Properties

Label 352.2.g.b.175.2
Level $352$
Weight $2$
Character 352.175
Analytic conductor $2.811$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [352,2,Mod(175,352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(352, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("352.175");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 352.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.81073415115\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.10070523904.6
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 6x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 175.2
Root \(-1.16342 + 0.804019i\) of defining polynomial
Character \(\chi\) \(=\) 352.175
Dual form 352.2.g.b.175.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.414214 q^{3} -2.64575i q^{5} +3.29066 q^{7} -2.82843 q^{9} +(-2.41421 - 2.27411i) q^{11} +1.36303 q^{13} +1.09591i q^{15} -5.49019i q^{17} +2.27411i q^{19} -1.36303 q^{21} -6.38741i q^{23} -2.00000 q^{25} +2.41421 q^{27} +6.58132 q^{29} -1.09591i q^{31} +(1.00000 + 0.941967i) q^{33} -8.70626i q^{35} -4.83756i q^{37} -0.564588 q^{39} +10.0384i q^{41} +6.43215i q^{43} +7.48331i q^{45} +3.82843 q^{49} +2.27411i q^{51} +7.48331i q^{53} +(-6.01673 + 6.38741i) q^{55} -0.941967i q^{57} -3.24264 q^{59} -6.58132 q^{61} -9.30739 q^{63} -3.60625i q^{65} +6.07107 q^{67} +2.64575i q^{69} +6.38741i q^{71} -0.941967i q^{73} +0.828427 q^{75} +(-7.94435 - 7.48331i) q^{77} +9.30739 q^{79} +7.48528 q^{81} +4.54822i q^{83} -14.5257 q^{85} -2.72607 q^{87} -10.6569 q^{89} +4.48528 q^{91} +0.453939i q^{93} +6.01673 q^{95} +7.48528 q^{97} +(6.82843 + 6.43215i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} - 8 q^{11} - 16 q^{25} + 8 q^{27} + 8 q^{33} + 8 q^{49} + 8 q^{59} - 8 q^{67} - 16 q^{75} - 8 q^{81} - 40 q^{89} - 32 q^{91} - 8 q^{97} + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/352\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(287\) \(321\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.414214 −0.239146 −0.119573 0.992825i \(-0.538153\pi\)
−0.119573 + 0.992825i \(0.538153\pi\)
\(4\) 0 0
\(5\) 2.64575i 1.18322i −0.806226 0.591608i \(-0.798493\pi\)
0.806226 0.591608i \(-0.201507\pi\)
\(6\) 0 0
\(7\) 3.29066 1.24375 0.621876 0.783116i \(-0.286371\pi\)
0.621876 + 0.783116i \(0.286371\pi\)
\(8\) 0 0
\(9\) −2.82843 −0.942809
\(10\) 0 0
\(11\) −2.41421 2.27411i −0.727913 0.685670i
\(12\) 0 0
\(13\) 1.36303 0.378038 0.189019 0.981973i \(-0.439469\pi\)
0.189019 + 0.981973i \(0.439469\pi\)
\(14\) 0 0
\(15\) 1.09591i 0.282962i
\(16\) 0 0
\(17\) 5.49019i 1.33157i −0.746146 0.665783i \(-0.768098\pi\)
0.746146 0.665783i \(-0.231902\pi\)
\(18\) 0 0
\(19\) 2.27411i 0.521716i 0.965377 + 0.260858i \(0.0840055\pi\)
−0.965377 + 0.260858i \(0.915994\pi\)
\(20\) 0 0
\(21\) −1.36303 −0.297439
\(22\) 0 0
\(23\) 6.38741i 1.33187i −0.746011 0.665933i \(-0.768033\pi\)
0.746011 0.665933i \(-0.231967\pi\)
\(24\) 0 0
\(25\) −2.00000 −0.400000
\(26\) 0 0
\(27\) 2.41421 0.464616
\(28\) 0 0
\(29\) 6.58132 1.22212 0.611060 0.791584i \(-0.290743\pi\)
0.611060 + 0.791584i \(0.290743\pi\)
\(30\) 0 0
\(31\) 1.09591i 0.196831i −0.995145 0.0984153i \(-0.968623\pi\)
0.995145 0.0984153i \(-0.0313773\pi\)
\(32\) 0 0
\(33\) 1.00000 + 0.941967i 0.174078 + 0.163975i
\(34\) 0 0
\(35\) 8.70626i 1.47163i
\(36\) 0 0
\(37\) 4.83756i 0.795291i −0.917539 0.397645i \(-0.869827\pi\)
0.917539 0.397645i \(-0.130173\pi\)
\(38\) 0 0
\(39\) −0.564588 −0.0904064
\(40\) 0 0
\(41\) 10.0384i 1.56774i 0.620928 + 0.783868i \(0.286756\pi\)
−0.620928 + 0.783868i \(0.713244\pi\)
\(42\) 0 0
\(43\) 6.43215i 0.980894i 0.871471 + 0.490447i \(0.163166\pi\)
−0.871471 + 0.490447i \(0.836834\pi\)
\(44\) 0 0
\(45\) 7.48331i 1.11555i
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 3.82843 0.546918
\(50\) 0 0
\(51\) 2.27411i 0.318439i
\(52\) 0 0
\(53\) 7.48331i 1.02791i 0.857816 + 0.513956i \(0.171821\pi\)
−0.857816 + 0.513956i \(0.828179\pi\)
\(54\) 0 0
\(55\) −6.01673 + 6.38741i −0.811295 + 0.861278i
\(56\) 0 0
\(57\) 0.941967i 0.124767i
\(58\) 0 0
\(59\) −3.24264 −0.422156 −0.211078 0.977469i \(-0.567697\pi\)
−0.211078 + 0.977469i \(0.567697\pi\)
\(60\) 0 0
\(61\) −6.58132 −0.842651 −0.421326 0.906909i \(-0.638435\pi\)
−0.421326 + 0.906909i \(0.638435\pi\)
\(62\) 0 0
\(63\) −9.30739 −1.17262
\(64\) 0 0
\(65\) 3.60625i 0.447300i
\(66\) 0 0
\(67\) 6.07107 0.741699 0.370849 0.928693i \(-0.379067\pi\)
0.370849 + 0.928693i \(0.379067\pi\)
\(68\) 0 0
\(69\) 2.64575i 0.318511i
\(70\) 0 0
\(71\) 6.38741i 0.758046i 0.925387 + 0.379023i \(0.123740\pi\)
−0.925387 + 0.379023i \(0.876260\pi\)
\(72\) 0 0
