Properties

Label 968.2.k.g.699.5
Level $968$
Weight $2$
Character 968.699
Analytic conductor $7.730$
Analytic rank $0$
Dimension $32$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,2,Mod(403,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.403");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 968.k (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.72951891566\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 699.5
Character \(\chi\) \(=\) 968.699
Dual form 968.2.k.g.475.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.405150 - 1.35494i) q^{2} +(-0.335106 - 0.243469i) q^{3} +(-1.67171 - 1.09791i) q^{4} +(-2.51626 - 0.817582i) q^{5} +(-0.465653 + 0.355406i) q^{6} +(-2.66220 + 1.93420i) q^{7} +(-2.16488 + 1.82024i) q^{8} +(-0.874032 - 2.68999i) q^{9} +(-2.12723 + 3.07813i) q^{10} +(0.292893 + 0.774923i) q^{12} +(-0.421201 - 1.29632i) q^{13} +(1.54213 + 4.39075i) q^{14} +(0.644157 + 0.886607i) q^{15} +(1.58921 + 3.67075i) q^{16} +(5.22148 + 1.69656i) q^{17} +(-3.99889 + 0.0944070i) q^{18} +(1.33669 - 1.83979i) q^{19} +(3.30882 + 4.12937i) q^{20} +1.36303 q^{21} +6.38741i q^{23} +(1.16864 - 0.0828919i) q^{24} +(1.61803 + 1.17557i) q^{25} +(-1.92709 + 0.0454952i) q^{26} +(-0.746033 + 2.29605i) q^{27} +(6.57398 - 0.310574i) q^{28} +(5.32440 - 3.86840i) q^{29} +(1.46228 - 0.513584i) q^{30} +(-1.04227 + 0.338654i) q^{31} +(5.61750 - 0.666071i) q^{32} +(4.41421 - 6.38741i) q^{34} +(8.28015 - 2.69038i) q^{35} +(-1.49223 + 5.45649i) q^{36} +(2.84345 + 3.91367i) q^{37} +(-1.95124 - 2.55652i) q^{38} +(-0.174467 + 0.536955i) q^{39} +(6.93561 - 2.81023i) q^{40} +(-5.90043 + 8.12124i) q^{41} +(0.552234 - 1.84683i) q^{42} +6.43215i q^{43} +7.48331i q^{45} +(8.65453 + 2.58786i) q^{46} +(0.361160 - 1.61701i) q^{48} +(1.18305 - 3.64105i) q^{49} +(2.24837 - 1.71605i) q^{50} +(-1.33669 - 1.83979i) q^{51} +(-0.719116 + 2.62951i) q^{52} +(-7.11706 + 2.31247i) q^{53} +(2.80875 + 1.94107i) q^{54} +(2.24264 - 9.03316i) q^{56} +(-0.895864 + 0.291084i) q^{57} +(-3.08426 - 8.78150i) q^{58} +(-2.62335 + 1.90598i) q^{59} +(-0.103432 - 2.18937i) q^{60} +(2.03374 - 6.25920i) q^{61} +(0.0365790 + 1.54941i) q^{62} +(7.52983 + 5.47074i) q^{63} +(1.37345 - 7.88122i) q^{64} +3.60625i q^{65} -6.07107 q^{67} +(-6.86612 - 8.56884i) q^{68} +(1.55513 - 2.14046i) q^{69} +(-0.290597 - 12.3091i) q^{70} +(-6.07479 - 1.97382i) q^{71} +(6.78861 + 4.23258i) q^{72} +(-0.553674 - 0.762067i) q^{73} +(6.45480 - 2.26707i) q^{74} +(-0.255998 - 0.787881i) q^{75} +(-4.25447 + 1.60804i) q^{76} +(0.656854 + 0.453939i) q^{78} +(2.87614 + 8.85185i) q^{79} +(-0.997718 - 10.5359i) q^{80} +(-6.05572 + 4.39974i) q^{81} +(8.61321 + 11.2850i) q^{82} +(4.32561 + 1.40548i) q^{83} +(-2.27860 - 1.49648i) q^{84} +(-11.7515 - 8.53797i) q^{85} +(8.71516 + 2.60599i) q^{86} -2.72607 q^{87} -10.6569 q^{89} +(10.1394 + 3.03187i) q^{90} +(3.62867 + 2.63638i) q^{91} +(7.01277 - 10.6779i) q^{92} +(0.431722 + 0.140275i) q^{93} +(-4.86763 + 3.53654i) q^{95} +(-2.04463 - 1.14448i) q^{96} +(2.31308 + 7.11893i) q^{97} +(-4.45408 - 3.07813i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{3} + 32 q^{12} + 8 q^{14} + 24 q^{16} + 16 q^{25} - 24 q^{26} + 8 q^{27} + 96 q^{34} + 16 q^{36} + 8 q^{38} + 24 q^{42} - 24 q^{48} - 8 q^{49} - 64 q^{56} - 16 q^{58} + 8 q^{59} - 56 q^{60}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/968\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(849\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{9}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.405150 1.35494i 0.286484 0.958085i
\(3\) −0.335106 0.243469i −0.193473 0.140567i 0.486831 0.873496i \(-0.338153\pi\)
−0.680305 + 0.732929i \(0.738153\pi\)
\(4\) −1.67171 1.09791i −0.835853 0.548953i
\(5\) −2.51626 0.817582i −1.12531 0.365634i −0.313515 0.949583i \(-0.601507\pi\)
−0.811790 + 0.583949i \(0.801507\pi\)
\(6\) −0.465653 + 0.355406i −0.190102 + 0.145094i
\(7\) −2.66220 + 1.93420i −1.00622 + 0.731059i −0.963412 0.268025i \(-0.913629\pi\)
−0.0428042 + 0.999083i \(0.513629\pi\)
\(8\) −2.16488 + 1.82024i −0.765402 + 0.643552i
\(9\) −0.874032 2.68999i −0.291344 0.896665i
\(10\) −2.12723 + 3.07813i −0.672691 + 0.973390i
\(11\) 0 0
\(12\) 0.292893 + 0.774923i 0.0845510 + 0.223701i
\(13\) −0.421201 1.29632i −0.116820 0.359535i 0.875502 0.483214i \(-0.160531\pi\)
−0.992322 + 0.123679i \(0.960531\pi\)
\(14\) 1.54213 + 4.39075i 0.412151 + 1.17348i
\(15\) 0.644157 + 0.886607i 0.166321 + 0.228921i
\(16\) 1.58921 + 3.67075i 0.397302 + 0.917688i
\(17\) 5.22148 + 1.69656i 1.26639 + 0.411476i 0.863769 0.503888i \(-0.168098\pi\)
0.402625 + 0.915365i \(0.368098\pi\)
\(18\) −3.99889 + 0.0944070i −0.942546 + 0.0222519i
\(19\) 1.33669 1.83979i 0.306657 0.422077i −0.627678 0.778473i \(-0.715994\pi\)
0.934335 + 0.356396i \(0.115994\pi\)
\(20\) 3.30882 + 4.12937i 0.739875 + 0.923356i
\(21\) 1.36303 0.297439
\(22\) 0 0
\(23\) 6.38741i 1.33187i 0.746011 + 0.665933i \(0.231967\pi\)
−0.746011 + 0.665933i \(0.768033\pi\)
\(24\) 1.16864 0.0828919i 0.238547 0.0169202i
\(25\) 1.61803 + 1.17557i 0.323607 + 0.235114i
\(26\) −1.92709 + 0.0454952i −0.377933 + 0.00892235i
\(27\) −0.746033 + 2.29605i −0.143574 + 0.441876i
\(28\) 6.57398 0.310574i 1.24237 0.0586930i
\(29\) 5.32440 3.86840i 0.988715 0.718344i 0.0290761 0.999577i \(-0.490743\pi\)
0.959639 + 0.281233i \(0.0907435\pi\)
\(30\) 1.46228 0.513584i 0.266974 0.0937672i
\(31\) −1.04227 + 0.338654i −0.187197 + 0.0608240i −0.401115 0.916028i \(-0.631377\pi\)
0.213918 + 0.976852i \(0.431377\pi\)
\(32\) 5.61750 0.666071i 0.993044 0.117746i
\(33\) 0 0
\(34\) 4.41421 6.38741i 0.757031 1.09543i
\(35\) 8.28015 2.69038i 1.39960 0.454758i
\(36\) −1.49223 + 5.45649i −0.248706 + 0.909414i
\(37\) 2.84345 + 3.91367i 0.467460 + 0.643404i 0.976035 0.217614i \(-0.0698275\pi\)
−0.508575 + 0.861018i \(0.669827\pi\)
\(38\) −1.95124 2.55652i −0.316534 0.414722i
\(39\) −0.174467 + 0.536955i −0.0279371 + 0.0859816i
\(40\) 6.93561 2.81023i 1.09662 0.444336i
\(41\) −5.90043 + 8.12124i −0.921492 + 1.26832i 0.0415954 + 0.999135i \(0.486756\pi\)
−0.963087 + 0.269190i \(0.913244\pi\)
\(42\) 0.552234 1.84683i 0.0852115 0.284971i
\(43\) 6.43215i 0.980894i 0.871471 + 0.490447i \(0.163166\pi\)
−0.871471 + 0.490447i \(0.836834\pi\)
\(44\) 0 0
\(45\) 7.48331i 1.11555i
\(46\) 8.65453 + 2.58786i 1.27604 + 0.381559i
\(47\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(48\) 0.361160 1.61701i 0.0521290 0.233396i
\(49\) 1.18305 3.64105i 0.169007 0.520150i
\(50\) 2.24837 1.71605i 0.317968 0.242686i
\(51\) −1.33669 1.83979i −0.187174 0.257623i
\(52\) −0.719116 + 2.62951i −0.0997234 + 0.364648i
\(53\) −7.11706 + 2.31247i −0.977603 + 0.317642i −0.753881 0.657011i \(-0.771821\pi\)
−0.223722 + 0.974653i \(0.571821\pi\)
\(54\) 2.80875 + 1.94107i 0.382223 + 0.264147i
\(55\) 0 0
\(56\) 2.24264 9.03316i 0.299685 1.20711i
\(57\) −0.895864 + 0.291084i −0.118660 + 0.0385550i
\(58\) −3.08426 8.78150i −0.404983 1.15307i
\(59\) −2.62335 + 1.90598i −0.341531 + 0.248137i −0.745308 0.666721i \(-0.767697\pi\)
0.403776 + 0.914858i \(0.367697\pi\)
\(60\) −0.103432 2.18937i −0.0133531 0.282646i
\(61\) 2.03374 6.25920i 0.260393 0.801409i −0.732325 0.680955i \(-0.761565\pi\)
0.992719 0.120454i \(-0.0384350\pi\)
\(62\) 0.0365790 + 1.54941i 0.00464554 + 0.196776i
\(63\) 7.52983 + 5.47074i 0.948670 + 0.689249i
\(64\) 1.37345 7.88122i 0.171681 0.985153i
\(65\) 3.60625i 0.447300i
\(66\) 0 0
\(67\) −6.07107 −0.741699 −0.370849 0.928693i \(-0.620933\pi\)
−0.370849 + 0.928693i \(0.620933\pi\)
\(68\) −6.86612 8.56884i −0.832639 1.03912i
\(69\) 1.55513 2.14046i 0.187216 0.257681i
