Properties

Label 350.4.a.l.1.1
Level $350$
Weight $4$
Character 350.1
Self dual yes
Analytic conductor $20.651$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,4,Mod(1,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 350.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.6506685020\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 350.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -8.00000 q^{3} +4.00000 q^{4} -16.0000 q^{6} +7.00000 q^{7} +8.00000 q^{8} +37.0000 q^{9} +O(q^{10})\) \(q+2.00000 q^{2} -8.00000 q^{3} +4.00000 q^{4} -16.0000 q^{6} +7.00000 q^{7} +8.00000 q^{8} +37.0000 q^{9} -28.0000 q^{11} -32.0000 q^{12} -18.0000 q^{13} +14.0000 q^{14} +16.0000 q^{16} -74.0000 q^{17} +74.0000 q^{18} +80.0000 q^{19} -56.0000 q^{21} -56.0000 q^{22} +112.000 q^{23} -64.0000 q^{24} -36.0000 q^{26} -80.0000 q^{27} +28.0000 q^{28} +190.000 q^{29} +72.0000 q^{31} +32.0000 q^{32} +224.000 q^{33} -148.000 q^{34} +148.000 q^{36} +346.000 q^{37} +160.000 q^{38} +144.000 q^{39} +162.000 q^{41} -112.000 q^{42} +412.000 q^{43} -112.000 q^{44} +224.000 q^{46} -24.0000 q^{47} -128.000 q^{48} +49.0000 q^{49} +592.000 q^{51} -72.0000 q^{52} -318.000 q^{53} -160.000 q^{54} +56.0000 q^{56} -640.000 q^{57} +380.000 q^{58} -200.000 q^{59} -198.000 q^{61} +144.000 q^{62} +259.000 q^{63} +64.0000 q^{64} +448.000 q^{66} +716.000 q^{67} -296.000 q^{68} -896.000 q^{69} +392.000 q^{71} +296.000 q^{72} -538.000 q^{73} +692.000 q^{74} +320.000 q^{76} -196.000 q^{77} +288.000 q^{78} +240.000 q^{79} -359.000 q^{81} +324.000 q^{82} +1072.00 q^{83} -224.000 q^{84} +824.000 q^{86} -1520.00 q^{87} -224.000 q^{88} +810.000 q^{89} -126.000 q^{91} +448.000 q^{92} -576.000 q^{93} -48.0000 q^{94} -256.000 q^{96} -1354.00 q^{97} +98.0000 q^{98} -1036.00 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −8.00000 −1.53960 −0.769800 0.638285i \(-0.779644\pi\)
−0.769800 + 0.638285i \(0.779644\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) −16.0000 −1.08866
\(7\) 7.00000 0.377964
\(8\) 8.00000 0.353553
\(9\) 37.0000 1.37037
\(10\) 0 0
\(11\) −28.0000 −0.767483 −0.383742 0.923440i \(-0.625365\pi\)
−0.383742 + 0.923440i \(0.625365\pi\)
\(12\) −32.0000 −0.769800
\(13\) −18.0000 −0.384023 −0.192012 0.981393i \(-0.561501\pi\)
−0.192012 + 0.981393i \(0.561501\pi\)
\(14\) 14.0000 0.267261
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −74.0000 −1.05574 −0.527872 0.849324i \(-0.677010\pi\)
−0.527872 + 0.849324i \(0.677010\pi\)
\(18\) 74.0000 0.968998
\(19\) 80.0000 0.965961 0.482980 0.875631i \(-0.339554\pi\)
0.482980 + 0.875631i \(0.339554\pi\)
\(20\) 0 0
\(21\) −56.0000 −0.581914
\(22\) −56.0000 −0.542693
\(23\) 112.000 1.01537 0.507687 0.861541i \(-0.330501\pi\)
0.507687 + 0.861541i \(0.330501\pi\)
\(24\) −64.0000 −0.544331
\(25\) 0 0
\(26\) −36.0000 −0.271545
\(27\) −80.0000 −0.570222
\(28\) 28.0000 0.188982
\(29\) 190.000 1.21662 0.608312 0.793698i \(-0.291847\pi\)
0.608312 + 0.793698i \(0.291847\pi\)
\(30\) 0 0
\(31\) 72.0000 0.417148 0.208574 0.978007i \(-0.433118\pi\)
0.208574 + 0.978007i \(0.433118\pi\)
\(32\) 32.0000 0.176777
\(33\) 224.000 1.18162
\(34\) −148.000 −0.746523
\(35\) 0 0
\(36\) 148.000 0.685185
\(37\) 346.000 1.53735 0.768676 0.639638i \(-0.220916\pi\)
0.768676 + 0.639638i \(0.220916\pi\)
\(38\) 160.000 0.683038
\(39\) 144.000 0.591242
\(40\) 0 0
\(41\) 162.000 0.617077 0.308538 0.951212i \(-0.400160\pi\)
0.308538 + 0.951212i \(0.400160\pi\)
\(42\) −112.000 −0.411476
\(43\) 412.000 1.46115 0.730575 0.682833i \(-0.239252\pi\)
0.730575 + 0.682833i \(0.239252\pi\)
\(44\) −112.000 −0.383742
\(45\) 0 0
\(46\) 224.000 0.717978
\(47\) −24.0000 −0.0744843 −0.0372421 0.999306i \(-0.511857\pi\)
−0.0372421 + 0.999306i \(0.511857\pi\)
\(48\) −128.000 −0.384900
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 592.000 1.62542
\(52\) −72.0000 −0.192012
\(53\) −318.000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) −160.000 −0.403208
\(55\) 0 0
\(56\) 56.0000 0.133631
\(57\) −640.000 −1.48719
\(58\) 380.000 0.860284
\(59\) −200.000 −0.441318 −0.220659 0.975351i \(-0.570821\pi\)
−0.220659 + 0.975351i \(0.570821\pi\)
\(60\) 0 0
\(61\) −198.000 −0.415595 −0.207798 0.978172i \(-0.566630\pi\)
−0.207798 + 0.978172i \(0.566630\pi\)
\(62\) 144.000 0.294968
\(63\) 259.000 0.517951
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 448.000 0.835530
\(67\) 716.000 1.30557 0.652786 0.757542i \(-0.273600\pi\)
0.652786 + 0.757542i \(0.273600\pi\)
\(68\) −296.000 −0.527872
\(69\) −896.000 −1.56327
\(70\) 0 0
\(71\) 392.000 0.655237 0.327619 0.944810i \(-0.393754\pi\)
0.327619 + 0.944810i \(0.393754\pi\)
\(72\) 296.000 0.484499
\(73\) −538.000 −0.862577 −0.431289 0.902214i \(-0.641941\pi\)
−0.431289 + 0.902214i \(0.641941\pi\)
\(74\) 692.000 1.08707
\(75\) 0 0
\(76\) 320.000 0.482980
\(77\) −196.000 −0.290081
