Properties

Label 88.2.g.b.43.7
Level $88$
Weight $2$
Character 88.43
Analytic conductor $0.703$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [88,2,Mod(43,88)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(88, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("88.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 88 = 2^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 88.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.702683537787\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.10070523904.6
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 6x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 43.7
Root \(-1.16342 - 0.804019i\) of defining polynomial
Character \(\chi\) \(=\) 88.43
Dual form 88.2.g.b.43.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.16342 - 0.804019i) q^{2} +0.414214 q^{3} +(0.707107 - 1.87083i) q^{4} +2.64575i q^{5} +(0.481906 - 0.333036i) q^{6} -3.29066 q^{7} +(-0.681517 - 2.74509i) q^{8} -2.82843 q^{9} +(2.12723 + 3.07813i) q^{10} +(2.41421 - 2.27411i) q^{11} +(0.292893 - 0.774923i) q^{12} +1.36303 q^{13} +(-3.82843 + 2.64575i) q^{14} +1.09591i q^{15} +(-3.00000 - 2.64575i) q^{16} +5.49019i q^{17} +(-3.29066 + 2.27411i) q^{18} +2.27411i q^{19} +(4.94975 + 1.87083i) q^{20} -1.36303 q^{21} +(0.980325 - 4.58682i) q^{22} -6.38741i q^{23} +(-0.282294 - 1.13705i) q^{24} -2.00000 q^{25} +(1.58579 - 1.09591i) q^{26} -2.41421 q^{27} +(-2.32685 + 6.15626i) q^{28} +6.58132 q^{29} +(0.881129 + 1.27500i) q^{30} -1.09591i q^{31} +(-5.61750 - 0.666071i) q^{32} +(1.00000 - 0.941967i) q^{33} +(4.41421 + 6.38741i) q^{34} -8.70626i q^{35} +(-2.00000 + 5.29150i) q^{36} +4.83756i q^{37} +(1.82843 + 2.64575i) q^{38} +0.564588 q^{39} +(7.26283 - 1.80313i) q^{40} -10.0384i q^{41} +(-1.58579 + 1.09591i) q^{42} +6.43215i q^{43} +(-2.54736 - 6.12462i) q^{44} -7.48331i q^{45} +(-5.13560 - 7.43126i) q^{46} +(-1.24264 - 1.09591i) q^{48} +3.82843 q^{49} +(-2.32685 + 1.60804i) q^{50} +2.27411i q^{51} +(0.963811 - 2.55000i) q^{52} -7.48331i q^{53} +(-2.80875 + 1.94107i) q^{54} +(6.01673 + 6.38741i) q^{55} +(2.24264 + 9.03316i) q^{56} +0.941967i q^{57} +(7.65685 - 5.29150i) q^{58} +3.24264 q^{59} +(2.05025 + 0.774923i) q^{60} -6.58132 q^{61} +(-0.881129 - 1.27500i) q^{62} +9.30739 q^{63} +(-7.07107 + 3.74166i) q^{64} +3.60625i q^{65} +(0.406064 - 1.89993i) q^{66} -6.07107 q^{67} +(10.2712 + 3.88215i) q^{68} -2.64575i q^{69} +(-7.00000 - 10.1291i) q^{70} +6.38741i q^{71} +(1.92762 + 7.76429i) q^{72} +0.941967i q^{73} +(3.88949 + 5.62813i) q^{74} -0.828427 q^{75} +(4.25447 + 1.60804i) q^{76} +(-7.94435 + 7.48331i) q^{77} +(0.656854 - 0.453939i) q^{78} -9.30739 q^{79} +(7.00000 - 7.93725i) q^{80} +7.48528 q^{81} +(-8.07107 - 11.6789i) q^{82} +4.54822i q^{83} +(-0.963811 + 2.55000i) q^{84} -14.5257 q^{85} +(5.17157 + 7.48331i) q^{86} +2.72607 q^{87} +(-7.88797 - 5.07739i) q^{88} -10.6569 q^{89} +(-6.01673 - 8.70626i) q^{90} -4.48528 q^{91} +(-11.9497 - 4.51658i) q^{92} -0.453939i q^{93} -6.01673 q^{95} +(-2.32685 - 0.275896i) q^{96} +7.48528 q^{97} +(4.45408 - 3.07813i) q^{98} +(-6.82843 + 6.43215i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{3} + 8 q^{11} + 8 q^{12} - 8 q^{14} - 24 q^{16} + 8 q^{22} - 16 q^{25} + 24 q^{26} - 8 q^{27} + 8 q^{33} + 24 q^{34} - 16 q^{36} - 8 q^{38} - 24 q^{42} + 8 q^{44} + 24 q^{48} + 8 q^{49} - 16 q^{56}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/88\mathbb{Z}\right)^\times\).

\(n\) \(23\) \(45\) \(57\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.16342 0.804019i 0.822664 0.568527i
\(3\) 0.414214 0.239146 0.119573 0.992825i \(-0.461847\pi\)
0.119573 + 0.992825i \(0.461847\pi\)
\(4\) 0.707107 1.87083i 0.353553 0.935414i
\(5\) 2.64575i 1.18322i 0.806226 + 0.591608i \(0.201507\pi\)
−0.806226 + 0.591608i \(0.798493\pi\)
\(6\) 0.481906 0.333036i 0.196737 0.135961i
\(7\) −3.29066 −1.24375 −0.621876 0.783116i \(-0.713629\pi\)
−0.621876 + 0.783116i \(0.713629\pi\)
\(8\) −0.681517 2.74509i −0.240953 0.970537i
\(9\) −2.82843 −0.942809
\(10\) 2.12723 + 3.07813i 0.672691 + 0.973390i
\(11\) 2.41421 2.27411i 0.727913 0.685670i
\(12\) 0.292893 0.774923i 0.0845510 0.223701i
\(13\) 1.36303 0.378038 0.189019 0.981973i \(-0.439469\pi\)
0.189019 + 0.981973i \(0.439469\pi\)
\(14\) −3.82843 + 2.64575i −1.02319 + 0.707107i
\(15\) 1.09591i 0.282962i
\(16\) −3.00000 2.64575i −0.750000 0.661438i
\(17\) 5.49019i 1.33157i 0.746146 + 0.665783i \(0.231902\pi\)
−0.746146 + 0.665783i \(0.768098\pi\)
\(18\) −3.29066 + 2.27411i −0.775615 + 0.536013i
\(19\) 2.27411i 0.521716i 0.965377 + 0.260858i \(0.0840055\pi\)
−0.965377 + 0.260858i \(0.915994\pi\)
\(20\) 4.94975 + 1.87083i 1.10680 + 0.418330i
\(21\) −1.36303 −0.297439
\(22\) 0.980325 4.58682i 0.209006 0.977914i
\(23\) 6.38741i 1.33187i −0.746011 0.665933i \(-0.768033\pi\)
0.746011 0.665933i \(-0.231967\pi\)
\(24\) −0.282294 1.13705i −0.0576230 0.232100i
\(25\) −2.00000 −0.400000
\(26\) 1.58579 1.09591i 0.310998 0.214925i
\(27\) −2.41421 −0.464616
\(28\) −2.32685 + 6.15626i −0.439733 + 1.16342i
\(29\) 6.58132 1.22212 0.611060 0.791584i \(-0.290743\pi\)
0.611060 + 0.791584i \(0.290743\pi\)
\(30\) 0.881129 + 1.27500i 0.160871 + 0.232783i
\(31\) 1.09591i 0.196831i −0.995145 0.0984153i \(-0.968623\pi\)
0.995145 0.0984153i \(-0.0313773\pi\)
\(32\) −5.61750 0.666071i −0.993044 0.117746i
\(33\) 1.00000 0.941967i 0.174078 0.163975i
\(34\) 4.41421 + 6.38741i 0.757031 + 1.09543i
