Properties

Label 350.4.c.b.99.1
Level $350$
Weight $4$
Character 350.99
Analytic conductor $20.651$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [350,4,Mod(99,350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("350.99");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 350.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.6506685020\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 350.99
Dual form 350.4.c.b.99.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -8.00000i q^{3} -4.00000 q^{4} -16.0000 q^{6} -7.00000i q^{7} +8.00000i q^{8} -37.0000 q^{9} +O(q^{10})\) \(q-2.00000i q^{2} -8.00000i q^{3} -4.00000 q^{4} -16.0000 q^{6} -7.00000i q^{7} +8.00000i q^{8} -37.0000 q^{9} -28.0000 q^{11} +32.0000i q^{12} -18.0000i q^{13} -14.0000 q^{14} +16.0000 q^{16} +74.0000i q^{17} +74.0000i q^{18} -80.0000 q^{19} -56.0000 q^{21} +56.0000i q^{22} +112.000i q^{23} +64.0000 q^{24} -36.0000 q^{26} +80.0000i q^{27} +28.0000i q^{28} -190.000 q^{29} +72.0000 q^{31} -32.0000i q^{32} +224.000i q^{33} +148.000 q^{34} +148.000 q^{36} -346.000i q^{37} +160.000i q^{38} -144.000 q^{39} +162.000 q^{41} +112.000i q^{42} +412.000i q^{43} +112.000 q^{44} +224.000 q^{46} +24.0000i q^{47} -128.000i q^{48} -49.0000 q^{49} +592.000 q^{51} +72.0000i q^{52} -318.000i q^{53} +160.000 q^{54} +56.0000 q^{56} +640.000i q^{57} +380.000i q^{58} +200.000 q^{59} -198.000 q^{61} -144.000i q^{62} +259.000i q^{63} -64.0000 q^{64} +448.000 q^{66} -716.000i q^{67} -296.000i q^{68} +896.000 q^{69} +392.000 q^{71} -296.000i q^{72} -538.000i q^{73} -692.000 q^{74} +320.000 q^{76} +196.000i q^{77} +288.000i q^{78} -240.000 q^{79} -359.000 q^{81} -324.000i q^{82} +1072.00i q^{83} +224.000 q^{84} +824.000 q^{86} +1520.00i q^{87} -224.000i q^{88} -810.000 q^{89} -126.000 q^{91} -448.000i q^{92} -576.000i q^{93} +48.0000 q^{94} -256.000 q^{96} +1354.00i q^{97} +98.0000i q^{98} +1036.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} - 32 q^{6} - 74 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{4} - 32 q^{6} - 74 q^{9} - 56 q^{11} - 28 q^{14} + 32 q^{16} - 160 q^{19} - 112 q^{21} + 128 q^{24} - 72 q^{26} - 380 q^{29} + 144 q^{31} + 296 q^{34} + 296 q^{36} - 288 q^{39} + 324 q^{41} + 224 q^{44} + 448 q^{46} - 98 q^{49} + 1184 q^{51} + 320 q^{54} + 112 q^{56} + 400 q^{59} - 396 q^{61} - 128 q^{64} + 896 q^{66} + 1792 q^{69} + 784 q^{71} - 1384 q^{74} + 640 q^{76} - 480 q^{79} - 718 q^{81} + 448 q^{84} + 1648 q^{86} - 1620 q^{89} - 252 q^{91} + 96 q^{94} - 512 q^{96} + 2072 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.00000i − 0.707107i
\(3\) − 8.00000i − 1.53960i −0.638285 0.769800i \(-0.720356\pi\)
0.638285 0.769800i \(-0.279644\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) −16.0000 −1.08866
\(7\) − 7.00000i − 0.377964i
\(8\) 8.00000i 0.353553i
\(9\) −37.0000 −1.37037
\(10\) 0 0
\(11\) −28.0000 −0.767483 −0.383742 0.923440i \(-0.625365\pi\)
−0.383742 + 0.923440i \(0.625365\pi\)
\(12\) 32.0000i 0.769800i
\(13\) − 18.0000i − 0.384023i −0.981393 0.192012i \(-0.938499\pi\)
0.981393 0.192012i \(-0.0615011\pi\)
\(14\) −14.0000 −0.267261
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 74.0000i 1.05574i 0.849324 + 0.527872i \(0.177010\pi\)
−0.849324 + 0.527872i \(0.822990\pi\)
\(18\) 74.0000i 0.968998i
\(19\) −80.0000 −0.965961 −0.482980 0.875631i \(-0.660446\pi\)
−0.482980 + 0.875631i \(0.660446\pi\)
\(20\) 0 0
\(21\) −56.0000 −0.581914
\(22\) 56.0000i 0.542693i
\(23\) 112.000i 1.01537i 0.861541 + 0.507687i \(0.169499\pi\)
−0.861541 + 0.507687i \(0.830501\pi\)
\(24\) 64.0000 0.544331
\(25\) 0 0
\(26\) −36.0000 −0.271545
\(27\) 80.0000i 0.570222i
\(28\) 28.0000i 0.188982i
\(29\) −190.000 −1.21662 −0.608312 0.793698i \(-0.708153\pi\)
−0.608312 + 0.793698i \(0.708153\pi\)
\(30\) 0 0
\(31\) 72.0000 0.417148 0.208574 0.978007i \(-0.433118\pi\)
0.208574 + 0.978007i \(0.433118\pi\)
\(32\) − 32.0000i − 0.176777i
\(33\) 224.000i 1.18162i
\(34\) 148.000 0.746523
\(35\) 0 0
\(36\) 148.000 0.685185
\(37\) − 346.000i − 1.53735i −0.639638 0.768676i \(-0.720916\pi\)
0.639638 0.768676i \(-0.279084\pi\)
\(38\) 160.000i 0.683038i
\(39\) −144.000 −0.591242
\(40\) 0 0
\(41\) 162.000 0.617077 0.308538 0.951212i \(-0.400160\pi\)
0.308538 + 0.951212i \(0.400160\pi\)
\(42\) 112.000i 0.411476i
\(43\) 412.000i 1.46115i 0.682833 + 0.730575i \(0.260748\pi\)
−0.682833 + 0.730575i \(0.739252\pi\)
\(44\) 112.000 0.383742
\(45\) 0 0
\(46\) 224.000 0.717978
\(47\) 24.0000i 0.0744843i 0.999306 + 0.0372421i \(0.0118573\pi\)
−0.999306 + 0.0372421i \(0.988143\pi\)
\(48\) − 128.000i − 0.384900i
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) 592.000 1.62542
\(52\) 72.0000i 0.192012i
\(53\) − 318.000i − 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 160.000 0.403208
\(55\) 0 0
\(56\) 56.0000 0.133631
\(57\) 640.000i 1.48719i
\(58\) 380.000i 0.860284i
\(59\) 200.000 0.441318 0.220659 0.975351i \(-0.429179\pi\)
0.220659 + 0.975351i \(0.429179\pi\)
\(60\) 0 0
\(61\) −198.000 −0.415595 −0.207798 0.978172i \(-0.566630\pi\)
−0.207798 + 0.978172i \(0.566630\pi\)
\(62\) − 144.000i − 0.294968i
