
\(906\) −2.22074e13 −1.09502
\(907\) 1.41504e12 0.0694281 0.0347141 0.999397i \(-0.488948\pi\)
0.0347141 + 0.999397i \(0.488948\pi\)
\(908\) −1.89123e13 −0.923333
\(909\) 4.58315e11 0.0222652
\(910\) −3.17797e12 −0.153626
\(911\) −1.61901e13 −0.778784 −0.389392 0.921072i \(-0.627315\pi\)
−0.389392 + 0.921072i \(0.627315\pi\)
\(912\) −3.73014e12 −0.178545
\(913\) 5.99301e12 0.285447
\(914\) −9.96417e12 −0.472262
\(915\) −1.07454e13 −0.506788
\(916\) 1.13498e13 0.532671
\(917\) 4.35271e12 0.203281
\(918\) 1.02713e12 0.0477345
\(919\) −1.60413e13 −0.741858 −0.370929 0.928661i \(-0.620961\pi\)
−0.370929 + 0.928661i \(0.620961\pi\)
\(920\) −7.56435e12 −0.348118
\(921\) −1.36475e13 −0.625008
\(922\) 1.61501e13 0.736014
\(923\) 2.97290e13 1.34826
\(924\) −7.29077e11 −0.0329041
\(925\) −1.69165e12 −0.0759753
\(926\) 9.28876e12 0.415153
\(927\) 6.86349e11 0.0305271
\(928\) 1.08470e13 0.480115
\(929\) −3.98759e13 −1.75647 −0.878233 0.478233i \(-0.841277\pi\)
−0.878233 + 0.478233i \(0.841277\pi\)
\(930\) 1.12703e13 0.494042
\(931\) 3.29971e12 0.143947
\(932\) −2.91777e12 −0.126672
\(933\) −3.82906e12 −0.165434
\(934\) 1.47177e13 0.632819
\(935\) −1.19281e11 −0.00510411
\(936\) −1.18411e12 −0.0504256
\(937\) −5.95427e12 −0.252348 −0.126174 0.992008i \(-0.540270\pi\)
−0.126174 + 0.992008i \(0.540270\pi\)
\(938\) −3.55490e12 −0.149939
\(939\) 9.76855e12 0.410048
\(940\) 3.94937e12 0.164988
\(941\) 9.86055e12 0.409966 0.204983 0.978766i \(-0.434286\pi\)
0.204983 + 0.978766i \(0.434286\pi\)
\(942\) −1.03857e13 −0.429739
\(943\) 1.48212e13 0.610353
\(944\) −4.18782e12 −0.171638
\(945\) −4.21540e12 −0.171948
\(946\) −3.91943e12 −0.159115
\(947\) −2.10061e13 −0.848732 −0.424366 0.905491i \(-0.639503\pi\)
−0.424366 + 0.905491i \(0.639503\pi\)
\(948\) 1.46721e13 0.590002
\(949\) 2.06655e13 0.827080
\(950\) 3.45302e12 0.137544
\(951\) −4.28939e13 −1.70053
\(952\) −6.89594e11 −0.0272099
\(953\) −4.25218e13 −1.66991 −0.834955 0.550318i \(-0.814506\pi\)
−0.834955 + 0.550318i \(0.814506\pi\)
\(954\) 7.46916e10 0.00291947
\(955\) −1.09491e13 −0.425956
\(956\) −1.88524e12 −0.0729972
\(957\) −2.19754e12 −0.0846901
\(958\) 3.07570e13 1.17977
\(959\) 1.80121e12 0.0687670
\(960\) −9.37122e12 −0.356103
\(961\) 4.54266e13 1.71813
\(962\) 9.17125e12 0.345256
\(963\) 1.40568e12 0.0526707
\(964\) 7.45531e12 0.278048
\(965\) 1.57049e13 0.582992
\(966\) 5.09550e12 0.188274
\(967\) −1.21906e13 −0.448338 −0.224169 0.974550i \(-0.571967\pi\)
−0.224169 + 0.974550i \(0.571967\pi\)
\(968\) 2.78157e13 1.01824
\(969\) −1.86658e12 −0.0680128
\(970\) −1.34497e13 −0.487796
\(971\) 5.38639e12 0.194452 0.0972258 0.995262i \(-0.469003\pi\)
0.0972258 + 0.995262i \(0.469003\pi\)
\(972\) −1.07466e12 −0.0386167
\(973\) −1.58247e13 −0.566016
\(974\) −3.71954e13 −1.32426
\(975\) −7.37798e12 −0.261467
\(976\) −5.90583e12 −0.208332
\(977\) −1.89284e13 −0.664643 −0.332321 0.943166i \(-0.607832\pi\)
−0.332321 + 0.943166i \(0.607832\pi\)
\(978\) −2.14169e13 −0.748570
\(979\) −2.13153e12 −0.0741600
\(980\) 9.85407e11 0.0341270
\(981\) −7.39990e11 −0.0255103
\(982\) 4.40719e12 0.151238
\(983\) 3.98513e13 1.36129 0.680647 0.732612i \(-0.261699\pi\)
0.680647 + 0.732612i \(0.261699\pi\)
\(984\) 2.48212e13 0.844004
\(985\) −2.05300e13 −0.694907
\(986\) −7.23708e11 −0.0243847
\(987\) −7.64075e12 −0.256277
\(988\) 2.14671e13 0.716748
\(989\) −3.14118e13 −1.04402
\(990\) −5.53836e10 −0.00183241
\(991\) −3.44424e13 −1.13439 −0.567194 0.823584i \(-0.691971\pi\)
−0.567194 + 0.823584i \(0.691971\pi\)
\(992\) −4.64588e13 −1.52323
\(993\) 4.06020e13 1.32518
\(994\) 8.03877e12 0.261187
\(995\) 2.23078e12 0.0721527
\(996\) 2.80066e13 0.901765
\(997\) 4.12406e13 1.32189 0.660947 0.750433i \(-0.270155\pi\)
0.660947 + 0.750433i \(0.270155\pi\)
\(998\) 3.26777e13 1.04271
\(999\) 1.21652e13 0.386432
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 35.10.a.c.1.3 4
3.2 odd 2 315.10.a.g.1.2 4
5.2 odd 4 175.10.b.e.99.5 8
5.3 odd 4 175.10.b.e.99.4 8
5.4 even 2 175.10.a.e.1.2 4
7.6 odd 2 245.10.a.e.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.c.1.3 4 1.1 even 1 trivial
175.10.a.e.1.2 4 5.4 even 2
175.10.b.e.99.4 8 5.3 odd 4
175.10.b.e.99.5 8 5.2 odd 4
245.10.a.e.1.3 4 7.6 odd 2
315.10.a.g.1.2 4 3.2 odd 2