\(35\) 8.70626i 1.47163i
\(36\) −2.00000 + 5.29150i −0.333333 + 0.881917i
\(37\) 4.83756i 0.795291i 0.917539 + 0.397645i \(0.130173\pi\)
−0.917539 + 0.397645i \(0.869827\pi\)
\(38\) 1.82843 + 2.64575i 0.296610 + 0.429198i
\(39\) 0.564588 0.0904064
\(40\) 7.26283 1.80313i 1.14835 0.285099i
\(41\) 10.0384i 1.56774i −0.620928 0.783868i \(-0.713244\pi\)
0.620928 0.783868i \(-0.286756\pi\)
\(42\) −1.58579 + 1.09591i −0.244692 + 0.169102i
\(43\) 6.43215i 0.980894i 0.871471 + 0.490447i \(0.163166\pi\)
−0.871471 + 0.490447i \(0.836834\pi\)
\(44\) −2.54736 6.12462i −0.384029 0.923321i
\(45\) 7.48331i 1.11555i
\(46\) −5.13560 7.43126i −0.757203 1.09568i
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) −1.24264 1.09591i −0.179360 0.158180i
\(49\) 3.82843 0.546918
\(50\) −2.32685 + 1.60804i −0.329066 + 0.227411i
\(51\) 2.27411i 0.318439i
\(52\) 0.963811 2.55000i 0.133657 0.353622i
\(53\) 7.48331i 1.02791i −0.857816 0.513956i \(-0.828179\pi\)
0.857816 0.513956i \(-0.171821\pi\)
\(54\) −2.80875 + 1.94107i −0.382223 + 0.264147i
\(55\) 6.01673 + 6.38741i 0.811295 + 0.861278i
\(56\) 2.24264 + 9.03316i 0.299685 + 1.20711i
\(57\) 0.941967i 0.124767i
\(58\) 7.65685 5.29150i 1.00539 0.694808i
\(59\) 3.24264 0.422156 0.211078 0.977469i \(-0.432303\pi\)
0.211078 + 0.977469i \(0.432303\pi\)
\(60\) 2.05025 + 0.774923i 0.264686 + 0.100042i
\(61\) −6.58132 −0.842651 −0.421326 0.906909i \(-0.638435\pi\)
−0.421326 + 0.906909i \(0.638435\pi\)
\(62\) −0.881129 1.27500i −0.111904 0.161925i
\(63\) 9.30739 1.17262
\(64\) −7.07107 + 3.74166i −0.883883 + 0.467707i
\(65\) 3.60625i 0.447300i
\(66\) 0.406064 1.89993i 0.0499830 0.233865i
\(67\) −6.07107 −0.741699 −0.370849 0.928693i \(-0.620933\pi\)
−0.370849 + 0.928693i \(0.620933\pi\)
\(68\) 10.2712 + 3.88215i 1.24557 + 0.470780i
\(69\) 2.64575i 0.318511i
\(70\) −7.00000 10.1291i −0.836660 1.21065i
\(71\) 6.38741i 0.758046i 0.925387 + 0.379023i \(0.123740\pi\)
−0.925387 + 0.379023i \(0.876260\pi\)
\(72\) 1.92762 + 7.76429i 0.227172 + 0.915031i
\(73\) 0.941967i 0.110249i 0.998479 + 0.0551244i \(0.0175556\pi\)
−0.998479 + 0.0551244i \(0.982444\pi\)
\(74\) 3.88949 + 5.62813i 0.452144 + 0.654257i
\(75\) −0.828427 −0.0956585
\(76\) 4.25447 + 1.60804i 0.488021 + 0.184455i
\(77\) −7.94435 + 7.48331i −0.905343 + 0.852803i
\(78\) 0.656854 0.453939i 0.0743741 0.0513985i
\(79\) −9.30739 −1.04716 −0.523581 0.851976i \(-0.675404\pi\)
−0.523581 + 0.851976i \(0.675404\pi\)
\(80\) 7.00000 7.93725i 0.782624 0.887412i
\(81\) 7.48528 0.831698
\(82\) −8.07107 11.6789i −0.891300 1.28972i
\(83\) 4.54822i 0.499232i 0.968345 + 0.249616i \(0.0803044\pi\)
−0.968345 + 0.249616i \(0.919696\pi\)
\(84\) −0.963811 + 2.55000i −0.105160 + 0.278228i
\(85\) −14.5257 −1.57553
\(86\) 5.17157 + 7.48331i 0.557665 + 0.806947i
\(87\) 2.72607 0.292265
\(88\) −7.88797 5.07739i −0.840860 0.541252i
\(89\) −10.6569 −1.12962 −0.564812 0.825220i \(-0.691051\pi\)
−0.564812 + 0.825220i \(0.691051\pi\)
\(90\) −6.01673 8.70626i −0.634219 0.917721i
\(91\) −4.48528 −0.470185
\(92\) −11.9497 4.51658i −1.24585 0.470886i
\(93\) 0.453939i 0.0470713i
\(94\) 0 0
\(95\) −6.01673 −0.617303
\(96\) −2.32685 0.275896i −0.237483 0.0281585i
\(97\) 7.48528 0.760015 0.380008 0.924983i \(-0.375921\pi\)
0.380008 + 0.924983i \(0.375921\pi\)
\(98\) 4.45408 3.07813i 0.449930 0.310938i
\(99\) −6.82843 + 6.43215i −0.686283 + 0.646456i
\(100\) −1.41421 + 3.74166i −0.141421 + 0.374166i
\(101\) 17.2517 1.71661 0.858306 0.513138i \(-0.171517\pi\)
0.858306 + 0.513138i \(0.171517\pi\)
\(102\) 1.82843 + 2.64575i 0.181041 + 0.261968i
\(103\) 18.0663i 1.78013i 0.455836 + 0.890064i \(0.349340\pi\)
−0.455836 + 0.890064i \(0.650660\pi\)
\(104\) −0.928932 3.74166i −0.0910893 0.366900i
\(105\) 3.60625i 0.351934i
\(106\) −6.01673 8.70626i −0.584396 0.845627i
\(107\) 8.70626i 0.841666i 0.907138 + 0.420833i \(0.138262\pi\)
−0.907138 + 0.420833i \(0.861738\pi\)
\(108\) −1.70711 + 4.51658i −0.164266 + 0.434608i
\(109\) −2.72607 −0.261110 −0.130555 0.991441i \(-0.541676\pi\)
−0.130555 + 0.991441i \(0.541676\pi\)
\(110\) 12.1356 + 2.59370i 1.15708 + 0.247299i
\(111\) 2.00378i 0.190191i
\(112\) 9.87197 + 8.70626i 0.932814 + 0.822664i
\(113\) 6.17157 0.580573 0.290286 0.956940i \(-0.406249\pi\)
0.290286 + 0.956940i \(0.406249\pi\)
\(114\) 0.757359 + 1.09591i 0.0709332 + 0.102641i
\(115\) 16.8995 1.57589
\(116\) 4.65369 12.3125i 0.432085 1.14319i
\(117\) −3.85525 −0.356418
\(118\) 3.77256 2.60714i 0.347293 0.240007i
\(119\) 18.0663i 1.65614i
\(120\) 3.00836 0.746879i 0.274625 0.0681804i
\(121\) 0.656854 10.9804i 0.0597140 0.998216i
\(122\) −7.65685 + 5.29150i −0.693219 + 0.479070i
\(123\) 4.15804i 0.374918i
\(124\) −2.05025 0.774923i −0.184118 0.0695901i
\(125\) 7.93725i 0.709930i
\(126\) 10.8284 7.48331i 0.964673 0.666667i
\(127\) −0.564588 −0.0500990 −0.0250495 0.999686i \(-0.507974\pi\)
−0.0250495 + 0.999686i \(0.507974\pi\)
\(128\) −5.21828 + 10.0384i −0.461235 + 0.887278i
\(129\) 2.66428i 0.234577i
\(130\) 2.89949 + 4.19560i 0.254303 + 0.367978i
\(131\) 6.82233i 0.596070i −0.954555 0.298035i \(-0.903669\pi\)
0.954555 0.298035i \(-0.0963311\pi\)
\(132\) −1.05515 2.53690i −0.0918392 0.220809i
\(133\) 7.48331i 0.648886i
\(134\) −7.06322 + 4.88125i −0.610169 + 0.421676i
\(135\) 6.38741i 0.549741i
\(136\) 15.0711 3.74166i 1.29233 0.320844i
\(137\) −8.65685 −0.739605 −0.369802 0.929110i \(-0.620575\pi\)
−0.369802 + 0.929110i \(0.620575\pi\)
\(138\) −2.12723 3.07813i −0.181082 0.262028i