\(78\) 288.000 0.418072
\(79\) 240.000 0.341799 0.170899 0.985288i \(-0.445333\pi\)
0.170899 + 0.985288i \(0.445333\pi\)
\(80\) 0 0
\(81\) −359.000 −0.492455
\(82\) 324.000 0.436339
\(83\) 1072.00 1.41768 0.708839 0.705370i \(-0.249219\pi\)
0.708839 + 0.705370i \(0.249219\pi\)
\(84\) −224.000 −0.290957
\(85\) 0 0
\(86\) 824.000 1.03319
\(87\) −1520.00 −1.87312
\(88\) −224.000 −0.271346
\(89\) 810.000 0.964717 0.482359 0.875974i \(-0.339780\pi\)
0.482359 + 0.875974i \(0.339780\pi\)
\(90\) 0 0
\(91\) −126.000 −0.145147
\(92\) 448.000 0.507687
\(93\) −576.000 −0.642241
\(94\) −48.0000 −0.0526683
\(95\) 0 0
\(96\) −256.000 −0.272166
\(97\) −1354.00 −1.41730 −0.708649 0.705561i \(-0.750695\pi\)
−0.708649 + 0.705561i \(0.750695\pi\)
\(98\) 98.0000 0.101015
\(99\) −1036.00 −1.05174
\(100\) 0 0
\(101\) −1358.00 −1.33788 −0.668941 0.743316i \(-0.733252\pi\)
−0.668941 + 0.743316i \(0.733252\pi\)
\(102\) 1184.00 1.14935
\(103\) 832.000 0.795916 0.397958 0.917404i \(-0.369719\pi\)
0.397958 + 0.917404i \(0.369719\pi\)
\(104\) −144.000 −0.135773
\(105\) 0 0
\(106\) −636.000 −0.582772
\(107\) −444.000 −0.401150 −0.200575 0.979678i \(-0.564281\pi\)
−0.200575 + 0.979678i \(0.564281\pi\)
\(108\) −320.000 −0.285111
\(109\) 1870.00 1.64324 0.821622 0.570033i \(-0.193070\pi\)
0.821622 + 0.570033i \(0.193070\pi\)
\(110\) 0 0
\(111\) −2768.00 −2.36691
\(112\) 112.000 0.0944911
\(113\) −1378.00 −1.14718 −0.573590 0.819143i \(-0.694450\pi\)
−0.573590 + 0.819143i \(0.694450\pi\)
\(114\) −1280.00 −1.05161
\(115\) 0 0
\(116\) 760.000 0.608312
\(117\) −666.000 −0.526254
\(118\) −400.000 −0.312059
\(119\) −518.000 −0.399033
\(120\) 0 0
\(121\) −547.000 −0.410969
\(122\) −396.000 −0.293870
\(123\) −1296.00 −0.950052
\(124\) 288.000 0.208574
\(125\) 0 0
\(126\) 518.000 0.366247
\(127\) −1944.00 −1.35828 −0.679142 0.734007i \(-0.737648\pi\)
−0.679142 + 0.734007i \(0.737648\pi\)
\(128\) 128.000 0.0883883
\(129\) −3296.00 −2.24959
\(130\) 0 0
\(131\) −848.000 −0.565573 −0.282787 0.959183i \(-0.591259\pi\)
−0.282787 + 0.959183i \(0.591259\pi\)
\(132\) 896.000 0.590809
\(133\) 560.000 0.365099
\(134\) 1432.00 0.923179
\(135\) 0 0
\(136\) −592.000 −0.373262
\(137\) 2966.00 1.84965 0.924827 0.380389i \(-0.124210\pi\)
0.924827 + 0.380389i \(0.124210\pi\)
\(138\) −1792.00 −1.10540
\(139\) 2800.00 1.70858 0.854291 0.519795i \(-0.173992\pi\)
0.854291 + 0.519795i \(0.173992\pi\)
\(140\) 0 0
\(141\) 192.000 0.114676
\(142\) 784.000 0.463323
\(143\) 504.000 0.294731
\(144\) 592.000 0.342593
\(145\) 0 0
\(146\) −1076.00 −0.609934
\(147\) −392.000 −0.219943
\(148\) 1384.00 0.768676
\(149\) 510.000 0.280408 0.140204 0.990123i \(-0.455224\pi\)
0.140204 + 0.990123i \(0.455224\pi\)
\(150\) 0 0
\(151\) 592.000 0.319048 0.159524 0.987194i \(-0.449004\pi\)
0.159524 + 0.987194i \(0.449004\pi\)
\(152\) 640.000 0.341519
\(153\) −2738.00 −1.44676
\(154\) −392.000 −0.205119
\(155\) 0 0
\(156\) 576.000 0.295621
\(157\) 2686.00 1.36539 0.682695 0.730704i \(-0.260808\pi\)
0.682695 + 0.730704i \(0.260808\pi\)
\(158\) 480.000 0.241688
\(159\) 2544.00 1.26888
\(160\) 0 0
\(161\) 784.000 0.383776
\(162\) −718.000 −0.348219
\(163\) 1012.00 0.486294 0.243147 0.969989i \(-0.421820\pi\)
0.243147 + 0.969989i \(0.421820\pi\)
\(164\) 648.000 0.308538
\(165\) 0 0
\(166\) 2144.00 1.00245
\(167\) −544.000 −0.252072 −0.126036 0.992026i \(-0.540225\pi\)
−0.126036 + 0.992026i \(0.540225\pi\)
\(168\) −448.000 −0.205738
\(169\) −1873.00 −0.852526
\(170\) 0 0
\(171\) 2960.00 1.32372
\(172\) 1648.00 0.730575
\(173\) −1858.00 −0.816538 −0.408269 0.912862i \(-0.633868\pi\)
−0.408269 + 0.912862i \(0.633868\pi\)
\(174\) −3040.00 −1.32449
\(175\) 0 0
\(176\) −448.000 −0.191871
\(177\) 1600.00 0.679454
\(178\) 1620.00 0.682158
\(179\) −300.000 −0.125268 −0.0626342 0.998037i \(-0.519950\pi\)
−0.0626342 + 0.998037i \(0.519950\pi\)
\(180\) 0 0
\(181\) −2358.00 −0.968336 −0.484168 0.874975i \(-0.660878\pi\)
−0.484168 + 0.874975i \(0.660878\pi\)
\(182\) −252.000 −0.102635
\(183\) 1584.00 0.639851
\(184\) 896.000 0.358989
\(185\) 0 0
\(186\) −1152.00 −0.454133
\(187\) 2072.00 0.810265
\(188\) −96.0000 −0.0372421
\(189\) −560.000 −0.215524
\(190\) 0 0
\(191\) 1392.00 0.527338 0.263669 0.964613i \(-0.415067\pi\)
0.263669 + 0.964613i \(0.415067\pi\)
\(192\) −512.000 −0.192450
\(193\) −1778.00 −0.663126 −0.331563 0.943433i \(-0.607576\pi\)
−0.331563 + 0.943433i \(0.607576\pi\)
\(194\) −2708.00 −1.00218
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) −1214.00 −0.439055 −0.219528 0.975606i \(-0.570452\pi\)
−0.219528 + 0.975606i \(0.570452\pi\)
\(198\) −2072.00 −0.743690
\(199\) 1040.00 0.370471 0.185235 0.982694i \(-0.440695\pi\)
0.185235 + 0.982694i \(0.440695\pi\)
\(200\) 0 0
\(201\) −5728.00 −2.01006
\(202\) −2716.00 −0.946025
\(203\) 1330.00 0.459841
\(204\) 2368.00 0.812712
\(205\) 0 0
\(206\) 1664.00 0.562798
