Properties

Label 784.4.a.s.1.1
Level $784$
Weight $4$
Character 784.1
Self dual yes
Analytic conductor $46.257$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,4,Mod(1,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 784.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.2574974445\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 784.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000 q^{3} +14.0000 q^{5} +37.0000 q^{9} +O(q^{10})\) \(q+8.00000 q^{3} +14.0000 q^{5} +37.0000 q^{9} +28.0000 q^{11} -18.0000 q^{13} +112.000 q^{15} -74.0000 q^{17} +80.0000 q^{19} +112.000 q^{23} +71.0000 q^{25} +80.0000 q^{27} +190.000 q^{29} +72.0000 q^{31} +224.000 q^{33} -346.000 q^{37} -144.000 q^{39} -162.000 q^{41} +412.000 q^{43} +518.000 q^{45} +24.0000 q^{47} -592.000 q^{51} +318.000 q^{53} +392.000 q^{55} +640.000 q^{57} -200.000 q^{59} +198.000 q^{61} -252.000 q^{65} +716.000 q^{67} +896.000 q^{69} -392.000 q^{71} -538.000 q^{73} +568.000 q^{75} -240.000 q^{79} -359.000 q^{81} -1072.00 q^{83} -1036.00 q^{85} +1520.00 q^{87} -810.000 q^{89} +576.000 q^{93} +1120.00 q^{95} -1354.00 q^{97} +1036.00 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.00000 1.53960 0.769800 0.638285i \(-0.220356\pi\)
0.769800 + 0.638285i \(0.220356\pi\)
\(4\) 0 0
\(5\) 14.0000 1.25220 0.626099 0.779744i \(-0.284651\pi\)
0.626099 + 0.779744i \(0.284651\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 37.0000 1.37037
\(10\) 0 0
\(11\) 28.0000 0.767483 0.383742 0.923440i \(-0.374635\pi\)
0.383742 + 0.923440i \(0.374635\pi\)
\(12\) 0 0
\(13\) −18.0000 −0.384023 −0.192012 0.981393i \(-0.561501\pi\)
−0.192012 + 0.981393i \(0.561501\pi\)
\(14\) 0 0
\(15\) 112.000 1.92789
\(16\) 0 0
\(17\) −74.0000 −1.05574 −0.527872 0.849324i \(-0.677010\pi\)
−0.527872 + 0.849324i \(0.677010\pi\)
\(18\) 0 0
\(19\) 80.0000 0.965961 0.482980 0.875631i \(-0.339554\pi\)
0.482980 + 0.875631i \(0.339554\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 112.000 1.01537 0.507687 0.861541i \(-0.330501\pi\)
0.507687 + 0.861541i \(0.330501\pi\)
\(24\) 0 0
\(25\) 71.0000 0.568000
\(26\) 0 0
\(27\) 80.0000 0.570222
\(28\) 0 0
\(29\) 190.000 1.21662 0.608312 0.793698i \(-0.291847\pi\)
0.608312 + 0.793698i \(0.291847\pi\)
\(30\) 0 0
\(31\) 72.0000 0.417148 0.208574 0.978007i \(-0.433118\pi\)
0.208574 + 0.978007i \(0.433118\pi\)
\(32\) 0 0
\(33\) 224.000 1.18162
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −346.000 −1.53735 −0.768676 0.639638i \(-0.779084\pi\)
−0.768676 + 0.639638i \(0.779084\pi\)
\(38\) 0 0
\(39\) −144.000 −0.591242
\(40\) 0 0
\(41\) −162.000 −0.617077 −0.308538 0.951212i \(-0.599840\pi\)
−0.308538 + 0.951212i \(0.599840\pi\)
\(42\) 0 0
\(43\) 412.000 1.46115 0.730575 0.682833i \(-0.239252\pi\)
0.730575 + 0.682833i \(0.239252\pi\)
\(44\) 0 0
\(45\) 518.000 1.71598
\(46\) 0 0
\(47\) 24.0000 0.0744843 0.0372421 0.999306i \(-0.488143\pi\)
0.0372421 + 0.999306i \(0.488143\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −592.000 −1.62542
\(52\) 0 0
\(53\) 318.000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 392.000 0.961041
\(56\) 0 0
\(57\) 640.000 1.48719
\(58\) 0 0
\(59\) −200.000 −0.441318 −0.220659 0.975351i \(-0.570821\pi\)
−0.220659 + 0.975351i \(0.570821\pi\)
\(60\) 0 0
\(61\) 198.000 0.415595 0.207798 0.978172i \(-0.433370\pi\)
0.207798 + 0.978172i \(0.433370\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −252.000 −0.480873
\(66\) 0 0
\(67\) 716.000 1.30557 0.652786 0.757542i \(-0.273600\pi\)
0.652786 + 0.757542i \(0.273600\pi\)
\(68\) 0 0
\(69\) 896.000 1.56327
\(70\) 0 0
\(71\) −392.000 −0.655237 −0.327619 0.944810i \(-0.606246\pi\)
−0.327619 + 0.944810i \(0.606246\pi\)
\(72\) 0 0
\(73\) −538.000 −0.862577 −0.431289 0.902214i \(-0.641941\pi\)
−0.431289 + 0.902214i \(0.641941\pi\)
\(74\) 0 0
\(75\) 568.000 0.874493
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −240.000 −0.341799 −0.170899 0.985288i \(-0.554667\pi\)
−0.170899 + 0.985288i \(0.554667\pi\)
\(80\) 0 0
\(81\) −359.000 −0.492455
\(82\) 0 0
\(83\) −1072.00 −1.41768 −0.708839 0.705370i \(-0.750781\pi\)
−0.708839 + 0.705370i \(0.750781\pi\)
\(84\) 0 0
\(85\) −1036.00 −1.32200
\(86\) 0 0