\(63\) 259.000i 0.517951i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) 448.000 0.835530
\(67\) − 716.000i − 1.30557i −0.757542 0.652786i \(-0.773600\pi\)
0.757542 0.652786i \(-0.226400\pi\)
\(68\) − 296.000i − 0.527872i
\(69\) 896.000 1.56327
\(70\) 0 0
\(71\) 392.000 0.655237 0.327619 0.944810i \(-0.393754\pi\)
0.327619 + 0.944810i \(0.393754\pi\)
\(72\) − 296.000i − 0.484499i
\(73\) − 538.000i − 0.862577i −0.902214 0.431289i \(-0.858059\pi\)
0.902214 0.431289i \(-0.141941\pi\)
\(74\) −692.000 −1.08707
\(75\) 0 0
\(76\) 320.000 0.482980
\(77\) 196.000i 0.290081i
\(78\) 288.000i 0.418072i
\(79\) −240.000 −0.341799 −0.170899 0.985288i \(-0.554667\pi\)
−0.170899 + 0.985288i \(0.554667\pi\)
\(80\) 0 0
\(81\) −359.000 −0.492455
\(82\) − 324.000i − 0.436339i
\(83\) 1072.00i 1.41768i 0.705370 + 0.708839i \(0.250781\pi\)
−0.705370 + 0.708839i \(0.749219\pi\)
\(84\) 224.000 0.290957
\(85\) 0 0
\(86\) 824.000 1.03319
\(87\) 1520.00i 1.87312i
\(88\) − 224.000i − 0.271346i
\(89\) −810.000 −0.964717 −0.482359 0.875974i \(-0.660220\pi\)
−0.482359 + 0.875974i \(0.660220\pi\)
\(90\) 0 0
\(91\) −126.000 −0.145147
\(92\) − 448.000i − 0.507687i
\(93\) − 576.000i − 0.642241i
\(94\) 48.0000 0.0526683
\(95\) 0 0
\(96\) −256.000 −0.272166
\(97\) 1354.00i 1.41730i 0.705561 + 0.708649i \(0.250695\pi\)
−0.705561 + 0.708649i \(0.749305\pi\)
\(98\) 98.0000i 0.101015i
\(99\) 1036.00 1.05174
\(100\) 0 0
\(101\) −1358.00 −1.33788 −0.668941 0.743316i \(-0.733252\pi\)
−0.668941 + 0.743316i \(0.733252\pi\)
\(102\) − 1184.00i − 1.14935i
\(103\) 832.000i 0.795916i 0.917404 + 0.397958i \(0.130281\pi\)
−0.917404 + 0.397958i \(0.869719\pi\)
\(104\) 144.000 0.135773
\(105\) 0 0
\(106\) −636.000 −0.582772
\(107\) 444.000i 0.401150i 0.979678 + 0.200575i \(0.0642811\pi\)
−0.979678 + 0.200575i \(0.935719\pi\)
\(108\) − 320.000i − 0.285111i
\(109\) −1870.00 −1.64324 −0.821622 0.570033i \(-0.806930\pi\)
−0.821622 + 0.570033i \(0.806930\pi\)
\(110\) 0 0
\(111\) −2768.00 −2.36691
\(112\) − 112.000i − 0.0944911i
\(113\) − 1378.00i − 1.14718i −0.819143 0.573590i \(-0.805550\pi\)
0.819143 0.573590i \(-0.194450\pi\)
\(114\) 1280.00 1.05161
\(115\) 0 0
\(116\) 760.000 0.608312
\(117\) 666.000i 0.526254i
\(118\) − 400.000i − 0.312059i
\(119\) 518.000 0.399033
\(120\) 0 0
\(121\) −547.000 −0.410969
\(122\) 396.000i 0.293870i
\(123\) − 1296.00i − 0.950052i
\(124\) −288.000 −0.208574
\(125\) 0 0
\(126\) 518.000 0.366247
\(127\) 1944.00i 1.35828i 0.734007 + 0.679142i \(0.237648\pi\)
−0.734007 + 0.679142i \(0.762352\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 3296.00 2.24959
\(130\) 0 0
\(131\) −848.000 −0.565573 −0.282787 0.959183i \(-0.591259\pi\)
−0.282787 + 0.959183i \(0.591259\pi\)
\(132\) − 896.000i − 0.590809i
\(133\) 560.000i 0.365099i
\(134\) −1432.00 −0.923179
\(135\) 0 0
\(136\) −592.000 −0.373262
\(137\) − 2966.00i − 1.84965i −0.380389 0.924827i \(-0.624210\pi\)
0.380389 0.924827i \(-0.375790\pi\)
\(138\) − 1792.00i − 1.10540i
\(139\) −2800.00 −1.70858 −0.854291 0.519795i \(-0.826008\pi\)
−0.854291 + 0.519795i \(0.826008\pi\)
\(140\) 0 0
\(141\) 192.000 0.114676
\(142\) − 784.000i − 0.463323i
\(143\) 504.000i 0.294731i
\(144\) −592.000 −0.342593
\(145\) 0 0
\(146\) −1076.00 −0.609934
\(147\) 392.000i 0.219943i
\(148\) 1384.00i 0.768676i
\(149\) −510.000 −0.280408 −0.140204 0.990123i \(-0.544776\pi\)
−0.140204 + 0.990123i \(0.544776\pi\)
\(150\) 0 0
\(151\) 592.000 0.319048 0.159524 0.987194i \(-0.449004\pi\)
0.159524 + 0.987194i \(0.449004\pi\)
\(152\) − 640.000i − 0.341519i
\(153\) − 2738.00i − 1.44676i
\(154\) 392.000 0.205119
\(155\) 0 0
\(156\) 576.000 0.295621
\(157\) − 2686.00i − 1.36539i −0.730704 0.682695i \(-0.760808\pi\)
0.730704 0.682695i \(-0.239192\pi\)
\(158\) 480.000i 0.241688i
\(159\) −2544.00 −1.26888
\(160\) 0 0
\(161\) 784.000 0.383776
\(162\) 718.000i 0.348219i
\(163\) 1012.00i 0.486294i 0.969989 + 0.243147i \(0.0781798\pi\)
−0.969989 + 0.243147i \(0.921820\pi\)
\(164\) −648.000 −0.308538
\(165\) 0 0
\(166\) 2144.00 1.00245
\(167\) 544.000i 0.252072i 0.992026 + 0.126036i \(0.0402254\pi\)
−0.992026 + 0.126036i \(0.959775\pi\)
\(168\) − 448.000i − 0.205738i
\(169\) 1873.00 0.852526
\(170\) 0 0
\(171\) 2960.00 1.32372
\(172\) − 1648.00i − 0.730575i
\(173\) − 1858.00i − 0.816538i −0.912862 0.408269i \(-0.866132\pi\)
0.912862 0.408269i \(-0.133868\pi\)
\(174\) 3040.00 1.32449
\(175\) 0 0
\(176\) −448.000 −0.191871
\(177\) − 1600.00i − 0.679454i
\(178\) 1620.00i 0.682158i
\(179\) 300.000 0.125268 0.0626342 0.998037i \(-0.480050\pi\)
0.0626342 + 0.998037i \(0.480050\pi\)
\(180\) 0 0
\(181\) −2358.00 −0.968336 −0.484168 0.874975i \(-0.660878\pi\)
−0.484168 + 0.874975i \(0.660878\pi\)
\(182\) 252.000i 0.102635i
\(183\) 1584.00i 0.639851i
\(184\) −896.000 −0.358989
\(185\) 0 0
\(186\) −1152.00 −0.454133
\(187\) − 2072.00i − 0.810265i
\(188\) − 96.0000i − 0.0372421i
\(189\) 560.000 0.215524
\(190\) 0 0
\(191\) 1392.00 0.527338 0.263669 0.964613i \(-0.415067\pi\)
0.263669 + 0.964613i \(0.415067\pi\)
\(192\) 512.000i 0.192450i
\(193\) − 1778.00i − 0.663126i −0.943433 0.331563i \(-0.892424\pi\)