\(207\) 4144.00 1.39144
\(208\) −288.000 −0.0960058
\(209\) −2240.00 −0.741359
\(210\) 0 0
\(211\) −3868.00 −1.26201 −0.631005 0.775779i \(-0.717357\pi\)
−0.631005 + 0.775779i \(0.717357\pi\)
\(212\) −1272.00 −0.412082
\(213\) −3136.00 −1.00880
\(214\) −888.000 −0.283656
\(215\) 0 0
\(216\) −640.000 −0.201604
\(217\) 504.000 0.157667
\(218\) 3740.00 1.16195
\(219\) 4304.00 1.32802
\(220\) 0 0
\(221\) 1332.00 0.405430
\(222\) −5536.00 −1.67366
\(223\) −3968.00 −1.19156 −0.595778 0.803149i \(-0.703156\pi\)
−0.595778 + 0.803149i \(0.703156\pi\)
\(224\) 224.000 0.0668153
\(225\) 0 0
\(226\) −2756.00 −0.811179
\(227\) 3936.00 1.15084 0.575422 0.817857i \(-0.304838\pi\)
0.575422 + 0.817857i \(0.304838\pi\)
\(228\) −2560.00 −0.743597
\(229\) 4810.00 1.38801 0.694004 0.719971i \(-0.255845\pi\)
0.694004 + 0.719971i \(0.255845\pi\)
\(230\) 0 0
\(231\) 1568.00 0.446610
\(232\) 1520.00 0.430142
\(233\) 2182.00 0.613509 0.306754 0.951789i \(-0.400757\pi\)
0.306754 + 0.951789i \(0.400757\pi\)
\(234\) −1332.00 −0.372118
\(235\) 0 0
\(236\) −800.000 −0.220659
\(237\) −1920.00 −0.526234
\(238\) −1036.00 −0.282159
\(239\) −3000.00 −0.811941 −0.405970 0.913886i \(-0.633066\pi\)
−0.405970 + 0.913886i \(0.633066\pi\)
\(240\) 0 0
\(241\) 2042.00 0.545796 0.272898 0.962043i \(-0.412018\pi\)
0.272898 + 0.962043i \(0.412018\pi\)
\(242\) −1094.00 −0.290599
\(243\) 5032.00 1.32841
\(244\) −792.000 −0.207798
\(245\) 0 0
\(246\) −2592.00 −0.671788
\(247\) −1440.00 −0.370951
\(248\) 576.000 0.147484
\(249\) −8576.00 −2.18266
\(250\) 0 0
\(251\) −528.000 −0.132777 −0.0663886 0.997794i \(-0.521148\pi\)
−0.0663886 + 0.997794i \(0.521148\pi\)
\(252\) 1036.00 0.258976
\(253\) −3136.00 −0.779283
\(254\) −3888.00 −0.960452
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −5634.00 −1.36747 −0.683734 0.729731i \(-0.739645\pi\)
−0.683734 + 0.729731i \(0.739645\pi\)
\(258\) −6592.00 −1.59070
\(259\) 2422.00 0.581065
\(260\) 0 0
\(261\) 7030.00 1.66723
\(262\) −1696.00 −0.399921
\(263\) −168.000 −0.0393891 −0.0196945 0.999806i \(-0.506269\pi\)
−0.0196945 + 0.999806i \(0.506269\pi\)
\(264\) 1792.00 0.417765
\(265\) 0 0
\(266\) 1120.00 0.258164
\(267\) −6480.00 −1.48528
\(268\) 2864.00 0.652786
\(269\) −1310.00 −0.296922 −0.148461 0.988918i \(-0.547432\pi\)
−0.148461 + 0.988918i \(0.547432\pi\)
\(270\) 0 0
\(271\) −2208.00 −0.494932 −0.247466 0.968897i \(-0.579598\pi\)
−0.247466 + 0.968897i \(0.579598\pi\)
\(272\) −1184.00 −0.263936
\(273\) 1008.00 0.223469
\(274\) 5932.00 1.30790
\(275\) 0 0
\(276\) −3584.00 −0.781636
\(277\) −5294.00 −1.14832 −0.574162 0.818742i \(-0.694672\pi\)
−0.574162 + 0.818742i \(0.694672\pi\)
\(278\) 5600.00 1.20815
\(279\) 2664.00 0.571647
\(280\) 0 0
\(281\) 3242.00 0.688262 0.344131 0.938922i \(-0.388174\pi\)
0.344131 + 0.938922i \(0.388174\pi\)
\(282\) 384.000 0.0810882
\(283\) 1592.00 0.334398 0.167199 0.985923i \(-0.446528\pi\)
0.167199 + 0.985923i \(0.446528\pi\)
\(284\) 1568.00 0.327619
\(285\) 0 0
\(286\) 1008.00 0.208407
\(287\) 1134.00 0.233233
\(288\) 1184.00 0.242250
\(289\) 563.000 0.114594
\(290\) 0 0
\(291\) 10832.0 2.18207
\(292\) −2152.00 −0.431289
\(293\) 5022.00 1.00133 0.500663 0.865642i \(-0.333090\pi\)
0.500663 + 0.865642i \(0.333090\pi\)
\(294\) −784.000 −0.155523
\(295\) 0 0
\(296\) 2768.00 0.543536
\(297\) 2240.00 0.437636
\(298\) 1020.00 0.198279
\(299\) −2016.00 −0.389927
\(300\) 0 0
\(301\) 2884.00 0.552262
\(302\) 1184.00 0.225601
\(303\) 10864.0 2.05980
\(304\) 1280.00 0.241490
\(305\) 0 0
\(306\) −5476.00 −1.02301
\(307\) 9536.00 1.77280 0.886398 0.462924i \(-0.153200\pi\)
0.886398 + 0.462924i \(0.153200\pi\)
\(308\) −784.000 −0.145041
\(309\) −6656.00 −1.22539
\(310\) 0 0
\(311\) −968.000 −0.176496 −0.0882480 0.996099i \(-0.528127\pi\)
−0.0882480 + 0.996099i \(0.528127\pi\)
\(312\) 1152.00 0.209036
\(313\) −3058.00 −0.552231 −0.276116 0.961124i \(-0.589047\pi\)
−0.276116 + 0.961124i \(0.589047\pi\)
\(314\) 5372.00 0.965476
\(315\) 0 0
\(316\) 960.000 0.170899
\(317\) 4986.00 0.883412 0.441706 0.897160i \(-0.354373\pi\)
0.441706 + 0.897160i \(0.354373\pi\)
\(318\) 5088.00 0.897235
\(319\) −5320.00 −0.933739
\(320\) 0 0
\(321\) 3552.00 0.617612
\(322\) 1568.00 0.271370
\(323\) −5920.00 −1.01981
\(324\) −1436.00 −0.246228
\(325\) 0 0
\(326\) 2024.00 0.343862
\(327\) −14960.0 −2.52994
\(328\) 1296.00 0.218170
\(329\) −168.000 −0.0281524
\(330\) 0 0
\(331\) 8612.00 1.43009 0.715043 0.699081i \(-0.246407\pi\)
0.715043 + 0.699081i \(0.246407\pi\)
\(332\) 4288.00 0.708839
\(333\) 12802.0 2.10674
\(334\) −1088.00 −0.178242
\(335\) 0 0
\(336\) −896.000 −0.145479
\(337\) 10206.0 1.64972 0.824861 0.565336i \(-0.191253\pi\)
0.824861 + 0.565336i \(0.191253\pi\)
\(338\) −3746.00 −0.602827
\(339\) 11024.0 1.76620
\(340\) 0 0
\(341\) −2016.00 −0.320154
\(342\) 5920.00 0.936014
\(343\) 343.000 0.0539949