\(87\) 1520.00 1.87312
\(88\) 0 0
\(89\) −810.000 −0.964717 −0.482359 0.875974i \(-0.660220\pi\)
−0.482359 + 0.875974i \(0.660220\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 576.000 0.642241
\(94\) 0 0
\(95\) 1120.00 1.20957
\(96\) 0 0
\(97\) −1354.00 −1.41730 −0.708649 0.705561i \(-0.750695\pi\)
−0.708649 + 0.705561i \(0.750695\pi\)
\(98\) 0 0
\(99\) 1036.00 1.05174
\(100\) 0 0
\(101\) 1358.00 1.33788 0.668941 0.743316i \(-0.266748\pi\)
0.668941 + 0.743316i \(0.266748\pi\)
\(102\) 0 0
\(103\) −832.000 −0.795916 −0.397958 0.917404i \(-0.630281\pi\)
−0.397958 + 0.917404i \(0.630281\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −444.000 −0.401150 −0.200575 0.979678i \(-0.564281\pi\)
−0.200575 + 0.979678i \(0.564281\pi\)
\(108\) 0 0
\(109\) 1870.00 1.64324 0.821622 0.570033i \(-0.193070\pi\)
0.821622 + 0.570033i \(0.193070\pi\)
\(110\) 0 0
\(111\) −2768.00 −2.36691
\(112\) 0 0
\(113\) 1378.00 1.14718 0.573590 0.819143i \(-0.305550\pi\)
0.573590 + 0.819143i \(0.305550\pi\)
\(114\) 0 0
\(115\) 1568.00 1.27145
\(116\) 0 0
\(117\) −666.000 −0.526254
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −547.000 −0.410969
\(122\) 0 0
\(123\) −1296.00 −0.950052
\(124\) 0 0
\(125\) −756.000 −0.540950
\(126\) 0 0
\(127\) −1944.00 −1.35828 −0.679142 0.734007i \(-0.737648\pi\)
−0.679142 + 0.734007i \(0.737648\pi\)
\(128\) 0 0
\(129\) 3296.00 2.24959
\(130\) 0 0
\(131\) −848.000 −0.565573 −0.282787 0.959183i \(-0.591259\pi\)
−0.282787 + 0.959183i \(0.591259\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1120.00 0.714031
\(136\) 0 0
\(137\) −2966.00 −1.84965 −0.924827 0.380389i \(-0.875790\pi\)
−0.924827 + 0.380389i \(0.875790\pi\)
\(138\) 0 0
\(139\) 2800.00 1.70858 0.854291 0.519795i \(-0.173992\pi\)
0.854291 + 0.519795i \(0.173992\pi\)
\(140\) 0 0
\(141\) 192.000 0.114676
\(142\) 0 0
\(143\) −504.000 −0.294731
\(144\) 0 0
\(145\) 2660.00 1.52346
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 510.000 0.280408 0.140204 0.990123i \(-0.455224\pi\)
0.140204 + 0.990123i \(0.455224\pi\)
\(150\) 0 0
\(151\) −592.000 −0.319048 −0.159524 0.987194i \(-0.550996\pi\)
−0.159524 + 0.987194i \(0.550996\pi\)
\(152\) 0 0
\(153\) −2738.00 −1.44676
\(154\) 0 0
\(155\) 1008.00 0.522352
\(156\) 0 0
\(157\) 2686.00 1.36539 0.682695 0.730704i \(-0.260808\pi\)
0.682695 + 0.730704i \(0.260808\pi\)
\(158\) 0 0
\(159\) 2544.00 1.26888
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1012.00 0.486294 0.243147 0.969989i \(-0.421820\pi\)
0.243147 + 0.969989i \(0.421820\pi\)
\(164\) 0 0
\(165\) 3136.00 1.47962
\(166\) 0 0
\(167\) 544.000 0.252072 0.126036 0.992026i \(-0.459775\pi\)
0.126036 + 0.992026i \(0.459775\pi\)
\(168\) 0 0
\(169\) −1873.00 −0.852526
\(170\) 0 0
\(171\) 2960.00 1.32372
\(172\) 0 0
\(173\) −1858.00 −0.816538 −0.408269 0.912862i \(-0.633868\pi\)
−0.408269 + 0.912862i \(0.633868\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1600.00 −0.679454
\(178\) 0 0
\(179\) 300.000 0.125268 0.0626342 0.998037i \(-0.480050\pi\)
0.0626342 + 0.998037i \(0.480050\pi\)
\(180\) 0 0
\(181\) 2358.00 0.968336 0.484168 0.874975i \(-0.339122\pi\)
0.484168 + 0.874975i \(0.339122\pi\)
\(182\) 0 0
\(183\) 1584.00 0.639851
\(184\) 0 0
\(185\) −4844.00 −1.92507
\(186\) 0 0
\(187\) −2072.00 −0.810265
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1392.00 −0.527338 −0.263669 0.964613i \(-0.584933\pi\)
−0.263669 + 0.964613i \(0.584933\pi\)
\(192\) 0 0
\(193\) 1778.00 0.663126 0.331563 0.943433i \(-0.392424\pi\)
0.331563 + 0.943433i \(0.392424\pi\)
\(194\) 0 0
\(195\) −2016.00 −0.740353
\(196\) 0 0
\(197\) 1214.00 0.439055 0.219528 0.975606i \(-0.429548\pi\)
0.219528 + 0.975606i \(0.429548\pi\)
\(198\) 0 0
\(199\) 1040.00 0.370471 0.185235 0.982694i \(-0.440695\pi\)
0.185235 + 0.982694i \(0.440695\pi\)
\(200\) 0 0
\(201\) 5728.00 2.01006
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2268.00 −0.772702
\(206\) 0 0
\(207\) 4144.00 1.39144
\(208\) 0 0
\(209\) 2240.00 0.741359
\(210\) 0 0
\(211\) 3868.00 1.26201 0.631005 0.775779i \(-0.282643\pi\)
0.631005 + 0.775779i \(0.282643\pi\)
\(212\) 0 0
\(213\) −3136.00 −1.00880
\(214\) 0 0
\(215\) 5768.00 1.82965