\(70\) −0.290597 12.3091i −0.0347329 1.47122i
\(71\) −6.07479 1.97382i −0.720945 0.234249i −0.0745119 0.997220i \(-0.523740\pi\)
−0.646433 + 0.762971i \(0.723740\pi\)
\(72\) 6.78861 + 4.23258i 0.800046 + 0.498814i
\(73\) −0.553674 0.762067i −0.0648027 0.0891932i 0.775386 0.631488i \(-0.217556\pi\)
−0.840188 + 0.542295i \(0.817556\pi\)
\(74\) 6.45480 2.26707i 0.750355 0.263541i
\(75\) −0.255998 0.787881i −0.0295601 0.0909767i
\(76\) −4.25447 + 1.60804i −0.488021 + 0.184455i
\(77\) 0 0
\(78\) 0.656854 + 0.453939i 0.0743741 + 0.0513985i
\(79\) 2.87614 + 8.85185i 0.323591 + 0.995911i 0.972073 + 0.234680i \(0.0754044\pi\)
−0.648482 + 0.761230i \(0.724596\pi\)
\(80\) −0.997718 10.5359i −0.111548 1.17795i
\(81\) −6.05572 + 4.39974i −0.672858 + 0.488860i
\(82\) 8.61321 + 11.2850i 0.951170 + 1.24622i
\(83\) 4.32561 + 1.40548i 0.474798 + 0.154271i 0.536634 0.843815i \(-0.319696\pi\)
−0.0618362 + 0.998086i \(0.519696\pi\)
\(84\) −2.27860 1.49648i −0.248615 0.163280i
\(85\) −11.7515 8.53797i −1.27463 0.926073i
\(86\) 8.71516 + 2.60599i 0.939780 + 0.281011i
\(87\) −2.72607 −0.292265
\(88\) 0 0
\(89\) −10.6569 −1.12962 −0.564812 0.825220i \(-0.691051\pi\)
−0.564812 + 0.825220i \(0.691051\pi\)
\(90\) 10.1394 + 3.03187i 1.06879 + 0.319587i
\(91\) 3.62867 + 2.63638i 0.380388 + 0.276368i
\(92\) 7.01277 10.6779i 0.731132 1.11325i
\(93\) 0.431722 + 0.140275i 0.0447675 + 0.0145458i
\(94\) 0 0
\(95\) −4.86763 + 3.53654i −0.499409 + 0.362842i
\(96\) −2.04463 1.14448i −0.208679 0.116808i
\(97\) 2.31308 + 7.11893i 0.234858 + 0.722817i 0.997140 + 0.0755731i \(0.0240786\pi\)
−0.762283 + 0.647244i \(0.775921\pi\)
\(98\) −4.45408 3.07813i −0.449930 0.310938i
\(99\) 0 0
\(100\) −1.41421 3.74166i −0.141421 0.374166i
\(101\) −5.33108 16.4074i −0.530462 1.63259i −0.753255 0.657729i \(-0.771517\pi\)
0.222792 0.974866i \(-0.428483\pi\)
\(102\) −3.03436 + 1.06574i −0.300447 + 0.105524i
\(103\) 10.6191 + 14.6160i 1.04633 + 1.44015i 0.891946 + 0.452143i \(0.149340\pi\)
0.154387 + 0.988010i \(0.450660\pi\)
\(104\) 3.27147 + 2.03970i 0.320794 + 0.200009i
\(105\) −3.42975 1.11439i −0.334709 0.108754i
\(106\) 0.249777 + 10.5801i 0.0242605 + 1.02763i
\(107\) 5.11741 7.04351i 0.494719 0.680922i −0.486531 0.873663i \(-0.661738\pi\)
0.981250 + 0.192741i \(0.0617378\pi\)
\(108\) 3.76800 3.01926i 0.362576 0.290528i
\(109\) 2.72607 0.261110 0.130555 0.991441i \(-0.458324\pi\)
0.130555 + 0.991441i \(0.458324\pi\)
\(110\) 0 0
\(111\) 2.00378i 0.190191i
\(112\) −11.3308 6.69842i −1.07066 0.632941i
\(113\) −4.99291 3.62756i −0.469693 0.341252i 0.327629 0.944807i \(-0.393751\pi\)
−0.797322 + 0.603555i \(0.793751\pi\)
\(114\) 0.0314409 + 1.33177i 0.00294471 + 0.124732i
\(115\) 5.22223 16.0724i 0.486976 1.49876i
\(116\) −13.1480 + 0.621149i −1.22076 + 0.0576722i
\(117\) −3.11896 + 2.26606i −0.288348 + 0.209497i
\(118\) 1.51963 + 4.32668i 0.139893 + 0.398303i
\(119\) −17.1821 + 5.58280i −1.57508 + 0.511774i
\(120\) −3.00836 0.746879i −0.274625 0.0681804i
\(121\) 0 0
\(122\) −7.65685 5.29150i −0.693219 0.479070i
\(123\) 3.95453 1.28491i 0.356568 0.115856i
\(124\) 2.11418 + 0.578183i 0.189859 + 0.0519223i
\(125\) 4.66540 + 6.42137i 0.417286 + 0.574345i
\(126\) 10.4632 7.98597i 0.932138 0.711447i
\(127\) 0.174467 0.536955i 0.0154815 0.0476470i −0.943017 0.332744i \(-0.892026\pi\)
0.958499 + 0.285097i \(0.0920257\pi\)
\(128\) −10.1221 5.05401i −0.894676 0.446716i
\(129\) 1.56603 2.15545i 0.137881 0.189777i
\(130\) 4.88624 + 1.46107i 0.428552 + 0.128145i
\(131\) 6.82233i 0.596070i −0.954555 0.298035i \(-0.903669\pi\)
0.954555 0.298035i \(-0.0963311\pi\)
\(132\) 0 0
\(133\) 7.48331i 0.648886i
\(134\) −2.45969 + 8.22591i −0.212485 + 0.710611i
\(135\) 3.75442 5.16752i 0.323129 0.444749i
\(136\) −14.3920 + 5.83149i −1.23411 + 0.500046i
\(137\) −2.67512 + 8.23316i −0.228551 + 0.703406i 0.769361 + 0.638814i \(0.220575\pi\)
−0.997912 + 0.0645922i \(0.979425\pi\)
\(138\) −2.27012 2.97431i −0.193246 0.253190i
\(139\) 11.5715 + 15.9268i 0.981483 + 1.35090i 0.936027 + 0.351929i \(0.114474\pi\)
0.0454561 + 0.998966i \(0.485526\pi\)
\(140\) −16.7958 4.59329i −1.41950 0.388203i
\(141\) 0 0
\(142\) −5.13560 + 7.43126i −0.430970 + 0.623617i
\(143\) 0 0
\(144\) 8.48528 7.48331i 0.707107 0.623610i
\(145\) −16.5603 + 5.38077i −1.37526 + 0.446848i
\(146\) −1.25687 + 0.441442i −0.104020 + 0.0365340i
\(147\) −1.28293 + 0.932102i −0.105814 + 0.0768785i
\(148\) −0.456572 9.66435i −0.0375300 0.794405i
\(149\) −6.52242 + 20.0739i −0.534337 + 1.64452i 0.210740 + 0.977542i \(0.432413\pi\)
−0.745077 + 0.666978i \(0.767587\pi\)
\(150\) −1.17125 + 0.0276512i −0.0956319 + 0.00225771i
\(151\) 10.6488 + 7.73680i 0.866586 + 0.629612i 0.929669 0.368396i \(-0.120093\pi\)
−0.0630824 + 0.998008i \(0.520093\pi\)
\(152\) 0.455092 + 6.41603i 0.0369128 + 0.520409i
\(153\) 15.5286i 1.25541i
\(154\) 0 0
\(155\) 2.89949 0.232893
\(156\) 0.881183 0.706082i 0.0705511 0.0565318i
\(157\) −0.266819 + 0.367244i −0.0212945 + 0.0293093i −0.819531 0.573034i \(-0.805766\pi\)
0.798237 + 0.602343i \(0.205766\pi\)
\(158\) 13.1590 0.310661i 1.04687 0.0247149i
\(159\) 2.94798 + 0.957857i 0.233790 + 0.0759630i
\(160\) −14.6797 2.91676i −1.16053 0.230590i
\(161\) −12.3545 17.0045i −0.973673 1.34015i
\(162\) 3.50789 + 9.98767i 0.275606 + 0.784706i
\(163\) −3.96420 12.2006i −0.310500 0.955622i −0.977567 0.210624i \(-0.932451\pi\)
0.667067 0.744998i \(-0.267549\pi\)
\(164\) 18.7801 7.09822i 1.46648 0.554278i
\(165\) 0 0
\(166\) 3.65685 5.29150i 0.283827 0.410700i
\(167\) 6.76915 + 20.8333i 0.523813 + 1.61213i 0.766652 + 0.642063i \(0.221921\pi\)
−0.242840 + 0.970066i \(0.578079\pi\)
\(168\) −2.95081 + 2.48105i −0.227660 + 0.191417i
\(169\) 9.01418 6.54918i 0.693398 0.503783i
\(170\) −16.3295 + 12.4634i −1.25242 + 0.955899i
\(171\) −6.11734 1.98764i −0.467805 0.151999i
\(172\) 7.06189 10.7527i 0.538464 0.819884i
\(173\) −4.41087 3.20469i −0.335353 0.243648i 0.407346 0.913274i \(-0.366454\pi\)
−0.742698 + 0.669626i \(0.766454\pi\)
\(174\) −1.10447 + 3.69365i −0.0837295 + 0.280015i
\(175\) −6.58132 −0.497501
\(176\) 0 0
\(177\) 1.34315 0.100957
\(178\) −4.31762 + 14.4394i −0.323620 + 1.08228i
\(179\) −7.87005 5.71793i −0.588235 0.427378i 0.253448 0.967349i \(-0.418435\pi\)
−0.841684 + 0.539971i \(0.818435\pi\)
\(180\) 8.21597 12.5099i 0.612382 0.932434i
\(181\) 2.51626 + 0.817582i 0.187032 + 0.0607704i 0.401036 0.916063i \(-0.368650\pi\)
−0.214003 + 0.976833i \(0.568650\pi\)
\(182\) 5.04229 3.84849i 0.373759 0.285269i
\(183\) −2.20544 + 1.60234i −0.163031 + 0.118449i
\(184\) −11.6266 13.8280i −0.857126 1.01941i
\(185\) −3.95511 12.1726i −0.290785 0.894945i
\(186\) 0.364976 0.528123i 0.0267613 0.0387239i
\(187\) 0 0
\(188\) 0 0
\(189\) −2.45494 7.55553i −0.178571 0.549584i
\(190\) 2.81967 + 8.02817i 0.204560 + 0.582425i
\(191\) −9.97496 13.7294i −0.721763 0.993421i −0.999463 0.0327535i \(-0.989572\pi\)
0.277701 0.960668i \(-0.410428\pi\)
\(192\) −2.37908 + 2.30665i −0.171695 + 0.166468i
\(193\) −12.2347 3.97529i −0.880672 0.286148i −0.166435 0.986052i \(-0.553226\pi\)
−0.714236 + 0.699905i \(0.753226\pi\)
\(194\) 10.5828 0.249843i 0.759803 0.0179377i
\(195\) 0.878009 1.20848i 0.0628755 0.0865408i
\(196\) −5.97524 + 4.78789i −0.426803 + 0.341992i
\(197\) 10.4366 0.743574 0.371787 0.928318i \(-0.378745\pi\)
0.371787 + 0.928318i \(0.378745\pi\)
\(198\) 0 0
\(199\) 21.1660i 1.50042i 0.661200 + 0.750209i \(0.270047\pi\)
−0.661200 + 0.750209i \(0.729953\pi\)
\(200\) −5.64268 + 0.400237i −0.398998 + 0.0283010i
\(201\) 2.03445 + 1.47811i 0.143499 + 0.104258i
\(202\) −24.3908 + 0.575827i −1.71613 + 0.0405150i