\(344\) 3296.00 0.516594
\(345\) 0 0
\(346\) −3716.00 −0.577380
\(347\) −2004.00 −0.310030 −0.155015 0.987912i \(-0.549543\pi\)
−0.155015 + 0.987912i \(0.549543\pi\)
\(348\) −6080.00 −0.936558
\(349\) 1330.00 0.203992 0.101996 0.994785i \(-0.467477\pi\)
0.101996 + 0.994785i \(0.467477\pi\)
\(350\) 0 0
\(351\) 1440.00 0.218979
\(352\) −896.000 −0.135673
\(353\) −978.000 −0.147461 −0.0737304 0.997278i \(-0.523490\pi\)
−0.0737304 + 0.997278i \(0.523490\pi\)
\(354\) 3200.00 0.480447
\(355\) 0 0
\(356\) 3240.00 0.482359
\(357\) 4144.00 0.614352
\(358\) −600.000 −0.0885782
\(359\) −9680.00 −1.42309 −0.711547 0.702638i \(-0.752005\pi\)
−0.711547 + 0.702638i \(0.752005\pi\)
\(360\) 0 0
\(361\) −459.000 −0.0669194
\(362\) −4716.00 −0.684717
\(363\) 4376.00 0.632728
\(364\) −504.000 −0.0725736
\(365\) 0 0
\(366\) 3168.00 0.452443
\(367\) 8656.00 1.23117 0.615585 0.788070i \(-0.288920\pi\)
0.615585 + 0.788070i \(0.288920\pi\)
\(368\) 1792.00 0.253844
\(369\) 5994.00 0.845624
\(370\) 0 0
\(371\) −2226.00 −0.311504
\(372\) −2304.00 −0.321121
\(373\) −5278.00 −0.732666 −0.366333 0.930484i \(-0.619387\pi\)
−0.366333 + 0.930484i \(0.619387\pi\)
\(374\) 4144.00 0.572944
\(375\) 0 0
\(376\) −192.000 −0.0263342
\(377\) −3420.00 −0.467212
\(378\) −1120.00 −0.152398
\(379\) 6340.00 0.859272 0.429636 0.903002i \(-0.358642\pi\)
0.429636 + 0.903002i \(0.358642\pi\)
\(380\) 0 0
\(381\) 15552.0 2.09122
\(382\) 2784.00 0.372884
\(383\) 6232.00 0.831437 0.415718 0.909493i \(-0.363530\pi\)
0.415718 + 0.909493i \(0.363530\pi\)
\(384\) −1024.00 −0.136083
\(385\) 0 0
\(386\) −3556.00 −0.468901
\(387\) 15244.0 2.00232
\(388\) −5416.00 −0.708649
\(389\) −14810.0 −1.93033 −0.965163 0.261649i \(-0.915734\pi\)
−0.965163 + 0.261649i \(0.915734\pi\)
\(390\) 0 0
\(391\) −8288.00 −1.07197
\(392\) 392.000 0.0505076
\(393\) 6784.00 0.870757
\(394\) −2428.00 −0.310459
\(395\) 0 0
\(396\) −4144.00 −0.525868
\(397\) −5154.00 −0.651566 −0.325783 0.945445i \(-0.605628\pi\)
−0.325783 + 0.945445i \(0.605628\pi\)
\(398\) 2080.00 0.261962
\(399\) −4480.00 −0.562107
\(400\) 0 0
\(401\) 3282.00 0.408716 0.204358 0.978896i \(-0.434489\pi\)
0.204358 + 0.978896i \(0.434489\pi\)
\(402\) −11456.0 −1.42133
\(403\) −1296.00 −0.160194
\(404\) −5432.00 −0.668941
\(405\) 0 0
\(406\) 2660.00 0.325157
\(407\) −9688.00 −1.17989
\(408\) 4736.00 0.574674
\(409\) 5810.00 0.702411 0.351205 0.936298i \(-0.385772\pi\)
0.351205 + 0.936298i \(0.385772\pi\)
\(410\) 0 0
\(411\) −23728.0 −2.84773
\(412\) 3328.00 0.397958
\(413\) −1400.00 −0.166803
\(414\) 8288.00 0.983896
\(415\) 0 0
\(416\) −576.000 −0.0678864
\(417\) −22400.0 −2.63053
\(418\) −4480.00 −0.524220
\(419\) 13560.0 1.58102 0.790512 0.612446i \(-0.209814\pi\)
0.790512 + 0.612446i \(0.209814\pi\)
\(420\) 0 0
\(421\) −738.000 −0.0854345 −0.0427172 0.999087i \(-0.513601\pi\)
−0.0427172 + 0.999087i \(0.513601\pi\)
\(422\) −7736.00 −0.892376
\(423\) −888.000 −0.102071
\(424\) −2544.00 −0.291386
\(425\) 0 0
\(426\) −6272.00 −0.713332
\(427\) −1386.00 −0.157080
\(428\) −1776.00 −0.200575
\(429\) −4032.00 −0.453769
\(430\) 0 0
\(431\) 1272.00 0.142158 0.0710790 0.997471i \(-0.477356\pi\)
0.0710790 + 0.997471i \(0.477356\pi\)
\(432\) −1280.00 −0.142556
\(433\) 5062.00 0.561811 0.280906 0.959735i \(-0.409365\pi\)
0.280906 + 0.959735i \(0.409365\pi\)
\(434\) 1008.00 0.111487
\(435\) 0 0
\(436\) 7480.00 0.821622
\(437\) 8960.00 0.980812
\(438\) 8608.00 0.939055
\(439\) 5640.00 0.613172 0.306586 0.951843i \(-0.400813\pi\)
0.306586 + 0.951843i \(0.400813\pi\)
\(440\) 0 0
\(441\) 1813.00 0.195767
\(442\) 2664.00 0.286682
\(443\) −13388.0 −1.43585 −0.717927 0.696119i \(-0.754909\pi\)
−0.717927 + 0.696119i \(0.754909\pi\)
\(444\) −11072.0 −1.18345
\(445\) 0 0
\(446\) −7936.00 −0.842557
\(447\) −4080.00 −0.431717
\(448\) 448.000 0.0472456
\(449\) −3230.00 −0.339495 −0.169747 0.985488i \(-0.554295\pi\)
−0.169747 + 0.985488i \(0.554295\pi\)
\(450\) 0 0
\(451\) −4536.00 −0.473596
\(452\) −5512.00 −0.573590
\(453\) −4736.00 −0.491207
\(454\) 7872.00 0.813769
\(455\) 0 0
\(456\) −5120.00 −0.525803
\(457\) 10646.0 1.08971 0.544857 0.838529i \(-0.316584\pi\)
0.544857 + 0.838529i \(0.316584\pi\)
\(458\) 9620.00 0.981470
\(459\) 5920.00 0.602009
\(460\) 0 0
\(461\) 7282.00 0.735698 0.367849 0.929886i \(-0.380094\pi\)
0.367849 + 0.929886i \(0.380094\pi\)
\(462\) 3136.00 0.315801
\(463\) −12688.0 −1.27357 −0.636783 0.771043i \(-0.719735\pi\)
−0.636783 + 0.771043i \(0.719735\pi\)
\(464\) 3040.00 0.304156
\(465\) 0 0
\(466\) 4364.00 0.433816
\(467\) 2816.00 0.279034 0.139517 0.990220i \(-0.455445\pi\)
0.139517 + 0.990220i \(0.455445\pi\)
\(468\) −2664.00 −0.263127
\(469\) 5012.00 0.493460
\(470\) 0 0
\(471\) −21488.0 −2.10215
\(472\) −1600.00 −0.156030
\(473\) −11536.0 −1.12141
\(474\) −3840.00 −0.372103
\(475\) 0 0
\(476\) −2072.00 −0.199517
\(477\) −11766.0 −1.12941