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −4304.00 −1.32802
\(220\) 0 0
\(221\) 1332.00 0.405430
\(222\) 0 0
\(223\) 3968.00 1.19156 0.595778 0.803149i \(-0.296844\pi\)
0.595778 + 0.803149i \(0.296844\pi\)
\(224\) 0 0
\(225\) 2627.00 0.778370
\(226\) 0 0
\(227\) −3936.00 −1.15084 −0.575422 0.817857i \(-0.695162\pi\)
−0.575422 + 0.817857i \(0.695162\pi\)
\(228\) 0 0
\(229\) −4810.00 −1.38801 −0.694004 0.719971i \(-0.744155\pi\)
−0.694004 + 0.719971i \(0.744155\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2182.00 −0.613509 −0.306754 0.951789i \(-0.599243\pi\)
−0.306754 + 0.951789i \(0.599243\pi\)
\(234\) 0 0
\(235\) 336.000 0.0932690
\(236\) 0 0
\(237\) −1920.00 −0.526234
\(238\) 0 0
\(239\) 3000.00 0.811941 0.405970 0.913886i \(-0.366934\pi\)
0.405970 + 0.913886i \(0.366934\pi\)
\(240\) 0 0
\(241\) −2042.00 −0.545796 −0.272898 0.962043i \(-0.587982\pi\)
−0.272898 + 0.962043i \(0.587982\pi\)
\(242\) 0 0
\(243\) −5032.00 −1.32841
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1440.00 −0.370951
\(248\) 0 0
\(249\) −8576.00 −2.18266
\(250\) 0 0
\(251\) −528.000 −0.132777 −0.0663886 0.997794i \(-0.521148\pi\)
−0.0663886 + 0.997794i \(0.521148\pi\)
\(252\) 0 0
\(253\) 3136.00 0.779283
\(254\) 0 0
\(255\) −8288.00 −2.03535
\(256\) 0 0
\(257\) −5634.00 −1.36747 −0.683734 0.729731i \(-0.739645\pi\)
−0.683734 + 0.729731i \(0.739645\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 7030.00 1.66723
\(262\) 0 0
\(263\) −168.000 −0.0393891 −0.0196945 0.999806i \(-0.506269\pi\)
−0.0196945 + 0.999806i \(0.506269\pi\)
\(264\) 0 0
\(265\) 4452.00 1.03202
\(266\) 0 0
\(267\) −6480.00 −1.48528
\(268\) 0 0
\(269\) 1310.00 0.296922 0.148461 0.988918i \(-0.452568\pi\)
0.148461 + 0.988918i \(0.452568\pi\)
\(270\) 0 0
\(271\) −2208.00 −0.494932 −0.247466 0.968897i \(-0.579598\pi\)
−0.247466 + 0.968897i \(0.579598\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1988.00 0.435931
\(276\) 0 0
\(277\) 5294.00 1.14832 0.574162 0.818742i \(-0.305328\pi\)
0.574162 + 0.818742i \(0.305328\pi\)
\(278\) 0 0
\(279\) 2664.00 0.571647
\(280\) 0 0
\(281\) 3242.00 0.688262 0.344131 0.938922i \(-0.388174\pi\)
0.344131 + 0.938922i \(0.388174\pi\)
\(282\) 0 0
\(283\) −1592.00 −0.334398 −0.167199 0.985923i \(-0.553472\pi\)
−0.167199 + 0.985923i \(0.553472\pi\)
\(284\) 0 0
\(285\) 8960.00 1.86226
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 563.000 0.114594
\(290\) 0 0
\(291\) −10832.0 −2.18207
\(292\) 0 0
\(293\) 5022.00 1.00133 0.500663 0.865642i \(-0.333090\pi\)
0.500663 + 0.865642i \(0.333090\pi\)
\(294\) 0 0
\(295\) −2800.00 −0.552618
\(296\) 0 0
\(297\) 2240.00 0.437636
\(298\) 0 0
\(299\) −2016.00 −0.389927
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 10864.0 2.05980
\(304\) 0 0
\(305\) 2772.00 0.520407
\(306\) 0 0
\(307\) −9536.00 −1.77280 −0.886398 0.462924i \(-0.846800\pi\)
−0.886398 + 0.462924i \(0.846800\pi\)
\(308\) 0 0
\(309\) −6656.00 −1.22539
\(310\) 0 0
\(311\) −968.000 −0.176496 −0.0882480 0.996099i \(-0.528127\pi\)
−0.0882480 + 0.996099i \(0.528127\pi\)
\(312\) 0 0
\(313\) −3058.00 −0.552231 −0.276116 0.961124i \(-0.589047\pi\)
−0.276116 + 0.961124i \(0.589047\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4986.00 −0.883412 −0.441706 0.897160i \(-0.645627\pi\)
−0.441706 + 0.897160i \(0.645627\pi\)
\(318\) 0 0
\(319\) 5320.00 0.933739
\(320\) 0 0
\(321\) −3552.00 −0.617612
\(322\) 0 0
\(323\) −5920.00 −1.01981
\(324\) 0 0
\(325\) −1278.00 −0.218125
\(326\) 0 0
\(327\) 14960.0 2.52994
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −8612.00 −1.43009 −0.715043 0.699081i \(-0.753593\pi\)
−0.715043 + 0.699081i \(0.753593\pi\)
\(332\) 0 0
\(333\) −12802.0 −2.10674
\(334\) 0 0
\(335\) 10024.0 1.63483
\(336\) 0 0
\(337\) −10206.0 −1.64972 −0.824861 0.565336i \(-0.808747\pi\)
−0.824861 + 0.565336i \(0.808747\pi\)
\(338\) 0 0
\(339\) 11024.0 1.76620
\(340\) 0 0
\(341\) 2016.00 0.320154
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 12544.0 1.95753
\(346\) 0 0
\(347\) −2004.00 −0.310030 −0.155015 0.987912i \(-0.549543\pi\)
−0.155015 + 0.987912i \(0.549543\pi\)
\(348\) 0 0
\(349\) −1330.00 −0.203992 −0.101996 0.994785i \(-0.532523\pi\)