\(139\) 19.6866i 1.66980i −0.550403 0.834899i \(-0.685526\pi\)
0.550403 0.834899i \(-0.314474\pi\)
\(140\) −16.2879 6.15626i −1.37658 0.520299i
\(141\) 0 0
\(142\) 5.13560 + 7.43126i 0.430970 + 0.623617i
\(143\) 3.29066 3.09969i 0.275179 0.259209i
\(144\) 8.48528 + 7.48331i 0.707107 + 0.623610i
\(145\) 17.4125i 1.44603i
\(146\) 0.757359 + 1.09591i 0.0626795 + 0.0906978i
\(147\) 1.58579 0.130793
\(148\) 9.05025 + 3.42067i 0.743926 + 0.281178i
\(149\) 21.1070 1.72915 0.864576 0.502503i \(-0.167587\pi\)
0.864576 + 0.502503i \(0.167587\pi\)
\(150\) −0.963811 + 0.666071i −0.0786949 + 0.0543845i
\(151\) 13.1626 1.07116 0.535580 0.844485i \(-0.320093\pi\)
0.535580 + 0.844485i \(0.320093\pi\)
\(152\) 6.24264 1.54985i 0.506345 0.125709i
\(153\) 15.5286i 1.25541i
\(154\) −3.22591 + 15.0937i −0.259951 + 1.21628i
\(155\) 2.89949 0.232893
\(156\) 0.399224 1.05625i 0.0319635 0.0845674i
\(157\) 0.453939i 0.0362283i 0.999836 + 0.0181141i \(0.00576623\pi\)
−0.999836 + 0.0181141i \(0.994234\pi\)
\(158\) −10.8284 + 7.48331i −0.861463 + 0.595341i
\(159\) 3.09969i 0.245821i
\(160\) 1.76226 14.8625i 0.139319 1.17499i
\(161\) 21.0188i 1.65651i
\(162\) 8.70855 6.01831i 0.684208 0.472843i
\(163\) −12.8284 −1.00480 −0.502400 0.864635i \(-0.667549\pi\)
−0.502400 + 0.864635i \(0.667549\pi\)
\(164\) −18.7801 7.09822i −1.46648 0.554278i
\(165\) 2.49221 + 2.64575i 0.194018 + 0.205971i
\(166\) 3.65685 + 5.29150i 0.283827 + 0.410700i
\(167\) −21.9054 −1.69509 −0.847546 0.530721i \(-0.821921\pi\)
−0.847546 + 0.530721i \(0.821921\pi\)
\(168\) 0.928932 + 3.74166i 0.0716687 + 0.288675i
\(169\) −11.1421 −0.857087
\(170\) −16.8995 + 11.6789i −1.29613 + 0.895732i
\(171\) 6.43215i 0.491879i
\(172\) 12.0335 + 4.54822i 0.917542 + 0.346798i
\(173\) −5.45214 −0.414519 −0.207259 0.978286i \(-0.566454\pi\)
−0.207259 + 0.978286i \(0.566454\pi\)
\(174\) 3.17157 2.19181i 0.240436 0.166161i
\(175\) 6.58132 0.497501
\(176\) −13.2594 + 0.434919i −0.999462 + 0.0327833i
\(177\) 1.34315 0.100957
\(178\) −12.3984 + 8.56831i −0.929302 + 0.642222i
\(179\) 9.72792 0.727099 0.363550 0.931575i \(-0.381565\pi\)
0.363550 + 0.931575i \(0.381565\pi\)
\(180\) −14.0000 5.29150i −1.04350 0.394405i
\(181\) 2.64575i 0.196657i −0.995154 0.0983286i \(-0.968650\pi\)
0.995154 0.0983286i \(-0.0313496\pi\)
\(182\) −5.21828 + 3.60625i −0.386805 + 0.267313i
\(183\) −2.72607 −0.201517
\(184\) −17.5340 + 4.35313i −1.29263 + 0.320917i
\(185\) −12.7990 −0.941000
\(186\) −0.364976 0.528123i −0.0267613 0.0387239i
\(187\) 12.4853 + 13.2545i 0.913014 + 0.969264i
\(188\) 0 0
\(189\) 7.94435 0.577866
\(190\) −7.00000 + 4.83756i −0.507833 + 0.350954i
\(191\) 16.9704i 1.22794i −0.789331 0.613968i \(-0.789572\pi\)
0.789331 0.613968i \(-0.210428\pi\)
\(192\) −2.92893 + 1.54985i −0.211377 + 0.111850i
\(193\) 12.8643i 0.925993i −0.886360 0.462996i \(-0.846774\pi\)
0.886360 0.462996i \(-0.153226\pi\)
\(194\) 8.70855 6.01831i 0.625237 0.432089i
\(195\) 1.49376i 0.106970i
\(196\) 2.70711 7.16233i 0.193365 0.511595i
\(197\) −10.4366 −0.743574 −0.371787 0.928318i \(-0.621255\pi\)
−0.371787 + 0.928318i \(0.621255\pi\)
\(198\) −2.77278 + 12.9735i −0.197053 + 0.921987i
\(199\) 21.1660i 1.50042i −0.661200 0.750209i \(-0.729953\pi\)
0.661200 0.750209i \(-0.270047\pi\)
\(200\) 1.36303 + 5.49019i 0.0963811 + 0.388215i
\(201\) −2.51472 −0.177375
\(202\) 20.0711 13.8707i 1.41220 0.975941i
\(203\) −21.6569 −1.52001
\(204\) 4.25447 + 1.60804i 0.297872 + 0.112585i
\(205\) 26.5591 1.85497
\(206\) 14.5257 + 21.0188i 1.01205 + 1.46445i
\(207\) 18.0663i 1.25570i
\(208\) −4.08910 3.60625i −0.283528 0.250049i
\(209\) 5.17157 + 5.49019i 0.357725 + 0.379764i
\(210\) −2.89949 4.19560i −0.200084 0.289524i
\(211\) 9.09644i 0.626225i 0.949716 + 0.313112i \(0.101372\pi\)
−0.949716 + 0.313112i \(0.898628\pi\)
\(212\) −14.0000 5.29150i −0.961524 0.363422i
\(213\) 2.64575i 0.181284i
\(214\) 7.00000 + 10.1291i 0.478510 + 0.692409i
\(215\) −17.0179 −1.16061
\(216\) 1.64533 + 6.62724i 0.111950 + 0.450927i
\(217\) 3.60625i 0.244808i
\(218\) −3.17157 + 2.19181i −0.214806 + 0.148448i
\(219\) 0.390175i 0.0263656i
\(220\) 16.2042 6.73969i 1.09249 0.454390i
\(221\) 7.48331i 0.503382i
\(222\) 1.61108 + 2.33125i 0.108129 + 0.156463i
\(223\) 4.19560i 0.280958i 0.990084 + 0.140479i \(0.0448642\pi\)
−0.990084 + 0.140479i \(0.955136\pi\)
\(224\) 18.4853 + 2.19181i 1.23510 + 0.146447i
\(225\) 5.65685 0.377124
\(226\) 7.18015 4.96206i 0.477617 0.330071i
\(227\) 13.2545i 0.879731i −0.898064 0.439865i \(-0.855026\pi\)
0.898064 0.439865i \(-0.144974\pi\)
\(228\) 1.76226 + 0.666071i 0.116708 + 0.0441116i
\(229\) 10.1291i 0.669348i 0.942334 + 0.334674i \(0.108626\pi\)
−0.942334 + 0.334674i \(0.891374\pi\)
\(230\) 19.6613 13.5875i 1.29643 0.895934i
\(231\) −3.29066 + 3.09969i −0.216509 + 0.203945i
\(232\) −4.48528 18.0663i −0.294473 1.18611i
\(233\) 8.31609i 0.544805i 0.962183 + 0.272402i \(0.0878182\pi\)
−0.962183 + 0.272402i \(0.912182\pi\)
\(234\) −4.48528 + 3.09969i −0.293212 + 0.202633i
\(235\) 0 0
\(236\) 2.29289 6.06643i 0.149255 0.394891i
\(237\) −3.85525 −0.250425
\(238\) −14.5257 21.0188i −0.941559 1.36244i
\(239\) 5.45214 0.352670 0.176335 0.984330i \(-0.443576\pi\)
0.176335 + 0.984330i \(0.443576\pi\)
\(240\) 2.89949 3.28772i 0.187162 0.212221i
\(241\) 4.54822i 0.292977i −0.989212 0.146488i \(-0.953203\pi\)
0.989212 0.146488i \(-0.0467971\pi\)
\(242\) −8.06423 13.3029i −0.518388 0.855145i
\(243\) 10.3431 0.663513