\(73\) 0.941967i 0.110249i −0.998479 0.0551244i \(-0.982444\pi\)
0.998479 0.0551244i \(-0.0175556\pi\)
\(74\) 0 0
\(75\) 0.828427 0.0956585
\(76\) 0 0
\(77\) −7.94435 7.48331i −0.905343 0.852803i
\(78\) 0 0
\(79\) 9.30739 1.04716 0.523581 0.851976i \(-0.324596\pi\)
0.523581 + 0.851976i \(0.324596\pi\)
\(80\) 0 0
\(81\) 7.48528 0.831698
\(82\) 0 0
\(83\) 4.54822i 0.499232i 0.968345 + 0.249616i \(0.0803044\pi\)
−0.968345 + 0.249616i \(0.919696\pi\)
\(84\) 0 0
\(85\) −14.5257 −1.57553
\(86\) 0 0
\(87\) −2.72607 −0.292265
\(88\) 0 0
\(89\) −10.6569 −1.12962 −0.564812 0.825220i \(-0.691051\pi\)
−0.564812 + 0.825220i \(0.691051\pi\)
\(90\) 0 0
\(91\) 4.48528 0.470185
\(92\) 0 0
\(93\) 0.453939i 0.0470713i
\(94\) 0 0
\(95\) 6.01673 0.617303
\(96\) 0 0
\(97\) 7.48528 0.760015 0.380008 0.924983i \(-0.375921\pi\)
0.380008 + 0.924983i \(0.375921\pi\)
\(98\) 0 0
\(99\) 6.82843 + 6.43215i 0.686283 + 0.646456i
\(100\) 0 0
\(101\) 17.2517 1.71661 0.858306 0.513138i \(-0.171517\pi\)
0.858306 + 0.513138i \(0.171517\pi\)
\(102\) 0 0
\(103\) 18.0663i 1.78013i 0.455836 + 0.890064i \(0.349340\pi\)
−0.455836 + 0.890064i \(0.650660\pi\)
\(104\) 0 0
\(105\) 3.60625i 0.351934i
\(106\) 0 0
\(107\) 8.70626i 0.841666i 0.907138 + 0.420833i \(0.138262\pi\)
−0.907138 + 0.420833i \(0.861738\pi\)
\(108\) 0 0
\(109\) −2.72607 −0.261110 −0.130555 0.991441i \(-0.541676\pi\)
−0.130555 + 0.991441i \(0.541676\pi\)
\(110\) 0 0
\(111\) 2.00378i 0.190191i
\(112\) 0 0
\(113\) 6.17157 0.580573 0.290286 0.956940i \(-0.406249\pi\)
0.290286 + 0.956940i \(0.406249\pi\)
\(114\) 0 0
\(115\) −16.8995 −1.57589
\(116\) 0 0
\(117\) −3.85525 −0.356418
\(118\) 0 0
\(119\) 18.0663i 1.65614i
\(120\) 0 0
\(121\) 0.656854 + 10.9804i 0.0597140 + 0.998216i
\(122\) 0 0
\(123\) 4.15804i 0.374918i
\(124\) 0 0
\(125\) 7.93725i 0.709930i
\(126\) 0 0
\(127\) 0.564588 0.0500990 0.0250495 0.999686i \(-0.492026\pi\)
0.0250495 + 0.999686i \(0.492026\pi\)
\(128\) 0 0
\(129\) 2.66428i 0.234577i
\(130\) 0 0
\(131\) 6.82233i 0.596070i −0.954555 0.298035i \(-0.903669\pi\)
0.954555 0.298035i \(-0.0963311\pi\)
\(132\) 0 0
\(133\) 7.48331i 0.648886i
\(134\) 0 0
\(135\) 6.38741i 0.549741i
\(136\) 0 0
\(137\) −8.65685 −0.739605 −0.369802 0.929110i \(-0.620575\pi\)
−0.369802 + 0.929110i \(0.620575\pi\)
\(138\) 0 0
\(139\) 19.6866i 1.66980i −0.550403 0.834899i \(-0.685526\pi\)
0.550403 0.834899i \(-0.314474\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.29066 3.09969i −0.275179 0.259209i
\(144\) 0 0
\(145\) 17.4125i 1.44603i
\(146\) 0 0
\(147\) −1.58579 −0.130793
\(148\) 0 0
\(149\) 21.1070 1.72915 0.864576 0.502503i \(-0.167587\pi\)
0.864576 + 0.502503i \(0.167587\pi\)
\(150\) 0 0
\(151\) −13.1626 −1.07116 −0.535580 0.844485i \(-0.679907\pi\)
−0.535580 + 0.844485i \(0.679907\pi\)
\(152\) 0 0
\(153\) 15.5286i 1.25541i
\(154\) 0 0
\(155\) −2.89949 −0.232893
\(156\) 0 0
\(157\) 0.453939i 0.0362283i −0.999836 0.0181141i \(-0.994234\pi\)
0.999836 0.0181141i \(-0.00576623\pi\)
\(158\) 0 0
\(159\) 3.09969i 0.245821i
\(160\) 0 0
\(161\) 21.0188i 1.65651i
\(162\) 0 0
\(163\) 12.8284 1.00480 0.502400 0.864635i \(-0.332451\pi\)
0.502400 + 0.864635i \(0.332451\pi\)
\(164\) 0 0
\(165\) 2.49221 2.64575i 0.194018 0.205971i
\(166\) 0 0
\(167\) 21.9054 1.69509 0.847546 0.530721i \(-0.178079\pi\)
0.847546 + 0.530721i \(0.178079\pi\)
\(168\) 0 0
\(169\) −11.1421 −0.857087
\(170\) 0 0
\(171\) 6.43215i 0.491879i
\(172\) 0 0
\(173\) −5.45214 −0.414519 −0.207259 0.978286i \(-0.566454\pi\)
−0.207259 + 0.978286i \(0.566454\pi\)
\(174\) 0 0
\(175\) −6.58132 −0.497501
\(176\) 0 0
\(177\) 1.34315 0.100957
\(178\) 0 0
\(179\) −9.72792 −0.727099 −0.363550 0.931575i \(-0.618435\pi\)
−0.363550 + 0.931575i \(0.618435\pi\)
\(180\) 0 0
\(181\) 2.64575i 0.196657i 0.995154 + 0.0983286i \(0.0313496\pi\)
−0.995154 + 0.0983286i \(0.968650\pi\)
\(182\) 0 0
\(183\) 2.72607 0.201517
\(184\) 0 0
\(185\) −12.7990 −0.941000
\(186\) 0 0
\(187\) −12.4853 + 13.2545i −0.913014 + 0.969264i
\(188\) 0 0
\(189\) 7.94435 0.577866
\(190\) 0 0
\(191\) 16.9704i 1.22794i −0.789331 0.613968i \(-0.789572\pi\)
0.789331 0.613968i \(-0.210428\pi\)
\(192\) 0 0
\(193\) 12.8643i 0.925993i 0.886360 + 0.462996i \(0.153226\pi\)
−0.886360 + 0.462996i \(0.846774\pi\)
\(194\) 0 0
\(195\) 1.49376i 0.106970i
\(196\) 0 0
\(197\) −10.4366 −0.743574 −0.371787 0.928318i \(-0.621255\pi\)
−0.371787 + 0.928318i \(0.621255\pi\)
\(198\) 0 0
\(199\) 21.1660i 1.50042i −0.661200 0.750209i \(-0.729953\pi\)
0.661200 0.750209i \(-0.270047\pi\)
\(200\) 0 0
\(201\) −2.51472 −0.177375
\(202\) 0 0
\(203\) 21.6569 1.52001
\(204\) 0 0
\(205\) 26.5591 1.85497
\(206\) 0 0
\(207\) 18.0663i 1.25570i