−0.101996 + 0.994785i \(0.532523\pi\)
\(350\) 0 0
\(351\) −1440.00 −0.218979
\(352\) 0 0
\(353\) −978.000 −0.147461 −0.0737304 0.997278i \(-0.523490\pi\)
−0.0737304 + 0.997278i \(0.523490\pi\)
\(354\) 0 0
\(355\) −5488.00 −0.820487
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9680.00 1.42309 0.711547 0.702638i \(-0.247995\pi\)
0.711547 + 0.702638i \(0.247995\pi\)
\(360\) 0 0
\(361\) −459.000 −0.0669194
\(362\) 0 0
\(363\) −4376.00 −0.632728
\(364\) 0 0
\(365\) −7532.00 −1.08012
\(366\) 0 0
\(367\) −8656.00 −1.23117 −0.615585 0.788070i \(-0.711080\pi\)
−0.615585 + 0.788070i \(0.711080\pi\)
\(368\) 0 0
\(369\) −5994.00 −0.845624
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 5278.00 0.732666 0.366333 0.930484i \(-0.380613\pi\)
0.366333 + 0.930484i \(0.380613\pi\)
\(374\) 0 0
\(375\) −6048.00 −0.832846
\(376\) 0 0
\(377\) −3420.00 −0.467212
\(378\) 0 0
\(379\) −6340.00 −0.859272 −0.429636 0.903002i \(-0.641358\pi\)
−0.429636 + 0.903002i \(0.641358\pi\)
\(380\) 0 0
\(381\) −15552.0 −2.09122
\(382\) 0 0
\(383\) −6232.00 −0.831437 −0.415718 0.909493i \(-0.636470\pi\)
−0.415718 + 0.909493i \(0.636470\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 15244.0 2.00232
\(388\) 0 0
\(389\) −14810.0 −1.93033 −0.965163 0.261649i \(-0.915734\pi\)
−0.965163 + 0.261649i \(0.915734\pi\)
\(390\) 0 0
\(391\) −8288.00 −1.07197
\(392\) 0 0
\(393\) −6784.00 −0.870757
\(394\) 0 0
\(395\) −3360.00 −0.428000
\(396\) 0 0
\(397\) −5154.00 −0.651566 −0.325783 0.945445i \(-0.605628\pi\)
−0.325783 + 0.945445i \(0.605628\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3282.00 0.408716 0.204358 0.978896i \(-0.434489\pi\)
0.204358 + 0.978896i \(0.434489\pi\)
\(402\) 0 0
\(403\) −1296.00 −0.160194
\(404\) 0 0
\(405\) −5026.00 −0.616652
\(406\) 0 0
\(407\) −9688.00 −1.17989
\(408\) 0 0
\(409\) −5810.00 −0.702411 −0.351205 0.936298i \(-0.614228\pi\)
−0.351205 + 0.936298i \(0.614228\pi\)
\(410\) 0 0
\(411\) −23728.0 −2.84773
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −15008.0 −1.77521
\(416\) 0 0
\(417\) 22400.0 2.63053
\(418\) 0 0
\(419\) 13560.0 1.58102 0.790512 0.612446i \(-0.209814\pi\)
0.790512 + 0.612446i \(0.209814\pi\)
\(420\) 0 0
\(421\) −738.000 −0.0854345 −0.0427172 0.999087i \(-0.513601\pi\)
−0.0427172 + 0.999087i \(0.513601\pi\)
\(422\) 0 0
\(423\) 888.000 0.102071
\(424\) 0 0
\(425\) −5254.00 −0.599662
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −4032.00 −0.453769
\(430\) 0 0
\(431\) −1272.00 −0.142158 −0.0710790 0.997471i \(-0.522644\pi\)
−0.0710790 + 0.997471i \(0.522644\pi\)
\(432\) 0 0
\(433\) 5062.00 0.561811 0.280906 0.959735i \(-0.409365\pi\)
0.280906 + 0.959735i \(0.409365\pi\)
\(434\) 0 0
\(435\) 21280.0 2.34551
\(436\) 0 0
\(437\) 8960.00 0.980812
\(438\) 0 0
\(439\) 5640.00 0.613172 0.306586 0.951843i \(-0.400813\pi\)
0.306586 + 0.951843i \(0.400813\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13388.0 −1.43585 −0.717927 0.696119i \(-0.754909\pi\)
−0.717927 + 0.696119i \(0.754909\pi\)
\(444\) 0 0
\(445\) −11340.0 −1.20802
\(446\) 0 0
\(447\) 4080.00 0.431717
\(448\) 0 0
\(449\) −3230.00 −0.339495 −0.169747 0.985488i \(-0.554295\pi\)
−0.169747 + 0.985488i \(0.554295\pi\)
\(450\) 0 0
\(451\) −4536.00 −0.473596
\(452\) 0 0
\(453\) −4736.00 −0.491207
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −10646.0 −1.08971 −0.544857 0.838529i \(-0.683416\pi\)
−0.544857 + 0.838529i \(0.683416\pi\)
\(458\) 0 0
\(459\) −5920.00 −0.602009
\(460\) 0 0
\(461\) −7282.00 −0.735698 −0.367849 0.929886i \(-0.619906\pi\)
−0.367849 + 0.929886i \(0.619906\pi\)
\(462\) 0 0
\(463\) −12688.0 −1.27357 −0.636783 0.771043i \(-0.719735\pi\)
−0.636783 + 0.771043i \(0.719735\pi\)
\(464\) 0 0
\(465\) 8064.00 0.804213
\(466\) 0 0
\(467\) −2816.00 −0.279034 −0.139517 0.990220i \(-0.544555\pi\)
−0.139517 + 0.990220i \(0.544555\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 21488.0 2.10215
\(472\) 0 0
\(473\) 11536.0 1.12141
\(474\) 0 0
\(475\) 5680.00 0.548666
\(476\) 0 0
\(477\) 11766.0 1.12941
\(478\) 0 0
\(479\) −3160.00 −0.301428 −0.150714 0.988577i \(-0.548157\pi\)
−0.150714 + 0.988577i \(0.548157\pi\)
\(480\) 0 0
\(481\) 6228.00 0.590379