0.943433 0.331563i \(-0.107576\pi\)
\(194\) 2708.00 1.00218
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) 1214.00i 0.439055i 0.975606 + 0.219528i \(0.0704516\pi\)
−0.975606 + 0.219528i \(0.929548\pi\)
\(198\) − 2072.00i − 0.743690i
\(199\) −1040.00 −0.370471 −0.185235 0.982694i \(-0.559305\pi\)
−0.185235 + 0.982694i \(0.559305\pi\)
\(200\) 0 0
\(201\) −5728.00 −2.01006
\(202\) 2716.00i 0.946025i
\(203\) 1330.00i 0.459841i
\(204\) −2368.00 −0.812712
\(205\) 0 0
\(206\) 1664.00 0.562798
\(207\) − 4144.00i − 1.39144i
\(208\) − 288.000i − 0.0960058i
\(209\) 2240.00 0.741359
\(210\) 0 0
\(211\) −3868.00 −1.26201 −0.631005 0.775779i \(-0.717357\pi\)
−0.631005 + 0.775779i \(0.717357\pi\)
\(212\) 1272.00i 0.412082i
\(213\) − 3136.00i − 1.00880i
\(214\) 888.000 0.283656
\(215\) 0 0
\(216\) −640.000 −0.201604
\(217\) − 504.000i − 0.157667i
\(218\) 3740.00i 1.16195i
\(219\) −4304.00 −1.32802
\(220\) 0 0
\(221\) 1332.00 0.405430
\(222\) 5536.00i 1.67366i
\(223\) − 3968.00i − 1.19156i −0.803149 0.595778i \(-0.796844\pi\)
0.803149 0.595778i \(-0.203156\pi\)
\(224\) −224.000 −0.0668153
\(225\) 0 0
\(226\) −2756.00 −0.811179
\(227\) − 3936.00i − 1.15084i −0.817857 0.575422i \(-0.804838\pi\)
0.817857 0.575422i \(-0.195162\pi\)
\(228\) − 2560.00i − 0.743597i
\(229\) −4810.00 −1.38801 −0.694004 0.719971i \(-0.744155\pi\)
−0.694004 + 0.719971i \(0.744155\pi\)
\(230\) 0 0
\(231\) 1568.00 0.446610
\(232\) − 1520.00i − 0.430142i
\(233\) 2182.00i 0.613509i 0.951789 + 0.306754i \(0.0992430\pi\)
−0.951789 + 0.306754i \(0.900757\pi\)
\(234\) 1332.00 0.372118
\(235\) 0 0
\(236\) −800.000 −0.220659
\(237\) 1920.00i 0.526234i
\(238\) − 1036.00i − 0.282159i
\(239\) 3000.00 0.811941 0.405970 0.913886i \(-0.366934\pi\)
0.405970 + 0.913886i \(0.366934\pi\)
\(240\) 0 0
\(241\) 2042.00 0.545796 0.272898 0.962043i \(-0.412018\pi\)
0.272898 + 0.962043i \(0.412018\pi\)
\(242\) 1094.00i 0.290599i
\(243\) 5032.00i 1.32841i
\(244\) 792.000 0.207798
\(245\) 0 0
\(246\) −2592.00 −0.671788
\(247\) 1440.00i 0.370951i
\(248\) 576.000i 0.147484i
\(249\) 8576.00 2.18266
\(250\) 0 0
\(251\) −528.000 −0.132777 −0.0663886 0.997794i \(-0.521148\pi\)
−0.0663886 + 0.997794i \(0.521148\pi\)
\(252\) − 1036.00i − 0.258976i
\(253\) − 3136.00i − 0.779283i
\(254\) 3888.00 0.960452
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 5634.00i 1.36747i 0.729731 + 0.683734i \(0.239645\pi\)
−0.729731 + 0.683734i \(0.760355\pi\)
\(258\) − 6592.00i − 1.59070i
\(259\) −2422.00 −0.581065
\(260\) 0 0
\(261\) 7030.00 1.66723
\(262\) 1696.00i 0.399921i
\(263\) − 168.000i − 0.0393891i −0.999806 0.0196945i \(-0.993731\pi\)
0.999806 0.0196945i \(-0.00626937\pi\)
\(264\) −1792.00 −0.417765
\(265\) 0 0
\(266\) 1120.00 0.258164
\(267\) 6480.00i 1.48528i
\(268\) 2864.00i 0.652786i
\(269\) 1310.00 0.296922 0.148461 0.988918i \(-0.452568\pi\)
0.148461 + 0.988918i \(0.452568\pi\)
\(270\) 0 0
\(271\) −2208.00 −0.494932 −0.247466 0.968897i \(-0.579598\pi\)
−0.247466 + 0.968897i \(0.579598\pi\)
\(272\) 1184.00i 0.263936i
\(273\) 1008.00i 0.223469i
\(274\) −5932.00 −1.30790
\(275\) 0 0
\(276\) −3584.00 −0.781636
\(277\) 5294.00i 1.14832i 0.818742 + 0.574162i \(0.194672\pi\)
−0.818742 + 0.574162i \(0.805328\pi\)
\(278\) 5600.00i 1.20815i
\(279\) −2664.00 −0.571647
\(280\) 0 0
\(281\) 3242.00 0.688262 0.344131 0.938922i \(-0.388174\pi\)
0.344131 + 0.938922i \(0.388174\pi\)
\(282\) − 384.000i − 0.0810882i
\(283\) 1592.00i 0.334398i 0.985923 + 0.167199i \(0.0534722\pi\)
−0.985923 + 0.167199i \(0.946528\pi\)
\(284\) −1568.00 −0.327619
\(285\) 0 0
\(286\) 1008.00 0.208407
\(287\) − 1134.00i − 0.233233i
\(288\) 1184.00i 0.242250i
\(289\) −563.000 −0.114594
\(290\) 0 0
\(291\) 10832.0 2.18207
\(292\) 2152.00i 0.431289i
\(293\) 5022.00i 1.00133i 0.865642 + 0.500663i \(0.166910\pi\)
−0.865642 + 0.500663i \(0.833090\pi\)
\(294\) 784.000 0.155523
\(295\) 0 0
\(296\) 2768.00 0.543536
\(297\) − 2240.00i − 0.437636i
\(298\) 1020.00i 0.198279i
\(299\) 2016.00 0.389927
\(300\) 0 0
\(301\) 2884.00 0.552262
\(302\) − 1184.00i − 0.225601i
\(303\) 10864.0i 2.05980i
\(304\) −1280.00 −0.241490
\(305\) 0 0
\(306\) −5476.00 −1.02301
\(307\) − 9536.00i − 1.77280i −0.462924 0.886398i \(-0.653200\pi\)
0.462924 0.886398i \(-0.346800\pi\)
\(308\) − 784.000i − 0.145041i
\(309\) 6656.00 1.22539
\(310\) 0 0
\(311\) −968.000 −0.176496 −0.0882480 0.996099i \(-0.528127\pi\)
−0.0882480 + 0.996099i \(0.528127\pi\)
\(312\) − 1152.00i − 0.209036i
\(313\) − 3058.00i − 0.552231i −0.961124 0.276116i \(-0.910953\pi\)
0.961124 0.276116i \(-0.0890473\pi\)
\(314\) −5372.00 −0.965476
\(315\) 0 0
\(316\) 960.000 0.170899
\(317\) − 4986.00i − 0.883412i −0.897160 0.441706i \(-0.854373\pi\)
0.897160 0.441706i \(-0.145627\pi\)
\(318\) 5088.00i 0.897235i
\(319\) 5320.00 0.933739
\(320\) 0 0
\(321\) 3552.00 0.617612
\(322\) − 1568.00i − 0.271370i
\(323\) − 5920.00i − 1.01981i
\(324\) 1436.00 0.246228
\(325\) 0 0
\(326\) 2024.00 0.343862
\(327\) 14960.0i 2.52994i
\(328\) 1296.00i 0.218170i
\(329\) 168.000 0.0281524
\(330\) 0 0
\(331\) 8612.00 1.43009 0.715043 0.699081i \(-0.246407\pi\)