\(208\) 0 0
\(209\) 5.17157 5.49019i 0.357725 0.379764i
\(210\) 0 0
\(211\) 9.09644i 0.626225i 0.949716 + 0.313112i \(0.101372\pi\)
−0.949716 + 0.313112i \(0.898628\pi\)
\(212\) 0 0
\(213\) 2.64575i 0.181284i
\(214\) 0 0
\(215\) 17.0179 1.16061
\(216\) 0 0
\(217\) 3.60625i 0.244808i
\(218\) 0 0
\(219\) 0.390175i 0.0263656i
\(220\) 0 0
\(221\) 7.48331i 0.503382i
\(222\) 0 0
\(223\) 4.19560i 0.280958i 0.990084 + 0.140479i \(0.0448642\pi\)
−0.990084 + 0.140479i \(0.955136\pi\)
\(224\) 0 0
\(225\) 5.65685 0.377124
\(226\) 0 0
\(227\) 13.2545i 0.879731i −0.898064 0.439865i \(-0.855026\pi\)
0.898064 0.439865i \(-0.144974\pi\)
\(228\) 0 0
\(229\) 10.1291i 0.669348i −0.942334 0.334674i \(-0.891374\pi\)
0.942334 0.334674i \(-0.108626\pi\)
\(230\) 0 0
\(231\) 3.29066 + 3.09969i 0.216509 + 0.203945i
\(232\) 0 0
\(233\) 8.31609i 0.544805i −0.962183 0.272402i \(-0.912182\pi\)
0.962183 0.272402i \(-0.0878182\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −3.85525 −0.250425
\(238\) 0 0
\(239\) −5.45214 −0.352670 −0.176335 0.984330i \(-0.556424\pi\)
−0.176335 + 0.984330i \(0.556424\pi\)
\(240\) 0 0
\(241\) 4.54822i 0.292977i 0.989212 + 0.146488i \(0.0467971\pi\)
−0.989212 + 0.146488i \(0.953203\pi\)
\(242\) 0 0
\(243\) −10.3431 −0.663513
\(244\) 0 0
\(245\) 10.1291i 0.647122i
\(246\) 0 0
\(247\) 3.09969i 0.197229i
\(248\) 0 0
\(249\) 1.88393i 0.119389i
\(250\) 0 0
\(251\) −18.4142 −1.16229 −0.581147 0.813798i \(-0.697396\pi\)
−0.581147 + 0.813798i \(0.697396\pi\)
\(252\) 0 0
\(253\) −14.5257 + 15.4206i −0.913221 + 0.969483i
\(254\) 0 0
\(255\) 6.01673 0.376782
\(256\) 0 0
\(257\) 6.48528 0.404541 0.202270 0.979330i \(-0.435168\pi\)
0.202270 + 0.979330i \(0.435168\pi\)
\(258\) 0 0
\(259\) 15.9188i 0.989144i
\(260\) 0 0
\(261\) −18.6148 −1.15223
\(262\) 0 0
\(263\) −19.1794 −1.18265 −0.591325 0.806433i \(-0.701395\pi\)
−0.591325 + 0.806433i \(0.701395\pi\)
\(264\) 0 0
\(265\) 19.7990 1.21624
\(266\) 0 0
\(267\) 4.41421 0.270145
\(268\) 0 0
\(269\) 13.6827i 0.834249i −0.908849 0.417124i \(-0.863038\pi\)
0.908849 0.417124i \(-0.136962\pi\)
\(270\) 0 0
\(271\) 12.5980 0.765277 0.382638 0.923898i \(-0.375016\pi\)
0.382638 + 0.923898i \(0.375016\pi\)
\(272\) 0 0
\(273\) −1.85786 −0.112443
\(274\) 0 0
\(275\) 4.82843 + 4.54822i 0.291165 + 0.274268i
\(276\) 0 0
\(277\) 3.85525 0.231639 0.115820 0.993270i \(-0.463051\pi\)
0.115820 + 0.993270i \(0.463051\pi\)
\(278\) 0 0
\(279\) 3.09969i 0.185574i
\(280\) 0 0
\(281\) 6.43215i 0.383710i 0.981423 + 0.191855i \(0.0614503\pi\)
−0.981423 + 0.191855i \(0.938550\pi\)
\(282\) 0 0
\(283\) 1.88393i 0.111988i 0.998431 + 0.0559941i \(0.0178328\pi\)
−0.998431 + 0.0559941i \(0.982167\pi\)
\(284\) 0 0
\(285\) −2.49221 −0.147626
\(286\) 0 0
\(287\) 33.0329i 1.94987i
\(288\) 0 0
\(289\) −13.1421 −0.773067
\(290\) 0 0
\(291\) −3.10051 −0.181755
\(292\) 0 0
\(293\) −14.5257 −0.848598 −0.424299 0.905522i \(-0.639480\pi\)
−0.424299 + 0.905522i \(0.639480\pi\)
\(294\) 0 0
\(295\) 8.57922i 0.499502i
\(296\) 0 0
\(297\) −5.82843 5.49019i −0.338200 0.318573i
\(298\) 0 0
\(299\) 8.70626i 0.503496i
\(300\) 0 0
\(301\) 21.1660i 1.21999i
\(302\) 0 0
\(303\) −7.14590 −0.410521
\(304\) 0 0
\(305\) 17.4125i 0.997038i
\(306\) 0 0
\(307\) 22.3509i 1.27563i 0.770188 + 0.637817i \(0.220162\pi\)
−0.770188 + 0.637817i \(0.779838\pi\)
\(308\) 0 0
\(309\) 7.48331i 0.425711i
\(310\) 0 0
\(311\) 14.9666i 0.848680i 0.905503 + 0.424340i \(0.139494\pi\)
−0.905503 + 0.424340i \(0.860506\pi\)
\(312\) 0 0
\(313\) 7.82843 0.442489 0.221244 0.975218i \(-0.428988\pi\)
0.221244 + 0.975218i \(0.428988\pi\)
\(314\) 0 0
\(315\) 24.6250i 1.38746i
\(316\) 0 0
\(317\) 15.4206i 0.866105i 0.901369 + 0.433053i \(0.142564\pi\)
−0.901369 + 0.433053i \(0.857436\pi\)
\(318\) 0 0
\(319\) −15.8887 14.9666i −0.889596 0.837970i
\(320\) 0 0
\(321\) 3.60625i 0.201281i
\(322\) 0 0
\(323\) 12.4853 0.694700
\(324\) 0 0
\(325\) −2.72607 −0.151215
\(326\) 0 0
\(327\) 1.12918 0.0624435
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 18.0711 0.993276 0.496638 0.867958i \(-0.334568\pi\)
0.496638 + 0.867958i \(0.334568\pi\)
\(332\) 0 0
\(333\) 13.6827i 0.749807i
\(334\) 0 0
\(335\) 16.0625i 0.877590i
\(336\) 0 0
\(337\) 19.1348i 1.04234i 0.853453 + 0.521171i \(0.174504\pi\)
−0.853453 + 0.521171i \(0.825496\pi\)
\(338\) 0 0
\(339\) −2.55635 −0.138842
\(340\) 0 0
\(341\) −2.49221 + 2.64575i −0.134961 + 0.143275i
\(342\) 0 0
\(343\) −10.4366 −0.563521
\(344\) 0 0
\(345\) 7.00000 0.376867
\(346\) 0 0
\(347\) 4.15804i 0.223215i 0.993752 + 0.111608i \(0.0356000\pi\)
−0.993752 + 0.111608i \(0.964400\pi\)
\(348\) 0 0
\(349\) 14.5257 0.777541 0.388771 0.921335i \(-0.372900\pi\)