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −18956.0 −1.77474
\(486\) 0 0
\(487\) 14176.0 1.31905 0.659523 0.751684i \(-0.270758\pi\)
0.659523 + 0.751684i \(0.270758\pi\)
\(488\) 0 0
\(489\) 8096.00 0.748699
\(490\) 0 0
\(491\) 11268.0 1.03568 0.517839 0.855478i \(-0.326737\pi\)
0.517839 + 0.855478i \(0.326737\pi\)
\(492\) 0 0
\(493\) −14060.0 −1.28444
\(494\) 0 0
\(495\) 14504.0 1.31698
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4460.00 0.400114 0.200057 0.979784i \(-0.435887\pi\)
0.200057 + 0.979784i \(0.435887\pi\)
\(500\) 0 0
\(501\) 4352.00 0.388090
\(502\) 0 0
\(503\) −1512.00 −0.134029 −0.0670147 0.997752i \(-0.521347\pi\)
−0.0670147 + 0.997752i \(0.521347\pi\)
\(504\) 0 0
\(505\) 19012.0 1.67529
\(506\) 0 0
\(507\) −14984.0 −1.31255
\(508\) 0 0
\(509\) 11790.0 1.02668 0.513342 0.858184i \(-0.328407\pi\)
0.513342 + 0.858184i \(0.328407\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 6400.00 0.550813
\(514\) 0 0
\(515\) −11648.0 −0.996645
\(516\) 0 0
\(517\) 672.000 0.0571654
\(518\) 0 0
\(519\) −14864.0 −1.25714
\(520\) 0 0
\(521\) −1362.00 −0.114530 −0.0572652 0.998359i \(-0.518238\pi\)
−0.0572652 + 0.998359i \(0.518238\pi\)
\(522\) 0 0
\(523\) 6968.00 0.582580 0.291290 0.956635i \(-0.405916\pi\)
0.291290 + 0.956635i \(0.405916\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5328.00 −0.440401
\(528\) 0 0
\(529\) 377.000 0.0309855
\(530\) 0 0
\(531\) −7400.00 −0.604770
\(532\) 0 0
\(533\) 2916.00 0.236972
\(534\) 0 0
\(535\) −6216.00 −0.502320
\(536\) 0 0
\(537\) 2400.00 0.192863
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 7062.00 0.561218 0.280609 0.959822i \(-0.409464\pi\)
0.280609 + 0.959822i \(0.409464\pi\)
\(542\) 0 0
\(543\) 18864.0 1.49085
\(544\) 0 0
\(545\) 26180.0 2.05767
\(546\) 0 0
\(547\) 8196.00 0.640650 0.320325 0.947308i \(-0.396208\pi\)
0.320325 + 0.947308i \(0.396208\pi\)
\(548\) 0 0
\(549\) 7326.00 0.569519
\(550\) 0 0
\(551\) 15200.0 1.17521
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −38752.0 −2.96384
\(556\) 0 0
\(557\) −7466.00 −0.567944 −0.283972 0.958833i \(-0.591652\pi\)
−0.283972 + 0.958833i \(0.591652\pi\)
\(558\) 0 0
\(559\) −7416.00 −0.561115
\(560\) 0 0
\(561\) −16576.0 −1.24749
\(562\) 0 0
\(563\) 24968.0 1.86905 0.934526 0.355896i \(-0.115824\pi\)
0.934526 + 0.355896i \(0.115824\pi\)
\(564\) 0 0
\(565\) 19292.0 1.43650
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 14250.0 1.04990 0.524948 0.851134i \(-0.324085\pi\)
0.524948 + 0.851134i \(0.324085\pi\)
\(570\) 0 0
\(571\) −6372.00 −0.467005 −0.233503 0.972356i \(-0.575019\pi\)
−0.233503 + 0.972356i \(0.575019\pi\)
\(572\) 0 0
\(573\) −11136.0 −0.811890
\(574\) 0 0
\(575\) 7952.00 0.576733
\(576\) 0 0
\(577\) 8366.00 0.603607 0.301803 0.953370i \(-0.402411\pi\)
0.301803 + 0.953370i \(0.402411\pi\)
\(578\) 0 0
\(579\) 14224.0 1.02095
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 8904.00 0.632532
\(584\) 0 0
\(585\) −9324.00 −0.658974
\(586\) 0 0
\(587\) 20384.0 1.43328 0.716642 0.697441i \(-0.245678\pi\)
0.716642 + 0.697441i \(0.245678\pi\)
\(588\) 0 0
\(589\) 5760.00 0.402948
\(590\) 0 0
\(591\) 9712.00 0.675970
\(592\) 0 0
\(593\) −9378.00 −0.649424 −0.324712 0.945813i \(-0.605267\pi\)
−0.324712 + 0.945813i \(0.605267\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8320.00 0.570377
\(598\) 0 0
\(599\) 9000.00 0.613907 0.306953 0.951725i \(-0.400690\pi\)
0.306953 + 0.951725i \(0.400690\pi\)
\(600\) 0 0
\(601\) −7562.00 −0.513245 −0.256623 0.966512i \(-0.582610\pi\)
−0.256623 + 0.966512i \(0.582610\pi\)
\(602\) 0 0
\(603\) 26492.0 1.78912
\(604\) 0 0
\(605\) −7658.00 −0.514615
\(606\) 0 0
\(607\) −2976.00 −0.198999 −0.0994993 0.995038i \(-0.531724\pi\)
−0.0994993 + 0.995038i \(0.531724\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −432.000 −0.0286037
\(612\) 0 0
\(613\) 4278.00 0.281871 0.140935 0.990019i \(-0.454989\pi\)
0.140935 + 0.990019i \(0.454989\pi\)
\(614\) 0 0
\(615\) −18144.0 −1.18965
\(616\) 0 0
\(617\) 18794.0 1.22629 0.613143 0.789972i \(-0.289905\pi\)
0.613143 + 0.789972i \(0.289905\pi\)
\(618\) 0 0
\(619\) 18040.0 1.17139 0.585694 0.810532i \(-0.300822\pi\)
0.585694 + 0.810532i \(0.300822\pi\)
\(620\) 0 0