\(244\) −4.65369 + 12.3125i −0.297922 + 0.788228i
\(245\) 10.1291i 0.647122i
\(246\) −3.34315 4.83756i −0.213151 0.308432i
\(247\) 3.09969i 0.197229i
\(248\) −3.00836 + 0.746879i −0.191031 + 0.0474269i
\(249\) 1.88393i 0.119389i
\(250\) 6.38170 + 9.23438i 0.403614 + 0.584034i
\(251\) 18.4142 1.16229 0.581147 0.813798i \(-0.302604\pi\)
0.581147 + 0.813798i \(0.302604\pi\)
\(252\) 6.58132 17.4125i 0.414584 1.09689i
\(253\) −14.5257 15.4206i −0.913221 0.969483i
\(254\) −0.656854 + 0.453939i −0.0412147 + 0.0284827i
\(255\) −6.01673 −0.376782
\(256\) 2.00000 + 15.8745i 0.125000 + 0.992157i
\(257\) 6.48528 0.404541 0.202270 0.979330i \(-0.435168\pi\)
0.202270 + 0.979330i \(0.435168\pi\)
\(258\) 2.14214 + 3.09969i 0.133364 + 0.192978i
\(259\) 15.9188i 0.989144i
\(260\) 6.74668 + 2.55000i 0.418411 + 0.158145i
\(261\) −18.6148 −1.15223
\(262\) −5.48528 7.93725i −0.338882 0.490365i
\(263\) 19.1794 1.18265 0.591325 0.806433i \(-0.298605\pi\)
0.591325 + 0.806433i \(0.298605\pi\)
\(264\) −3.26730 2.10313i −0.201089 0.129438i
\(265\) 19.7990 1.21624
\(266\) −6.01673 8.70626i −0.368909 0.533815i
\(267\) −4.41421 −0.270145
\(268\) −4.29289 + 11.3579i −0.262230 + 0.693796i
\(269\) 13.6827i 0.834249i 0.908849 + 0.417124i \(0.136962\pi\)
−0.908849 + 0.417124i \(0.863038\pi\)
\(270\) −5.13560 7.43126i −0.312543 0.452252i
\(271\) −12.5980 −0.765277 −0.382638 0.923898i \(-0.624984\pi\)
−0.382638 + 0.923898i \(0.624984\pi\)
\(272\) 14.5257 16.4706i 0.880748 0.998674i
\(273\) −1.85786 −0.112443
\(274\) −10.0716 + 6.96028i −0.608447 + 0.420486i
\(275\) −4.82843 + 4.54822i −0.291165 + 0.274268i
\(276\) −4.94975 1.87083i −0.297940 0.112611i
\(277\) 3.85525 0.231639 0.115820 0.993270i \(-0.463051\pi\)
0.115820 + 0.993270i \(0.463051\pi\)
\(278\) −15.8284 22.9039i −0.949326 1.37368i
\(279\) 3.09969i 0.185574i
\(280\) −23.8995 + 5.93347i −1.42827 + 0.354593i
\(281\) 6.43215i 0.383710i −0.981423 0.191855i \(-0.938550\pi\)
0.981423 0.191855i \(-0.0614503\pi\)
\(282\) 0 0
\(283\) 1.88393i 0.111988i 0.998431 + 0.0559941i \(0.0178328\pi\)
−0.998431 + 0.0559941i \(0.982167\pi\)
\(284\) 11.9497 + 4.51658i 0.709087 + 0.268010i
\(285\) −2.49221 −0.147626
\(286\) 1.33622 6.25200i 0.0790122 0.369689i
\(287\) 33.0329i 1.94987i
\(288\) 15.8887 + 1.88393i 0.936251 + 0.111012i
\(289\) −13.1421 −0.773067
\(290\) 14.0000 + 20.2581i 0.822108 + 1.18960i
\(291\) 3.10051 0.181755
\(292\) 1.76226 + 0.666071i 0.103128 + 0.0389789i
\(293\) −14.5257 −0.848598 −0.424299 0.905522i \(-0.639480\pi\)
−0.424299 + 0.905522i \(0.639480\pi\)
\(294\) 1.84494 1.27500i 0.107599 0.0743597i
\(295\) 8.57922i 0.499502i
\(296\) 13.2796 3.29688i 0.771859 0.191627i
\(297\) −5.82843 + 5.49019i −0.338200 + 0.318573i
\(298\) 24.5563 16.9704i 1.42251 0.983070i
\(299\) 8.70626i 0.503496i
\(300\) −0.585786 + 1.54985i −0.0338204 + 0.0894804i
\(301\) 21.1660i 1.21999i
\(302\) 15.3137 10.5830i 0.881205 0.608984i
\(303\) 7.14590 0.410521
\(304\) 6.01673 6.82233i 0.345083 0.391287i
\(305\) 17.4125i 0.997038i
\(306\) −12.4853 18.0663i −0.713736 1.03278i
\(307\) 22.3509i 1.27563i 0.770188 + 0.637817i \(0.220162\pi\)
−0.770188 + 0.637817i \(0.779838\pi\)
\(308\) 8.38250 + 20.1540i 0.477637 + 1.14838i
\(309\) 7.48331i 0.425711i
\(310\) 3.37334 2.33125i 0.191593 0.132406i
\(311\) 14.9666i 0.848680i 0.905503 + 0.424340i \(0.139494\pi\)
−0.905503 + 0.424340i \(0.860506\pi\)
\(312\) −0.384776 1.54985i −0.0217837 0.0877427i
\(313\) 7.82843 0.442489 0.221244 0.975218i \(-0.428988\pi\)
0.221244 + 0.975218i \(0.428988\pi\)
\(314\) 0.364976 + 0.528123i 0.0205968 + 0.0298037i
\(315\) 24.6250i 1.38746i
\(316\) −6.58132 + 17.4125i −0.370228 + 0.979531i
\(317\) 15.4206i 0.866105i −0.901369 0.433053i \(-0.857436\pi\)
0.901369 0.433053i \(-0.142564\pi\)
\(318\) −2.49221 3.60625i −0.139756 0.202229i
\(319\) 15.8887 14.9666i 0.889596 0.837970i
\(320\) −9.89949 18.7083i −0.553399 1.04583i
\(321\) 3.60625i 0.201281i
\(322\) 16.8995 + 24.4537i 0.941772 + 1.36275i
\(323\) −12.4853 −0.694700
\(324\) 5.29289 14.0037i 0.294050 0.777982i
\(325\) −2.72607 −0.151215
\(326\) −14.9249 + 10.3143i −0.826613 + 0.571256i
\(327\) −1.12918 −0.0624435
\(328\) −27.5563 + 6.84135i −1.52154 + 0.377750i
\(329\) 0 0
\(330\) 5.02673 + 1.07434i 0.276712 + 0.0591407i
\(331\) −18.0711 −0.993276 −0.496638 0.867958i \(-0.665432\pi\)
−0.496638 + 0.867958i \(0.665432\pi\)
\(332\) 8.50894 + 3.21608i 0.466989 + 0.176505i
\(333\) 13.6827i 0.749807i
\(334\) −25.4853 + 17.6124i −1.39449 + 0.963707i
\(335\) 16.0625i 0.877590i
\(336\) 4.08910 + 3.60625i 0.223079 + 0.196737i
\(337\) 19.1348i 1.04234i −0.853453 0.521171i \(-0.825496\pi\)
0.853453 0.521171i \(-0.174504\pi\)
\(338\) −12.9630 + 8.95849i −0.705095 + 0.487278i
\(339\) 2.55635 0.138842
\(340\) −10.2712 + 27.1750i −0.557034 + 1.47377i
\(341\) −2.49221 2.64575i −0.134961 0.143275i
\(342\) −5.17157 7.48331i −0.279647 0.404651i
\(343\) 10.4366 0.563521
\(344\) 17.6569 4.38362i 0.951994 0.236349i
\(345\) 7.00000 0.376867
\(346\) −6.34315 + 4.38362i −0.341010 + 0.235665i
\(347\) 4.15804i 0.223215i 0.993752 + 0.111608i \(0.0356000\pi\)
−0.993752 + 0.111608i \(0.964400\pi\)
\(348\) 1.92762 5.10001i 0.103331 0.273389i
\(349\) 14.5257 0.777541 0.388771 0.921335i \(-0.372900\pi\)
0.388771 + 0.921335i \(0.372900\pi\)
\(350\) 7.65685 5.29150i 0.409276 0.282843i
\(351\) −3.29066 −0.175642
\(352\) −15.0766 + 11.1668i −0.803584 + 0.595191i
\(353\) 1.82843 0.0973174 0.0486587 0.998815i \(-0.484505\pi\)