\(203\) −6.69234 + 20.5969i −0.469710 + 1.44562i
\(204\) 0.214632 + 4.54315i 0.0150272 + 0.318084i
\(205\) 21.4868 15.6111i 1.50070 1.09032i
\(206\) 24.1060 8.46657i 1.67955 0.589894i
\(207\) 17.1821 5.58280i 1.19424 0.388031i
\(208\) 4.08910 3.60625i 0.283528 0.250049i
\(209\) 0 0
\(210\) −2.89949 + 4.19560i −0.200084 + 0.289524i
\(211\) −8.65123 + 2.81095i −0.595575 + 0.193514i −0.591266 0.806477i \(-0.701372\pi\)
−0.00430905 + 0.999991i \(0.501372\pi\)
\(212\) 14.4365 + 3.94808i 0.991503 + 0.271155i
\(213\) 1.55513 + 2.14046i 0.106556 + 0.146662i
\(214\) −7.47020 9.78745i −0.510652 0.669056i
\(215\) 5.25881 16.1850i 0.358648 1.10381i
\(216\) −2.56430 6.32865i −0.174478 0.430610i
\(217\) 2.11970 2.91752i 0.143895 0.198054i
\(218\) 1.10447 3.69365i 0.0748040 0.250166i
\(219\) 0.390175i 0.0263656i
\(220\) 0 0
\(221\) 7.48331i 0.503382i
\(222\) −2.71500 0.811833i −0.182219 0.0544867i
\(223\) −2.46611 + 3.39431i −0.165143 + 0.227300i −0.883566 0.468307i \(-0.844864\pi\)
0.718423 + 0.695606i \(0.244864\pi\)
\(224\) −13.6666 + 12.6386i −0.913138 + 0.844451i
\(225\) 1.74806 5.37999i 0.116538 0.358666i
\(226\) −6.93799 + 5.29537i −0.461508 + 0.352243i
\(227\) 7.79079 + 10.7231i 0.517093 + 0.711717i 0.985095 0.172010i \(-0.0550262\pi\)
−0.468002 + 0.883727i \(0.655026\pi\)
\(228\) 1.81720 + 0.496967i 0.120347 + 0.0329124i
\(229\) 9.63331 3.13005i 0.636587 0.206840i 0.0270964 0.999633i \(-0.491374\pi\)
0.609491 + 0.792793i \(0.291374\pi\)
\(230\) −19.6613 13.5875i −1.29643 0.895934i
\(231\) 0 0
\(232\) −4.48528 + 18.0663i −0.294473 + 1.18611i
\(233\) −7.90907 + 2.56981i −0.518140 + 0.168354i −0.556401 0.830914i \(-0.687818\pi\)
0.0382609 + 0.999268i \(0.487818\pi\)
\(234\) 1.80672 + 5.14408i 0.118109 + 0.336279i
\(235\) 0 0
\(236\) 6.47806 0.306043i 0.421686 0.0199217i
\(237\) 1.19134 3.66656i 0.0773856 0.238168i
\(238\) 0.603016 + 25.5425i 0.0390877 + 1.65568i
\(239\) 4.41087 + 3.20469i 0.285316 + 0.207294i 0.721233 0.692693i \(-0.243576\pi\)
−0.435917 + 0.899987i \(0.643576\pi\)
\(240\) −2.23081 + 3.77354i −0.143998 + 0.243581i
\(241\) 4.54822i 0.292977i −0.989212 0.146488i \(-0.953203\pi\)
0.989212 0.146488i \(-0.0467971\pi\)
\(242\) 0 0
\(243\) 10.3431 0.663513
\(244\) −10.2718 + 8.23070i −0.657586 + 0.526917i
\(245\) −5.95372 + 8.19459i −0.380369 + 0.523533i
\(246\) −0.138787 5.87872i −0.00884872 0.374814i
\(247\) −2.94798 0.957857i −0.187576 0.0609470i
\(248\) 1.63996 2.63033i 0.104138 0.167026i
\(249\) −1.10735 1.52413i −0.0701754 0.0965881i
\(250\) 10.5907 3.71970i 0.669817 0.235255i
\(251\) 5.69030 + 17.5130i 0.359169 + 1.10541i 0.953553 + 0.301227i \(0.0973960\pi\)
−0.594384 + 0.804182i \(0.702604\pi\)
\(252\) −6.58132 17.4125i −0.414584 1.09689i
\(253\) 0 0
\(254\) −0.656854 0.453939i −0.0412147 0.0284827i
\(255\) 1.85927 + 5.72225i 0.116432 + 0.358341i
\(256\) −10.9488 + 11.6672i −0.684302 + 0.729199i
\(257\) −5.24670 + 3.81195i −0.327280 + 0.237783i −0.739276 0.673403i \(-0.764832\pi\)
0.411995 + 0.911186i \(0.364832\pi\)
\(258\) −2.28602 2.99515i −0.142322 0.186470i
\(259\) −15.1396 4.91917i −0.940732 0.305662i
\(260\) 3.95932 6.02860i 0.245547 0.373878i
\(261\) −15.0597 10.9415i −0.932170 0.677261i
\(262\) −9.24382 2.76407i −0.571085 0.170765i
\(263\) −19.1794 −1.18265 −0.591325 0.806433i \(-0.701395\pi\)
−0.591325 + 0.806433i \(0.701395\pi\)
\(264\) 0 0
\(265\) 19.7990 1.21624
\(266\) 10.1394 + 3.03187i 0.621688 + 0.185896i
\(267\) 3.57117 + 2.59461i 0.218552 + 0.158788i
\(268\) 10.1490 + 6.66546i 0.619952 + 0.407158i
\(269\) −13.0130 4.22819i −0.793418 0.257797i −0.115859 0.993266i \(-0.536962\pi\)
−0.677559 + 0.735469i \(0.736962\pi\)
\(270\) −5.48056 7.18063i −0.333536 0.436999i
\(271\) −10.1920 + 7.40494i −0.619122 + 0.449818i −0.852615 0.522540i \(-0.824984\pi\)
0.233493 + 0.972359i \(0.424984\pi\)
\(272\) 2.07036 + 21.8629i 0.125534 + 1.32563i
\(273\) −0.574112 1.76693i −0.0347468 0.106940i
\(274\) 10.0716 + 6.96028i 0.608447 + 0.420486i
\(275\) 0 0
\(276\) −4.94975 + 1.87083i −0.297940 + 0.112611i
\(277\) −1.19134 3.66656i −0.0715805 0.220302i 0.908866 0.417088i \(-0.136949\pi\)
−0.980446 + 0.196786i \(0.936949\pi\)
\(278\) 26.2680 9.22591i 1.57545 0.553334i
\(279\) 1.82195 + 2.50770i 0.109077 + 0.150132i
\(280\) −13.0284 + 20.8962i −0.778597 + 1.24879i
\(281\) −6.11734 1.98764i −0.364930 0.118573i 0.120812 0.992675i \(-0.461450\pi\)
−0.485741 + 0.874103i \(0.661450\pi\)
\(282\) 0 0
\(283\) 1.10735 1.52413i 0.0658250 0.0906004i −0.774835 0.632163i \(-0.782167\pi\)
0.840660 + 0.541563i \(0.182167\pi\)
\(284\) 7.98820 + 9.96919i 0.474012 + 0.591562i
\(285\) 2.49221 0.147626
\(286\) 0 0
\(287\) 33.0329i 1.94987i
\(288\) −6.70161 14.5289i −0.394896 0.856123i
\(289\) 10.6322 + 7.72475i 0.625424 + 0.454397i
\(290\) 0.581193 + 24.6182i 0.0341289 + 1.44563i
\(291\) 0.958109 2.94876i 0.0561653 0.172859i
\(292\) 0.0889034 + 1.88183i 0.00520268 + 0.110126i
\(293\) −11.7515 + 8.53797i −0.686531 + 0.498794i −0.875518 0.483186i \(-0.839480\pi\)
0.188987 + 0.981980i \(0.439480\pi\)
\(294\) 0.743161 + 2.11593i 0.0433420 + 0.123403i
\(295\) 8.15932 2.65113i 0.475054 0.154354i
\(296\) −13.2796 3.29688i −0.771859 0.191627i
\(297\) 0 0
\(298\) 24.5563 + 16.9704i 1.42251 + 0.983070i
\(299\) 8.28015 2.69038i 0.478853 0.155589i
\(300\) −0.437065 + 1.59817i −0.0252340 + 0.0922703i
\(301\) −12.4411 17.1237i −0.717091 0.986991i
\(302\) 14.7972 11.2939i 0.851485 0.649889i
\(303\) −2.20821 + 6.79616i −0.126858 + 0.390429i
\(304\) 8.87770 + 1.98284i 0.509171 + 0.113723i
\(305\) −10.2348 + 14.0870i −0.586044 + 0.806621i
\(306\) −21.0403 6.29141i −1.20279 0.359656i
\(307\) 22.3509i 1.27563i 0.770188 + 0.637817i \(0.220162\pi\)
−0.770188 + 0.637817i \(0.779838\pi\)
\(308\) 0 0
\(309\) 7.48331i 0.425711i
\(310\) 1.17473 3.92863i 0.0667202 0.223131i
\(311\) −8.79716 + 12.1083i −0.498841 + 0.686596i −0.981988 0.188943i \(-0.939494\pi\)
0.483147 + 0.875539i \(0.339494\pi\)
\(312\) −0.599686 1.48002i −0.0339505 0.0837895i
\(313\) 2.41912 7.44528i 0.136737 0.420832i −0.859120 0.511775i \(-0.828988\pi\)
0.995856 + 0.0909431i \(0.0289881\pi\)
\(314\) 0.389491 + 0.510312i 0.0219803 + 0.0287986i
\(315\) −14.4742 19.9221i −0.815530 1.12248i
\(316\) 4.91043 17.9554i 0.276233 1.01007i
\(317\) −14.6658 + 4.76522i −0.823715 + 0.267641i −0.690396 0.723432i \(-0.742564\pi\)
−0.133319 + 0.991073i \(0.542564\pi\)
\(318\) 2.49221 3.60625i 0.139756 0.202229i
\(319\) 0 0
\(320\) −9.89949 + 18.7083i −0.553399 + 1.04583i
\(321\) −3.42975 + 1.11439i −0.191430 + 0.0621994i
\(322\) −28.0455 + 9.85021i −1.56292 + 0.548931i
\(323\) 10.1008 7.33866i 0.562024 0.408334i
\(324\) 14.9539 0.706466i 0.830771 0.0392481i
\(325\) 0.842402 2.59265i 0.0467281 0.143814i
\(326\) −18.1371 + 0.428186i −1.00452 + 0.0237150i
\(327\) −0.913522 0.663713i −0.0505179 0.0367034i
\(328\) −2.00887 28.3217i −0.110921 1.56381i
\(329\) 0 0
\(330\) 0 0
\(331\) −18.0711 −0.993276 −0.496638 0.867958i \(-0.665432\pi\)
−0.496638 + 0.867958i \(0.665432\pi\)
\(332\) −5.68808 7.09866i −0.312174 0.389589i
\(333\) 8.04249 11.0695i 0.440726 0.606607i
\(334\) 30.9703 0.731157i 1.69462 0.0400071i
\(335\) 15.2764 + 4.96360i 0.834638 + 0.271190i
\(336\) 2.16615 + 5.00336i 0.118173 + 0.272956i
\(337\) 11.2472 + 15.4804i 0.612673 + 0.843272i 0.996794 0.0800109i \(-0.0254955\pi\)
−0.384121 + 0.923283i \(0.625496\pi\)
\(338\) −5.22163 14.8670i −0.284019 0.808660i
\(339\) 0.789955 + 2.43123i 0.0429045 + 0.132046i
\(340\) 10.2712 + 27.1750i 0.557034 + 1.47377i
\(341\) 0 0
\(342\) −5.17157 + 7.48331i −0.279647 + 0.404651i
\(343\) −3.22507 9.92576i −0.174138 0.535941i