0.715043 + 0.699081i \(0.246407\pi\)
\(332\) − 4288.00i − 0.708839i
\(333\) 12802.0i 2.10674i
\(334\) 1088.00 0.178242
\(335\) 0 0
\(336\) −896.000 −0.145479
\(337\) − 10206.0i − 1.64972i −0.565336 0.824861i \(-0.691253\pi\)
0.565336 0.824861i \(-0.308747\pi\)
\(338\) − 3746.00i − 0.602827i
\(339\) −11024.0 −1.76620
\(340\) 0 0
\(341\) −2016.00 −0.320154
\(342\) − 5920.00i − 0.936014i
\(343\) 343.000i 0.0539949i
\(344\) −3296.00 −0.516594
\(345\) 0 0
\(346\) −3716.00 −0.577380
\(347\) 2004.00i 0.310030i 0.987912 + 0.155015i \(0.0495426\pi\)
−0.987912 + 0.155015i \(0.950457\pi\)
\(348\) − 6080.00i − 0.936558i
\(349\) −1330.00 −0.203992 −0.101996 0.994785i \(-0.532523\pi\)
−0.101996 + 0.994785i \(0.532523\pi\)
\(350\) 0 0
\(351\) 1440.00 0.218979
\(352\) 896.000i 0.135673i
\(353\) − 978.000i − 0.147461i −0.997278 0.0737304i \(-0.976510\pi\)
0.997278 0.0737304i \(-0.0234904\pi\)
\(354\) −3200.00 −0.480447
\(355\) 0 0
\(356\) 3240.00 0.482359
\(357\) − 4144.00i − 0.614352i
\(358\) − 600.000i − 0.0885782i
\(359\) 9680.00 1.42309 0.711547 0.702638i \(-0.247995\pi\)
0.711547 + 0.702638i \(0.247995\pi\)
\(360\) 0 0
\(361\) −459.000 −0.0669194
\(362\) 4716.00i 0.684717i
\(363\) 4376.00i 0.632728i
\(364\) 504.000 0.0725736
\(365\) 0 0
\(366\) 3168.00 0.452443
\(367\) − 8656.00i − 1.23117i −0.788070 0.615585i \(-0.788920\pi\)
0.788070 0.615585i \(-0.211080\pi\)
\(368\) 1792.00i 0.253844i
\(369\) −5994.00 −0.845624
\(370\) 0 0
\(371\) −2226.00 −0.311504
\(372\) 2304.00i 0.321121i
\(373\) − 5278.00i − 0.732666i −0.930484 0.366333i \(-0.880613\pi\)
0.930484 0.366333i \(-0.119387\pi\)
\(374\) −4144.00 −0.572944
\(375\) 0 0
\(376\) −192.000 −0.0263342
\(377\) 3420.00i 0.467212i
\(378\) − 1120.00i − 0.152398i
\(379\) −6340.00 −0.859272 −0.429636 0.903002i \(-0.641358\pi\)
−0.429636 + 0.903002i \(0.641358\pi\)
\(380\) 0 0
\(381\) 15552.0 2.09122
\(382\) − 2784.00i − 0.372884i
\(383\) 6232.00i 0.831437i 0.909493 + 0.415718i \(0.136470\pi\)
−0.909493 + 0.415718i \(0.863530\pi\)
\(384\) 1024.00 0.136083
\(385\) 0 0
\(386\) −3556.00 −0.468901
\(387\) − 15244.0i − 2.00232i
\(388\) − 5416.00i − 0.708649i
\(389\) 14810.0 1.93033 0.965163 0.261649i \(-0.0842664\pi\)
0.965163 + 0.261649i \(0.0842664\pi\)
\(390\) 0 0
\(391\) −8288.00 −1.07197
\(392\) − 392.000i − 0.0505076i
\(393\) 6784.00i 0.870757i
\(394\) 2428.00 0.310459
\(395\) 0 0
\(396\) −4144.00 −0.525868
\(397\) 5154.00i 0.651566i 0.945445 + 0.325783i \(0.105628\pi\)
−0.945445 + 0.325783i \(0.894372\pi\)
\(398\) 2080.00i 0.261962i
\(399\) 4480.00 0.562107
\(400\) 0 0
\(401\) 3282.00 0.408716 0.204358 0.978896i \(-0.434489\pi\)
0.204358 + 0.978896i \(0.434489\pi\)
\(402\) 11456.0i 1.42133i
\(403\) − 1296.00i − 0.160194i
\(404\) 5432.00 0.668941
\(405\) 0 0
\(406\) 2660.00 0.325157
\(407\) 9688.00i 1.17989i
\(408\) 4736.00i 0.574674i
\(409\) −5810.00 −0.702411 −0.351205 0.936298i \(-0.614228\pi\)
−0.351205 + 0.936298i \(0.614228\pi\)
\(410\) 0 0
\(411\) −23728.0 −2.84773
\(412\) − 3328.00i − 0.397958i
\(413\) − 1400.00i − 0.166803i
\(414\) −8288.00 −0.983896
\(415\) 0 0
\(416\) −576.000 −0.0678864
\(417\) 22400.0i 2.63053i
\(418\) − 4480.00i − 0.524220i
\(419\) −13560.0 −1.58102 −0.790512 0.612446i \(-0.790186\pi\)
−0.790512 + 0.612446i \(0.790186\pi\)
\(420\) 0 0
\(421\) −738.000 −0.0854345 −0.0427172 0.999087i \(-0.513601\pi\)
−0.0427172 + 0.999087i \(0.513601\pi\)
\(422\) 7736.00i 0.892376i
\(423\) − 888.000i − 0.102071i
\(424\) 2544.00 0.291386
\(425\) 0 0
\(426\) −6272.00 −0.713332
\(427\) 1386.00i 0.157080i
\(428\) − 1776.00i − 0.200575i
\(429\) 4032.00 0.453769
\(430\) 0 0
\(431\) 1272.00 0.142158 0.0710790 0.997471i \(-0.477356\pi\)
0.0710790 + 0.997471i \(0.477356\pi\)
\(432\) 1280.00i 0.142556i
\(433\) 5062.00i 0.561811i 0.959735 + 0.280906i \(0.0906348\pi\)
−0.959735 + 0.280906i \(0.909365\pi\)
\(434\) −1008.00 −0.111487
\(435\) 0 0
\(436\) 7480.00 0.821622
\(437\) − 8960.00i − 0.980812i
\(438\) 8608.00i 0.939055i
\(439\) −5640.00 −0.613172 −0.306586 0.951843i \(-0.599187\pi\)
−0.306586 + 0.951843i \(0.599187\pi\)
\(440\) 0 0
\(441\) 1813.00 0.195767
\(442\) − 2664.00i − 0.286682i
\(443\) − 13388.0i − 1.43585i −0.696119 0.717927i \(-0.745091\pi\)
0.696119 0.717927i \(-0.254909\pi\)
\(444\) 11072.0 1.18345
\(445\) 0 0
\(446\) −7936.00 −0.842557
\(447\) 4080.00i 0.431717i
\(448\) 448.000i 0.0472456i
\(449\) 3230.00 0.339495 0.169747 0.985488i \(-0.445705\pi\)
0.169747 + 0.985488i \(0.445705\pi\)
\(450\) 0 0
\(451\) −4536.00 −0.473596
\(452\) 5512.00i 0.573590i
\(453\) − 4736.00i − 0.491207i
\(454\) −7872.00 −0.813769
\(455\) 0 0
\(456\) −5120.00 −0.525803
\(457\) − 10646.0i − 1.08971i −0.838529 0.544857i \(-0.816584\pi\)
0.838529 0.544857i \(-0.183416\pi\)
\(458\) 9620.00i 0.981470i
\(459\) −5920.00 −0.602009
\(460\) 0 0
\(461\) 7282.00 0.735698 0.367849 0.929886i \(-0.380094\pi\)
0.367849 + 0.929886i \(0.380094\pi\)
\(462\) − 3136.00i − 0.315801i
\(463\) − 12688.0i − 1.27357i −0.771043 0.636783i \(-0.780265\pi\)
0.771043 0.636783i \(-0.219735\pi\)
\(464\) −3040.00 −0.304156
\(465\) 0 0
\(466\) 4364.00 0.433816