0.0486587 + 0.998815i \(0.484505\pi\)
\(354\) 1.56265 1.07991i 0.0830537 0.0573968i
\(355\) −16.8995 −0.896932
\(356\) −7.53553 + 19.9371i −0.399382 + 1.05667i
\(357\) 7.48331i 0.396059i
\(358\) 11.3177 7.82143i 0.598158 0.413376i
\(359\) 3.29066 0.173674 0.0868371 0.996223i \(-0.472324\pi\)
0.0868371 + 0.996223i \(0.472324\pi\)
\(360\) −20.5424 + 5.10001i −1.08268 + 0.268794i
\(361\) 13.8284 0.727812
\(362\) −2.12723 3.07813i −0.111805 0.161783i
\(363\) 0.272078 4.54822i 0.0142804 0.238720i
\(364\) −3.17157 + 8.39119i −0.166236 + 0.439818i
\(365\) −2.49221 −0.130448
\(366\) −3.17157 + 2.19181i −0.165781 + 0.114568i
\(367\) 22.2619i 1.16206i −0.813881 0.581031i \(-0.802649\pi\)
0.813881 0.581031i \(-0.197351\pi\)
\(368\) −16.8995 + 19.1622i −0.880947 + 0.998900i
\(369\) 28.3929i 1.47808i
\(370\) −14.8906 + 10.2906i −0.774128 + 0.534984i
\(371\) 24.6250i 1.27847i
\(372\) −0.849242 0.320983i −0.0440312 0.0166422i
\(373\) −0.233860 −0.0121088 −0.00605440 0.999982i \(-0.501927\pi\)
−0.00605440 + 0.999982i \(0.501927\pi\)
\(374\) 25.1825 + 5.38216i 1.30216 + 0.278305i
\(375\) 3.28772i 0.169777i
\(376\) 0 0
\(377\) 8.97056 0.462007
\(378\) 9.24264 6.38741i 0.475390 0.328533i
\(379\) −16.0711 −0.825515 −0.412758 0.910841i \(-0.635434\pi\)
−0.412758 + 0.910841i \(0.635434\pi\)
\(380\) −4.25447 + 11.2563i −0.218250 + 0.577434i
\(381\) −0.233860 −0.0119810
\(382\) −13.6445 19.7438i −0.698115 1.01018i
\(383\) 7.29529i 0.372772i 0.982477 + 0.186386i \(0.0596775\pi\)
−0.982477 + 0.186386i \(0.940323\pi\)
\(384\) −2.16148 + 4.15804i −0.110303 + 0.212189i
\(385\) −19.7990 21.0188i −1.00905 1.07122i
\(386\) −10.3431 14.9666i −0.526452 0.761781i
\(387\) 18.1929i 0.924796i
\(388\) 5.29289 14.0037i 0.268706 0.710929i
\(389\) 32.5790i 1.65182i −0.563801 0.825911i \(-0.690661\pi\)
0.563801 0.825911i \(-0.309339\pi\)
\(390\) 1.20101 + 1.73787i 0.0608155 + 0.0880006i
\(391\) 35.0681 1.77347
\(392\) −2.60914 10.5094i −0.131781 0.530804i
\(393\) 2.82590i 0.142548i
\(394\) −12.1421 + 8.39119i −0.611712 + 0.422742i
\(395\) 24.6250i 1.23902i
\(396\) 7.20503 + 17.3230i 0.362066 + 0.870515i
\(397\) 22.4499i 1.12673i 0.826208 + 0.563365i \(0.190494\pi\)
−0.826208 + 0.563365i \(0.809506\pi\)
\(398\) −17.0179 24.6250i −0.853029 1.23434i
\(399\) 3.09969i 0.155179i
\(400\) 6.00000 + 5.29150i 0.300000 + 0.264575i
\(401\) −4.82843 −0.241120 −0.120560 0.992706i \(-0.538469\pi\)
−0.120560 + 0.992706i \(0.538469\pi\)
\(402\) −2.92568 + 2.02188i −0.145920 + 0.100842i
\(403\) 1.49376i 0.0744094i
\(404\) 12.1988 32.2750i 0.606914 1.60574i
\(405\) 19.8042i 0.984078i
\(406\) −25.1961 + 17.4125i −1.25046 + 0.864169i
\(407\) 11.0011 + 11.6789i 0.545307 + 0.578902i
\(408\) 6.24264 1.54985i 0.309057 0.0767288i
\(409\) 1.88393i 0.0931545i −0.998915 0.0465773i \(-0.985169\pi\)
0.998915 0.0465773i \(-0.0148314\pi\)
\(410\) 30.8995 21.3540i 1.52602 1.05460i
\(411\) −3.58579 −0.176874
\(412\) 33.7990 + 12.7748i 1.66516 + 0.629370i
\(413\) −10.6704 −0.525057
\(414\) 14.5257 + 21.0188i 0.713897 + 1.03302i
\(415\) −12.0335 −0.590699
\(416\) −7.65685 0.907878i −0.375408 0.0445124i
\(417\) 8.15447i 0.399326i
\(418\) 10.4309 + 2.22937i 0.510194 + 0.109042i
\(419\) 16.1421 0.788595 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(420\) −6.74668 2.55000i −0.329204 0.124428i
\(421\) 7.48331i 0.364714i −0.983232 0.182357i \(-0.941627\pi\)
0.983232 0.182357i \(-0.0583727\pi\)
\(422\) 7.31371 + 10.5830i 0.356026 + 0.515173i
\(423\) 0 0
\(424\) −20.5424 + 5.10001i −0.997627 + 0.247678i
\(425\) 10.9804i 0.532626i
\(426\) 2.12723 + 3.07813i 0.103065 + 0.149136i
\(427\) 21.6569 1.04805
\(428\) 16.2879 + 6.15626i 0.787307 + 0.297574i
\(429\) 1.36303 1.28393i 0.0658079 0.0619889i
\(430\) −19.7990 + 13.6827i −0.954792 + 0.659838i
\(431\) 2.16148 0.104115 0.0520575 0.998644i \(-0.483422\pi\)
0.0520575 + 0.998644i \(0.483422\pi\)
\(432\) 7.24264 + 6.38741i 0.348462 + 0.307314i
\(433\) −17.3431 −0.833458 −0.416729 0.909031i \(-0.636824\pi\)
−0.416729 + 0.909031i \(0.636824\pi\)
\(434\) 2.89949 + 4.19560i 0.139180 + 0.201395i
\(435\) 7.21250i 0.345813i
\(436\) −1.92762 + 5.10001i −0.0923164 + 0.244246i
\(437\) 14.5257 0.694857
\(438\) 0.313708 + 0.453939i 0.0149896 + 0.0216901i
\(439\) −34.5035 −1.64676 −0.823380 0.567490i \(-0.807915\pi\)
−0.823380 + 0.567490i \(0.807915\pi\)
\(440\) 13.4335 20.8696i 0.640418 0.994919i
\(441\) −10.8284 −0.515639
\(442\) 6.01673 + 8.70626i 0.286187 + 0.414115i
\(443\) 26.4142 1.25498 0.627489 0.778626i \(-0.284083\pi\)
0.627489 + 0.778626i \(0.284083\pi\)
\(444\) 3.74874 + 1.41689i 0.177907 + 0.0672426i
\(445\) 28.1954i 1.33659i
\(446\) 3.37334 + 4.88125i 0.159732 + 0.231134i
\(447\) 8.74280 0.413520
\(448\) 23.2685 12.3125i 1.09933 0.581712i
\(449\) 15.9706 0.753697 0.376849 0.926275i \(-0.377008\pi\)
0.376849 + 0.926275i \(0.377008\pi\)
\(450\) 6.58132 4.54822i 0.310246 0.214405i
\(451\) −22.8284 24.2349i −1.07495 1.14117i
\(452\) 4.36396 11.5460i 0.205263 0.543076i
\(453\) 5.45214 0.256164
\(454\) −10.6569 15.4206i −0.500151 0.723723i
\(455\) 11.8669i 0.556331i
\(456\) 2.58579 0.641967i 0.121091 0.0300629i
\(457\) 22.7411i 1.06378i 0.846812 + 0.531892i \(0.178519\pi\)
−0.846812 + 0.531892i \(0.821481\pi\)
\(458\) 8.14396 + 11.7844i 0.380542 + 0.550648i
\(459\) 13.2545i 0.618666i
\(460\) 11.9497 31.6161i 0.557160 1.47411i
\(461\) 3.85525 0.179557 0.0897783 0.995962i \(-0.471384\pi\)