\(344\) −11.7081 13.9249i −0.631257 0.750778i
\(345\) −5.66312 + 4.11450i −0.304892 + 0.221517i
\(346\) −6.12921 + 4.67808i −0.329509 + 0.251495i
\(347\) 3.95453 + 1.28491i 0.212291 + 0.0689774i 0.413232 0.910626i \(-0.364400\pi\)
−0.200941 + 0.979603i \(0.564400\pi\)
\(348\) 4.55719 + 2.99297i 0.244291 + 0.160440i
\(349\) 11.7515 + 8.53797i 0.629044 + 0.457027i 0.856069 0.516862i \(-0.172900\pi\)
−0.227025 + 0.973889i \(0.572900\pi\)
\(350\) −2.66642 + 8.91727i −0.142526 + 0.476648i
\(351\) 3.29066 0.175642
\(352\) 0 0
\(353\) 1.82843 0.0973174 0.0486587 0.998815i \(-0.484505\pi\)
0.0486587 + 0.998815i \(0.484505\pi\)
\(354\) 0.544176 1.81988i 0.0289226 0.0967254i
\(355\) 13.6720 + 9.93327i 0.725633 + 0.527203i
\(356\) 17.8151 + 11.7002i 0.944200 + 0.620110i
\(357\) 7.11706 + 2.31247i 0.376675 + 0.122389i
\(358\) −10.9360 + 8.34681i −0.577985 + 0.441142i
\(359\) 2.66220 1.93420i 0.140505 0.102083i −0.515312 0.857003i \(-0.672324\pi\)
0.655818 + 0.754919i \(0.272324\pi\)
\(360\) −13.6214 16.2005i −0.717913 0.853842i
\(361\) 4.27322 + 13.1516i 0.224906 + 0.692190i
\(362\) 2.12723 3.07813i 0.111805 0.161783i
\(363\) 0 0
\(364\) −3.17157 8.39119i −0.166236 0.439818i
\(365\) 0.770135 + 2.37023i 0.0403107 + 0.124064i
\(366\) 1.27754 + 3.63742i 0.0667782 + 0.190131i
\(367\) −13.0852 18.0103i −0.683043 0.940128i 0.316922 0.948452i \(-0.397351\pi\)
−0.999965 + 0.00832319i \(0.997351\pi\)
\(368\) −23.4466 + 10.1509i −1.22224 + 0.529153i
\(369\) 27.0032 + 8.77389i 1.40573 + 0.456750i
\(370\) −18.0955 + 0.427203i −0.940738 + 0.0222092i
\(371\) 14.4742 19.9221i 0.751464 1.03430i
\(372\) −0.567704 0.708488i −0.0294341 0.0367334i
\(373\) 0.233860 0.0121088 0.00605440 0.999982i \(-0.498073\pi\)
0.00605440 + 0.999982i \(0.498073\pi\)
\(374\) 0 0
\(375\) 3.28772i 0.169777i
\(376\) 0 0
\(377\) −7.25734 5.27276i −0.373772 0.271561i
\(378\) −11.2319 + 0.265166i −0.577705 + 0.0136387i
\(379\) −4.96623 + 15.2845i −0.255098 + 0.785112i 0.738712 + 0.674021i \(0.235434\pi\)
−0.993810 + 0.111091i \(0.964566\pi\)
\(380\) 12.0200 0.567863i 0.616615 0.0291307i
\(381\) −0.189197 + 0.137459i −0.00969283 + 0.00704226i
\(382\) −22.6438 + 7.95299i −1.15856 + 0.406910i
\(383\) 6.93823 2.25437i 0.354527 0.115193i −0.126338 0.991987i \(-0.540323\pi\)
0.480865 + 0.876794i \(0.340323\pi\)
\(384\) 2.16148 + 4.15804i 0.110303 + 0.212189i
\(385\) 0 0
\(386\) −10.3431 + 14.9666i −0.526452 + 0.761781i
\(387\) 17.3025 5.62191i 0.879533 0.285778i
\(388\) 3.94912 14.4403i 0.200486 0.733095i
\(389\) −19.1495 26.3570i −0.970916 1.33635i −0.941583 0.336782i \(-0.890661\pi\)
−0.0293336 0.999570i \(-0.509339\pi\)
\(390\) −1.28168 1.67926i −0.0649005 0.0850327i
\(391\) −10.8366 + 33.3517i −0.548032 + 1.68667i
\(392\) 4.06642 + 10.0359i 0.205385 + 0.506889i
\(393\) −1.66102 + 2.28620i −0.0837875 + 0.115324i
\(394\) 4.22837 14.1409i 0.213022 0.712407i
\(395\) 24.6250i 1.23902i
\(396\) 0 0
\(397\) 22.4499i 1.12673i −0.826208 0.563365i \(-0.809506\pi\)
0.826208 0.563365i \(-0.190494\pi\)
\(398\) 28.6786 + 8.57541i 1.43753 + 0.429846i
\(399\) 1.82195 2.50770i 0.0912117 0.125542i
\(400\) −1.74383 + 7.80763i −0.0871917 + 0.390381i
\(401\) −1.49207 + 4.59211i −0.0745102 + 0.229319i −0.981375 0.192104i \(-0.938469\pi\)
0.906864 + 0.421422i \(0.138469\pi\)
\(402\) 2.82701 2.15769i 0.140998 0.107616i
\(403\) 0.878009 + 1.20848i 0.0437367 + 0.0601985i
\(404\) −9.10174 + 33.2813i −0.452829 + 1.65581i
\(405\) 18.8349 6.11983i 0.935914 0.304097i
\(406\) 25.1961 + 17.4125i 1.25046 + 0.864169i
\(407\) 0 0
\(408\) 6.24264 + 1.54985i 0.309057 + 0.0767288i
\(409\) 1.79173 0.582168i 0.0885952 0.0287863i −0.264384 0.964417i \(-0.585169\pi\)
0.352979 + 0.935631i \(0.385169\pi\)
\(410\) −12.4466 35.4380i −0.614695 1.75016i
\(411\) 2.90096 2.10767i 0.143094 0.103964i
\(412\) −1.70511 36.0924i −0.0840048 1.77814i
\(413\) 3.29734 10.1482i 0.162252 0.499359i
\(414\) −0.603016 25.5425i −0.0296366 1.25535i
\(415\) −9.73527 7.07309i −0.477886 0.347204i
\(416\) −3.22954 7.00155i −0.158341 0.343279i
\(417\) 8.15447i 0.399326i
\(418\) 0 0
\(419\) 16.1421 0.788595 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(420\) 4.51004 + 5.62848i 0.220067 + 0.274642i
\(421\) 4.39858 6.05413i 0.214374 0.295060i −0.688265 0.725460i \(-0.741627\pi\)
0.902639 + 0.430399i \(0.141627\pi\)
\(422\) 0.303620 + 12.8607i 0.0147800 + 0.626050i
\(423\) 0 0
\(424\) 11.1983 17.9610i 0.543840 0.872263i
\(425\) 6.45410 + 8.88331i 0.313070 + 0.430904i
\(426\) 3.53025 1.23990i 0.171041 0.0600734i
\(427\) 6.69234 + 20.5969i 0.323865 + 0.996753i
\(428\) −16.2879 + 6.15626i −0.787307 + 0.297574i
\(429\) 0 0
\(430\) −19.7990 13.6827i −0.954792 0.659838i
\(431\) −0.667935 2.05569i −0.0321733 0.0990192i 0.933680 0.358108i \(-0.116578\pi\)
−0.965854 + 0.259088i \(0.916578\pi\)
\(432\) −9.61384 + 0.910405i −0.462546 + 0.0438019i
\(433\) 14.0309 10.1940i 0.674282 0.489895i −0.197174 0.980369i \(-0.563176\pi\)
0.871456 + 0.490474i \(0.163176\pi\)
\(434\) −3.09426 4.05409i −0.148529 0.194603i
\(435\) 6.85950 + 2.22879i 0.328888 + 0.106862i
\(436\) −4.55719 2.99297i −0.218250 0.143337i
\(437\) 11.7515 + 8.53797i 0.562151 + 0.408427i
\(438\) 0.528663 + 0.158080i 0.0252605 + 0.00755334i
\(439\) 34.5035 1.64676 0.823380 0.567490i \(-0.192085\pi\)
0.823380 + 0.567490i \(0.192085\pi\)
\(440\) 0 0
\(441\) −10.8284 −0.515639
\(442\) −10.1394 3.03187i −0.482283 0.144211i
\(443\) −21.3695 15.5259i −1.01530 0.737657i −0.0499842 0.998750i \(-0.515917\pi\)
−0.965314 + 0.261093i \(0.915917\pi\)
\(444\) −2.19997 + 3.34974i −0.104406 + 0.158972i
\(445\) 26.8154 + 8.71285i 1.27117 + 0.413029i
\(446\) 3.59993 + 4.71663i 0.170462 + 0.223339i
\(447\) 7.07307 5.13889i 0.334545 0.243061i
\(448\) 11.5875 + 23.6379i 0.547456 + 1.11679i
\(449\) 4.93518 + 15.1889i 0.232905 + 0.716809i 0.997392 + 0.0721698i \(0.0229923\pi\)
−0.764487 + 0.644639i \(0.777008\pi\)
\(450\) −6.58132 4.54822i −0.310246 0.214405i
\(451\) 0 0
\(452\) 4.36396 + 11.5460i 0.205263 + 0.543076i
\(453\) −1.68480 5.18529i −0.0791590 0.243626i
\(454\) 17.6856 6.21156i 0.830024 0.291523i
\(455\) −6.97521 9.60056i −0.327003 0.450081i
\(456\) 1.40960 2.26085i 0.0660105 0.105874i
\(457\) 21.6281 + 7.02738i 1.01172 + 0.328727i 0.767539 0.641003i \(-0.221481\pi\)
0.244180 + 0.969730i \(0.421481\pi\)
\(458\) −0.338087 14.3207i −0.0157978 0.669161i
\(459\) −7.79079 + 10.7231i −0.363643 + 0.500511i
\(460\) −26.3760 + 21.1348i −1.22979 + 0.985414i
\(461\) −3.85525 −0.179557 −0.0897783 0.995962i \(-0.528616\pi\)
−0.0897783 + 0.995962i \(0.528616\pi\)
\(462\) 0 0
\(463\) 22.2619i 1.03460i −0.855804 0.517300i \(-0.826937\pi\)
0.855804 0.517300i \(-0.173063\pi\)
\(464\) 22.6615 + 13.3968i 1.05203 + 0.621933i
\(465\) −0.971638 0.705936i −0.0450586 0.0327370i
\(466\) 0.277573 + 11.7574i 0.0128583 + 0.544653i
\(467\) 11.1466 34.3056i 0.515802 1.58747i −0.266016 0.963969i \(-0.585708\pi\)
0.781818 0.623506i \(-0.214292\pi\)
\(468\) 7.70190 0.363861i 0.356020 0.0168195i
\(469\) 16.1624 11.7427i 0.746310 0.542226i
\(470\) 0 0
\(471\) 0.178825 0.0581038i 0.00823982 0.00267728i
\(472\) 2.20992 8.90135i 0.101720 0.409718i
\(473\) 0 0
\(474\) −4.48528 3.09969i −0.206016 0.142373i
\(475\) 4.32561 1.40548i 0.198473 0.0644877i
\(476\) 34.8528 + 9.53150i 1.59748 + 0.436876i
\(477\) 12.4411 + 17.1237i 0.569637 + 0.784039i
\(478\) 6.12921 4.67808i 0.280344 0.213970i
\(479\) 8.45395 26.0186i 0.386271 1.18882i −0.549283 0.835636i \(-0.685099\pi\)
0.935554 0.353184i \(-0.114901\pi\)
\(480\) 4.20910 + 4.55146i 0.192118 + 0.207745i
\(481\) 3.87572 5.33447i 0.176718 0.243231i