\(478\) −6000.00 −0.574129
\(479\) −3160.00 −0.301428 −0.150714 0.988577i \(-0.548157\pi\)
−0.150714 + 0.988577i \(0.548157\pi\)
\(480\) 0 0
\(481\) −6228.00 −0.590379
\(482\) 4084.00 0.385936
\(483\) −6272.00 −0.590861
\(484\) −2188.00 −0.205485
\(485\) 0 0
\(486\) 10064.0 0.939326
\(487\) 14176.0 1.31905 0.659523 0.751684i \(-0.270758\pi\)
0.659523 + 0.751684i \(0.270758\pi\)
\(488\) −1584.00 −0.146935
\(489\) −8096.00 −0.748699
\(490\) 0 0
\(491\) −11268.0 −1.03568 −0.517839 0.855478i \(-0.673263\pi\)
−0.517839 + 0.855478i \(0.673263\pi\)
\(492\) −5184.00 −0.475026
\(493\) −14060.0 −1.28444
\(494\) −2880.00 −0.262302
\(495\) 0 0
\(496\) 1152.00 0.104287
\(497\) 2744.00 0.247656
\(498\) −17152.0 −1.54337
\(499\) −4460.00 −0.400114 −0.200057 0.979784i \(-0.564113\pi\)
−0.200057 + 0.979784i \(0.564113\pi\)
\(500\) 0 0
\(501\) 4352.00 0.388090
\(502\) −1056.00 −0.0938876
\(503\) 1512.00 0.134029 0.0670147 0.997752i \(-0.478653\pi\)
0.0670147 + 0.997752i \(0.478653\pi\)
\(504\) 2072.00 0.183123
\(505\) 0 0
\(506\) −6272.00 −0.551036
\(507\) 14984.0 1.31255
\(508\) −7776.00 −0.679142
\(509\) −11790.0 −1.02668 −0.513342 0.858184i \(-0.671593\pi\)
−0.513342 + 0.858184i \(0.671593\pi\)
\(510\) 0 0
\(511\) −3766.00 −0.326024
\(512\) 512.000 0.0441942
\(513\) −6400.00 −0.550813
\(514\) −11268.0 −0.966946
\(515\) 0 0
\(516\) −13184.0 −1.12479
\(517\) 672.000 0.0571654
\(518\) 4844.00 0.410875
\(519\) 14864.0 1.25714
\(520\) 0 0
\(521\) 1362.00 0.114530 0.0572652 0.998359i \(-0.481762\pi\)
0.0572652 + 0.998359i \(0.481762\pi\)
\(522\) 14060.0 1.17891
\(523\) −6968.00 −0.582580 −0.291290 0.956635i \(-0.594084\pi\)
−0.291290 + 0.956635i \(0.594084\pi\)
\(524\) −3392.00 −0.282787
\(525\) 0 0
\(526\) −336.000 −0.0278523
\(527\) −5328.00 −0.440401
\(528\) 3584.00 0.295405
\(529\) 377.000 0.0309855
\(530\) 0 0
\(531\) −7400.00 −0.604770
\(532\) 2240.00 0.182549
\(533\) −2916.00 −0.236972
\(534\) −12960.0 −1.05025
\(535\) 0 0
\(536\) 5728.00 0.461589
\(537\) 2400.00 0.192863
\(538\) −2620.00 −0.209956
\(539\) −1372.00 −0.109640
\(540\) 0 0
\(541\) 7062.00 0.561218 0.280609 0.959822i \(-0.409464\pi\)
0.280609 + 0.959822i \(0.409464\pi\)
\(542\) −4416.00 −0.349969
\(543\) 18864.0 1.49085
\(544\) −2368.00 −0.186631
\(545\) 0 0
\(546\) 2016.00 0.158016
\(547\) 8196.00 0.640650 0.320325 0.947308i \(-0.396208\pi\)
0.320325 + 0.947308i \(0.396208\pi\)
\(548\) 11864.0 0.924827
\(549\) −7326.00 −0.569519
\(550\) 0 0
\(551\) 15200.0 1.17521
\(552\) −7168.00 −0.552700
\(553\) 1680.00 0.129188
\(554\) −10588.0 −0.811987
\(555\) 0 0
\(556\) 11200.0 0.854291
\(557\) 7466.00 0.567944 0.283972 0.958833i \(-0.408348\pi\)
0.283972 + 0.958833i \(0.408348\pi\)
\(558\) 5328.00 0.404215
\(559\) −7416.00 −0.561115
\(560\) 0 0
\(561\) −16576.0 −1.24749
\(562\) 6484.00 0.486674
\(563\) −24968.0 −1.86905 −0.934526 0.355896i \(-0.884176\pi\)
−0.934526 + 0.355896i \(0.884176\pi\)
\(564\) 768.000 0.0573380
\(565\) 0 0
\(566\) 3184.00 0.236455
\(567\) −2513.00 −0.186131
\(568\) 3136.00 0.231661
\(569\) 14250.0 1.04990 0.524948 0.851134i \(-0.324085\pi\)
0.524948 + 0.851134i \(0.324085\pi\)
\(570\) 0 0
\(571\) 6372.00 0.467005 0.233503 0.972356i \(-0.424981\pi\)
0.233503 + 0.972356i \(0.424981\pi\)
\(572\) 2016.00 0.147366
\(573\) −11136.0 −0.811890
\(574\) 2268.00 0.164921
\(575\) 0 0
\(576\) 2368.00 0.171296
\(577\) 8366.00 0.603607 0.301803 0.953370i \(-0.402411\pi\)
0.301803 + 0.953370i \(0.402411\pi\)
\(578\) 1126.00 0.0810301
\(579\) 14224.0 1.02095
\(580\) 0 0
\(581\) 7504.00 0.535832
\(582\) 21664.0 1.54296
\(583\) 8904.00 0.632532
\(584\) −4304.00 −0.304967
\(585\) 0 0
\(586\) 10044.0 0.708044
\(587\) −20384.0 −1.43328 −0.716642 0.697441i \(-0.754322\pi\)
−0.716642 + 0.697441i \(0.754322\pi\)
\(588\) −1568.00 −0.109971
\(589\) 5760.00 0.402948
\(590\) 0 0
\(591\) 9712.00 0.675970
\(592\) 5536.00 0.384338
\(593\) −9378.00 −0.649424 −0.324712 0.945813i \(-0.605267\pi\)
−0.324712 + 0.945813i \(0.605267\pi\)
\(594\) 4480.00 0.309456
\(595\) 0 0
\(596\) 2040.00 0.140204
\(597\) −8320.00 −0.570377
\(598\) −4032.00 −0.275720
\(599\) −9000.00 −0.613907 −0.306953 0.951725i \(-0.599310\pi\)
−0.306953 + 0.951725i \(0.599310\pi\)
\(600\) 0 0
\(601\) 7562.00 0.513245 0.256623 0.966512i \(-0.417390\pi\)
0.256623 + 0.966512i \(0.417390\pi\)
\(602\) 5768.00 0.390509
\(603\) 26492.0 1.78912
\(604\) 2368.00 0.159524
\(605\) 0 0
\(606\) 21728.0 1.45650
\(607\) 2976.00 0.198999 0.0994993 0.995038i \(-0.468276\pi\)
0.0994993 + 0.995038i \(0.468276\pi\)
\(608\) 2560.00 0.170759
\(609\) −10640.0 −0.707971
\(610\) 0 0
\(611\) 432.000 0.0286037
\(612\) −10952.0 −0.723380
\(613\) −4278.00 −0.281871 −0.140935 0.990019i \(-0.545011\pi\)
−0.140935 + 0.990019i \(0.545011\pi\)
\(614\) 19072.0 1.25356
\(615\) 0 0
\(616\) −1568.00 −0.102559
\(617\) −18794.0 −1.22629 −0.613143 0.789972i \(-0.710095\pi\)