0.0897783 + 0.995962i \(0.471384\pi\)
\(462\) −1.33622 + 6.25200i −0.0621664 + 0.290869i
\(463\) 22.2619i 1.03460i 0.855804 + 0.517300i \(0.173063\pi\)
−0.855804 + 0.517300i \(0.826937\pi\)
\(464\) −19.7439 17.4125i −0.916590 0.808356i
\(465\) 1.20101 0.0556955
\(466\) 6.68629 + 9.67513i 0.309736 + 0.448192i
\(467\) 36.0711 1.66917 0.834585 0.550879i \(-0.185708\pi\)
0.834585 + 0.550879i \(0.185708\pi\)
\(468\) −2.72607 + 7.21250i −0.126013 + 0.333398i
\(469\) 19.9778 0.922489
\(470\) 0 0
\(471\) 0.188028i 0.00866386i
\(472\) −2.20992 8.90135i −0.101720 0.409718i
\(473\) 14.6274 + 15.5286i 0.672569 + 0.714005i
\(474\) −4.48528 + 3.09969i −0.206016 + 0.142373i
\(475\) 4.54822i 0.208687i
\(476\) −33.7990 12.7748i −1.54917 0.585533i
\(477\) 21.1660i 0.969125i
\(478\) 6.34315 4.38362i 0.290129 0.200502i
\(479\) −27.3576 −1.25000 −0.625000 0.780625i \(-0.714901\pi\)
−0.625000 + 0.780625i \(0.714901\pi\)
\(480\) 0.729951 6.15626i 0.0333176 0.280993i
\(481\) 6.59377i 0.300650i
\(482\) −3.65685 5.29150i −0.166565 0.241021i
\(483\) 8.70626i 0.396149i
\(484\) −20.0779 8.99316i −0.912633 0.408780i
\(485\) 19.8042i 0.899262i
\(486\) 12.0335 8.31609i 0.545849 0.377225i
\(487\) 26.6455i 1.20742i −0.797202 0.603712i \(-0.793688\pi\)
0.797202 0.603712i \(-0.206312\pi\)
\(488\) 4.48528 + 18.0663i 0.203039 + 0.817824i
\(489\) −5.31371 −0.240294
\(490\) 8.14396 + 11.7844i 0.367907 + 0.532364i
\(491\) 25.7286i 1.16112i 0.814219 + 0.580558i \(0.197166\pi\)
−0.814219 + 0.580558i \(0.802834\pi\)
\(492\) −7.77899 2.94018i −0.350704 0.132554i
\(493\) 36.1326i 1.62733i
\(494\) 2.49221 + 3.60625i 0.112130 + 0.162253i
\(495\) −17.0179 18.0663i −0.764897 0.812021i
\(496\) −2.89949 + 3.28772i −0.130191 + 0.147623i
\(497\) 21.0188i 0.942821i
\(498\) 1.51472 + 2.19181i 0.0678762 + 0.0982175i
\(499\) 18.4853 0.827515 0.413757 0.910387i \(-0.364216\pi\)
0.413757 + 0.910387i \(0.364216\pi\)
\(500\) 14.8492 + 5.61249i 0.664078 + 0.250998i
\(501\) −9.07353 −0.405375
\(502\) 21.4235 14.8054i 0.956179 0.660796i
\(503\) −3.85525 −0.171897 −0.0859484 0.996300i \(-0.527392\pi\)
−0.0859484 + 0.996300i \(0.527392\pi\)
\(504\) −6.34315 25.5496i −0.282546 1.13807i
\(505\) 45.6438i 2.03112i
\(506\) −29.2979 6.26174i −1.30245 0.278368i
\(507\) −4.61522 −0.204969
\(508\) −0.399224 + 1.05625i −0.0177127 + 0.0468634i
\(509\) 35.6787i 1.58143i 0.612184 + 0.790715i \(0.290291\pi\)
−0.612184 + 0.790715i \(0.709709\pi\)
\(510\) −7.00000 + 4.83756i −0.309965 + 0.214211i
\(511\) 3.09969i 0.137122i
\(512\) 15.0903 + 16.8607i 0.666901 + 0.745146i
\(513\) 5.49019i 0.242398i
\(514\) 7.54513 5.21429i 0.332801 0.229992i
\(515\) −47.7990 −2.10628
\(516\) 4.98442 + 1.88393i 0.219427 + 0.0829356i
\(517\) 0 0
\(518\) −12.7990 18.5203i −0.562355 0.813733i
\(519\) −2.25835 −0.0991306
\(520\) 9.89949 2.45772i 0.434122 0.107778i
\(521\) −20.1127 −0.881153 −0.440577 0.897715i \(-0.645226\pi\)
−0.440577 + 0.897715i \(0.645226\pi\)
\(522\) −21.6569 + 14.9666i −0.947895 + 0.655072i
\(523\) 17.0223i 0.744335i 0.928166 + 0.372168i \(0.121385\pi\)
−0.928166 + 0.372168i \(0.878615\pi\)
\(524\) −12.7634 4.82411i −0.557572 0.210742i
\(525\) 2.72607 0.118975
\(526\) 22.3137 15.4206i 0.972924 0.672369i
\(527\) 6.01673 0.262093
\(528\) −5.49221 + 0.180149i −0.239018 + 0.00783999i
\(529\) −17.7990 −0.773869
\(530\) 23.0346 15.9188i 1.00056 0.691467i
\(531\) −9.17157 −0.398012
\(532\) −14.0000 5.29150i −0.606977 0.229416i
\(533\) 13.6827i 0.592663i
\(534\) −5.13560 + 3.54911i −0.222239 + 0.153585i
\(535\) −23.0346 −0.995873
\(536\) 4.13754 + 16.6656i 0.178714 + 0.719846i
\(537\) 4.02944 0.173883
\(538\) 11.0011 + 15.9188i 0.474293 + 0.686307i
\(539\) 9.24264 8.70626i 0.398109 0.375005i
\(540\) −11.9497 4.51658i −0.514235 0.194363i
\(541\) −17.2517 −0.741710 −0.370855 0.928691i \(-0.620935\pi\)
−0.370855 + 0.928691i \(0.620935\pi\)
\(542\) −14.6569 + 10.1291i −0.629566 + 0.435081i
\(543\) 1.09591i 0.0470298i
\(544\) 3.65685 30.8411i 0.156786 1.32230i
\(545\) 7.21250i 0.308950i
\(546\) −2.16148 + 1.49376i −0.0925029 + 0.0639270i
\(547\) 41.2572i 1.76403i −0.471221 0.882015i \(-0.656187\pi\)
0.471221 0.882015i \(-0.343813\pi\)
\(548\) −6.12132 + 16.1955i −0.261490 + 0.691837i
\(549\) 18.6148 0.794459
\(550\) −1.96065 + 9.17365i −0.0836024 + 0.391166i
\(551\) 14.9666i 0.637600i
\(552\) −7.26283 + 1.80313i −0.309127 + 0.0767461i
\(553\) 30.6274 1.30241
\(554\) 4.48528 3.09969i 0.190561 0.131693i
\(555\) −5.30152 −0.225037
\(556\) −36.8303 13.9206i −1.56195 0.590363i
\(557\) −23.8331 −1.00984 −0.504919 0.863167i \(-0.668478\pi\)
−0.504919 + 0.863167i \(0.668478\pi\)
\(558\) 2.49221 + 3.60625i 0.105504 + 0.152665i
\(559\) 8.76725i 0.370815i
\(560\) −23.0346 + 26.1188i −0.973390 + 1.10372i
\(561\) 5.17157 + 5.49019i 0.218344 + 0.231796i
\(562\) −5.17157 7.48331i −0.218150 0.315665i
\(563\) 11.7607i 0.495655i 0.968804 + 0.247828i \(0.0797167\pi\)
−0.968804 + 0.247828i \(0.920283\pi\)
\(564\) 0 0
\(565\) 16.3284i 0.686943i
\(566\) 1.51472 + 2.19181i 0.0636684 + 0.0921287i
\(567\) −24.6315 −1.03443
\(568\) 17.5340 4.35313i 0.735712 0.182653i
\(569\) 2.66428i 0.111693i −0.998439 0.0558463i \(-0.982214\pi\)
0.998439 0.0558463i \(-0.0177857\pi\)
\(570\) −2.89949 + 2.00378i −0.121446 + 0.0839293i
\(571\) 21.9607i 0.919028i 0.888170 + 0.459514i \(0.151976\pi\)
−0.888170 + 0.459514i \(0.848024\pi\)
\(572\) −3.47214 8.34807i −0.145178 0.349050i
\(573\) 7.02938i 0.293656i
\(574\) 26.5591 + 38.4313i 1.10856 + 1.60409i