\(482\) −6.16255 1.84271i −0.280696 0.0839332i
\(483\) 8.70626i 0.396149i
\(484\) 0 0
\(485\) 19.8042i 0.899262i
\(486\) 4.19053 14.0143i 0.190086 0.635702i
\(487\) 15.6619 21.5567i 0.709706 0.976827i −0.290097 0.956997i \(-0.593688\pi\)
0.999803 0.0198298i \(-0.00631245\pi\)
\(488\) 6.99045 + 17.2523i 0.316443 + 0.780977i
\(489\) −1.64203 + 5.05364i −0.0742550 + 0.228533i
\(490\) 8.69100 + 11.3869i 0.392619 + 0.514410i
\(491\) −15.1229 20.8149i −0.682487 0.939362i 0.317474 0.948267i \(-0.397166\pi\)
−0.999960 + 0.00890465i \(0.997166\pi\)
\(492\) −8.02153 2.19372i −0.361638 0.0989004i
\(493\) 34.3642 11.1656i 1.54768 0.502873i
\(494\) −2.49221 + 3.60625i −0.112130 + 0.162253i
\(495\) 0 0
\(496\) −2.89949 3.28772i −0.130191 0.147623i
\(497\) 19.9900 6.49516i 0.896676 0.291348i
\(498\) −2.51375 + 0.882884i −0.112644 + 0.0395630i
\(499\) −14.9549 + 10.8654i −0.669474 + 0.486401i −0.869849 0.493318i \(-0.835784\pi\)
0.200375 + 0.979719i \(0.435784\pi\)
\(500\) −0.749123 15.8568i −0.0335018 0.709139i
\(501\) 2.80387 8.62944i 0.125268 0.385535i
\(502\) 26.0344 0.614628i 1.16197 0.0274322i
\(503\) −3.11896 2.26606i −0.139068 0.101038i 0.516076 0.856543i \(-0.327392\pi\)
−0.655144 + 0.755504i \(0.727392\pi\)
\(504\) −26.2593 + 1.86258i −1.16968 + 0.0829660i
\(505\) 45.6438i 2.03112i
\(506\) 0 0
\(507\) −4.61522 −0.204969
\(508\) −0.881183 + 0.706082i −0.0390962 + 0.0313273i
\(509\) −20.9714 + 28.8647i −0.929542 + 1.27940i 0.0304965 + 0.999535i \(0.490291\pi\)
−0.960038 + 0.279869i \(0.909709\pi\)
\(510\) 8.50657 0.200826i 0.376677 0.00889271i
\(511\) 2.94798 + 0.957857i 0.130411 + 0.0423731i
\(512\) 11.3724 + 19.5619i 0.502592 + 0.864524i
\(513\) 3.22705 + 4.44165i 0.142478 + 0.196104i
\(514\) 3.03925 + 8.65336i 0.134056 + 0.381683i
\(515\) −14.7707 45.4595i −0.650875 2.00319i
\(516\) −4.98442 + 1.88393i −0.219427 + 0.0829356i
\(517\) 0 0
\(518\) −12.7990 + 18.5203i −0.562355 + 0.813733i
\(519\) 0.697869 + 2.14782i 0.0306330 + 0.0942788i
\(520\) −6.56425 7.80712i −0.287861 0.342365i
\(521\) 16.2715 11.8219i 0.712868 0.517929i −0.171230 0.985231i \(-0.554774\pi\)
0.884098 + 0.467302i \(0.154774\pi\)
\(522\) −20.9264 + 15.9719i −0.915926 + 0.699073i
\(523\) 16.1892 + 5.26019i 0.707905 + 0.230012i 0.640771 0.767732i \(-0.278615\pi\)
0.0671335 + 0.997744i \(0.478615\pi\)
\(524\) −7.49027 + 11.4049i −0.327214 + 0.498227i
\(525\) 2.20544 + 1.60234i 0.0962532 + 0.0699320i
\(526\) −7.77052 + 25.9868i −0.338811 + 1.13308i
\(527\) −6.01673 −0.262093
\(528\) 0 0
\(529\) −17.7990 −0.773869
\(530\) 8.02156 26.8264i 0.348434 1.16526i
\(531\) 7.41996 + 5.39092i 0.321999 + 0.233946i
\(532\) 8.21597 12.5099i 0.356208 0.542373i
\(533\) 13.0130 + 4.22819i 0.563656 + 0.183143i
\(534\) 4.96239 3.78751i 0.214744 0.163902i
\(535\) −18.6354 + 13.5394i −0.805678 + 0.585359i
\(536\) 13.1432 11.0508i 0.567698 0.477322i
\(537\) 1.24516 + 3.83222i 0.0537328 + 0.165373i
\(538\) −11.0011 + 15.9188i −0.474293 + 0.686307i
\(539\) 0 0
\(540\) −11.9497 + 4.51658i −0.514235 + 0.194363i
\(541\) 5.33108 + 16.4074i 0.229201 + 0.705408i 0.997838 + 0.0657228i \(0.0209353\pi\)
−0.768637 + 0.639685i \(0.779065\pi\)
\(542\) 5.90393 + 16.8097i 0.253595 + 0.722037i
\(543\) −0.644157 0.886607i −0.0276434 0.0380479i
\(544\) 30.4617 + 6.05256i 1.30603 + 0.259501i
\(545\) −6.85950 2.22879i −0.293829 0.0954707i
\(546\) −2.62669 + 0.0620116i −0.112412 + 0.00265385i
\(547\) −24.2504 + 33.3778i −1.03687 + 1.42713i −0.137210 + 0.990542i \(0.543813\pi\)
−0.899661 + 0.436589i \(0.856187\pi\)
\(548\) 13.5112 10.8264i 0.577171 0.462481i
\(549\) −18.6148 −0.794459
\(550\) 0 0
\(551\) 14.9666i 0.637600i
\(552\) 0.529464 + 7.46456i 0.0225355 + 0.317713i
\(553\) −24.7781 18.0023i −1.05367 0.765538i
\(554\) −5.45062 + 0.128680i −0.231575 + 0.00546709i
\(555\) −1.63826 + 5.04204i −0.0695402 + 0.214023i
\(556\) −1.85804 39.3294i −0.0787983 1.66794i
\(557\) −19.2813 + 14.0087i −0.816977 + 0.593568i −0.915845 0.401532i \(-0.868478\pi\)
0.0988682 + 0.995101i \(0.468478\pi\)
\(558\) 4.13594 1.45263i 0.175088 0.0614949i
\(559\) 8.33815 2.70923i 0.352666 0.114588i
\(560\) 23.0346 + 26.1188i 0.973390 + 1.10372i
\(561\) 0 0
\(562\) −5.17157 + 7.48331i −0.218150 + 0.315665i
\(563\) −11.1851 + 3.63426i −0.471396 + 0.153166i −0.535075 0.844805i \(-0.679717\pi\)
0.0636788 + 0.997970i \(0.479717\pi\)
\(564\) 0 0
\(565\) 9.59762 + 13.2100i 0.403775 + 0.555749i
\(566\) −1.61646 2.11789i −0.0679450 0.0890216i
\(567\) 7.61155 23.4259i 0.319655 0.983797i
\(568\) 16.7440 6.78449i 0.702564 0.284671i
\(569\) −1.56603 + 2.15545i −0.0656513 + 0.0903612i −0.840580 0.541687i \(-0.817786\pi\)
0.774929 + 0.632049i \(0.217786\pi\)
\(570\) 1.00972 3.37679i 0.0422925 0.141438i
\(571\) 21.9607i 0.919028i 0.888170 + 0.459514i \(0.151976\pi\)
−0.888170 + 0.459514i \(0.848024\pi\)
\(572\) 0 0
\(573\) 7.02938i 0.293656i
\(574\) −44.7576 13.3833i −1.86814 0.558608i
\(575\) −7.50885 + 10.3350i −0.313141 + 0.431001i
\(576\) −22.4009 + 3.19387i −0.933370 + 0.133078i
\(577\) −9.77341 + 30.0795i −0.406872 + 1.25222i 0.512449 + 0.858717i \(0.328738\pi\)
−0.919322 + 0.393507i \(0.871262\pi\)
\(578\) 14.7742 11.2763i 0.614525 0.469032i
\(579\) 3.13205 + 4.31090i 0.130164 + 0.179155i
\(580\) 33.5915 + 9.18657i 1.39481 + 0.381452i
\(581\) −14.2341 + 4.62494i −0.590530 + 0.191875i
\(582\) −3.60720 2.49287i −0.149523 0.103333i
\(583\) 0 0
\(584\) 2.58579 + 0.641967i 0.107001 + 0.0265648i
\(585\) 9.70080 3.15198i 0.401079 0.130318i
\(586\) 6.80729 + 19.3817i 0.281206 + 0.800651i
\(587\) 24.5005 17.8006i 1.01124 0.734711i 0.0467739 0.998906i \(-0.485106\pi\)
0.964470 + 0.264194i \(0.0851060\pi\)
\(588\) 3.16804 0.149668i 0.130648 0.00617219i
\(589\) −0.770135 + 2.37023i −0.0317329 + 0.0976637i
\(590\) −0.286356 12.1295i −0.0117891 0.499362i
\(591\) −3.49735 2.54097i −0.143862 0.104522i
\(592\) −9.84728 + 16.6572i −0.404721 + 0.684608i
\(593\) 1.88393i 0.0773639i −0.999252 0.0386819i \(-0.987684\pi\)
0.999252 0.0386819i \(-0.0123159\pi\)
\(594\) 0 0
\(595\) 47.7990 1.95957
\(596\) 32.9428 26.3967i 1.34939 1.08125i
\(597\) 5.15326 7.09285i 0.210909 0.290291i
\(598\) −0.290597 12.3091i −0.0118834 0.503356i
\(599\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(600\) 1.98834 + 1.23969i 0.0811736 + 0.0506103i
\(601\) −19.2673 26.5192i −0.785930 1.08174i −0.994603 0.103754i \(-0.966915\pi\)
0.208673 0.977985i \(-0.433085\pi\)
\(602\) −28.2420 + 9.91921i −1.15106 + 0.404277i
\(603\) 5.30631 + 16.3311i 0.216090 + 0.665055i
\(604\) −9.30739 24.6250i −0.378712 1.00198i
\(605\) 0 0
\(606\) 8.31371 + 5.74544i 0.337721 + 0.233393i
\(607\) −8.97735 27.6295i −0.364380 1.12145i −0.950369 0.311126i \(-0.899294\pi\)
0.585989 0.810319i \(-0.300706\pi\)
\(608\) 6.28342 11.2254i 0.254826 0.455249i
\(609\) 7.25734 5.27276i 0.294082 0.213663i
\(610\) 14.9404 + 19.5749i 0.604919 + 0.792564i
\(611\) 0 0
\(612\) −17.0489 + 25.9593i −0.689162 + 1.04934i
\(613\) 21.6760 + 15.7485i 0.875484 + 0.636077i 0.932053 0.362322i \(-0.118016\pi\)
−0.0565685 + 0.998399i \(0.518016\pi\)
\(614\) 30.2841 + 9.05547i 1.22217 + 0.365449i
\(615\) −11.0011 −0.443609
\(616\) 0 0
\(617\) 33.1127 1.33307 0.666534 0.745475i \(-0.267777\pi\)
0.666534 + 0.745475i \(0.267777\pi\)
\(618\) −10.1394 3.03187i −0.407867 0.121960i
\(619\) −25.5058 18.5311i −1.02516 0.744826i −0.0578297 0.998326i \(-0.518418\pi\)
−0.967335 + 0.253501i \(0.918418\pi\)
\(620\) −4.84711 3.18337i −0.194664 0.127847i
\(621\) −14.6658 4.76522i −0.588520 0.191222i
\(622\) 12.8418 + 16.8253i 0.514907 + 0.674632i
\(623\) 28.3707 20.6125i 1.13665 0.825822i
\(624\) −2.24829 + 0.212907i −0.0900037 + 0.00852311i