−0.613143 + 0.789972i \(0.710095\pi\)
\(618\) −13312.0 −0.866484
\(619\) 18040.0 1.17139 0.585694 0.810532i \(-0.300822\pi\)
0.585694 + 0.810532i \(0.300822\pi\)
\(620\) 0 0
\(621\) −8960.00 −0.578989
\(622\) −1936.00 −0.124801
\(623\) 5670.00 0.364629
\(624\) 2304.00 0.147811
\(625\) 0 0
\(626\) −6116.00 −0.390486
\(627\) 17920.0 1.14140
\(628\) 10744.0 0.682695
\(629\) −25604.0 −1.62305
\(630\) 0 0
\(631\) −21688.0 −1.36828 −0.684141 0.729350i \(-0.739823\pi\)
−0.684141 + 0.729350i \(0.739823\pi\)
\(632\) 1920.00 0.120844
\(633\) 30944.0 1.94299
\(634\) 9972.00 0.624667
\(635\) 0 0
\(636\) 10176.0 0.634441
\(637\) −882.000 −0.0548605
\(638\) −10640.0 −0.660253
\(639\) 14504.0 0.897918
\(640\) 0 0
\(641\) −10558.0 −0.650571 −0.325285 0.945616i \(-0.605460\pi\)
−0.325285 + 0.945616i \(0.605460\pi\)
\(642\) 7104.00 0.436717
\(643\) 26152.0 1.60394 0.801971 0.597363i \(-0.203785\pi\)
0.801971 + 0.597363i \(0.203785\pi\)
\(644\) 3136.00 0.191888
\(645\) 0 0
\(646\) −11840.0 −0.721112
\(647\) −25584.0 −1.55458 −0.777288 0.629145i \(-0.783405\pi\)
−0.777288 + 0.629145i \(0.783405\pi\)
\(648\) −2872.00 −0.174109
\(649\) 5600.00 0.338705
\(650\) 0 0
\(651\) −4032.00 −0.242744
\(652\) 4048.00 0.243147
\(653\) −15198.0 −0.910787 −0.455393 0.890290i \(-0.650501\pi\)
−0.455393 + 0.890290i \(0.650501\pi\)
\(654\) −29920.0 −1.78894
\(655\) 0 0
\(656\) 2592.00 0.154269
\(657\) −19906.0 −1.18205
\(658\) −336.000 −0.0199068
\(659\) −6100.00 −0.360580 −0.180290 0.983613i \(-0.557704\pi\)
−0.180290 + 0.983613i \(0.557704\pi\)
\(660\) 0 0
\(661\) −2318.00 −0.136399 −0.0681995 0.997672i \(-0.521725\pi\)
−0.0681995 + 0.997672i \(0.521725\pi\)
\(662\) 17224.0 1.01122
\(663\) −10656.0 −0.624200
\(664\) 8576.00 0.501225
\(665\) 0 0
\(666\) 25604.0 1.48969
\(667\) 21280.0 1.23533
\(668\) −2176.00 −0.126036
\(669\) 31744.0 1.83452
\(670\) 0 0
\(671\) 5544.00 0.318962
\(672\) −1792.00 −0.102869
\(673\) 10222.0 0.585482 0.292741 0.956192i \(-0.405433\pi\)
0.292741 + 0.956192i \(0.405433\pi\)
\(674\) 20412.0 1.16653
\(675\) 0 0
\(676\) −7492.00 −0.426263
\(677\) −25434.0 −1.44388 −0.721941 0.691955i \(-0.756750\pi\)
−0.721941 + 0.691955i \(0.756750\pi\)
\(678\) 22048.0 1.24889
\(679\) −9478.00 −0.535688
\(680\) 0 0
\(681\) −31488.0 −1.77184
\(682\) −4032.00 −0.226383
\(683\) 8532.00 0.477991 0.238996 0.971021i \(-0.423182\pi\)
0.238996 + 0.971021i \(0.423182\pi\)
\(684\) 11840.0 0.661862
\(685\) 0 0
\(686\) 686.000 0.0381802
\(687\) −38480.0 −2.13698
\(688\) 6592.00 0.365287
\(689\) 5724.00 0.316498
\(690\) 0 0
\(691\) 20672.0 1.13806 0.569030 0.822317i \(-0.307319\pi\)
0.569030 + 0.822317i \(0.307319\pi\)
\(692\) −7432.00 −0.408269
\(693\) −7252.00 −0.397519
\(694\) −4008.00 −0.219224
\(695\) 0 0
\(696\) −12160.0 −0.662247
\(697\) −11988.0 −0.651475
\(698\) 2660.00 0.144244
\(699\) −17456.0 −0.944559
\(700\) 0 0
\(701\) −21458.0 −1.15614 −0.578072 0.815985i \(-0.696195\pi\)
−0.578072 + 0.815985i \(0.696195\pi\)
\(702\) 2880.00 0.154841
\(703\) 27680.0 1.48502
\(704\) −1792.00 −0.0959354
\(705\) 0 0
\(706\) −1956.00 −0.104271
\(707\) −9506.00 −0.505672
\(708\) 6400.00 0.339727
\(709\) −9850.00 −0.521755 −0.260878 0.965372i \(-0.584012\pi\)
−0.260878 + 0.965372i \(0.584012\pi\)
\(710\) 0 0
\(711\) 8880.00 0.468391
\(712\) 6480.00 0.341079
\(713\) 8064.00 0.423561
\(714\) 8288.00 0.434413
\(715\) 0 0
\(716\) −1200.00 −0.0626342
\(717\) 24000.0 1.25006
\(718\) −19360.0 −1.00628
\(719\) −18840.0 −0.977209 −0.488605 0.872505i \(-0.662494\pi\)
−0.488605 + 0.872505i \(0.662494\pi\)
\(720\) 0 0
\(721\) 5824.00 0.300828
\(722\) −918.000 −0.0473191
\(723\) −16336.0 −0.840308
\(724\) −9432.00 −0.484168
\(725\) 0 0
\(726\) 8752.00 0.447407
\(727\) −37504.0 −1.91327 −0.956634 0.291291i \(-0.905915\pi\)
−0.956634 + 0.291291i \(0.905915\pi\)
\(728\) −1008.00 −0.0513173
\(729\) −30563.0 −1.55276
\(730\) 0 0
\(731\) −30488.0 −1.54260
\(732\) 6336.00 0.319925
\(733\) −13338.0 −0.672101 −0.336051 0.941844i \(-0.609091\pi\)
−0.336051 + 0.941844i \(0.609091\pi\)
\(734\) 17312.0 0.870569
\(735\) 0 0
\(736\) 3584.00 0.179495
\(737\) −20048.0 −1.00200
\(738\) 11988.0 0.597946
\(739\) 17100.0 0.851196 0.425598 0.904912i \(-0.360064\pi\)
0.425598 + 0.904912i \(0.360064\pi\)
\(740\) 0 0
\(741\) 11520.0 0.571117
\(742\) −4452.00 −0.220267
\(743\) 19632.0 0.969352 0.484676 0.874694i \(-0.338938\pi\)
0.484676 + 0.874694i \(0.338938\pi\)
\(744\) −4608.00 −0.227067
\(745\) 0 0
\(746\) −10556.0 −0.518073
\(747\) 39664.0 1.94274
\(748\) 8288.00 0.405133
\(749\) −3108.00 −0.151621
\(750\) 0 0
\(751\) 33912.0 1.64776 0.823879 0.566766i \(-0.191805\pi\)
0.823879 + 0.566766i \(0.191805\pi\)
\(752\) −384.000 −0.0186211
\(753\) 4224.00 0.204424
\(754\) −6840.00 −0.330369
\(755\) 0 0
\(756\) −2240.00 −0.107762
\(757\) 31386.0 1.50693 0.753463 0.657490i \(-0.228382\pi\)