\(575\) 12.7748i 0.532747i
\(576\) 20.0000 10.5830i 0.833333 0.440959i
\(577\) −31.6274 −1.31667 −0.658333 0.752727i \(-0.728738\pi\)
−0.658333 + 0.752727i \(0.728738\pi\)
\(578\) −15.2899 + 10.5665i −0.635975 + 0.439510i
\(579\) 5.32857i 0.221448i
\(580\) 32.5758 + 12.3125i 1.35264 + 0.511249i
\(581\) 14.9666i 0.620920i
\(582\) 3.60720 2.49287i 0.149523 0.103333i
\(583\) −17.0179 18.0663i −0.704808 0.748231i
\(584\) 2.58579 0.641967i 0.107001 0.0265648i
\(585\) 10.2000i 0.421719i
\(586\) −16.8995 + 11.6789i −0.698112 + 0.482451i
\(587\) −30.2843 −1.24997 −0.624983 0.780639i \(-0.714894\pi\)
−0.624983 + 0.780639i \(0.714894\pi\)
\(588\) 1.12132 2.96673i 0.0462425 0.122346i
\(589\) 2.49221 0.102690
\(590\) 6.89786 + 9.98126i 0.283980 + 0.410922i
\(591\) −4.32296 −0.177823
\(592\) 12.7990 14.5127i 0.526035 0.596468i
\(593\) 1.88393i 0.0773639i −0.999252 0.0386819i \(-0.987684\pi\)
0.999252 0.0386819i \(-0.0123159\pi\)
\(594\) −2.36671 + 11.0736i −0.0971074 + 0.454354i
\(595\) 47.7990 1.95957
\(596\) 14.9249 39.4875i 0.611347 1.61747i
\(597\) 8.76725i 0.358820i
\(598\) −7.00000 10.1291i −0.286251 0.414208i
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0.564588 + 2.27411i 0.0230492 + 0.0928401i
\(601\) 32.7795i 1.33710i 0.743666 + 0.668552i \(0.233085\pi\)
−0.743666 + 0.668552i \(0.766915\pi\)
\(602\) −17.0179 24.6250i −0.693597 1.00364i
\(603\) 17.1716 0.699281
\(604\) 9.30739 24.6250i 0.378712 1.00198i
\(605\) 29.0513 + 1.73787i 1.18110 + 0.0706546i
\(606\) 8.31371 5.74544i 0.337721 0.233393i
\(607\) 29.0513 1.17916 0.589579 0.807711i \(-0.299294\pi\)
0.589579 + 0.807711i \(0.299294\pi\)
\(608\) 1.51472 12.7748i 0.0614300 0.518087i
\(609\) −8.97056 −0.363506
\(610\) −14.0000 20.2581i −0.566843 0.820228i
\(611\) 0 0
\(612\) −29.0513 10.9804i −1.17433 0.443855i
\(613\) 26.7930 1.08216 0.541079 0.840972i \(-0.318016\pi\)
0.541079 + 0.840972i \(0.318016\pi\)
\(614\) 17.9706 + 26.0036i 0.725233 + 1.04942i
\(615\) 11.0011 0.443609
\(616\) 25.9566 + 16.7080i 1.04582 + 0.673183i
\(617\) 33.1127 1.33307 0.666534 0.745475i \(-0.267777\pi\)
0.666534 + 0.745475i \(0.267777\pi\)
\(618\) 6.01673 + 8.70626i 0.242028 + 0.350217i
\(619\) 31.5269 1.26717 0.633587 0.773672i \(-0.281582\pi\)
0.633587 + 0.773672i \(0.281582\pi\)
\(620\) 2.05025 5.42446i 0.0823401 0.217851i
\(621\) 15.4206i 0.618806i
\(622\) 12.0335 + 17.4125i 0.482498 + 0.698179i
\(623\) 35.0681 1.40497
\(624\) −1.69376 1.49376i −0.0678048 0.0597982i
\(625\) −31.0000 −1.24000
\(626\) 9.10777 6.29420i 0.364020 0.251567i
\(627\) 2.14214 + 2.27411i 0.0855487 + 0.0908192i
\(628\) 0.849242 + 0.320983i 0.0338885 + 0.0128086i
\(629\) −26.5591 −1.05898
\(630\) 19.7990 + 28.6493i 0.788811 + 1.14142i
\(631\) 11.6789i 0.464930i 0.972605 + 0.232465i \(0.0746791\pi\)
−0.972605 + 0.232465i \(0.925321\pi\)
\(632\) 6.34315 + 25.5496i 0.252317 + 1.01631i
\(633\) 3.76787i 0.149759i
\(634\) −12.3984 17.9406i −0.492405 0.712514i
\(635\) 1.49376i 0.0592780i
\(636\) −5.79899 2.19181i −0.229945 0.0869110i
\(637\) 5.21828 0.206756
\(638\) 6.45183 30.1873i 0.255430 1.19513i
\(639\) 18.0663i 0.714693i
\(640\) −26.5591 13.8063i −1.04984 0.545741i
\(641\) −17.8284 −0.704181 −0.352090 0.935966i \(-0.614529\pi\)
−0.352090 + 0.935966i \(0.614529\pi\)
\(642\) 2.89949 + 4.19560i 0.114434 + 0.165587i
\(643\) 0.615224 0.0242621 0.0121310 0.999926i \(-0.496138\pi\)
0.0121310 + 0.999926i \(0.496138\pi\)
\(644\) 39.3225 + 14.8625i 1.54952 + 0.585665i
\(645\) −7.04903 −0.277555
\(646\) −14.5257 + 10.0384i −0.571505 + 0.394956i
\(647\) 23.5459i 0.925683i −0.886441 0.462841i \(-0.846830\pi\)
0.886441 0.462841i \(-0.153170\pi\)
\(648\) −5.10135 20.5478i −0.200400 0.807193i
\(649\) 7.82843 7.37412i 0.307293 0.289459i
\(650\) −3.17157 + 2.19181i −0.124399 + 0.0859699i
\(651\) 1.49376i 0.0585450i
\(652\) −9.07107 + 23.9998i −0.355250 + 0.939904i
\(653\) 36.5866i 1.43174i −0.698232 0.715872i \(-0.746030\pi\)
0.698232 0.715872i \(-0.253970\pi\)
\(654\) −1.31371 + 0.907878i −0.0513701 + 0.0355009i
\(655\) 18.0502 0.705279
\(656\) −26.5591 + 30.1152i −1.03696 + 1.17580i
\(657\) 2.66428i 0.103944i
\(658\) 0 0
\(659\) 10.9804i 0.427735i −0.976863 0.213867i \(-0.931394\pi\)
0.976863 0.213867i \(-0.0686060\pi\)
\(660\) 6.71201 2.79167i 0.261264 0.108666i
\(661\) 12.3209i 0.479227i −0.970868 0.239613i \(-0.922979\pi\)
0.970868 0.239613i \(-0.0770207\pi\)
\(662\) −21.0243 + 14.5295i −0.817133 + 0.564704i
\(663\) 3.09969i 0.120382i
\(664\) 12.4853 3.09969i 0.484523 0.120291i
\(665\) 19.7990 0.767772
\(666\) −11.0011 15.9188i −0.426286 0.616840i
\(667\) 42.0375i 1.62770i
\(668\) −15.4895 + 40.9813i −0.599306 + 1.58561i
\(669\) 1.73787i 0.0671901i
\(670\) −12.9146 18.6875i −0.498934 0.721962i
\(671\) −15.8887 + 14.9666i −0.613376 + 0.577780i
\(672\) 7.65685 + 0.907878i 0.295370 + 0.0350222i
\(673\) 38.2697i 1.47519i −0.675245 0.737594i \(-0.735962\pi\)
0.675245 0.737594i \(-0.264038\pi\)
\(674\) −15.3848 22.2619i −0.592599 0.857497i
\(675\) 4.82843 0.185846
\(676\) −7.87868 + 20.8450i −0.303026 + 0.801732i
\(677\) 2.49221 0.0957834 0.0478917 0.998853i \(-0.484750\pi\)
0.0478917 + 0.998853i \(0.484750\pi\)
\(678\) 2.97412 2.05535i 0.114220 0.0789354i
\(679\) −24.6315 −0.945270
\(680\) 9.89949 + 39.8743i 0.379628 + 1.52911i
\(681\) 5.49019i 0.210384i
\(682\) −5.02673 1.07434i −0.192483 0.0411388i
\(683\) −36.4264 −1.39382 −0.696909 0.717160i \(-0.745442\pi\)