0.388771 + 0.921335i \(0.372900\pi\)
\(350\) 0 0
\(351\) 3.29066 0.175642
\(352\) 0 0
\(353\) 1.82843 0.0973174 0.0486587 0.998815i \(-0.484505\pi\)
0.0486587 + 0.998815i \(0.484505\pi\)
\(354\) 0 0
\(355\) 16.8995 0.896932
\(356\) 0 0
\(357\) 7.48331i 0.396059i
\(358\) 0 0
\(359\) −3.29066 −0.173674 −0.0868371 0.996223i \(-0.527676\pi\)
−0.0868371 + 0.996223i \(0.527676\pi\)
\(360\) 0 0
\(361\) 13.8284 0.727812
\(362\) 0 0
\(363\) −0.272078 4.54822i −0.0142804 0.238720i
\(364\) 0 0
\(365\) −2.49221 −0.130448
\(366\) 0 0
\(367\) 22.2619i 1.16206i −0.813881 0.581031i \(-0.802649\pi\)
0.813881 0.581031i \(-0.197351\pi\)
\(368\) 0 0
\(369\) 28.3929i 1.47808i
\(370\) 0 0
\(371\) 24.6250i 1.27847i
\(372\) 0 0
\(373\) −0.233860 −0.0121088 −0.00605440 0.999982i \(-0.501927\pi\)
−0.00605440 + 0.999982i \(0.501927\pi\)
\(374\) 0 0
\(375\) 3.28772i 0.169777i
\(376\) 0 0
\(377\) 8.97056 0.462007
\(378\) 0 0
\(379\) 16.0711 0.825515 0.412758 0.910841i \(-0.364566\pi\)
0.412758 + 0.910841i \(0.364566\pi\)
\(380\) 0 0
\(381\) −0.233860 −0.0119810
\(382\) 0 0
\(383\) 7.29529i 0.372772i 0.982477 + 0.186386i \(0.0596775\pi\)
−0.982477 + 0.186386i \(0.940323\pi\)
\(384\) 0 0
\(385\) −19.7990 + 21.0188i −1.00905 + 1.07122i
\(386\) 0 0
\(387\) 18.1929i 0.924796i
\(388\) 0 0
\(389\) 32.5790i 1.65182i 0.563801 + 0.825911i \(0.309339\pi\)
−0.563801 + 0.825911i \(0.690661\pi\)
\(390\) 0 0
\(391\) −35.0681 −1.77347
\(392\) 0 0
\(393\) 2.82590i 0.142548i
\(394\) 0 0
\(395\) 24.6250i 1.23902i
\(396\) 0 0
\(397\) 22.4499i 1.12673i −0.826208 0.563365i \(-0.809506\pi\)
0.826208 0.563365i \(-0.190494\pi\)
\(398\) 0 0
\(399\) 3.09969i 0.155179i
\(400\) 0 0
\(401\) −4.82843 −0.241120 −0.120560 0.992706i \(-0.538469\pi\)
−0.120560 + 0.992706i \(0.538469\pi\)
\(402\) 0 0
\(403\) 1.49376i 0.0744094i
\(404\) 0 0
\(405\) 19.8042i 0.984078i
\(406\) 0 0
\(407\) −11.0011 + 11.6789i −0.545307 + 0.578902i
\(408\) 0 0
\(409\) 1.88393i 0.0931545i 0.998915 + 0.0465773i \(0.0148314\pi\)
−0.998915 + 0.0465773i \(0.985169\pi\)
\(410\) 0 0
\(411\) 3.58579 0.176874
\(412\) 0 0
\(413\) −10.6704 −0.525057
\(414\) 0 0
\(415\) 12.0335 0.590699
\(416\) 0 0
\(417\) 8.15447i 0.399326i
\(418\) 0 0
\(419\) −16.1421 −0.788595 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(420\) 0 0
\(421\) 7.48331i 0.364714i 0.983232 + 0.182357i \(0.0583727\pi\)
−0.983232 + 0.182357i \(0.941627\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 10.9804i 0.532626i
\(426\) 0 0
\(427\) −21.6569 −1.04805
\(428\) 0 0
\(429\) 1.36303 + 1.28393i 0.0658079 + 0.0619889i
\(430\) 0 0
\(431\) −2.16148 −0.104115 −0.0520575 0.998644i \(-0.516578\pi\)
−0.0520575 + 0.998644i \(0.516578\pi\)
\(432\) 0 0
\(433\) −17.3431 −0.833458 −0.416729 0.909031i \(-0.636824\pi\)
−0.416729 + 0.909031i \(0.636824\pi\)
\(434\) 0 0
\(435\) 7.21250i 0.345813i
\(436\) 0 0
\(437\) 14.5257 0.694857
\(438\) 0 0
\(439\) 34.5035 1.64676 0.823380 0.567490i \(-0.192085\pi\)
0.823380 + 0.567490i \(0.192085\pi\)
\(440\) 0 0
\(441\) −10.8284 −0.515639
\(442\) 0 0
\(443\) −26.4142 −1.25498 −0.627489 0.778626i \(-0.715917\pi\)
−0.627489 + 0.778626i \(0.715917\pi\)
\(444\) 0 0
\(445\) 28.1954i 1.33659i
\(446\) 0 0
\(447\) −8.74280 −0.413520
\(448\) 0 0
\(449\) 15.9706 0.753697 0.376849 0.926275i \(-0.377008\pi\)
0.376849 + 0.926275i \(0.377008\pi\)
\(450\) 0 0
\(451\) 22.8284 24.2349i 1.07495 1.14117i
\(452\) 0 0
\(453\) 5.45214 0.256164
\(454\) 0 0
\(455\) 11.8669i 0.556331i
\(456\) 0 0
\(457\) 22.7411i 1.06378i −0.846812 0.531892i \(-0.821481\pi\)
0.846812 0.531892i \(-0.178519\pi\)
\(458\) 0 0
\(459\) 13.2545i 0.618666i
\(460\) 0 0
\(461\) 3.85525 0.179557 0.0897783 0.995962i \(-0.471384\pi\)
0.0897783 + 0.995962i \(0.471384\pi\)
\(462\) 0 0
\(463\) 22.2619i 1.03460i 0.855804 + 0.517300i \(0.173063\pi\)
−0.855804 + 0.517300i \(0.826937\pi\)
\(464\) 0 0
\(465\) 1.20101 0.0556955
\(466\) 0 0
\(467\) −36.0711 −1.66917 −0.834585 0.550879i \(-0.814292\pi\)
−0.834585 + 0.550879i \(0.814292\pi\)
\(468\) 0 0
\(469\) 19.9778 0.922489
\(470\) 0 0
\(471\) 0.188028i 0.00866386i
\(472\) 0 0
\(473\) 14.6274 15.5286i 0.672569 0.714005i
\(474\) 0 0
\(475\) 4.54822i 0.208687i
\(476\) 0 0
\(477\) 21.1660i 0.969125i
\(478\) 0 0
\(479\) 27.3576 1.25000 0.625000 0.780625i \(-0.285099\pi\)
0.625000 + 0.780625i \(0.285099\pi\)
\(480\) 0 0
\(481\) 6.59377i 0.300650i
\(482\) 0 0
\(483\) 8.70626i 0.396149i
\(484\) 0 0
\(485\) 19.8042i 0.899262i
\(486\) 0 0
\(487\) 26.6455i 1.20742i −0.797202 0.603712i \(-0.793688\pi\)
0.797202 0.603712i \(-0.206312\pi\)
\(488\) 0 0
\(489\) −5.31371 −0.240294
\(490\) 0 0