0.753463 + 0.657490i \(0.228382\pi\)
\(758\) 12680.0 0.607597
\(759\) 25088.0 1.19978
\(760\) 0 0
\(761\) −34558.0 −1.64616 −0.823079 0.567927i \(-0.807746\pi\)
−0.823079 + 0.567927i \(0.807746\pi\)
\(762\) 31104.0 1.47871
\(763\) 13090.0 0.621088
\(764\) 5568.00 0.263669
\(765\) 0 0
\(766\) 12464.0 0.587915
\(767\) 3600.00 0.169476
\(768\) −2048.00 −0.0962250
\(769\) 39130.0 1.83493 0.917467 0.397812i \(-0.130231\pi\)
0.917467 + 0.397812i \(0.130231\pi\)
\(770\) 0 0
\(771\) 45072.0 2.10535
\(772\) −7112.00 −0.331563
\(773\) 25982.0 1.20894 0.604468 0.796629i \(-0.293386\pi\)
0.604468 + 0.796629i \(0.293386\pi\)
\(774\) 30488.0 1.41585
\(775\) 0 0
\(776\) −10832.0 −0.501090
\(777\) −19376.0 −0.894608
\(778\) −29620.0 −1.36495
\(779\) 12960.0 0.596072
\(780\) 0 0
\(781\) −10976.0 −0.502884
\(782\) −16576.0 −0.758001
\(783\) −15200.0 −0.693747
\(784\) 784.000 0.0357143
\(785\) 0 0
\(786\) 13568.0 0.615718
\(787\) −35424.0 −1.60448 −0.802242 0.596999i \(-0.796360\pi\)
−0.802242 + 0.596999i \(0.796360\pi\)
\(788\) −4856.00 −0.219528
\(789\) 1344.00 0.0606434
\(790\) 0 0
\(791\) −9646.00 −0.433593
\(792\) −8288.00 −0.371845
\(793\) 3564.00 0.159598
\(794\) −10308.0 −0.460727
\(795\) 0 0
\(796\) 4160.00 0.185235
\(797\) 30606.0 1.36025 0.680126 0.733096i \(-0.261925\pi\)
0.680126 + 0.733096i \(0.261925\pi\)
\(798\) −8960.00 −0.397469
\(799\) 1776.00 0.0786362
\(800\) 0 0
\(801\) 29970.0 1.32202
\(802\) 6564.00 0.289006
\(803\) 15064.0 0.662014
\(804\) −22912.0 −1.00503
\(805\) 0 0
\(806\) −2592.00 −0.113275
\(807\) 10480.0 0.457142
\(808\) −10864.0 −0.473013
\(809\) 16810.0 0.730542 0.365271 0.930901i \(-0.380976\pi\)
0.365271 + 0.930901i \(0.380976\pi\)
\(810\) 0 0
\(811\) −9368.00 −0.405616 −0.202808 0.979218i \(-0.565007\pi\)
−0.202808 + 0.979218i \(0.565007\pi\)
\(812\) 5320.00 0.229920
\(813\) 17664.0 0.761997
\(814\) −19376.0 −0.834310
\(815\) 0 0
\(816\) 9472.00 0.406356
\(817\) 32960.0 1.41141
\(818\) 11620.0 0.496679
\(819\) −4662.00 −0.198905
\(820\) 0 0
\(821\) 34382.0 1.46156 0.730780 0.682614i \(-0.239157\pi\)
0.730780 + 0.682614i \(0.239157\pi\)
\(822\) −47456.0 −2.01365
\(823\) 4472.00 0.189410 0.0947048 0.995505i \(-0.469809\pi\)
0.0947048 + 0.995505i \(0.469809\pi\)
\(824\) 6656.00 0.281399
\(825\) 0 0
\(826\) −2800.00 −0.117947
\(827\) 1716.00 0.0721538 0.0360769 0.999349i \(-0.488514\pi\)
0.0360769 + 0.999349i \(0.488514\pi\)
\(828\) 16576.0 0.695720
\(829\) −7910.00 −0.331394 −0.165697 0.986177i \(-0.552987\pi\)
−0.165697 + 0.986177i \(0.552987\pi\)
\(830\) 0 0
\(831\) 42352.0 1.76796
\(832\) −1152.00 −0.0480029
\(833\) −3626.00 −0.150820
\(834\) −44800.0 −1.86007
\(835\) 0 0
\(836\) −8960.00 −0.370680
\(837\) −5760.00 −0.237867
\(838\) 27120.0 1.11795
\(839\) −19360.0 −0.796641 −0.398320 0.917246i \(-0.630407\pi\)
−0.398320 + 0.917246i \(0.630407\pi\)
\(840\) 0 0
\(841\) 11711.0 0.480175
\(842\) −1476.00 −0.0604113
\(843\) −25936.0 −1.05965
\(844\) −15472.0 −0.631005
\(845\) 0 0
\(846\) −1776.00 −0.0721751
\(847\) −3829.00 −0.155332
\(848\) −5088.00 −0.206041
\(849\) −12736.0 −0.514839
\(850\) 0 0
\(851\) 38752.0 1.56099
\(852\) −12544.0 −0.504402
\(853\) −698.000 −0.0280177 −0.0140088 0.999902i \(-0.504459\pi\)
−0.0140088 + 0.999902i \(0.504459\pi\)
\(854\) −2772.00 −0.111072
\(855\) 0 0
\(856\) −3552.00 −0.141828
\(857\) 23406.0 0.932945 0.466472 0.884536i \(-0.345525\pi\)
0.466472 + 0.884536i \(0.345525\pi\)
\(858\) −8064.00 −0.320863
\(859\) 7280.00 0.289162 0.144581 0.989493i \(-0.453817\pi\)
0.144581 + 0.989493i \(0.453817\pi\)
\(860\) 0 0
\(861\) −9072.00 −0.359086
\(862\) 2544.00 0.100521
\(863\) −9808.00 −0.386869 −0.193435 0.981113i \(-0.561963\pi\)
−0.193435 + 0.981113i \(0.561963\pi\)
\(864\) −2560.00 −0.100802
\(865\) 0 0
\(866\) 10124.0 0.397260
\(867\) −4504.00 −0.176429
\(868\) 2016.00 0.0788335
\(869\) −6720.00 −0.262325
\(870\) 0 0
\(871\) −12888.0 −0.501370
\(872\) 14960.0 0.580974
\(873\) −50098.0 −1.94222
\(874\) 17920.0 0.693539
\(875\) 0 0
\(876\) 17216.0 0.664012
\(877\) 8066.00 0.310570 0.155285 0.987870i \(-0.450370\pi\)
0.155285 + 0.987870i \(0.450370\pi\)
\(878\) 11280.0 0.433578
\(879\) −40176.0 −1.54164
\(880\) 0 0
\(881\) 25842.0 0.988240 0.494120 0.869394i \(-0.335490\pi\)
0.494120 + 0.869394i \(0.335490\pi\)
\(882\) 3626.00 0.138428
\(883\) 5692.00 0.216932 0.108466 0.994100i \(-0.465406\pi\)
0.108466 + 0.994100i \(0.465406\pi\)
\(884\) 5328.00 0.202715
\(885\) 0 0
\(886\) −26776.0 −1.01530
\(887\) 13536.0 0.512395 0.256198 0.966624i \(-0.417530\pi\)
0.256198 + 0.966624i \(0.417530\pi\)
\(888\) −22144.0 −0.836829
\(889\) −13608.0 −0.513383
\(890\) 0 0
\(891\) 10052.0 0.377951
\(892\) −15872.0 −0.595778
\(893\) −1920.00 −0.0719489
\(894\) −8160.00 −0.305270
\(895\) 0 0
\(896\) 896.000 0.0334077
\(897\) 16128.0 0.600332
\(898\) −6460.00 −0.240059