\(625\) −9.57953 29.4828i −0.383181 1.17931i
\(626\) −9.10777 6.29420i −0.364020 0.251567i
\(627\) 0 0
\(628\) 0.849242 0.320983i 0.0338885 0.0128086i
\(629\) 8.20722 + 25.2592i 0.327243 + 1.00715i
\(630\) −32.8574 + 11.5402i −1.30907 + 0.459774i
\(631\) 6.86469 + 9.44844i 0.273279 + 0.376136i 0.923493 0.383615i \(-0.125321\pi\)
−0.650214 + 0.759751i \(0.725321\pi\)
\(632\) −22.3390 13.9280i −0.888598 0.554025i
\(633\) 3.58346 + 1.16434i 0.142430 + 0.0462782i
\(634\) 0.514706 + 21.8019i 0.0204416 + 0.865864i
\(635\) −0.878009 + 1.20848i −0.0348427 + 0.0479569i
\(636\) −3.87652 4.83786i −0.153714 0.191834i
\(637\) −5.21828 −0.206756
\(638\) 0 0
\(639\) 18.0663i 0.714693i
\(640\) 21.3378 + 20.9929i 0.843449 + 0.829815i
\(641\) 14.4235 + 10.4793i 0.569694 + 0.413907i 0.834994 0.550259i \(-0.185471\pi\)
−0.265300 + 0.964166i \(0.585471\pi\)
\(642\) 0.120369 + 5.09859i 0.00475059 + 0.201225i
\(643\) 0.190115 0.585112i 0.00749739 0.0230746i −0.947238 0.320532i \(-0.896138\pi\)
0.954735 + 0.297457i \(0.0961385\pi\)
\(644\) 1.98377 + 41.9907i 0.0781713 + 1.65467i
\(645\) −5.70279 + 4.14332i −0.224547 + 0.163143i
\(646\) −5.85108 16.6592i −0.230208 0.655448i
\(647\) −22.3934 + 7.27607i −0.880377 + 0.286052i −0.714114 0.700030i \(-0.753170\pi\)
−0.166263 + 0.986081i \(0.553170\pi\)
\(648\) 5.10135 20.5478i 0.200400 0.807193i
\(649\) 0 0
\(650\) −3.17157 2.19181i −0.124399 0.0859699i
\(651\) −1.42065 + 0.461597i −0.0556796 + 0.0180914i
\(652\) −6.76807 + 24.7481i −0.265058 + 0.969210i
\(653\) −21.5051 29.5992i −0.841558 1.15830i −0.985660 0.168742i \(-0.946030\pi\)
0.144103 0.989563i \(-0.453970\pi\)
\(654\) −1.26940 + 0.968861i −0.0496375 + 0.0378855i
\(655\) −5.57781 + 17.1667i −0.217943 + 0.670760i
\(656\) −39.1881 8.75266i −1.53004 0.341734i
\(657\) −1.56603 + 2.15545i −0.0610965 + 0.0840922i
\(658\) 0 0
\(659\) 10.9804i 0.427735i −0.976863 0.213867i \(-0.931394\pi\)
0.976863 0.213867i \(-0.0686060\pi\)
\(660\) 0 0
\(661\) 12.3209i 0.479227i 0.970868 + 0.239613i \(0.0770207\pi\)
−0.970868 + 0.239613i \(0.922979\pi\)
\(662\) −7.32149 + 24.4852i −0.284558 + 0.951642i
\(663\) −1.82195 + 2.50770i −0.0707588 + 0.0973911i
\(664\) −11.9228 + 4.83096i −0.462693 + 0.187478i
\(665\) 6.11822 18.8300i 0.237255 0.730194i
\(666\) −11.7401 15.3819i −0.454920 0.596036i
\(667\) 24.7091 + 34.0091i 0.956738 + 1.31684i
\(668\) 11.5570 42.2591i 0.447152 1.63505i
\(669\) 1.65282 0.537032i 0.0639015 0.0207629i
\(670\) 12.9146 18.6875i 0.498934 0.721962i
\(671\) 0 0
\(672\) 7.65685 0.907878i 0.295370 0.0350222i
\(673\) 36.3966 11.8260i 1.40299 0.455858i 0.492831 0.870125i \(-0.335962\pi\)
0.910156 + 0.414267i \(0.135962\pi\)
\(674\) 25.5318 8.96732i 0.983447 0.345408i
\(675\) −3.90628 + 2.83808i −0.150353 + 0.109238i
\(676\) −22.2594 + 1.05160i −0.856132 + 0.0404462i
\(677\) −0.770135 + 2.37023i −0.0295987 + 0.0910954i −0.964765 0.263115i \(-0.915250\pi\)
0.935166 + 0.354210i \(0.115250\pi\)
\(678\) 3.61422 0.0853256i 0.138803 0.00327691i
\(679\) −19.9273 14.4780i −0.764740 0.555616i
\(680\) 40.9818 2.90686i 1.57158 0.111473i
\(681\) 5.49019i 0.210384i
\(682\) 0 0
\(683\) −36.4264 −1.39382 −0.696909 0.717160i \(-0.745442\pi\)
−0.696909 + 0.717160i \(0.745442\pi\)
\(684\) 8.04415 + 10.0390i 0.307576 + 0.383851i
\(685\) 13.4626 18.5296i 0.514378 0.707981i
\(686\) −14.7554 + 0.348350i −0.563364 + 0.0133001i
\(687\) −3.99025 1.29651i −0.152238 0.0494650i
\(688\) −23.6108 + 10.2220i −0.900155 + 0.389711i
\(689\) 5.99542 + 8.25199i 0.228407 + 0.314376i
\(690\) 3.28047 + 9.34016i 0.124885 + 0.355574i
\(691\) −2.70617 8.32874i −0.102948 0.316840i 0.886296 0.463120i \(-0.153270\pi\)
−0.989243 + 0.146280i \(0.953270\pi\)
\(692\) 3.85525 + 10.2000i 0.146554 + 0.387747i
\(693\) 0 0
\(694\) 3.34315 4.83756i 0.126904 0.183631i
\(695\) −16.0954 49.5367i −0.610535 1.87903i
\(696\) 5.90163 4.96210i 0.223701 0.188088i
\(697\) −44.5871 + 32.3944i −1.68886 + 1.22703i
\(698\) 16.3295 12.4634i 0.618082 0.471746i
\(699\) 3.27604 + 1.06445i 0.123911 + 0.0402612i
\(700\) 11.0020 + 7.22566i 0.415838 + 0.273104i
\(701\) −21.1084 15.3361i −0.797253 0.579238i 0.112854 0.993612i \(-0.464001\pi\)
−0.910107 + 0.414374i \(0.864001\pi\)
\(702\) 1.33321 4.45863i 0.0503188 0.168280i
\(703\) 11.0011 0.414916
\(704\) 0 0
\(705\) 0 0
\(706\) 0.740787 2.47740i 0.0278799 0.0932383i
\(707\) 45.9275 + 33.3683i 1.72728 + 1.25494i
\(708\) −2.24535 1.47465i −0.0843853 0.0554206i
\(709\) −43.9975 14.2957i −1.65236 0.536885i −0.673111 0.739542i \(-0.735042\pi\)
−0.979250 + 0.202657i \(0.935042\pi\)
\(710\) 18.9982 14.5002i 0.712988 0.544183i
\(711\) 21.2976 15.4736i 0.798722 0.580305i
\(712\) 23.0709 19.3980i 0.864617 0.726972i
\(713\) −2.16312 6.65740i −0.0810094 0.249321i
\(714\) 6.01673 8.70626i 0.225170 0.325824i
\(715\) 0 0
\(716\) 6.87868 + 18.1993i 0.257068 + 0.680139i
\(717\) −0.697869 2.14782i −0.0260624 0.0802118i
\(718\) −1.54213 4.39075i −0.0575517 0.163861i
\(719\) 2.99975 + 4.12880i 0.111872 + 0.153978i 0.861281 0.508129i \(-0.169663\pi\)
−0.749410 + 0.662107i \(0.769663\pi\)
\(720\) −27.4694 + 11.8925i −1.02372 + 0.443209i
\(721\) −56.5404 18.3711i −2.10567 0.684175i
\(722\) 19.5509 0.461564i 0.727609 0.0171776i
\(723\) −1.10735 + 1.52413i −0.0411827 + 0.0566832i
\(724\) −3.30882 4.12937i −0.122971 0.153467i
\(725\) 13.1626 0.488848
\(726\) 0 0
\(727\) 8.57922i 0.318186i 0.987264 + 0.159093i \(0.0508569\pi\)
−0.987264 + 0.159093i \(0.949143\pi\)
\(728\) −12.6545 + 0.897588i −0.469007 + 0.0332668i
\(729\) 14.7011 + 10.6810i 0.544486 + 0.395592i
\(730\) 3.52354 0.0831847i 0.130412 0.00307881i
\(731\) −10.9125 + 33.5853i −0.403615 + 1.24220i
\(732\) 5.44607 0.257288i 0.201292 0.00950965i
\(733\) −22.2111 + 16.1373i −0.820386 + 0.596045i −0.916823 0.399294i \(-0.869255\pi\)
0.0964371 + 0.995339i \(0.469255\pi\)
\(734\) −29.7043 + 10.4328i −1.09640 + 0.385081i
\(735\) 3.99025 1.29651i 0.147183 0.0478225i
\(736\) 4.25447 + 35.8813i 0.156822 + 1.32260i
\(737\) 0 0
\(738\) 22.8284 33.0329i 0.840326 1.21596i
\(739\) −45.3553 + 14.7368i −1.66842 + 0.542103i −0.982611 0.185678i \(-0.940552\pi\)
−0.685810 + 0.727781i \(0.740552\pi\)
\(740\) −6.75254 + 24.6913i −0.248228 + 0.907670i
\(741\) 0.754677 + 1.03872i 0.0277238 + 0.0381585i
\(742\) −21.1289 27.6831i −0.775666 1.01628i
\(743\) −7.78602 + 23.9629i −0.285641 + 0.879114i 0.700564 + 0.713589i \(0.252932\pi\)
−0.986206 + 0.165524i \(0.947068\pi\)
\(744\) −1.18996 + 0.482159i −0.0436261 + 0.0176768i
\(745\) 32.8242 45.1786i 1.20258 1.65522i
\(746\) 0.0947483 0.316865i 0.00346898 0.0116013i
\(747\) 12.8643i 0.470680i
\(748\) 0 0
\(749\) 28.6493i 1.04682i
\(750\) −4.45465 1.33202i −0.162661 0.0486385i
\(751\) −4.28806 + 5.90201i −0.156474 + 0.215367i −0.880055 0.474871i \(-0.842495\pi\)
0.723582 + 0.690239i \(0.242495\pi\)
\(752\) 0 0
\(753\) 2.35700 7.25410i 0.0858939 0.264354i
\(754\) −10.0846 + 7.69697i −0.367258 + 0.280307i
\(755\) −20.4696 28.1741i −0.744967 1.02536i
\(756\) −4.19131 + 15.3259i −0.152437 + 0.557398i
\(757\) −27.2471 + 8.85313i −0.990314 + 0.321772i −0.758988 0.651104i \(-0.774306\pi\)
−0.231325 + 0.972876i \(0.574306\pi\)
\(758\) 18.6975 + 12.9214i 0.679122 + 0.469328i
\(759\) 0 0
\(760\) 4.10051 16.5165i 0.148741 0.599116i
\(761\) 7.01320 2.27873i 0.254228 0.0826038i −0.179130 0.983825i \(-0.557328\pi\)
0.433359 + 0.901222i \(0.357328\pi\)
\(762\) 0.109596 + 0.312041i 0.00397023 + 0.0113041i
\(763\) −7.25734 + 5.27276i −0.262733 + 0.190887i
\(764\) 1.60168 + 33.9030i 0.0579467 + 1.22657i
\(765\) −12.6959 + 39.0740i −0.459021 + 1.41272i