\(491\) 25.7286i 1.16112i 0.814219 + 0.580558i \(0.197166\pi\)
−0.814219 + 0.580558i \(0.802834\pi\)
\(492\) 0 0
\(493\) 36.1326i 1.62733i
\(494\) 0 0
\(495\) 17.0179 18.0663i 0.764897 0.812021i
\(496\) 0 0
\(497\) 21.0188i 0.942821i
\(498\) 0 0
\(499\) −18.4853 −0.827515 −0.413757 0.910387i \(-0.635784\pi\)
−0.413757 + 0.910387i \(0.635784\pi\)
\(500\) 0 0
\(501\) −9.07353 −0.405375
\(502\) 0 0
\(503\) 3.85525 0.171897 0.0859484 0.996300i \(-0.472608\pi\)
0.0859484 + 0.996300i \(0.472608\pi\)
\(504\) 0 0
\(505\) 45.6438i 2.03112i
\(506\) 0 0
\(507\) 4.61522 0.204969
\(508\) 0 0
\(509\) 35.6787i 1.58143i −0.612184 0.790715i \(-0.709709\pi\)
0.612184 0.790715i \(-0.290291\pi\)
\(510\) 0 0
\(511\) 3.09969i 0.137122i
\(512\) 0 0
\(513\) 5.49019i 0.242398i
\(514\) 0 0
\(515\) 47.7990 2.10628
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 2.25835 0.0991306
\(520\) 0 0
\(521\) −20.1127 −0.881153 −0.440577 0.897715i \(-0.645226\pi\)
−0.440577 + 0.897715i \(0.645226\pi\)
\(522\) 0 0
\(523\) 17.0223i 0.744335i 0.928166 + 0.372168i \(0.121385\pi\)
−0.928166 + 0.372168i \(0.878615\pi\)
\(524\) 0 0
\(525\) 2.72607 0.118975
\(526\) 0 0
\(527\) −6.01673 −0.262093
\(528\) 0 0
\(529\) −17.7990 −0.773869
\(530\) 0 0
\(531\) 9.17157 0.398012
\(532\) 0 0
\(533\) 13.6827i 0.592663i
\(534\) 0 0
\(535\) 23.0346 0.995873
\(536\) 0 0
\(537\) 4.02944 0.173883
\(538\) 0 0
\(539\) −9.24264 8.70626i −0.398109 0.375005i
\(540\) 0 0
\(541\) −17.2517 −0.741710 −0.370855 0.928691i \(-0.620935\pi\)
−0.370855 + 0.928691i \(0.620935\pi\)
\(542\) 0 0
\(543\) 1.09591i 0.0470298i
\(544\) 0 0
\(545\) 7.21250i 0.308950i
\(546\) 0 0
\(547\) 41.2572i 1.76403i −0.471221 0.882015i \(-0.656187\pi\)
0.471221 0.882015i \(-0.343813\pi\)
\(548\) 0 0
\(549\) 18.6148 0.794459
\(550\) 0 0
\(551\) 14.9666i 0.637600i
\(552\) 0 0
\(553\) 30.6274 1.30241
\(554\) 0 0
\(555\) 5.30152 0.225037
\(556\) 0 0
\(557\) −23.8331 −1.00984 −0.504919 0.863167i \(-0.668478\pi\)
−0.504919 + 0.863167i \(0.668478\pi\)
\(558\) 0 0
\(559\) 8.76725i 0.370815i
\(560\) 0 0
\(561\) 5.17157 5.49019i 0.218344 0.231796i
\(562\) 0 0
\(563\) 11.7607i 0.495655i 0.968804 + 0.247828i \(0.0797167\pi\)
−0.968804 + 0.247828i \(0.920283\pi\)
\(564\) 0 0
\(565\) 16.3284i 0.686943i
\(566\) 0 0
\(567\) 24.6315 1.03443
\(568\) 0 0
\(569\) 2.66428i 0.111693i 0.998439 + 0.0558463i \(0.0177857\pi\)
−0.998439 + 0.0558463i \(0.982214\pi\)
\(570\) 0 0
\(571\) 21.9607i 0.919028i 0.888170 + 0.459514i \(0.151976\pi\)
−0.888170 + 0.459514i \(0.848024\pi\)
\(572\) 0 0
\(573\) 7.02938i 0.293656i
\(574\) 0 0
\(575\) 12.7748i 0.532747i
\(576\) 0 0
\(577\) −31.6274 −1.31667 −0.658333 0.752727i \(-0.728738\pi\)
−0.658333 + 0.752727i \(0.728738\pi\)
\(578\) 0 0
\(579\) 5.32857i 0.221448i
\(580\) 0 0
\(581\) 14.9666i 0.620920i
\(582\) 0 0
\(583\) 17.0179 18.0663i 0.704808 0.748231i
\(584\) 0 0
\(585\) 10.2000i 0.421719i
\(586\) 0 0
\(587\) 30.2843 1.24997 0.624983 0.780639i \(-0.285106\pi\)
0.624983 + 0.780639i \(0.285106\pi\)
\(588\) 0 0
\(589\) 2.49221 0.102690
\(590\) 0 0
\(591\) 4.32296 0.177823
\(592\) 0 0
\(593\) 1.88393i 0.0773639i 0.999252 + 0.0386819i \(0.0123159\pi\)
−0.999252 + 0.0386819i \(0.987684\pi\)
\(594\) 0 0
\(595\) −47.7990 −1.95957
\(596\) 0 0
\(597\) 8.76725i 0.358820i
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 32.7795i 1.33710i −0.743666 0.668552i \(-0.766915\pi\)
0.743666 0.668552i \(-0.233085\pi\)
\(602\) 0 0
\(603\) −17.1716 −0.699281
\(604\) 0 0
\(605\) 29.0513 1.73787i 1.18110 0.0706546i
\(606\) 0 0
\(607\) −29.0513 −1.17916 −0.589579 0.807711i \(-0.700706\pi\)
−0.589579 + 0.807711i \(0.700706\pi\)
\(608\) 0 0
\(609\) −8.97056 −0.363506
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 26.7930 1.08216 0.541079 0.840972i \(-0.318016\pi\)
0.541079 + 0.840972i \(0.318016\pi\)
\(614\) 0 0
\(615\) −11.0011 −0.443609
\(616\) 0 0
\(617\) 33.1127 1.33307 0.666534 0.745475i \(-0.267777\pi\)
0.666534 + 0.745475i \(0.267777\pi\)
\(618\) 0 0
\(619\) −31.5269 −1.26717 −0.633587 0.773672i \(-0.718418\pi\)
−0.633587 + 0.773672i \(0.718418\pi\)
\(620\) 0 0
\(621\) 15.4206i 0.618806i
\(622\) 0 0
\(623\) −35.0681 −1.40497
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) −2.14214 + 2.27411i −0.0855487 + 0.0908192i
\(628\) 0 0
\(629\) −26.5591 −1.05898
\(630\) 0 0
\(631\) 11.6789i 0.464930i 0.972605 + 0.232465i \(0.0746791\pi\)
−0.972605 + 0.232465i \(0.925321\pi\)
\(632\) 0 0
\(633\) 3.76787i 0.149759i
\(634\) 0 0
\(635\) 1.49376i 0.0592780i
\(636\) 0 0
\(637\) 5.21828 0.206756
\(638\) 0 0
\(639\) 18.0663i 0.714693i
\(640\) 0 0
\(641\) −17.8284 −0.704181 −0.352090 0.935966i \(-0.614529\pi\)