\(467\) − 2816.00i − 0.279034i −0.990220 0.139517i \(-0.955445\pi\)
0.990220 0.139517i \(-0.0445550\pi\)
\(468\) − 2664.00i − 0.263127i
\(469\) −5012.00 −0.493460
\(470\) 0 0
\(471\) −21488.0 −2.10215
\(472\) 1600.00i 0.156030i
\(473\) − 11536.0i − 1.12141i
\(474\) 3840.00 0.372103
\(475\) 0 0
\(476\) −2072.00 −0.199517
\(477\) 11766.0i 1.12941i
\(478\) − 6000.00i − 0.574129i
\(479\) 3160.00 0.301428 0.150714 0.988577i \(-0.451843\pi\)
0.150714 + 0.988577i \(0.451843\pi\)
\(480\) 0 0
\(481\) −6228.00 −0.590379
\(482\) − 4084.00i − 0.385936i
\(483\) − 6272.00i − 0.590861i
\(484\) 2188.00 0.205485
\(485\) 0 0
\(486\) 10064.0 0.939326
\(487\) − 14176.0i − 1.31905i −0.751684 0.659523i \(-0.770758\pi\)
0.751684 0.659523i \(-0.229242\pi\)
\(488\) − 1584.00i − 0.146935i
\(489\) 8096.00 0.748699
\(490\) 0 0
\(491\) −11268.0 −1.03568 −0.517839 0.855478i \(-0.673263\pi\)
−0.517839 + 0.855478i \(0.673263\pi\)
\(492\) 5184.00i 0.475026i
\(493\) − 14060.0i − 1.28444i
\(494\) 2880.00 0.262302
\(495\) 0 0
\(496\) 1152.00 0.104287
\(497\) − 2744.00i − 0.247656i
\(498\) − 17152.0i − 1.54337i
\(499\) 4460.00 0.400114 0.200057 0.979784i \(-0.435887\pi\)
0.200057 + 0.979784i \(0.435887\pi\)
\(500\) 0 0
\(501\) 4352.00 0.388090
\(502\) 1056.00i 0.0938876i
\(503\) 1512.00i 0.134029i 0.997752 + 0.0670147i \(0.0213474\pi\)
−0.997752 + 0.0670147i \(0.978653\pi\)
\(504\) −2072.00 −0.183123
\(505\) 0 0
\(506\) −6272.00 −0.551036
\(507\) − 14984.0i − 1.31255i
\(508\) − 7776.00i − 0.679142i
\(509\) 11790.0 1.02668 0.513342 0.858184i \(-0.328407\pi\)
0.513342 + 0.858184i \(0.328407\pi\)
\(510\) 0 0
\(511\) −3766.00 −0.326024
\(512\) − 512.000i − 0.0441942i
\(513\) − 6400.00i − 0.550813i
\(514\) 11268.0 0.966946
\(515\) 0 0
\(516\) −13184.0 −1.12479
\(517\) − 672.000i − 0.0571654i
\(518\) 4844.00i 0.410875i
\(519\) −14864.0 −1.25714
\(520\) 0 0
\(521\) 1362.00 0.114530 0.0572652 0.998359i \(-0.481762\pi\)
0.0572652 + 0.998359i \(0.481762\pi\)
\(522\) − 14060.0i − 1.17891i
\(523\) − 6968.00i − 0.582580i −0.956635 0.291290i \(-0.905916\pi\)
0.956635 0.291290i \(-0.0940845\pi\)
\(524\) 3392.00 0.282787
\(525\) 0 0
\(526\) −336.000 −0.0278523
\(527\) 5328.00i 0.440401i
\(528\) 3584.00i 0.295405i
\(529\) −377.000 −0.0309855
\(530\) 0 0
\(531\) −7400.00 −0.604770
\(532\) − 2240.00i − 0.182549i
\(533\) − 2916.00i − 0.236972i
\(534\) 12960.0 1.05025
\(535\) 0 0
\(536\) 5728.00 0.461589
\(537\) − 2400.00i − 0.192863i
\(538\) − 2620.00i − 0.209956i
\(539\) 1372.00 0.109640
\(540\) 0 0
\(541\) 7062.00 0.561218 0.280609 0.959822i \(-0.409464\pi\)
0.280609 + 0.959822i \(0.409464\pi\)
\(542\) 4416.00i 0.349969i
\(543\) 18864.0i 1.49085i
\(544\) 2368.00 0.186631
\(545\) 0 0
\(546\) 2016.00 0.158016
\(547\) − 8196.00i − 0.640650i −0.947308 0.320325i \(-0.896208\pi\)
0.947308 0.320325i \(-0.103792\pi\)
\(548\) 11864.0i 0.924827i
\(549\) 7326.00 0.569519
\(550\) 0 0
\(551\) 15200.0 1.17521
\(552\) 7168.00i 0.552700i
\(553\) 1680.00i 0.129188i
\(554\) 10588.0 0.811987
\(555\) 0 0
\(556\) 11200.0 0.854291
\(557\) − 7466.00i − 0.567944i −0.958833 0.283972i \(-0.908348\pi\)
0.958833 0.283972i \(-0.0916522\pi\)
\(558\) 5328.00i 0.404215i
\(559\) 7416.00 0.561115
\(560\) 0 0
\(561\) −16576.0 −1.24749
\(562\) − 6484.00i − 0.486674i
\(563\) − 24968.0i − 1.86905i −0.355896 0.934526i \(-0.615824\pi\)
0.355896 0.934526i \(-0.384176\pi\)
\(564\) −768.000 −0.0573380
\(565\) 0 0
\(566\) 3184.00 0.236455
\(567\) 2513.00i 0.186131i
\(568\) 3136.00i 0.231661i
\(569\) −14250.0 −1.04990 −0.524948 0.851134i \(-0.675915\pi\)
−0.524948 + 0.851134i \(0.675915\pi\)
\(570\) 0 0
\(571\) 6372.00 0.467005 0.233503 0.972356i \(-0.424981\pi\)
0.233503 + 0.972356i \(0.424981\pi\)
\(572\) − 2016.00i − 0.147366i
\(573\) − 11136.0i − 0.811890i
\(574\) −2268.00 −0.164921
\(575\) 0 0
\(576\) 2368.00 0.171296
\(577\) − 8366.00i − 0.603607i −0.953370 0.301803i \(-0.902411\pi\)
0.953370 0.301803i \(-0.0975886\pi\)
\(578\) 1126.00i 0.0810301i
\(579\) −14224.0 −1.02095
\(580\) 0 0
\(581\) 7504.00 0.535832
\(582\) − 21664.0i − 1.54296i
\(583\) 8904.00i 0.632532i
\(584\) 4304.00 0.304967
\(585\) 0 0
\(586\) 10044.0 0.708044
\(587\) 20384.0i 1.43328i 0.697441 + 0.716642i \(0.254322\pi\)
−0.697441 + 0.716642i \(0.745678\pi\)
\(588\) − 1568.00i − 0.109971i
\(589\) −5760.00 −0.402948
\(590\) 0 0
\(591\) 9712.00 0.675970
\(592\) − 5536.00i − 0.384338i
\(593\) − 9378.00i − 0.649424i −0.945813 0.324712i \(-0.894733\pi\)
0.945813 0.324712i \(-0.105267\pi\)
\(594\) −4480.00 −0.309456
\(595\) 0 0
\(596\) 2040.00 0.140204
\(597\) 8320.00i 0.570377i
\(598\) − 4032.00i − 0.275720i
\(599\) 9000.00 0.613907 0.306953 0.951725i \(-0.400690\pi\)
0.306953 + 0.951725i \(0.400690\pi\)
\(600\) 0 0
\(601\) 7562.00 0.513245 0.256623 0.966512i \(-0.417390\pi\)
0.256623 + 0.966512i \(0.417390\pi\)
\(602\) − 5768.00i − 0.390509i
\(603\) 26492.0i 1.78912i
\(604\) −2368.00 −0.159524
\(605\) 0 0
\(606\) 21728.0 1.45650
\(607\) − 2976.00i − 0.198999i −0.995038 0.0994993i \(-0.968276\pi\)
0.995038 0.0994993i \(-0.0317241\pi\)
\(608\) 2560.00i 0.170759i
\(609\) 10640.0 0.707971
\(610\) 0 0