\(766\) −0.243501 10.3142i −0.00879806 0.372668i
\(767\) 3.57572 + 2.59791i 0.129112 + 0.0938052i
\(768\) 6.50961 1.24404i 0.234895 0.0448904i
\(769\) 2.82590i 0.101905i 0.998701 + 0.0509523i \(0.0162256\pi\)
−0.998701 + 0.0509523i \(0.983774\pi\)
\(770\) 0 0
\(771\) 2.68629 0.0967444
\(772\) 16.0883 + 20.0780i 0.579031 + 0.722624i
\(773\) −5.15326 + 7.09285i −0.185350 + 0.255112i −0.891573 0.452877i \(-0.850398\pi\)
0.706223 + 0.707989i \(0.250398\pi\)
\(774\) −0.607240 25.7214i −0.0218268 0.924538i
\(775\) −2.08454 0.677307i −0.0748788 0.0243296i
\(776\) −17.9657 11.2013i −0.644931 0.402103i
\(777\) 3.87572 + 5.33447i 0.139041 + 0.191373i
\(778\) −43.4704 + 15.2678i −1.55849 + 0.547376i
\(779\) 7.05437 + 21.7111i 0.252749 + 0.777882i
\(780\) −2.79457 + 1.05625i −0.100062 + 0.0378197i
\(781\) 0 0
\(782\) 40.7990 + 28.1954i 1.45897 + 1.00826i
\(783\) 4.90988 + 15.1111i 0.175465 + 0.540025i
\(784\) 15.2455 1.44371i 0.544482 0.0515610i
\(785\) 0.971638 0.705936i 0.0346792 0.0251959i
\(786\) 2.42470 + 3.17684i 0.0864860 + 0.113314i
\(787\) 31.3289 + 10.1794i 1.11675 + 0.362855i 0.808528 0.588458i \(-0.200265\pi\)
0.308226 + 0.951313i \(0.400265\pi\)
\(788\) −17.4469 11.4584i −0.621519 0.408187i
\(789\) 6.42711 + 4.66957i 0.228811 + 0.166241i
\(790\) −33.3654 9.97683i −1.18709 0.354960i
\(791\) 20.3085 0.722088
\(792\) 0 0
\(793\) −8.97056 −0.318554
\(794\) −30.4183 9.09560i −1.07950 0.322791i
\(795\) −6.63476 4.82043i −0.235311 0.170963i
\(796\) 23.2383 35.3834i 0.823659 1.25413i
\(797\) 41.9130 + 13.6183i 1.48463 + 0.482387i 0.935493 0.353344i \(-0.114955\pi\)
0.549140 + 0.835731i \(0.314955\pi\)
\(798\) −2.65961 3.48463i −0.0941493 0.123354i
\(799\) 0 0
\(800\) 9.87233 + 5.52605i 0.349039 + 0.195375i
\(801\) 9.31443 + 28.6669i 0.329109 + 1.01289i
\(802\) 5.61750 + 3.88215i 0.198361 + 0.137083i
\(803\) 0 0
\(804\) −1.77817 4.70461i −0.0627114 0.165919i
\(805\) 17.1846 + 52.8887i 0.605677 + 1.86408i
\(806\) 1.99313 0.700033i 0.0702051 0.0246576i
\(807\) 3.33131 + 4.58515i 0.117268 + 0.161405i
\(808\) 41.4065 + 25.8162i 1.45668 + 0.908211i
\(809\) 0.895864 + 0.291084i 0.0314969 + 0.0102340i 0.324723 0.945809i \(-0.394729\pi\)
−0.293226 + 0.956043i \(0.594729\pi\)
\(810\) −0.661022 27.9996i −0.0232260 0.983804i
\(811\) −3.32205 + 4.57240i −0.116653 + 0.160559i −0.863350 0.504605i \(-0.831638\pi\)
0.746698 + 0.665164i \(0.231638\pi\)
\(812\) 33.8011 27.0844i 1.18618 0.950477i
\(813\) 5.21828 0.183013
\(814\) 0 0
\(815\) 33.9408i 1.18890i
\(816\) 4.62915 7.83046i 0.162053 0.274121i
\(817\) 11.8338 + 8.59778i 0.414013 + 0.300798i
\(818\) −0.0628817 2.66354i −0.00219861 0.0931286i
\(819\) 3.92028 12.0654i 0.136986 0.421599i
\(820\) −53.0591 + 2.50667i −1.85290 + 0.0875366i
\(821\) −17.2651 + 12.5438i −0.602556 + 0.437783i −0.846785 0.531935i \(-0.821465\pi\)
0.244229 + 0.969718i \(0.421465\pi\)
\(822\) −1.68044 4.78454i −0.0586120 0.166880i
\(823\) 34.1854 11.1075i 1.19163 0.387183i 0.354953 0.934884i \(-0.384497\pi\)
0.836674 + 0.547701i \(0.184497\pi\)
\(824\) −49.5937 12.3125i −1.72768 0.428927i
\(825\) 0 0
\(826\) −12.4142 8.57922i −0.431946 0.298509i
\(827\) −48.2602 + 15.6807i −1.67817 + 0.545271i −0.984556 0.175072i \(-0.943984\pi\)
−0.693617 + 0.720344i \(0.743984\pi\)
\(828\) −34.8528 9.53150i −1.21122 0.331243i
\(829\) 24.6153 + 33.8801i 0.854925 + 1.17670i 0.982756 + 0.184908i \(0.0591986\pi\)
−0.127831 + 0.991796i \(0.540801\pi\)
\(830\) −13.5278 + 10.3250i −0.469558 + 0.358386i
\(831\) −0.493468 + 1.51874i −0.0171182 + 0.0526844i
\(832\) −10.7951 + 1.53915i −0.374253 + 0.0533603i
\(833\) 12.3545 17.0045i 0.428059 0.589173i
\(834\) −11.0488 3.30378i −0.382588 0.114401i
\(835\) 57.9563i 2.00566i
\(836\) 0 0
\(837\) 2.64575i 0.0914505i
\(838\) 6.53999 21.8716i 0.225920 0.755541i
\(839\) −31.9679 + 44.0000i −1.10365 + 1.51905i −0.273203 + 0.961956i \(0.588083\pi\)
−0.830451 + 0.557092i \(0.811917\pi\)
\(840\) 9.45347 3.83044i 0.326176 0.132163i
\(841\) 4.42318 13.6131i 0.152523 0.469419i
\(842\) −6.42088 8.41263i −0.221278 0.289918i
\(843\) 1.56603 + 2.15545i 0.0539368 + 0.0742377i
\(844\) 17.5485 + 4.79914i 0.604043 + 0.165193i
\(845\) −28.0365 + 9.10961i −0.964485 + 0.313380i
\(846\) 0 0
\(847\) 0 0
\(848\) −19.7990 22.4499i −0.679900 0.770934i
\(849\) −0.742158 + 0.241142i −0.0254708 + 0.00827596i
\(850\) 14.6512 5.14583i 0.502532 0.176500i
\(851\) −24.9982 + 18.1623i −0.856928 + 0.622595i
\(852\) −0.249708 5.28561i −0.00855485 0.181082i
\(853\) 17.9547 55.2589i 0.614758 1.89203i 0.209579 0.977792i \(-0.432791\pi\)
0.405179 0.914237i \(-0.367209\pi\)
\(854\) 30.6189 0.722860i 1.04776 0.0247358i
\(855\) 13.7678 + 10.0029i 0.470847 + 0.342090i
\(856\) 1.74229 + 24.5633i 0.0595501 + 0.839557i
\(857\) 21.9607i 0.750165i −0.926992 0.375082i \(-0.877614\pi\)
0.926992 0.375082i \(-0.122386\pi\)
\(858\) 0 0
\(859\) −49.2426 −1.68014 −0.840069 0.542480i \(-0.817485\pi\)
−0.840069 + 0.542480i \(0.817485\pi\)
\(860\) −26.5607 + 21.2828i −0.905714 + 0.725739i
\(861\) −8.04249 + 11.0695i −0.274087 + 0.377249i
\(862\) −3.05595 + 0.0721457i −0.104086 + 0.00245729i
\(863\) −14.2341 4.62494i −0.484535 0.157435i 0.0565554 0.998399i \(-0.481988\pi\)
−0.541090 + 0.840965i \(0.681988\pi\)
\(864\) −2.66151 + 13.3950i −0.0905463 + 0.455707i
\(865\) 8.47881 + 11.6701i 0.288288 + 0.396794i
\(866\) −8.12767 23.1411i −0.276189 0.786367i
\(867\) −1.68218 5.17722i −0.0571298 0.175828i
\(868\) −6.74668 + 2.55000i −0.228997 + 0.0865528i
\(869\) 0 0
\(870\) 5.79899 8.39119i 0.196604 0.284488i
\(871\) 2.55714 + 7.87007i 0.0866454 + 0.266667i
\(872\) −5.90163 + 4.96210i −0.199854 + 0.168038i
\(873\) 17.1282 12.4443i 0.579700 0.421177i
\(874\) 16.3295 12.4634i 0.552355 0.421581i
\(875\) −24.8404 8.07115i −0.839760 0.272855i
\(876\) 0.428376 0.652259i 0.0144735 0.0220378i
\(877\) 23.6922 + 17.2134i 0.800029 + 0.581255i 0.910923 0.412577i \(-0.135371\pi\)
−0.110893 + 0.993832i \(0.535371\pi\)
\(878\) 13.9791 46.7500i 0.471771 1.57774i
\(879\) 6.01673 0.202939
\(880\) 0 0
\(881\) 6.51472 0.219486 0.109743 0.993960i \(-0.464997\pi\)
0.109743 + 0.993960i \(0.464997\pi\)
\(882\) −4.38714 + 14.6718i −0.147723 + 0.494026i
\(883\) 3.51368 + 2.55284i 0.118245 + 0.0859098i 0.645336 0.763899i \(-0.276717\pi\)
−0.527091 + 0.849809i \(0.676717\pi\)
\(884\) −8.21597 + 12.5099i −0.276333 + 0.420754i
\(885\) −3.37970 1.09813i −0.113607 0.0369133i
\(886\) −29.6945 + 22.6641i −0.997605 + 0.761414i
\(887\) 37.6492 27.3537i 1.26414 0.918448i 0.265182 0.964198i \(-0.414568\pi\)
0.998953 + 0.0457503i \(0.0145679\pi\)
\(888\) 3.64737 + 4.33796i 0.122398 + 0.145572i
\(889\) 0.574112 + 1.76693i 0.0192551 + 0.0592611i
\(890\) 22.6696 32.8032i 0.759888 1.09956i
\(891\) 0 0
\(892\) 7.84924 2.96673i 0.262812 0.0993336i
\(893\) 0 0
\(894\) −4.09721 11.6656i −0.137031 0.390156i
\(895\) 15.1282 + 20.8222i 0.505681 + 0.696010i
\(896\) 36.7225 6.12339i 1.22681 0.204568i
\(897\) −3.42975 1.11439i −0.114516 0.0372085i
\(898\) 22.5795 0.533064i 0.753488 0.0177886i
\(899\) −4.23940 + 5.83504i −0.141392 + 0.194609i
\(900\) −8.82897 + 7.07455i −0.294299 + 0.235818i
\(901\) −41.0848 −1.36873
\(902\) 0 0
\(903\) 8.76725i 0.291756i
\(904\) 17.4121 1.23505i 0.579118 0.0410770i
\(905\) −5.66312 4.11450i −0.188248 0.136771i
\(906\) −7.70834 + 0.181981i −0.256093 + 0.00604591i
\(907\) −10.3566 + 31.8744i −0.343886 + 1.05837i 0.618292 + 0.785949i \(0.287825\pi\)
−0.962178 + 0.272423i \(0.912175\pi\)
\(908\) −1.25097 26.4794i −0.0415148 0.878751i
\(909\) −39.4762 + 28.6811i −1.30934 + 0.951293i
\(910\) −15.8342 + 5.56131i −0.524897 + 0.184355i