−0.352090 + 0.935966i \(0.614529\pi\)
\(642\) 0 0
\(643\) −0.615224 −0.0242621 −0.0121310 0.999926i \(-0.503862\pi\)
−0.0121310 + 0.999926i \(0.503862\pi\)
\(644\) 0 0
\(645\) −7.04903 −0.277555
\(646\) 0 0
\(647\) 23.5459i 0.925683i −0.886441 0.462841i \(-0.846830\pi\)
0.886441 0.462841i \(-0.153170\pi\)
\(648\) 0 0
\(649\) 7.82843 + 7.37412i 0.307293 + 0.289459i
\(650\) 0 0
\(651\) 1.49376i 0.0585450i
\(652\) 0 0
\(653\) 36.5866i 1.43174i 0.698232 + 0.715872i \(0.253970\pi\)
−0.698232 + 0.715872i \(0.746030\pi\)
\(654\) 0 0
\(655\) −18.0502 −0.705279
\(656\) 0 0
\(657\) 2.66428i 0.103944i
\(658\) 0 0
\(659\) 10.9804i 0.427735i −0.976863 0.213867i \(-0.931394\pi\)
0.976863 0.213867i \(-0.0686060\pi\)
\(660\) 0 0
\(661\) 12.3209i 0.479227i 0.970868 + 0.239613i \(0.0770207\pi\)
−0.970868 + 0.239613i \(0.922979\pi\)
\(662\) 0 0
\(663\) 3.09969i 0.120382i
\(664\) 0 0
\(665\) 19.7990 0.767772
\(666\) 0 0
\(667\) 42.0375i 1.62770i
\(668\) 0 0
\(669\) 1.73787i 0.0671901i
\(670\) 0 0
\(671\) 15.8887 + 14.9666i 0.613376 + 0.577780i
\(672\) 0 0
\(673\) 38.2697i 1.47519i 0.675245 + 0.737594i \(0.264038\pi\)
−0.675245 + 0.737594i \(0.735962\pi\)
\(674\) 0 0
\(675\) −4.82843 −0.185846
\(676\) 0 0
\(677\) 2.49221 0.0957834 0.0478917 0.998853i \(-0.484750\pi\)
0.0478917 + 0.998853i \(0.484750\pi\)
\(678\) 0 0
\(679\) 24.6315 0.945270
\(680\) 0 0
\(681\) 5.49019i 0.210384i
\(682\) 0 0
\(683\) 36.4264 1.39382 0.696909 0.717160i \(-0.254558\pi\)
0.696909 + 0.717160i \(0.254558\pi\)
\(684\) 0 0
\(685\) 22.9039i 0.875112i
\(686\) 0 0
\(687\) 4.19560i 0.160072i
\(688\) 0 0
\(689\) 10.2000i 0.388590i
\(690\) 0 0
\(691\) 8.75736 0.333146 0.166573 0.986029i \(-0.446730\pi\)
0.166573 + 0.986029i \(0.446730\pi\)
\(692\) 0 0
\(693\) 22.4700 + 21.1660i 0.853565 + 0.804030i
\(694\) 0 0
\(695\) −52.0859 −1.97573
\(696\) 0 0
\(697\) 55.1127 2.08754
\(698\) 0 0
\(699\) 3.44464i 0.130288i
\(700\) 0 0
\(701\) −26.0914 −0.985459 −0.492729 0.870183i \(-0.664001\pi\)
−0.492729 + 0.870183i \(0.664001\pi\)
\(702\) 0 0
\(703\) 11.0011 0.414916
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 56.7696 2.13504
\(708\) 0 0
\(709\) 46.2617i 1.73739i −0.495343 0.868697i \(-0.664958\pi\)
0.495343 0.868697i \(-0.335042\pi\)
\(710\) 0 0
\(711\) −26.3253 −0.987274
\(712\) 0 0
\(713\) −7.00000 −0.262152
\(714\) 0 0
\(715\) −8.20101 + 8.70626i −0.306700 + 0.325596i
\(716\) 0 0
\(717\) 2.25835 0.0843396
\(718\) 0 0
\(719\) 5.10347i 0.190327i 0.995462 + 0.0951637i \(0.0303375\pi\)
−0.995462 + 0.0951637i \(0.969663\pi\)
\(720\) 0 0
\(721\) 59.4501i 2.21404i
\(722\) 0 0
\(723\) 1.88393i 0.0700643i
\(724\) 0 0
\(725\) −13.1626 −0.488848
\(726\) 0 0
\(727\) 8.57922i 0.318186i −0.987264 0.159093i \(-0.949143\pi\)
0.987264 0.159093i \(-0.0508569\pi\)
\(728\) 0 0
\(729\) −18.1716 −0.673021
\(730\) 0 0
\(731\) 35.3137 1.30612
\(732\) 0 0
\(733\) −27.4544 −1.01405 −0.507026 0.861931i \(-0.669255\pi\)
−0.507026 + 0.861931i \(0.669255\pi\)
\(734\) 0 0
\(735\) 4.19560i 0.154757i
\(736\) 0 0
\(737\) −14.6569 13.8063i −0.539892 0.508561i
\(738\) 0 0
\(739\) 47.6894i 1.75428i 0.480234 + 0.877141i \(0.340552\pi\)
−0.480234 + 0.877141i \(0.659448\pi\)
\(740\) 0 0
\(741\) 1.28393i 0.0471665i
\(742\) 0 0
\(743\) −25.1961 −0.924355 −0.462177 0.886788i \(-0.652932\pi\)
−0.462177 + 0.886788i \(0.652932\pi\)
\(744\) 0 0
\(745\) 55.8438i 2.04596i
\(746\) 0 0
\(747\) 12.8643i 0.470680i
\(748\) 0 0
\(749\) 28.6493i 1.04682i
\(750\) 0 0
\(751\) 7.29529i 0.266209i 0.991102 + 0.133104i \(0.0424946\pi\)
−0.991102 + 0.133104i \(0.957505\pi\)
\(752\) 0 0
\(753\) 7.62742 0.277959
\(754\) 0 0
\(755\) 34.8250i 1.26741i
\(756\) 0 0
\(757\) 28.6493i 1.04128i 0.853777 + 0.520639i \(0.174306\pi\)
−0.853777 + 0.520639i \(0.825694\pi\)
\(758\) 0 0
\(759\) 6.01673 6.38741i 0.218393 0.231848i
\(760\) 0 0
\(761\) 7.37412i 0.267312i 0.991028 + 0.133656i \(0.0426717\pi\)
−0.991028 + 0.133656i \(0.957328\pi\)
\(762\) 0 0
\(763\) −8.97056 −0.324756
\(764\) 0 0
\(765\) 41.0848 1.48542
\(766\) 0 0
\(767\) −4.41983 −0.159591
\(768\) 0 0
\(769\) 2.82590i 0.101905i −0.998701 0.0509523i \(-0.983774\pi\)
0.998701 0.0509523i \(-0.0162256\pi\)
\(770\) 0 0
\(771\) −2.68629 −0.0967444
\(772\) 0 0
\(773\) 8.76725i 0.315336i −0.987492 0.157668i \(-0.949602\pi\)
0.987492 0.157668i \(-0.0503976\pi\)
\(774\) 0 0
\(775\) 2.19181i 0.0787322i
\(776\) 0 0
\(777\) 6.59377i 0.236550i
\(778\) 0 0
\(779\) −22.8284 −0.817913
\(780\) 0 0
\(781\) 14.5257 15.4206i 0.519769 0.551791i
\(782\) 0 0
\(783\) 15.8887 0.567816
\(784\) 0 0
\(785\) −1.20101 −0.0428659
\(786\) 0 0
\(787\) 32.9411i 1.17422i 0.809506 + 0.587112i \(0.199735\pi\)