\(899\) 13680.0 0.507512
\(900\) 0 0
\(901\) 23532.0 0.870105
\(902\) −9072.00 −0.334883
\(903\) −23072.0 −0.850264
\(904\) −11024.0 −0.405589
\(905\) 0 0
\(906\) −9472.00 −0.347336
\(907\) −17004.0 −0.622501 −0.311251 0.950328i \(-0.600748\pi\)
−0.311251 + 0.950328i \(0.600748\pi\)
\(908\) 15744.0 0.575422
\(909\) −50246.0 −1.83339
\(910\) 0 0
\(911\) −14568.0 −0.529813 −0.264906 0.964274i \(-0.585341\pi\)
−0.264906 + 0.964274i \(0.585341\pi\)
\(912\) −10240.0 −0.371799
\(913\) −30016.0 −1.08804
\(914\) 21292.0 0.770544
\(915\) 0 0
\(916\) 19240.0 0.694004
\(917\) −5936.00 −0.213767
\(918\) 11840.0 0.425684
\(919\) −1400.00 −0.0502522 −0.0251261 0.999684i \(-0.507999\pi\)
−0.0251261 + 0.999684i \(0.507999\pi\)
\(920\) 0 0
\(921\) −76288.0 −2.72940
\(922\) 14564.0 0.520217
\(923\) −7056.00 −0.251626
\(924\) 6272.00 0.223305
\(925\) 0 0
\(926\) −25376.0 −0.900548
\(927\) 30784.0 1.09070
\(928\) 6080.00 0.215071
\(929\) −13830.0 −0.488426 −0.244213 0.969722i \(-0.578530\pi\)
−0.244213 + 0.969722i \(0.578530\pi\)
\(930\) 0 0
\(931\) 3920.00 0.137994
\(932\) 8728.00 0.306754
\(933\) 7744.00 0.271733
\(934\) 5632.00 0.197307
\(935\) 0 0
\(936\) −5328.00 −0.186059
\(937\) 24166.0 0.842549 0.421275 0.906933i \(-0.361583\pi\)
0.421275 + 0.906933i \(0.361583\pi\)
\(938\) 10024.0 0.348929
\(939\) 24464.0 0.850216
\(940\) 0 0
\(941\) −10838.0 −0.375461 −0.187730 0.982221i \(-0.560113\pi\)
−0.187730 + 0.982221i \(0.560113\pi\)
\(942\) −42976.0 −1.48645
\(943\) 18144.0 0.626564
\(944\) −3200.00 −0.110330
\(945\) 0 0
\(946\) −23072.0 −0.792955
\(947\) 40916.0 1.40400 0.702002 0.712175i \(-0.252290\pi\)
0.702002 + 0.712175i \(0.252290\pi\)
\(948\) −7680.00 −0.263117
\(949\) 9684.00 0.331250
\(950\) 0 0
\(951\) −39888.0 −1.36010
\(952\) −4144.00 −0.141080
\(953\) −56618.0 −1.92449 −0.962244 0.272189i \(-0.912253\pi\)
−0.962244 + 0.272189i \(0.912253\pi\)
\(954\) −23532.0 −0.798613
\(955\) 0 0
\(956\) −12000.0 −0.405970
\(957\) 42560.0 1.43759
\(958\) −6320.00 −0.213142
\(959\) 20762.0 0.699103
\(960\) 0 0
\(961\) −24607.0 −0.825988
\(962\) −12456.0 −0.417461
\(963\) −16428.0 −0.549725
\(964\) 8168.00 0.272898
\(965\) 0 0
\(966\) −12544.0 −0.417802
\(967\) −17504.0 −0.582100 −0.291050 0.956708i \(-0.594005\pi\)
−0.291050 + 0.956708i \(0.594005\pi\)
\(968\) −4376.00 −0.145300
\(969\) 47360.0 1.57010
\(970\) 0 0
\(971\) 23112.0 0.763851 0.381926 0.924193i \(-0.375261\pi\)
0.381926 + 0.924193i \(0.375261\pi\)
\(972\) 20128.0 0.664204
\(973\) 19600.0 0.645783
\(974\) 28352.0 0.932707
\(975\) 0 0
\(976\) −3168.00 −0.103899
\(977\) −23874.0 −0.781778 −0.390889 0.920438i \(-0.627832\pi\)
−0.390889 + 0.920438i \(0.627832\pi\)
\(978\) −16192.0 −0.529410
\(979\) −22680.0 −0.740404
\(980\) 0 0
\(981\) 69190.0 2.25185
\(982\) −22536.0 −0.732335
\(983\) 15312.0 0.496823 0.248411 0.968655i \(-0.420091\pi\)
0.248411 + 0.968655i \(0.420091\pi\)
\(984\) −10368.0 −0.335894
\(985\) 0 0
\(986\) −28120.0 −0.908239
\(987\) 1344.00 0.0433435
\(988\) −5760.00 −0.185476
\(989\) 46144.0 1.48361
\(990\) 0 0
\(991\) −16528.0 −0.529797 −0.264899 0.964276i \(-0.585339\pi\)
−0.264899 + 0.964276i \(0.585339\pi\)
\(992\) 2304.00 0.0737420
\(993\) −68896.0 −2.20176
\(994\) 5488.00 0.175120
\(995\) 0 0
\(996\) −34304.0 −1.09133
\(997\) 28606.0 0.908687 0.454344 0.890827i \(-0.349874\pi\)
0.454344 + 0.890827i \(0.349874\pi\)
\(998\) −8920.00 −0.282924
\(999\) −27680.0 −0.876633
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.4.a.l.1.1 1
5.2 odd 4 350.4.c.b.99.2 2
5.3 odd 4 350.4.c.b.99.1 2
5.4 even 2 14.4.a.a.1.1 1
7.6 odd 2 2450.4.a.bo.1.1 1
15.14 odd 2 126.4.a.h.1.1 1
20.19 odd 2 112.4.a.a.1.1 1
35.4 even 6 98.4.c.d.79.1 2
35.9 even 6 98.4.c.d.67.1 2
35.19 odd 6 98.4.c.f.67.1 2
35.24 odd 6 98.4.c.f.79.1 2
35.34 odd 2 98.4.a.a.1.1 1
40.19 odd 2 448.4.a.o.1.1 1
40.29 even 2 448.4.a.b.1.1 1
55.54 odd 2 1694.4.a.g.1.1 1
60.59 even 2 1008.4.a.s.1.1 1
65.64 even 2 2366.4.a.h.1.1 1
105.44 odd 6 882.4.g.b.361.1 2
105.59 even 6 882.4.g.k.667.1 2
105.74 odd 6 882.4.g.b.667.1 2
105.89 even 6 882.4.g.k.361.1 2
105.104 even 2 882.4.a.i.1.1 1
140.139 even 2 784.4.a.s.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.4.a.a.1.1 1 5.4 even 2
98.4.a.a.1.1 1 35.34 odd 2
98.4.c.d.67.1 2 35.9 even 6
98.4.c.d.79.1 2 35.4 even 6
98.4.c.f.67.1 2 35.19 odd 6
98.4.c.f.79.1 2 35.24 odd 6
112.4.a.a.1.1 1 20.19 odd 2
126.4.a.h.1.1 1 15.14 odd 2
350.4.a.l.1.1 1 1.1 even 1 trivial
350.4.c.b.99.1 2 5.3 odd 4
350.4.c.b.99.2 2 5.2 odd 4
448.4.a.b.1.1 1 40.29 even 2
448.4.a.o.1.1 1 40.19 odd 2
784.4.a.s.1.1 1 140.139 even 2
882.4.a.i.1.1 1 105.104 even 2
882.4.g.b.361.1 2 105.44 odd 6
882.4.g.b.667.1 2 105.74 odd 6
882.4.g.k.361.1 2 105.89 even 6
882.4.g.k.667.1 2 105.59 even 6
1008.4.a.s.1.1 1 60.59 even 2
1694.4.a.g.1.1 1 55.54 odd 2
2366.4.a.h.1.1 1 65.64 even 2
2450.4.a.bo.1.1 1 7.6 odd 2