\(621\) 8960.00 0.578989
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −19459.0 −1.24538
\(626\) 0 0
\(627\) 17920.0 1.14140
\(628\) 0 0
\(629\) 25604.0 1.62305
\(630\) 0 0
\(631\) 21688.0 1.36828 0.684141 0.729350i \(-0.260177\pi\)
0.684141 + 0.729350i \(0.260177\pi\)
\(632\) 0 0
\(633\) 30944.0 1.94299
\(634\) 0 0
\(635\) −27216.0 −1.70084
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −14504.0 −0.897918
\(640\) 0 0
\(641\) −10558.0 −0.650571 −0.325285 0.945616i \(-0.605460\pi\)
−0.325285 + 0.945616i \(0.605460\pi\)
\(642\) 0 0
\(643\) −26152.0 −1.60394 −0.801971 0.597363i \(-0.796215\pi\)
−0.801971 + 0.597363i \(0.796215\pi\)
\(644\) 0 0
\(645\) 46144.0 2.81693
\(646\) 0 0
\(647\) 25584.0 1.55458 0.777288 0.629145i \(-0.216595\pi\)
0.777288 + 0.629145i \(0.216595\pi\)
\(648\) 0 0
\(649\) −5600.00 −0.338705
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 15198.0 0.910787 0.455393 0.890290i \(-0.349499\pi\)
0.455393 + 0.890290i \(0.349499\pi\)
\(654\) 0 0
\(655\) −11872.0 −0.708210
\(656\) 0 0
\(657\) −19906.0 −1.18205
\(658\) 0 0
\(659\) 6100.00 0.360580 0.180290 0.983613i \(-0.442296\pi\)
0.180290 + 0.983613i \(0.442296\pi\)
\(660\) 0 0
\(661\) 2318.00 0.136399 0.0681995 0.997672i \(-0.478275\pi\)
0.0681995 + 0.997672i \(0.478275\pi\)
\(662\) 0 0
\(663\) 10656.0 0.624200
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 21280.0 1.23533
\(668\) 0 0
\(669\) 31744.0 1.83452
\(670\) 0 0
\(671\) 5544.00 0.318962
\(672\) 0 0
\(673\) −10222.0 −0.585482 −0.292741 0.956192i \(-0.594567\pi\)
−0.292741 + 0.956192i \(0.594567\pi\)
\(674\) 0 0
\(675\) 5680.00 0.323886
\(676\) 0 0
\(677\) −25434.0 −1.44388 −0.721941 0.691955i \(-0.756750\pi\)
−0.721941 + 0.691955i \(0.756750\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −31488.0 −1.77184
\(682\) 0 0
\(683\) 8532.00 0.477991 0.238996 0.971021i \(-0.423182\pi\)
0.238996 + 0.971021i \(0.423182\pi\)
\(684\) 0 0
\(685\) −41524.0 −2.31613
\(686\) 0 0
\(687\) −38480.0 −2.13698
\(688\) 0 0
\(689\) −5724.00 −0.316498
\(690\) 0 0
\(691\) 20672.0 1.13806 0.569030 0.822317i \(-0.307319\pi\)
0.569030 + 0.822317i \(0.307319\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 39200.0 2.13948
\(696\) 0 0
\(697\) 11988.0 0.651475
\(698\) 0 0
\(699\) −17456.0 −0.944559
\(700\) 0 0
\(701\) −21458.0 −1.15614 −0.578072 0.815985i \(-0.696195\pi\)
−0.578072 + 0.815985i \(0.696195\pi\)
\(702\) 0 0
\(703\) −27680.0 −1.48502
\(704\) 0 0
\(705\) 2688.00 0.143597
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −9850.00 −0.521755 −0.260878 0.965372i \(-0.584012\pi\)
−0.260878 + 0.965372i \(0.584012\pi\)
\(710\) 0 0
\(711\) −8880.00 −0.468391
\(712\) 0 0
\(713\) 8064.00 0.423561
\(714\) 0 0
\(715\) −7056.00 −0.369062
\(716\) 0 0
\(717\) 24000.0 1.25006
\(718\) 0 0
\(719\) −18840.0 −0.977209 −0.488605 0.872505i \(-0.662494\pi\)
−0.488605 + 0.872505i \(0.662494\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −16336.0 −0.840308
\(724\) 0 0
\(725\) 13490.0 0.691043
\(726\) 0 0
\(727\) 37504.0 1.91327 0.956634 0.291291i \(-0.0940849\pi\)
0.956634 + 0.291291i \(0.0940849\pi\)
\(728\) 0 0
\(729\) −30563.0 −1.55276
\(730\) 0 0
\(731\) −30488.0 −1.54260
\(732\) 0 0
\(733\) −13338.0 −0.672101 −0.336051 0.941844i \(-0.609091\pi\)
−0.336051 + 0.941844i \(0.609091\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 20048.0 1.00200
\(738\) 0 0
\(739\) −17100.0 −0.851196 −0.425598 0.904912i \(-0.639936\pi\)
−0.425598 + 0.904912i \(0.639936\pi\)
\(740\) 0 0
\(741\) −11520.0 −0.571117
\(742\) 0 0
\(743\) 19632.0 0.969352 0.484676 0.874694i \(-0.338938\pi\)
0.484676 + 0.874694i \(0.338938\pi\)
\(744\) 0 0
\(745\) 7140.00 0.351127
\(746\) 0 0
\(747\) −39664.0 −1.94274
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −33912.0 −1.64776 −0.823879 0.566766i \(-0.808195\pi\)
−0.823879 + 0.566766i \(0.808195\pi\)
\(752\) 0 0
\(753\) −4224.00 −0.204424
\(754\) 0 0
\(755\) −8288.00 −0.399512
\(756\) 0 0
\(757\) −31386.0 −1.50693 −0.753463 0.657490i \(-0.771618\pi\)
−0.753463 + 0.657490i \(0.771618\pi\)
\(758\) 0 0
\(759\) 25088.0 1.19978
\(760\) 0 0
\(761\) 34558.0 1.64616 0.823079 0.567927i \(-0.192254\pi\)