−0.809506 + 0.587112i \(0.800265\pi\)
\(788\) 0 0
\(789\) 7.94435 0.282826
\(790\) 0 0
\(791\) 20.3085 0.722088
\(792\) 0 0
\(793\) −8.97056 −0.318554
\(794\) 0 0
\(795\) −8.20101 −0.290860
\(796\) 0 0
\(797\) 44.0699i 1.56104i 0.625133 + 0.780518i \(0.285045\pi\)
−0.625133 + 0.780518i \(0.714955\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 30.1421 1.06502
\(802\) 0 0
\(803\) −2.14214 + 2.27411i −0.0755943 + 0.0802516i
\(804\) 0 0
\(805\) −55.6105 −1.96001
\(806\) 0 0
\(807\) 5.66756i 0.199507i
\(808\) 0 0
\(809\) 0.941967i 0.0331178i −0.999863 0.0165589i \(-0.994729\pi\)
0.999863 0.0165589i \(-0.00527110\pi\)
\(810\) 0 0
\(811\) 5.65180i 0.198462i −0.995064 0.0992308i \(-0.968362\pi\)
0.995064 0.0992308i \(-0.0316382\pi\)
\(812\) 0 0
\(813\) −5.21828 −0.183013
\(814\) 0 0
\(815\) 33.9408i 1.18890i
\(816\) 0 0
\(817\) −14.6274 −0.511749
\(818\) 0 0
\(819\) −12.6863 −0.443295
\(820\) 0 0
\(821\) −21.3408 −0.744800 −0.372400 0.928072i \(-0.621465\pi\)
−0.372400 + 0.928072i \(0.621465\pi\)
\(822\) 0 0
\(823\) 35.9446i 1.25295i 0.779441 + 0.626475i \(0.215503\pi\)
−0.779441 + 0.626475i \(0.784497\pi\)
\(824\) 0 0
\(825\) −2.00000 1.88393i −0.0696311 0.0655902i
\(826\) 0 0
\(827\) 50.7438i 1.76454i 0.470748 + 0.882268i \(0.343984\pi\)
−0.470748 + 0.882268i \(0.656016\pi\)
\(828\) 0 0
\(829\) 41.8781i 1.45449i −0.686380 0.727243i \(-0.740801\pi\)
0.686380 0.727243i \(-0.259199\pi\)
\(830\) 0 0
\(831\) −1.59689 −0.0553957
\(832\) 0 0
\(833\) 21.0188i 0.728257i
\(834\) 0 0
\(835\) 57.9563i 2.00566i
\(836\) 0 0
\(837\) 2.64575i 0.0914505i
\(838\) 0 0
\(839\) 54.3870i 1.87765i 0.344398 + 0.938824i \(0.388083\pi\)
−0.344398 + 0.938824i \(0.611917\pi\)
\(840\) 0 0
\(841\) 14.3137 0.493576
\(842\) 0 0
\(843\) 2.66428i 0.0917628i
\(844\) 0 0
\(845\) 29.4793i 1.01412i
\(846\) 0 0
\(847\) 2.16148 + 36.1326i 0.0742694 + 1.24153i
\(848\) 0 0
\(849\) 0.780351i 0.0267816i
\(850\) 0 0
\(851\) −30.8995 −1.05922
\(852\) 0 0
\(853\) −58.1027 −1.98940 −0.994699 0.102833i \(-0.967209\pi\)
−0.994699 + 0.102833i \(0.967209\pi\)
\(854\) 0 0
\(855\) −17.0179 −0.581999
\(856\) 0 0
\(857\) 21.9607i 0.750165i 0.926992 + 0.375082i \(0.122386\pi\)
−0.926992 + 0.375082i \(0.877614\pi\)
\(858\) 0 0
\(859\) 49.2426 1.68014 0.840069 0.542480i \(-0.182515\pi\)
0.840069 + 0.542480i \(0.182515\pi\)
\(860\) 0 0
\(861\) 13.6827i 0.466305i
\(862\) 0 0
\(863\) 14.9666i 0.509470i 0.967011 + 0.254735i \(0.0819882\pi\)
−0.967011 + 0.254735i \(0.918012\pi\)
\(864\) 0 0
\(865\) 14.4250i 0.490465i
\(866\) 0 0
\(867\) 5.44365 0.184876
\(868\) 0 0
\(869\) −22.4700 21.1660i −0.762243 0.718008i
\(870\) 0 0
\(871\) 8.27508 0.280390
\(872\) 0 0
\(873\) −21.1716 −0.716549
\(874\) 0 0
\(875\) 26.1188i 0.882976i
\(876\) 0 0
\(877\) 29.2852 0.988891 0.494445 0.869209i \(-0.335371\pi\)
0.494445 + 0.869209i \(0.335371\pi\)
\(878\) 0 0
\(879\) 6.01673 0.202939
\(880\) 0 0
\(881\) 6.51472 0.219486 0.109743 0.993960i \(-0.464997\pi\)
0.109743 + 0.993960i \(0.464997\pi\)
\(882\) 0 0
\(883\) 4.34315 0.146158 0.0730792 0.997326i \(-0.476717\pi\)
0.0730792 + 0.997326i \(0.476717\pi\)
\(884\) 0 0
\(885\) 3.55363i 0.119454i
\(886\) 0 0
\(887\) −46.5369 −1.56256 −0.781279 0.624183i \(-0.785432\pi\)
−0.781279 + 0.624183i \(0.785432\pi\)
\(888\) 0 0
\(889\) 1.85786 0.0623108
\(890\) 0 0
\(891\) −18.0711 17.0223i −0.605404 0.570270i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 25.7377i 0.860315i
\(896\) 0 0
\(897\) 3.60625i 0.120409i
\(898\) 0 0
\(899\) 7.21250i 0.240550i
\(900\) 0 0
\(901\) 41.0848 1.36873
\(902\) 0 0
\(903\) 8.76725i 0.291756i
\(904\) 0 0
\(905\) 7.00000 0.232688
\(906\) 0 0
\(907\) 33.5147 1.11284 0.556419 0.830902i \(-0.312175\pi\)
0.556419 + 0.830902i \(0.312175\pi\)
\(908\) 0 0
\(909\) −48.7953 −1.61844
\(910\) 0 0
\(911\) 44.8999i 1.48760i −0.668402 0.743800i \(-0.733022\pi\)
0.668402 0.743800i \(-0.266978\pi\)
\(912\) 0 0
\(913\) 10.3431 10.9804i 0.342308 0.363397i
\(914\) 0 0
\(915\) 7.21250i 0.238438i
\(916\) 0 0
\(917\) 22.4499i 0.741362i
\(918\) 0 0
\(919\) 23.5992 0.778465 0.389233 0.921139i \(-0.372740\pi\)
0.389233 + 0.921139i \(0.372740\pi\)
\(920\) 0 0
\(921\) 9.25805i 0.305063i
\(922\) 0 0
\(923\) 8.70626i 0.286570i
\(924\) 0 0
\(925\) 9.67513i 0.318116i
\(926\) 0 0
\(927\) 51.0993i 1.67832i
\(928\) 0 0
\(929\) 34.4853 1.13143 0.565713 0.824602i \(-0.308601\pi\)
0.565713 + 0.824602i \(0.308601\pi\)
\(930\) 0 0
\(931\) 8.70626i 0.285336i
\(932\) 0 0
\(933\) 6.19938i 0.202959i
\(934\) 0 0
\(935\) 35.0681 + 33.0329i 1.14685 + 1.08029i
\(936\) 0 0
\(937\) 21.7991i 0.712146i −0.934458 0.356073i \(-0.884115\pi\)
0.934458 0.356073i \(-0.115885\pi\)