\(611\) 432.000 0.0286037
\(612\) 10952.0i 0.723380i
\(613\) − 4278.00i − 0.281871i −0.990019 0.140935i \(-0.954989\pi\)
0.990019 0.140935i \(-0.0450110\pi\)
\(614\) −19072.0 −1.25356
\(615\) 0 0
\(616\) −1568.00 −0.102559
\(617\) 18794.0i 1.22629i 0.789972 + 0.613143i \(0.210095\pi\)
−0.789972 + 0.613143i \(0.789905\pi\)
\(618\) − 13312.0i − 0.866484i
\(619\) −18040.0 −1.17139 −0.585694 0.810532i \(-0.699178\pi\)
−0.585694 + 0.810532i \(0.699178\pi\)
\(620\) 0 0
\(621\) −8960.00 −0.578989
\(622\) 1936.00i 0.124801i
\(623\) 5670.00i 0.364629i
\(624\) −2304.00 −0.147811
\(625\) 0 0
\(626\) −6116.00 −0.390486
\(627\) − 17920.0i − 1.14140i
\(628\) 10744.0i 0.682695i
\(629\) 25604.0 1.62305
\(630\) 0 0
\(631\) −21688.0 −1.36828 −0.684141 0.729350i \(-0.739823\pi\)
−0.684141 + 0.729350i \(0.739823\pi\)
\(632\) − 1920.00i − 0.120844i
\(633\) 30944.0i 1.94299i
\(634\) −9972.00 −0.624667
\(635\) 0 0
\(636\) 10176.0 0.634441
\(637\) 882.000i 0.0548605i
\(638\) − 10640.0i − 0.660253i
\(639\) −14504.0 −0.897918
\(640\) 0 0
\(641\) −10558.0 −0.650571 −0.325285 0.945616i \(-0.605460\pi\)
−0.325285 + 0.945616i \(0.605460\pi\)
\(642\) − 7104.00i − 0.436717i
\(643\) 26152.0i 1.60394i 0.597363 + 0.801971i \(0.296215\pi\)
−0.597363 + 0.801971i \(0.703785\pi\)
\(644\) −3136.00 −0.191888
\(645\) 0 0
\(646\) −11840.0 −0.721112
\(647\) 25584.0i 1.55458i 0.629145 + 0.777288i \(0.283405\pi\)
−0.629145 + 0.777288i \(0.716595\pi\)
\(648\) − 2872.00i − 0.174109i
\(649\) −5600.00 −0.338705
\(650\) 0 0
\(651\) −4032.00 −0.242744
\(652\) − 4048.00i − 0.243147i
\(653\) − 15198.0i − 0.910787i −0.890290 0.455393i \(-0.849499\pi\)
0.890290 0.455393i \(-0.150501\pi\)
\(654\) 29920.0 1.78894
\(655\) 0 0
\(656\) 2592.00 0.154269
\(657\) 19906.0i 1.18205i
\(658\) − 336.000i − 0.0199068i
\(659\) 6100.00 0.360580 0.180290 0.983613i \(-0.442296\pi\)
0.180290 + 0.983613i \(0.442296\pi\)
\(660\) 0 0
\(661\) −2318.00 −0.136399 −0.0681995 0.997672i \(-0.521725\pi\)
−0.0681995 + 0.997672i \(0.521725\pi\)
\(662\) − 17224.0i − 1.01122i
\(663\) − 10656.0i − 0.624200i
\(664\) −8576.00 −0.501225
\(665\) 0 0
\(666\) 25604.0 1.48969
\(667\) − 21280.0i − 1.23533i
\(668\) − 2176.00i − 0.126036i
\(669\) −31744.0 −1.83452
\(670\) 0 0
\(671\) 5544.00 0.318962
\(672\) 1792.00i 0.102869i
\(673\) 10222.0i 0.585482i 0.956192 + 0.292741i \(0.0945673\pi\)
−0.956192 + 0.292741i \(0.905433\pi\)
\(674\) −20412.0 −1.16653
\(675\) 0 0
\(676\) −7492.00 −0.426263
\(677\) 25434.0i 1.44388i 0.691955 + 0.721941i \(0.256750\pi\)
−0.691955 + 0.721941i \(0.743250\pi\)
\(678\) 22048.0i 1.24889i
\(679\) 9478.00 0.535688
\(680\) 0 0
\(681\) −31488.0 −1.77184
\(682\) 4032.00i 0.226383i
\(683\) 8532.00i 0.477991i 0.971021 + 0.238996i \(0.0768181\pi\)
−0.971021 + 0.238996i \(0.923182\pi\)
\(684\) −11840.0 −0.661862
\(685\) 0 0
\(686\) 686.000 0.0381802
\(687\) 38480.0i 2.13698i
\(688\) 6592.00i 0.365287i
\(689\) −5724.00 −0.316498
\(690\) 0 0
\(691\) 20672.0 1.13806 0.569030 0.822317i \(-0.307319\pi\)
0.569030 + 0.822317i \(0.307319\pi\)
\(692\) 7432.00i 0.408269i
\(693\) − 7252.00i − 0.397519i
\(694\) 4008.00 0.219224
\(695\) 0 0
\(696\) −12160.0 −0.662247
\(697\) 11988.0i 0.651475i
\(698\) 2660.00i 0.144244i
\(699\) 17456.0 0.944559
\(700\) 0 0
\(701\) −21458.0 −1.15614 −0.578072 0.815985i \(-0.696195\pi\)
−0.578072 + 0.815985i \(0.696195\pi\)
\(702\) − 2880.00i − 0.154841i
\(703\) 27680.0i 1.48502i
\(704\) 1792.00 0.0959354
\(705\) 0 0
\(706\) −1956.00 −0.104271
\(707\) 9506.00i 0.505672i
\(708\) 6400.00i 0.339727i
\(709\) 9850.00 0.521755 0.260878 0.965372i \(-0.415988\pi\)
0.260878 + 0.965372i \(0.415988\pi\)
\(710\) 0 0
\(711\) 8880.00 0.468391
\(712\) − 6480.00i − 0.341079i
\(713\) 8064.00i 0.423561i
\(714\) −8288.00 −0.434413
\(715\) 0 0
\(716\) −1200.00 −0.0626342
\(717\) − 24000.0i − 1.25006i
\(718\) − 19360.0i − 1.00628i
\(719\) 18840.0 0.977209 0.488605 0.872505i \(-0.337506\pi\)
0.488605 + 0.872505i \(0.337506\pi\)
\(720\) 0 0
\(721\) 5824.00 0.300828
\(722\) 918.000i 0.0473191i
\(723\) − 16336.0i − 0.840308i
\(724\) 9432.00 0.484168
\(725\) 0 0
\(726\) 8752.00 0.447407
\(727\) 37504.0i 1.91327i 0.291291 + 0.956634i \(0.405915\pi\)
−0.291291 + 0.956634i \(0.594085\pi\)
\(728\) − 1008.00i − 0.0513173i
\(729\) 30563.0 1.55276
\(730\) 0 0
\(731\) −30488.0 −1.54260
\(732\) − 6336.00i − 0.319925i
\(733\) − 13338.0i − 0.672101i −0.941844 0.336051i \(-0.890909\pi\)
0.941844 0.336051i \(-0.109091\pi\)
\(734\) −17312.0 −0.870569
\(735\) 0 0
\(736\) 3584.00 0.179495
\(737\) 20048.0i 1.00200i
\(738\) 11988.0i 0.597946i
\(739\) −17100.0 −0.851196 −0.425598 0.904912i \(-0.639936\pi\)
−0.425598 + 0.904912i \(0.639936\pi\)
\(740\) 0 0
\(741\) 11520.0 0.571117
\(742\) 4452.00i 0.220267i
\(743\) 19632.0i 0.969352i 0.874694 + 0.484676i \(0.161062\pi\)
−0.874694 + 0.484676i \(0.838938\pi\)
\(744\) 4608.00 0.227067
\(745\) 0 0
\(746\) −10556.0 −0.518073
\(747\) − 39664.0i − 1.94274i
\(748\) 8288.00i 0.405133i
\(749\) 3108.00 0.151621
\(750\) 0 0
\(751\) 33912.0 1.64776 0.823879 0.566766i \(-0.191805\pi\)
0.823879 + 0.566766i \(0.191805\pi\)