0.823079 + 0.567927i \(0.192254\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −38332.0 −1.81163
\(766\) 0 0
\(767\) 3600.00 0.169476
\(768\) 0 0
\(769\) −39130.0 −1.83493 −0.917467 0.397812i \(-0.869769\pi\)
−0.917467 + 0.397812i \(0.869769\pi\)
\(770\) 0 0
\(771\) −45072.0 −2.10535
\(772\) 0 0
\(773\) 25982.0 1.20894 0.604468 0.796629i \(-0.293386\pi\)
0.604468 + 0.796629i \(0.293386\pi\)
\(774\) 0 0
\(775\) 5112.00 0.236940
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −12960.0 −0.596072
\(780\) 0 0
\(781\) −10976.0 −0.502884
\(782\) 0 0
\(783\) 15200.0 0.693747
\(784\) 0 0
\(785\) 37604.0 1.70974
\(786\) 0 0
\(787\) 35424.0 1.60448 0.802242 0.596999i \(-0.203640\pi\)
0.802242 + 0.596999i \(0.203640\pi\)
\(788\) 0 0
\(789\) −1344.00 −0.0606434
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −3564.00 −0.159598
\(794\) 0 0
\(795\) 35616.0 1.58889
\(796\) 0 0
\(797\) 30606.0 1.36025 0.680126 0.733096i \(-0.261925\pi\)
0.680126 + 0.733096i \(0.261925\pi\)
\(798\) 0 0
\(799\) −1776.00 −0.0786362
\(800\) 0 0
\(801\) −29970.0 −1.32202
\(802\) 0 0
\(803\) −15064.0 −0.662014
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 10480.0 0.457142
\(808\) 0 0
\(809\) 16810.0 0.730542 0.365271 0.930901i \(-0.380976\pi\)
0.365271 + 0.930901i \(0.380976\pi\)
\(810\) 0 0
\(811\) −9368.00 −0.405616 −0.202808 0.979218i \(-0.565007\pi\)
−0.202808 + 0.979218i \(0.565007\pi\)
\(812\) 0 0
\(813\) −17664.0 −0.761997
\(814\) 0 0
\(815\) 14168.0 0.608937
\(816\) 0 0
\(817\) 32960.0 1.41141
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 34382.0 1.46156 0.730780 0.682614i \(-0.239157\pi\)
0.730780 + 0.682614i \(0.239157\pi\)
\(822\) 0 0
\(823\) 4472.00 0.189410 0.0947048 0.995505i \(-0.469809\pi\)
0.0947048 + 0.995505i \(0.469809\pi\)
\(824\) 0 0
\(825\) 15904.0 0.671159
\(826\) 0 0
\(827\) 1716.00 0.0721538 0.0360769 0.999349i \(-0.488514\pi\)
0.0360769 + 0.999349i \(0.488514\pi\)
\(828\) 0 0
\(829\) 7910.00 0.331394 0.165697 0.986177i \(-0.447013\pi\)
0.165697 + 0.986177i \(0.447013\pi\)
\(830\) 0 0
\(831\) 42352.0 1.76796
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 7616.00 0.315644
\(836\) 0 0
\(837\) 5760.00 0.237867
\(838\) 0 0
\(839\) −19360.0 −0.796641 −0.398320 0.917246i \(-0.630407\pi\)
−0.398320 + 0.917246i \(0.630407\pi\)
\(840\) 0 0
\(841\) 11711.0 0.480175
\(842\) 0 0
\(843\) 25936.0 1.05965
\(844\) 0 0
\(845\) −26222.0 −1.06753
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −12736.0 −0.514839
\(850\) 0 0
\(851\) −38752.0 −1.56099
\(852\) 0 0
\(853\) −698.000 −0.0280177 −0.0140088 0.999902i \(-0.504459\pi\)
−0.0140088 + 0.999902i \(0.504459\pi\)
\(854\) 0 0
\(855\) 41440.0 1.65757
\(856\) 0 0
\(857\) 23406.0 0.932945 0.466472 0.884536i \(-0.345525\pi\)
0.466472 + 0.884536i \(0.345525\pi\)
\(858\) 0 0
\(859\) 7280.00 0.289162 0.144581 0.989493i \(-0.453817\pi\)
0.144581 + 0.989493i \(0.453817\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9808.00 −0.386869 −0.193435 0.981113i \(-0.561963\pi\)
−0.193435 + 0.981113i \(0.561963\pi\)
\(864\) 0 0
\(865\) −26012.0 −1.02247
\(866\) 0 0
\(867\) 4504.00 0.176429
\(868\) 0 0
\(869\) −6720.00 −0.262325
\(870\) 0 0
\(871\) −12888.0 −0.501370
\(872\) 0 0
\(873\) −50098.0 −1.94222
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −8066.00 −0.310570 −0.155285 0.987870i \(-0.549630\pi\)
−0.155285 + 0.987870i \(0.549630\pi\)
\(878\) 0 0
\(879\) 40176.0 1.54164
\(880\) 0 0
\(881\) −25842.0 −0.988240 −0.494120 0.869394i \(-0.664510\pi\)
−0.494120 + 0.869394i \(0.664510\pi\)
\(882\) 0 0
\(883\) 5692.00 0.216932 0.108466 0.994100i \(-0.465406\pi\)
0.108466 + 0.994100i \(0.465406\pi\)
\(884\) 0 0
\(885\) −22400.0 −0.850811
\(886\) 0 0
\(887\) −13536.0 −0.512395 −0.256198 0.966624i \(-0.582470\pi\)
−0.256198 + 0.966624i \(0.582470\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −10052.0 −0.377951
\(892\) 0 0
\(893\) 1920.00 0.0719489
\(894\) 0 0
\(895\) 4200.00 0.156861
\(896\) 0 0
\(897\) −16128.0 −0.600332
\(898\) 0 0
\(899\) 13680.0 0.507512
\(900\) 0 0
\(901\) −23532.0 −0.870105
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 33012.0 1.21255
\(906\) 0 0
\(907\) −17004.0 −0.622501 −0.311251 0.950328i \(-0.600748\pi\)