\(911\) −42.7023 + 13.8748i −1.41479 + 0.459694i −0.913943 0.405842i \(-0.866978\pi\)
−0.500848 + 0.865535i \(0.666978\pi\)
\(912\) −2.49221 2.82590i −0.0825253 0.0935749i
\(913\) 0 0
\(914\) 18.2843 26.4575i 0.604790 0.875137i
\(915\) 6.85950 2.22879i 0.226768 0.0736814i
\(916\) −19.5406 5.34393i −0.645639 0.176569i
\(917\) 13.1957 + 18.1624i 0.435762 + 0.599775i
\(918\) 11.3727 + 14.9005i 0.375354 + 0.491789i
\(919\) 7.29255 22.4442i 0.240559 0.740365i −0.755776 0.654830i \(-0.772740\pi\)
0.996335 0.0855346i \(-0.0272598\pi\)
\(920\) 17.9501 + 44.3005i 0.591796 + 1.46055i
\(921\) 5.44175 7.48992i 0.179312 0.246801i
\(922\) −1.56195 + 5.22361i −0.0514402 + 0.172031i
\(923\) 8.70626i 0.286570i
\(924\) 0 0
\(925\) 9.67513i 0.318116i
\(926\) −30.1635 9.01942i −0.991234 0.296396i
\(927\) 30.0354 41.3402i 0.986492 1.35779i
\(928\) 27.3332 25.2772i 0.897256 0.829764i
\(929\) 10.6565 32.7975i 0.349630 1.07605i −0.609429 0.792841i \(-0.708601\pi\)
0.959058 0.283209i \(-0.0913989\pi\)
\(930\) −1.35016 + 1.03050i −0.0442734 + 0.0337913i
\(931\) −5.11741 7.04351i −0.167716 0.230842i
\(932\) 16.0431 + 4.38743i 0.525508 + 0.143715i
\(933\) 5.89596 1.91571i 0.193025 0.0627177i
\(934\) −41.9659 29.0018i −1.37317 0.948969i
\(935\) 0 0
\(936\) 2.62742 10.5830i 0.0858798 0.345916i
\(937\) −20.7322 + 6.73630i −0.677291 + 0.220065i −0.627409 0.778690i \(-0.715885\pi\)
−0.0498823 + 0.998755i \(0.515885\pi\)
\(938\) −9.36237 26.6565i −0.305692 0.870367i
\(939\) −2.62335 + 1.90598i −0.0856098 + 0.0621992i
\(940\) 0 0
\(941\) −4.56094 + 14.0371i −0.148683 + 0.457598i −0.997466 0.0711426i \(-0.977335\pi\)
0.848784 + 0.528740i \(0.177335\pi\)
\(942\) −0.00627597 0.265837i −0.000204482 0.00866145i
\(943\) −51.8737 37.6884i −1.68924 1.22730i
\(944\) −11.1654 6.60068i −0.363403 0.214834i
\(945\) 21.0188i 0.683741i
\(946\) 0 0
\(947\) 24.4142 0.793355 0.396678 0.917958i \(-0.370163\pi\)
0.396678 + 0.917958i \(0.370163\pi\)
\(948\) −6.01710 + 4.82143i −0.195426 + 0.156593i
\(949\) −0.754677 + 1.03872i −0.0244979 + 0.0337184i
\(950\) −0.151810 6.43036i −0.00492537 0.208628i
\(951\) 6.07479 + 1.97382i 0.196988 + 0.0640054i
\(952\) 27.0352 43.3617i 0.876216 1.40536i
\(953\) 21.4820 + 29.5674i 0.695870 + 0.957783i 0.999987 + 0.00514842i \(0.00163880\pi\)
−0.304116 + 0.952635i \(0.598361\pi\)
\(954\) 28.2420 9.91921i 0.914368 0.321146i
\(955\) 13.8747 + 42.7020i 0.448975 + 1.38180i
\(956\) −3.85525 10.2000i −0.124688 0.329892i
\(957\) 0 0
\(958\) −31.8284 21.9960i −1.02833 0.710659i
\(959\) −8.80289 27.0925i −0.284260 0.874863i
\(960\) 7.87226 3.85904i 0.254076 0.124550i
\(961\) −24.1079 + 17.5154i −0.777674 + 0.565013i
\(962\) −5.65762 7.41262i −0.182409 0.238992i
\(963\) −23.4198 7.60955i −0.754692 0.245214i
\(964\) −4.99351 + 7.60329i −0.160830 + 0.244885i
\(965\) 27.5355 + 20.0057i 0.886399 + 0.644007i
\(966\) 11.7964 + 3.52734i 0.379544 + 0.113490i
\(967\) −3.85525 −0.123976 −0.0619882 0.998077i \(-0.519744\pi\)
−0.0619882 + 0.998077i \(0.519744\pi\)
\(968\) 0 0
\(969\) −5.17157 −0.166135
\(970\) −26.8334 8.02367i −0.861569 0.257624i
\(971\) −26.5686 19.3032i −0.852628 0.619470i 0.0732417 0.997314i \(-0.476666\pi\)
−0.925869 + 0.377844i \(0.876666\pi\)
\(972\) −17.2907 11.3558i −0.554600 0.364237i
\(973\) −61.6113 20.0187i −1.97517 0.641771i
\(974\) −22.8626 29.9545i −0.732564 0.959805i
\(975\) −0.913522 + 0.663713i −0.0292561 + 0.0212558i
\(976\) 26.2080 2.48183i 0.838898 0.0794414i
\(977\) −14.0996 43.3943i −0.451088 1.38831i −0.875667 0.482915i \(-0.839578\pi\)
0.424580 0.905391i \(-0.360422\pi\)
\(978\) 6.18209 + 4.27232i 0.197681 + 0.136614i
\(979\) 0 0
\(980\) 18.9497 7.16233i 0.605327 0.228792i
\(981\) −2.38267 7.33311i −0.0760729 0.234128i
\(982\) −34.3299 + 12.0574i −1.09551 + 0.384768i
\(983\) −10.5086 14.4638i −0.335172 0.461325i 0.607851 0.794051i \(-0.292032\pi\)
−0.943024 + 0.332726i \(0.892032\pi\)
\(984\) −6.22227 + 9.97988i −0.198359 + 0.318147i
\(985\) −26.2611 8.53275i −0.836748 0.271876i
\(986\) −1.20603 51.0850i −0.0384079 1.62688i
\(987\) 0 0
\(988\) 3.87652 + 4.83786i 0.123329 + 0.153913i
\(989\) −41.0848 −1.30642
\(990\) 0 0
\(991\) 29.9333i 0.950861i 0.879753 + 0.475431i \(0.157708\pi\)
−0.879753 + 0.475431i \(0.842292\pi\)
\(992\) −5.62938 + 2.59661i −0.178733 + 0.0824425i
\(993\) 6.05572 + 4.39974i 0.192172 + 0.139621i
\(994\) −0.701563 29.7168i −0.0222522 0.942558i
\(995\) 17.3050 53.2592i 0.548604 1.68843i
\(996\) 0.177807 + 3.76367i 0.00563403 + 0.119256i
\(997\) 44.9898 32.6870i 1.42484 1.03521i 0.433893 0.900964i \(-0.357140\pi\)
0.990948 0.134243i \(-0.0428604\pi\)
\(998\) 8.66292 + 24.6651i 0.274220 + 0.780759i
\(999\) −11.1073 + 3.60898i −0.351420 + 0.114183i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.2.k.g.699.5 32
8.3 odd 2 inner 968.2.k.g.699.7 32
11.2 odd 10 inner 968.2.k.g.475.7 32
11.3 even 5 88.2.g.b.43.1 8
11.4 even 5 inner 968.2.k.g.723.8 32
11.5 even 5 inner 968.2.k.g.403.6 32
11.6 odd 10 inner 968.2.k.g.403.3 32
11.7 odd 10 inner 968.2.k.g.723.1 32
11.8 odd 10 88.2.g.b.43.8 yes 8
11.9 even 5 inner 968.2.k.g.475.2 32
11.10 odd 2 inner 968.2.k.g.699.4 32
33.8 even 10 792.2.h.g.307.1 8
33.14 odd 10 792.2.h.g.307.8 8
44.3 odd 10 352.2.g.b.175.1 8
44.19 even 10 352.2.g.b.175.2 8
88.3 odd 10 88.2.g.b.43.7 yes 8
88.19 even 10 88.2.g.b.43.2 yes 8
88.27 odd 10 inner 968.2.k.g.403.1 32
88.35 even 10 inner 968.2.k.g.475.5 32
88.43 even 2 inner 968.2.k.g.699.2 32
88.51 even 10 inner 968.2.k.g.723.6 32
88.59 odd 10 inner 968.2.k.g.723.3 32
88.69 even 10 352.2.g.b.175.4 8
88.75 odd 10 inner 968.2.k.g.475.4 32
88.83 even 10 inner 968.2.k.g.403.8 32
88.85 odd 10 352.2.g.b.175.3 8
132.47 even 10 3168.2.h.g.2287.5 8
132.107 odd 10 3168.2.h.g.2287.8 8
176.3 odd 20 2816.2.e.o.2815.6 16
176.19 even 20 2816.2.e.o.2815.5 16
176.69 even 20 2816.2.e.o.2815.7 16
176.85 odd 20 2816.2.e.o.2815.8 16
176.91 odd 20 2816.2.e.o.2815.12 16
176.107 even 20 2816.2.e.o.2815.11 16
176.157 even 20 2816.2.e.o.2815.9 16
176.173 odd 20 2816.2.e.o.2815.10 16
264.107 odd 10 792.2.h.g.307.7 8
264.173 even 10 3168.2.h.g.2287.1 8
264.179 even 10 792.2.h.g.307.2 8
264.245 odd 10 3168.2.h.g.2287.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.g.b.43.1 8 11.3 even 5
88.2.g.b.43.2 yes 8 88.19 even 10
88.2.g.b.43.7 yes 8 88.3 odd 10
88.2.g.b.43.8 yes 8 11.8 odd 10
352.2.g.b.175.1 8 44.3 odd 10
352.2.g.b.175.2 8 44.19 even 10
352.2.g.b.175.3 8 88.85 odd 10
352.2.g.b.175.4 8 88.69 even 10
792.2.h.g.307.1 8 33.8 even 10
792.2.h.g.307.2 8 264.179 even 10
792.2.h.g.307.7 8 264.107 odd 10
792.2.h.g.307.8 8 33.14 odd 10
968.2.k.g.403.1 32 88.27 odd 10 inner
968.2.k.g.403.3 32 11.6 odd 10 inner
968.2.k.g.403.6 32 11.5 even 5 inner
968.2.k.g.403.8 32 88.83 even 10 inner
968.2.k.g.475.2 32 11.9 even 5 inner
968.2.k.g.475.4 32 88.75 odd 10 inner
968.2.k.g.475.5 32 88.35 even 10 inner
968.2.k.g.475.7 32 11.2 odd 10 inner
968.2.k.g.699.2 32 88.43 even 2 inner
968.2.k.g.699.4 32 11.10 odd 2 inner
968.2.k.g.699.5 32 1.1 even 1 trivial
968.2.k.g.699.7 32 8.3 odd 2 inner
968.2.k.g.723.1 32 11.7 odd 10 inner
968.2.k.g.723.3 32 88.59 odd 10 inner
968.2.k.g.723.6 32 88.51 even 10 inner
968.2.k.g.723.8 32 11.4 even 5 inner
2816.2.e.o.2815.5 16 176.19 even 20
2816.2.e.o.2815.6 16 176.3 odd 20
2816.2.e.o.2815.7 16 176.69 even 20
2816.2.e.o.2815.8 16 176.85 odd 20
2816.2.e.o.2815.9 16 176.157 even 20
2816.2.e.o.2815.10 16 176.173 odd 20
2816.2.e.o.2815.11 16 176.107 even 20
2816.2.e.o.2815.12 16 176.91 odd 20
3168.2.h.g.2287.1 8 264.173 even 10
3168.2.h.g.2287.4 8 264.245 odd 10
3168.2.h.g.2287.5 8 132.47 even 10
3168.2.h.g.2287.8 8 132.107 odd 10