\(752\) 384.000i 0.0186211i
\(753\) 4224.00i 0.204424i
\(754\) 6840.00 0.330369
\(755\) 0 0
\(756\) −2240.00 −0.107762
\(757\) − 31386.0i − 1.50693i −0.657490 0.753463i \(-0.728382\pi\)
0.657490 0.753463i \(-0.271618\pi\)
\(758\) 12680.0i 0.607597i
\(759\) −25088.0 −1.19978
\(760\) 0 0
\(761\) −34558.0 −1.64616 −0.823079 0.567927i \(-0.807746\pi\)
−0.823079 + 0.567927i \(0.807746\pi\)
\(762\) − 31104.0i − 1.47871i
\(763\) 13090.0i 0.621088i
\(764\) −5568.00 −0.263669
\(765\) 0 0
\(766\) 12464.0 0.587915
\(767\) − 3600.00i − 0.169476i
\(768\) − 2048.00i − 0.0962250i
\(769\) −39130.0 −1.83493 −0.917467 0.397812i \(-0.869769\pi\)
−0.917467 + 0.397812i \(0.869769\pi\)
\(770\) 0 0
\(771\) 45072.0 2.10535
\(772\) 7112.00i 0.331563i
\(773\) 25982.0i 1.20894i 0.796629 + 0.604468i \(0.206614\pi\)
−0.796629 + 0.604468i \(0.793386\pi\)
\(774\) −30488.0 −1.41585
\(775\) 0 0
\(776\) −10832.0 −0.501090
\(777\) 19376.0i 0.894608i
\(778\) − 29620.0i − 1.36495i
\(779\) −12960.0 −0.596072
\(780\) 0 0
\(781\) −10976.0 −0.502884
\(782\) 16576.0i 0.758001i
\(783\) − 15200.0i − 0.693747i
\(784\) −784.000 −0.0357143
\(785\) 0 0
\(786\) 13568.0 0.615718
\(787\) 35424.0i 1.60448i 0.596999 + 0.802242i \(0.296360\pi\)
−0.596999 + 0.802242i \(0.703640\pi\)
\(788\) − 4856.00i − 0.219528i
\(789\) −1344.00 −0.0606434
\(790\) 0 0
\(791\) −9646.00 −0.433593
\(792\) 8288.00i 0.371845i
\(793\) 3564.00i 0.159598i
\(794\) 10308.0 0.460727
\(795\) 0 0
\(796\) 4160.00 0.185235
\(797\) − 30606.0i − 1.36025i −0.733096 0.680126i \(-0.761925\pi\)
0.733096 0.680126i \(-0.238075\pi\)
\(798\) − 8960.00i − 0.397469i
\(799\) −1776.00 −0.0786362
\(800\) 0 0
\(801\) 29970.0 1.32202
\(802\) − 6564.00i − 0.289006i
\(803\) 15064.0i 0.662014i
\(804\) 22912.0 1.00503
\(805\) 0 0
\(806\) −2592.00 −0.113275
\(807\) − 10480.0i − 0.457142i
\(808\) − 10864.0i − 0.473013i
\(809\) −16810.0 −0.730542 −0.365271 0.930901i \(-0.619024\pi\)
−0.365271 + 0.930901i \(0.619024\pi\)
\(810\) 0 0
\(811\) −9368.00 −0.405616 −0.202808 0.979218i \(-0.565007\pi\)
−0.202808 + 0.979218i \(0.565007\pi\)
\(812\) − 5320.00i − 0.229920i
\(813\) 17664.0i 0.761997i
\(814\) 19376.0 0.834310
\(815\) 0 0
\(816\) 9472.00 0.406356
\(817\) − 32960.0i − 1.41141i
\(818\) 11620.0i 0.496679i
\(819\) 4662.00 0.198905
\(820\) 0 0
\(821\) 34382.0 1.46156 0.730780 0.682614i \(-0.239157\pi\)
0.730780 + 0.682614i \(0.239157\pi\)
\(822\) 47456.0i 2.01365i
\(823\) 4472.00i 0.189410i 0.995505 + 0.0947048i \(0.0301907\pi\)
−0.995505 + 0.0947048i \(0.969809\pi\)
\(824\) −6656.00 −0.281399
\(825\) 0 0
\(826\) −2800.00 −0.117947
\(827\) − 1716.00i − 0.0721538i −0.999349 0.0360769i \(-0.988514\pi\)
0.999349 0.0360769i \(-0.0114861\pi\)
\(828\) 16576.0i 0.695720i
\(829\) 7910.00 0.331394 0.165697 0.986177i \(-0.447013\pi\)
0.165697 + 0.986177i \(0.447013\pi\)
\(830\) 0 0
\(831\) 42352.0 1.76796
\(832\) 1152.00i 0.0480029i
\(833\) − 3626.00i − 0.150820i
\(834\) 44800.0 1.86007
\(835\) 0 0
\(836\) −8960.00 −0.370680
\(837\) 5760.00i 0.237867i
\(838\) 27120.0i 1.11795i
\(839\) 19360.0 0.796641 0.398320 0.917246i \(-0.369593\pi\)
0.398320 + 0.917246i \(0.369593\pi\)
\(840\) 0 0
\(841\) 11711.0 0.480175
\(842\) 1476.00i 0.0604113i
\(843\) − 25936.0i − 1.05965i
\(844\) 15472.0 0.631005
\(845\) 0 0
\(846\) −1776.00 −0.0721751
\(847\) 3829.00i 0.155332i
\(848\) − 5088.00i − 0.206041i
\(849\) 12736.0 0.514839
\(850\) 0 0
\(851\) 38752.0 1.56099
\(852\) 12544.0i 0.504402i
\(853\) − 698.000i − 0.0280177i −0.999902 0.0140088i \(-0.995541\pi\)
0.999902 0.0140088i \(-0.00445930\pi\)
\(854\) 2772.00 0.111072
\(855\) 0 0
\(856\) −3552.00 −0.141828
\(857\) − 23406.0i − 0.932945i −0.884536 0.466472i \(-0.845525\pi\)
0.884536 0.466472i \(-0.154475\pi\)
\(858\) − 8064.00i − 0.320863i
\(859\) −7280.00 −0.289162 −0.144581 0.989493i \(-0.546183\pi\)
−0.144581 + 0.989493i \(0.546183\pi\)
\(860\) 0 0
\(861\) −9072.00 −0.359086
\(862\) − 2544.00i − 0.100521i
\(863\) − 9808.00i − 0.386869i −0.981113 0.193435i \(-0.938037\pi\)
0.981113 0.193435i \(-0.0619627\pi\)
\(864\) 2560.00 0.100802
\(865\) 0 0
\(866\) 10124.0 0.397260
\(867\) 4504.00i 0.176429i
\(868\) 2016.00i 0.0788335i
\(869\) 6720.00 0.262325
\(870\) 0 0
\(871\) −12888.0 −0.501370
\(872\) − 14960.0i − 0.580974i
\(873\) − 50098.0i − 1.94222i
\(874\) −17920.0 −0.693539
\(875\) 0 0
\(876\) 17216.0 0.664012
\(877\) − 8066.00i − 0.310570i −0.987870 0.155285i \(-0.950370\pi\)
0.987870 0.155285i \(-0.0496295\pi\)
\(878\) 11280.0i 0.433578i
\(879\) 40176.0 1.54164
\(880\) 0 0
\(881\) 25842.0 0.988240 0.494120 0.869394i \(-0.335490\pi\)
0.494120 + 0.869394i \(0.335490\pi\)
\(882\) − 3626.00i − 0.138428i
\(883\) 5692.00i 0.216932i 0.994100 + 0.108466i \(0.0345939\pi\)
−0.994100 + 0.108466i \(0.965406\pi\)
\(884\) −5328.00 −0.202715
\(885\) 0 0
\(886\) −26776.0 −1.01530
\(887\) − 13536.0i − 0.512395i −0.966624 0.256198i \(-0.917530\pi\)
0.966624 0.256198i \(-0.0824698\pi\)
\(888\) − 22144.0i − 0.836829i
\(889\) 13608.0 0.513383
\(890\) 0 0
\(891\) 10052.0 0.377951
\(892\) 15872.0i 0.595778i
\(893\) − 1920.00i − 0.0719489i
\(894\) 8160.00 0.305270