−0.311251 + 0.950328i \(0.600748\pi\)
\(908\) 0 0
\(909\) 50246.0 1.83339
\(910\) 0 0
\(911\) 14568.0 0.529813 0.264906 0.964274i \(-0.414659\pi\)
0.264906 + 0.964274i \(0.414659\pi\)
\(912\) 0 0
\(913\) −30016.0 −1.08804
\(914\) 0 0
\(915\) 22176.0 0.801220
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1400.00 0.0502522 0.0251261 0.999684i \(-0.492001\pi\)
0.0251261 + 0.999684i \(0.492001\pi\)
\(920\) 0 0
\(921\) −76288.0 −2.72940
\(922\) 0 0
\(923\) 7056.00 0.251626
\(924\) 0 0
\(925\) −24566.0 −0.873216
\(926\) 0 0
\(927\) −30784.0 −1.09070
\(928\) 0 0
\(929\) 13830.0 0.488426 0.244213 0.969722i \(-0.421470\pi\)
0.244213 + 0.969722i \(0.421470\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −7744.00 −0.271733
\(934\) 0 0
\(935\) −29008.0 −1.01461
\(936\) 0 0
\(937\) 24166.0 0.842549 0.421275 0.906933i \(-0.361583\pi\)
0.421275 + 0.906933i \(0.361583\pi\)
\(938\) 0 0
\(939\) −24464.0 −0.850216
\(940\) 0 0
\(941\) 10838.0 0.375461 0.187730 0.982221i \(-0.439887\pi\)
0.187730 + 0.982221i \(0.439887\pi\)
\(942\) 0 0
\(943\) −18144.0 −0.626564
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 40916.0 1.40400 0.702002 0.712175i \(-0.252290\pi\)
0.702002 + 0.712175i \(0.252290\pi\)
\(948\) 0 0
\(949\) 9684.00 0.331250
\(950\) 0 0
\(951\) −39888.0 −1.36010
\(952\) 0 0
\(953\) 56618.0 1.92449 0.962244 0.272189i \(-0.0877475\pi\)
0.962244 + 0.272189i \(0.0877475\pi\)
\(954\) 0 0
\(955\) −19488.0 −0.660332
\(956\) 0 0
\(957\) 42560.0 1.43759
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −24607.0 −0.825988
\(962\) 0 0
\(963\) −16428.0 −0.549725
\(964\) 0 0
\(965\) 24892.0 0.830365
\(966\) 0 0
\(967\) −17504.0 −0.582100 −0.291050 0.956708i \(-0.594005\pi\)
−0.291050 + 0.956708i \(0.594005\pi\)
\(968\) 0 0
\(969\) −47360.0 −1.57010
\(970\) 0 0
\(971\) 23112.0 0.763851 0.381926 0.924193i \(-0.375261\pi\)
0.381926 + 0.924193i \(0.375261\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −10224.0 −0.335826
\(976\) 0 0
\(977\) 23874.0 0.781778 0.390889 0.920438i \(-0.372168\pi\)
0.390889 + 0.920438i \(0.372168\pi\)
\(978\) 0 0
\(979\) −22680.0 −0.740404
\(980\) 0 0
\(981\) 69190.0 2.25185
\(982\) 0 0
\(983\) −15312.0 −0.496823 −0.248411 0.968655i \(-0.579909\pi\)
−0.248411 + 0.968655i \(0.579909\pi\)
\(984\) 0 0
\(985\) 16996.0 0.549784
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 46144.0 1.48361
\(990\) 0 0
\(991\) 16528.0 0.529797 0.264899 0.964276i \(-0.414661\pi\)
0.264899 + 0.964276i \(0.414661\pi\)
\(992\) 0 0
\(993\) −68896.0 −2.20176
\(994\) 0 0
\(995\) 14560.0 0.463903
\(996\) 0 0
\(997\) 28606.0 0.908687 0.454344 0.890827i \(-0.349874\pi\)
0.454344 + 0.890827i \(0.349874\pi\)
\(998\) 0 0
\(999\) −27680.0 −0.876633
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.4.a.s.1.1 1
4.3 odd 2 98.4.a.a.1.1 1
7.6 odd 2 112.4.a.a.1.1 1
12.11 even 2 882.4.a.i.1.1 1
20.19 odd 2 2450.4.a.bo.1.1 1
21.20 even 2 1008.4.a.s.1.1 1
28.3 even 6 98.4.c.d.79.1 2
28.11 odd 6 98.4.c.f.79.1 2
28.19 even 6 98.4.c.d.67.1 2
28.23 odd 6 98.4.c.f.67.1 2
28.27 even 2 14.4.a.a.1.1 1
56.13 odd 2 448.4.a.o.1.1 1
56.27 even 2 448.4.a.b.1.1 1
84.11 even 6 882.4.g.k.667.1 2
84.23 even 6 882.4.g.k.361.1 2
84.47 odd 6 882.4.g.b.361.1 2
84.59 odd 6 882.4.g.b.667.1 2
84.83 odd 2 126.4.a.h.1.1 1
140.27 odd 4 350.4.c.b.99.1 2
140.83 odd 4 350.4.c.b.99.2 2
140.139 even 2 350.4.a.l.1.1 1
308.307 odd 2 1694.4.a.g.1.1 1
364.363 even 2 2366.4.a.h.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.4.a.a.1.1 1 28.27 even 2
98.4.a.a.1.1 1 4.3 odd 2
98.4.c.d.67.1 2 28.19 even 6
98.4.c.d.79.1 2 28.3 even 6
98.4.c.f.67.1 2 28.23 odd 6
98.4.c.f.79.1 2 28.11 odd 6
112.4.a.a.1.1 1 7.6 odd 2
126.4.a.h.1.1 1 84.83 odd 2
350.4.a.l.1.1 1 140.139 even 2
350.4.c.b.99.1 2 140.27 odd 4
350.4.c.b.99.2 2 140.83 odd 4
448.4.a.b.1.1 1 56.27 even 2
448.4.a.o.1.1 1 56.13 odd 2
784.4.a.s.1.1 1 1.1 even 1 trivial
882.4.a.i.1.1 1 12.11 even 2
882.4.g.b.361.1 2 84.47 odd 6
882.4.g.b.667.1 2 84.59 odd 6
882.4.g.k.361.1 2 84.23 even 6
882.4.g.k.667.1 2 84.11 even 6
1008.4.a.s.1.1 1 21.20 even 2
1694.4.a.g.1.1 1 308.307 odd 2
2366.4.a.h.1.1 1 364.363 even 2
2450.4.a.bo.1.1 1 20.19 odd 2