\(938\) 0 0
\(939\) −3.24264 −0.105820
\(940\) 0 0
\(941\) 14.7595 0.481147 0.240573 0.970631i \(-0.422665\pi\)
0.240573 + 0.970631i \(0.422665\pi\)
\(942\) 0 0
\(943\) 64.1194 2.08801
\(944\) 0 0
\(945\) 21.0188i 0.683741i
\(946\) 0 0
\(947\) −24.4142 −0.793355 −0.396678 0.917958i \(-0.629837\pi\)
−0.396678 + 0.917958i \(0.629837\pi\)
\(948\) 0 0
\(949\) 1.28393i 0.0416783i
\(950\) 0 0
\(951\) 6.38741i 0.207126i
\(952\) 0 0
\(953\) 36.5474i 1.18389i 0.805980 + 0.591943i \(0.201639\pi\)
−0.805980 + 0.591943i \(0.798361\pi\)
\(954\) 0 0
\(955\) −44.8995 −1.45291
\(956\) 0 0
\(957\) 6.58132 + 6.19938i 0.212744 + 0.200398i
\(958\) 0 0
\(959\) −28.4867 −0.919885
\(960\) 0 0
\(961\) 29.7990 0.961258
\(962\) 0 0
\(963\) 24.6250i 0.793530i
\(964\) 0 0
\(965\) 34.0358 1.09565
\(966\) 0 0
\(967\) −3.85525 −0.123976 −0.0619882 0.998077i \(-0.519744\pi\)
−0.0619882 + 0.998077i \(0.519744\pi\)
\(968\) 0 0
\(969\) −5.17157 −0.166135
\(970\) 0 0
\(971\) −32.8406 −1.05391 −0.526953 0.849895i \(-0.676666\pi\)
−0.526953 + 0.849895i \(0.676666\pi\)
\(972\) 0 0
\(973\) 64.7820i 2.07681i
\(974\) 0 0
\(975\) 1.12918 0.0361625
\(976\) 0 0
\(977\) −45.6274 −1.45975 −0.729875 0.683580i \(-0.760422\pi\)
−0.729875 + 0.683580i \(0.760422\pi\)
\(978\) 0 0
\(979\) 25.7279 + 24.2349i 0.822268 + 0.774549i
\(980\) 0 0
\(981\) 7.71049 0.246177
\(982\) 0 0
\(983\) 17.8783i 0.570229i −0.958493 0.285114i \(-0.907968\pi\)
0.958493 0.285114i \(-0.0920316\pi\)
\(984\) 0 0
\(985\) 27.6125i 0.879809i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 41.0848 1.30642
\(990\) 0 0
\(991\) 29.9333i 0.950861i −0.879753 0.475431i \(-0.842292\pi\)
0.879753 0.475431i \(-0.157708\pi\)
\(992\) 0 0
\(993\) −7.48528 −0.237538
\(994\) 0 0
\(995\) −56.0000 −1.77532
\(996\) 0 0
\(997\) 55.6105 1.76120 0.880600 0.473860i \(-0.157140\pi\)
0.880600 + 0.473860i \(0.157140\pi\)
\(998\) 0 0
\(999\) 11.6789i 0.369504i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 352.2.g.b.175.2 8
3.2 odd 2 3168.2.h.g.2287.8 8
4.3 odd 2 88.2.g.b.43.8 yes 8
8.3 odd 2 inner 352.2.g.b.175.3 8
8.5 even 2 88.2.g.b.43.2 yes 8
11.10 odd 2 inner 352.2.g.b.175.1 8
12.11 even 2 792.2.h.g.307.1 8
16.3 odd 4 2816.2.e.o.2815.10 16
16.5 even 4 2816.2.e.o.2815.11 16
16.11 odd 4 2816.2.e.o.2815.8 16
16.13 even 4 2816.2.e.o.2815.5 16
24.5 odd 2 792.2.h.g.307.7 8
24.11 even 2 3168.2.h.g.2287.1 8
33.32 even 2 3168.2.h.g.2287.5 8
44.3 odd 10 968.2.k.g.475.7 32
44.7 even 10 968.2.k.g.699.5 32
44.15 odd 10 968.2.k.g.699.4 32
44.19 even 10 968.2.k.g.475.2 32
44.27 odd 10 968.2.k.g.723.1 32
44.31 odd 10 968.2.k.g.403.3 32
44.35 even 10 968.2.k.g.403.6 32
44.39 even 10 968.2.k.g.723.8 32
44.43 even 2 88.2.g.b.43.1 8
88.5 even 10 968.2.k.g.723.6 32
88.13 odd 10 968.2.k.g.403.1 32
88.21 odd 2 88.2.g.b.43.7 yes 8
88.29 odd 10 968.2.k.g.699.7 32
88.37 even 10 968.2.k.g.699.2 32
88.43 even 2 inner 352.2.g.b.175.4 8
88.53 even 10 968.2.k.g.403.8 32
88.61 odd 10 968.2.k.g.723.3 32
88.69 even 10 968.2.k.g.475.5 32
88.85 odd 10 968.2.k.g.475.4 32
132.131 odd 2 792.2.h.g.307.8 8
176.21 odd 4 2816.2.e.o.2815.12 16
176.43 even 4 2816.2.e.o.2815.7 16
176.109 odd 4 2816.2.e.o.2815.6 16
176.131 even 4 2816.2.e.o.2815.9 16
264.131 odd 2 3168.2.h.g.2287.4 8
264.197 even 2 792.2.h.g.307.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.g.b.43.1 8 44.43 even 2
88.2.g.b.43.2 yes 8 8.5 even 2
88.2.g.b.43.7 yes 8 88.21 odd 2
88.2.g.b.43.8 yes 8 4.3 odd 2
352.2.g.b.175.1 8 11.10 odd 2 inner
352.2.g.b.175.2 8 1.1 even 1 trivial
352.2.g.b.175.3 8 8.3 odd 2 inner
352.2.g.b.175.4 8 88.43 even 2 inner
792.2.h.g.307.1 8 12.11 even 2
792.2.h.g.307.2 8 264.197 even 2
792.2.h.g.307.7 8 24.5 odd 2
792.2.h.g.307.8 8 132.131 odd 2
968.2.k.g.403.1 32 88.13 odd 10
968.2.k.g.403.3 32 44.31 odd 10
968.2.k.g.403.6 32 44.35 even 10
968.2.k.g.403.8 32 88.53 even 10
968.2.k.g.475.2 32 44.19 even 10
968.2.k.g.475.4 32 88.85 odd 10
968.2.k.g.475.5 32 88.69 even 10
968.2.k.g.475.7 32 44.3 odd 10
968.2.k.g.699.2 32 88.37 even 10
968.2.k.g.699.4 32 44.15 odd 10
968.2.k.g.699.5 32 44.7 even 10
968.2.k.g.699.7 32 88.29 odd 10
968.2.k.g.723.1 32 44.27 odd 10
968.2.k.g.723.3 32 88.61 odd 10
968.2.k.g.723.6 32 88.5 even 10
968.2.k.g.723.8 32 44.39 even 10
2816.2.e.o.2815.5 16 16.13 even 4
2816.2.e.o.2815.6 16 176.109 odd 4
2816.2.e.o.2815.7 16 176.43 even 4
2816.2.e.o.2815.8 16 16.11 odd 4
2816.2.e.o.2815.9 16 176.131 even 4
2816.2.e.o.2815.10 16 16.3 odd 4
2816.2.e.o.2815.11 16 16.5 even 4
2816.2.e.o.2815.12 16 176.21 odd 4
3168.2.h.g.2287.1 8 24.11 even 2
3168.2.h.g.2287.4 8 264.131 odd 2
3168.2.h.g.2287.5 8 33.32 even 2
3168.2.h.g.2287.8 8 3.2 odd 2