\(895\) 0 0
\(896\) 896.000 0.0334077
\(897\) − 16128.0i − 0.600332i
\(898\) − 6460.00i − 0.240059i
\(899\) −13680.0 −0.507512
\(900\) 0 0
\(901\) 23532.0 0.870105
\(902\) 9072.00i 0.334883i
\(903\) − 23072.0i − 0.850264i
\(904\) 11024.0 0.405589
\(905\) 0 0
\(906\) −9472.00 −0.347336
\(907\) 17004.0i 0.622501i 0.950328 + 0.311251i \(0.100748\pi\)
−0.950328 + 0.311251i \(0.899252\pi\)
\(908\) 15744.0i 0.575422i
\(909\) 50246.0 1.83339
\(910\) 0 0
\(911\) −14568.0 −0.529813 −0.264906 0.964274i \(-0.585341\pi\)
−0.264906 + 0.964274i \(0.585341\pi\)
\(912\) 10240.0i 0.371799i
\(913\) − 30016.0i − 1.08804i
\(914\) −21292.0 −0.770544
\(915\) 0 0
\(916\) 19240.0 0.694004
\(917\) 5936.00i 0.213767i
\(918\) 11840.0i 0.425684i
\(919\) 1400.00 0.0502522 0.0251261 0.999684i \(-0.492001\pi\)
0.0251261 + 0.999684i \(0.492001\pi\)
\(920\) 0 0
\(921\) −76288.0 −2.72940
\(922\) − 14564.0i − 0.520217i
\(923\) − 7056.00i − 0.251626i
\(924\) −6272.00 −0.223305
\(925\) 0 0
\(926\) −25376.0 −0.900548
\(927\) − 30784.0i − 1.09070i
\(928\) 6080.00i 0.215071i
\(929\) 13830.0 0.488426 0.244213 0.969722i \(-0.421470\pi\)
0.244213 + 0.969722i \(0.421470\pi\)
\(930\) 0 0
\(931\) 3920.00 0.137994
\(932\) − 8728.00i − 0.306754i
\(933\) 7744.00i 0.271733i
\(934\) −5632.00 −0.197307
\(935\) 0 0
\(936\) −5328.00 −0.186059
\(937\) − 24166.0i − 0.842549i −0.906933 0.421275i \(-0.861583\pi\)
0.906933 0.421275i \(-0.138417\pi\)
\(938\) 10024.0i 0.348929i
\(939\) −24464.0 −0.850216
\(940\) 0 0
\(941\) −10838.0 −0.375461 −0.187730 0.982221i \(-0.560113\pi\)
−0.187730 + 0.982221i \(0.560113\pi\)
\(942\) 42976.0i 1.48645i
\(943\) 18144.0i 0.626564i
\(944\) 3200.00 0.110330
\(945\) 0 0
\(946\) −23072.0 −0.792955
\(947\) − 40916.0i − 1.40400i −0.712175 0.702002i \(-0.752290\pi\)
0.712175 0.702002i \(-0.247710\pi\)
\(948\) − 7680.00i − 0.263117i
\(949\) −9684.00 −0.331250
\(950\) 0 0
\(951\) −39888.0 −1.36010
\(952\) 4144.00i 0.141080i
\(953\) − 56618.0i − 1.92449i −0.272189 0.962244i \(-0.587747\pi\)
0.272189 0.962244i \(-0.412253\pi\)
\(954\) 23532.0 0.798613
\(955\) 0 0
\(956\) −12000.0 −0.405970
\(957\) − 42560.0i − 1.43759i
\(958\) − 6320.00i − 0.213142i
\(959\) −20762.0 −0.699103
\(960\) 0 0
\(961\) −24607.0 −0.825988
\(962\) 12456.0i 0.417461i
\(963\) − 16428.0i − 0.549725i
\(964\) −8168.00 −0.272898
\(965\) 0 0
\(966\) −12544.0 −0.417802
\(967\) 17504.0i 0.582100i 0.956708 + 0.291050i \(0.0940046\pi\)
−0.956708 + 0.291050i \(0.905995\pi\)
\(968\) − 4376.00i − 0.145300i
\(969\) −47360.0 −1.57010
\(970\) 0 0
\(971\) 23112.0 0.763851 0.381926 0.924193i \(-0.375261\pi\)
0.381926 + 0.924193i \(0.375261\pi\)
\(972\) − 20128.0i − 0.664204i
\(973\) 19600.0i 0.645783i
\(974\) −28352.0 −0.932707
\(975\) 0 0
\(976\) −3168.00 −0.103899
\(977\) 23874.0i 0.781778i 0.920438 + 0.390889i \(0.127832\pi\)
−0.920438 + 0.390889i \(0.872168\pi\)
\(978\) − 16192.0i − 0.529410i
\(979\) 22680.0 0.740404
\(980\) 0 0
\(981\) 69190.0 2.25185
\(982\) 22536.0i 0.732335i
\(983\) 15312.0i 0.496823i 0.968655 + 0.248411i \(0.0799085\pi\)
−0.968655 + 0.248411i \(0.920091\pi\)
\(984\) 10368.0 0.335894
\(985\) 0 0
\(986\) −28120.0 −0.908239
\(987\) − 1344.00i − 0.0433435i
\(988\) − 5760.00i − 0.185476i
\(989\) −46144.0 −1.48361
\(990\) 0 0
\(991\) −16528.0 −0.529797 −0.264899 0.964276i \(-0.585339\pi\)
−0.264899 + 0.964276i \(0.585339\pi\)
\(992\) − 2304.00i − 0.0737420i
\(993\) − 68896.0i − 2.20176i
\(994\) −5488.00 −0.175120
\(995\) 0 0
\(996\) −34304.0 −1.09133
\(997\) − 28606.0i − 0.908687i −0.890827 0.454344i \(-0.849874\pi\)
0.890827 0.454344i \(-0.150126\pi\)
\(998\) − 8920.00i − 0.282924i
\(999\) 27680.0 0.876633
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.4.c.b.99.1 2
5.2 odd 4 350.4.a.l.1.1 1
5.3 odd 4 14.4.a.a.1.1 1
5.4 even 2 inner 350.4.c.b.99.2 2
15.8 even 4 126.4.a.h.1.1 1
20.3 even 4 112.4.a.a.1.1 1
35.3 even 12 98.4.c.f.79.1 2
35.13 even 4 98.4.a.a.1.1 1
35.18 odd 12 98.4.c.d.79.1 2
35.23 odd 12 98.4.c.d.67.1 2
35.27 even 4 2450.4.a.bo.1.1 1
35.33 even 12 98.4.c.f.67.1 2
40.3 even 4 448.4.a.o.1.1 1
40.13 odd 4 448.4.a.b.1.1 1
55.43 even 4 1694.4.a.g.1.1 1
60.23 odd 4 1008.4.a.s.1.1 1
65.38 odd 4 2366.4.a.h.1.1 1
105.23 even 12 882.4.g.b.361.1 2
105.38 odd 12 882.4.g.k.667.1 2
105.53 even 12 882.4.g.b.667.1 2
105.68 odd 12 882.4.g.k.361.1 2
105.83 odd 4 882.4.a.i.1.1 1
140.83 odd 4 784.4.a.s.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.4.a.a.1.1 1 5.3 odd 4
98.4.a.a.1.1 1 35.13 even 4
98.4.c.d.67.1 2 35.23 odd 12
98.4.c.d.79.1 2 35.18 odd 12
98.4.c.f.67.1 2 35.33 even 12
98.4.c.f.79.1 2 35.3 even 12
112.4.a.a.1.1 1 20.3 even 4
126.4.a.h.1.1 1 15.8 even 4
350.4.a.l.1.1 1 5.2 odd 4
350.4.c.b.99.1 2 1.1 even 1 trivial
350.4.c.b.99.2 2 5.4 even 2 inner
448.4.a.b.1.1 1 40.13 odd 4
448.4.a.o.1.1 1 40.3 even 4
784.4.a.s.1.1 1 140.83 odd 4
882.4.a.i.1.1 1 105.83 odd 4
882.4.g.b.361.1 2 105.23 even 12
882.4.g.b.667.1 2 105.53 even 12
882.4.g.k.361.1 2 105.68 odd 12
882.4.g.k.667.1 2 105.38 odd 12
1008.4.a.s.1.1 1 60.23 odd 4
1694.4.a.g.1.1 1 55.43 even 4
2366.4.a.h.1.1 1 65.38 odd 4
2450.4.a.bo.1.1 1 35.27 even 4