−0.696909 + 0.717160i \(0.745442\pi\)
\(684\) −12.0335 4.54822i −0.460111 0.173905i
\(685\) 22.9039i 0.875112i
\(686\) 12.1421 8.39119i 0.463589 0.320377i
\(687\) 4.19560i 0.160072i
\(688\) 17.0179 19.2965i 0.648800 0.735671i
\(689\) 10.2000i 0.388590i
\(690\) 8.14396 5.62813i 0.310035 0.214259i
\(691\) −8.75736 −0.333146 −0.166573 0.986029i \(-0.553270\pi\)
−0.166573 + 0.986029i \(0.553270\pi\)
\(692\) −3.85525 + 10.2000i −0.146554 + 0.387747i
\(693\) 22.4700 21.1660i 0.853565 0.804030i
\(694\) 3.34315 + 4.83756i 0.126904 + 0.183631i
\(695\) 52.0859 1.97573
\(696\) −1.85786 7.48331i −0.0704222 0.283654i
\(697\) 55.1127 2.08754
\(698\) 16.8995 11.6789i 0.639655 0.442053i
\(699\) 3.44464i 0.130288i
\(700\) 4.65369 12.3125i 0.175893 0.465369i
\(701\) −26.0914 −0.985459 −0.492729 0.870183i \(-0.664001\pi\)
−0.492729 + 0.870183i \(0.664001\pi\)
\(702\) −3.82843 + 2.64575i −0.144495 + 0.0998574i
\(703\) −11.0011 −0.414916
\(704\) −8.56213 + 25.1135i −0.322697 + 0.946502i
\(705\) 0 0
\(706\) 2.12723 1.47009i 0.0800595 0.0553276i
\(707\) −56.7696 −2.13504
\(708\) 0.949747 2.51280i 0.0356937 0.0944366i
\(709\) 46.2617i 1.73739i 0.495343 + 0.868697i \(0.335042\pi\)
−0.495343 + 0.868697i \(0.664958\pi\)
\(710\) −19.6613 + 13.5875i −0.737874 + 0.509930i
\(711\) 26.3253 0.987274
\(712\) 7.26283 + 29.2541i 0.272186 + 1.09634i
\(713\) −7.00000 −0.262152
\(714\) −6.01673 8.70626i −0.225170 0.325824i
\(715\) 8.20101 + 8.70626i 0.306700 + 0.325596i
\(716\) 6.87868 18.1993i 0.257068 0.680139i
\(717\) 2.25835 0.0843396
\(718\) 3.82843 2.64575i 0.142876 0.0987386i
\(719\) 5.10347i 0.190327i 0.995462 + 0.0951637i \(0.0303375\pi\)
−0.995462 + 0.0951637i \(0.969663\pi\)
\(720\) −19.7990 + 22.4499i −0.737865 + 0.836660i
\(721\) 59.4501i 2.21404i
\(722\) 16.0883 11.1183i 0.598745 0.413781i
\(723\) 1.88393i 0.0700643i
\(724\) −4.94975 1.87083i −0.183956 0.0695288i
\(725\) −13.1626 −0.488848
\(726\) −3.34031 5.51026i −0.123971 0.204505i
\(727\) 8.57922i 0.318186i −0.987264 0.159093i \(-0.949143\pi\)
0.987264 0.159093i \(-0.0508569\pi\)
\(728\) 3.05680 + 12.3125i 0.113292 + 0.456332i
\(729\) −18.1716 −0.673021
\(730\) −2.89949 + 2.00378i −0.107315 + 0.0741634i
\(731\) −35.3137 −1.30612
\(732\) −1.92762 + 5.10001i −0.0712470 + 0.188502i
\(733\) −27.4544 −1.01405 −0.507026 0.861931i \(-0.669255\pi\)
−0.507026 + 0.861931i \(0.669255\pi\)
\(734\) −17.8990 25.9000i −0.660664 0.955988i
\(735\) 4.19560i 0.154757i
\(736\) −4.25447 + 35.8813i −0.156822 + 1.32260i
\(737\) −14.6569 + 13.8063i −0.539892 + 0.508561i
\(738\) 22.8284 + 33.0329i 0.840326 + 1.21596i
\(739\) 47.6894i 1.75428i 0.480234 + 0.877141i \(0.340552\pi\)
−0.480234 + 0.877141i \(0.659448\pi\)
\(740\) −9.05025 + 23.9447i −0.332694 + 0.880225i
\(741\) 1.28393i 0.0471665i
\(742\) 19.7990 + 28.6493i 0.726844 + 1.05175i
\(743\) 25.1961 0.924355 0.462177 0.886788i \(-0.347068\pi\)
0.462177 + 0.886788i \(0.347068\pi\)
\(744\) −1.24611 + 0.309367i −0.0456844 + 0.0113420i
\(745\) 55.8438i 2.04596i
\(746\) −0.272078 + 0.188028i −0.00996148 + 0.00688419i
\(747\) 12.8643i 0.470680i
\(748\) 33.6253 13.9855i 1.22946 0.511360i
\(749\) 28.6493i 1.04682i
\(750\) 2.64339 + 3.82501i 0.0965229 + 0.139670i
\(751\) 7.29529i 0.266209i 0.991102 + 0.133104i \(0.0424946\pi\)
−0.991102 + 0.133104i \(0.957505\pi\)
\(752\) 0 0
\(753\) 7.62742 0.277959
\(754\) 10.4366 7.21250i 0.380077 0.262664i
\(755\) 34.8250i 1.26741i
\(756\) 5.61750 14.8625i 0.204307 0.540545i
\(757\) 28.6493i 1.04128i −0.853777 0.520639i \(-0.825694\pi\)
0.853777 0.520639i \(-0.174306\pi\)
\(758\) −18.6975 + 12.9214i −0.679122 + 0.469328i
\(759\) −6.01673 6.38741i −0.218393 0.231848i
\(760\) 4.10051 + 16.5165i 0.148741 + 0.599116i
\(761\) 7.37412i 0.267312i −0.991028 0.133656i \(-0.957328\pi\)
0.991028 0.133656i \(-0.0426717\pi\)
\(762\) −0.272078 + 0.188028i −0.00985634 + 0.00681153i
\(763\) 8.97056 0.324756
\(764\) −31.7487 11.9999i −1.14863 0.434141i
\(765\) 41.0848 1.48542
\(766\) 5.86555 + 8.48751i 0.211931 + 0.306666i
\(767\) 4.41983 0.159591
\(768\) 0.828427 + 6.57544i 0.0298933 + 0.237271i
\(769\) 2.82590i 0.101905i 0.998701 + 0.0509523i \(0.0162256\pi\)
−0.998701 + 0.0509523i \(0.983774\pi\)
\(770\) −39.9341 8.53496i −1.43912 0.307579i
\(771\) 2.68629 0.0967444
\(772\) −24.0669 9.09644i −0.866187 0.327388i
\(773\) 8.76725i 0.315336i 0.987492 + 0.157668i \(0.0503976\pi\)
−0.987492 + 0.157668i \(0.949602\pi\)
\(774\) −14.6274 21.1660i −0.525772 0.760797i
\(775\) 2.19181i 0.0787322i
\(776\) −5.10135 20.5478i −0.183128 0.737623i
\(777\) 6.59377i 0.236550i
\(778\) −26.1941 37.9032i −0.939106 1.35889i
\(779\) 22.8284 0.817913
\(780\) 2.79457 + 1.05625i 0.100062 + 0.0378197i
\(781\) 14.5257 + 15.4206i 0.519769 + 0.551791i
\(782\) 40.7990 28.1954i 1.45897 1.00826i
\(783\) −15.8887 −0.567816
\(784\) −11.4853 10.1291i −0.410189 0.361752i
\(785\) −1.20101 −0.0428659
\(786\) −2.27208 3.28772i −0.0810423 0.117269i
\(787\) 32.9411i 1.17422i 0.809506 + 0.587112i \(0.199735\pi\)
−0.809506 + 0.587112i \(0.800265\pi\)
\(788\) −7.37976 + 19.5250i −0.262893 + 0.695550i
\(789\) 7.94435 0.282826
\(790\) −19.7990 28.6493i −0.704416 1.01930i
\(791\) −20.3085 −0.722088
\(792\) 22.3105 + 14.3610i 0.792771 + 0.510297i
\(793\) −8.97056 −0.318554
\(794\) 18.0502 + 26.1188i 0.640577 + 0.926921i
\(795\) 8.20101 0.290860
\(796\) −39.5980 14.9666i −1.40351 0.530478i
\(797\) 44.0699i 1.56104i −0.625133 0.780518i \(-0.714955\pi\)
0.625133 0.780518i \(-0.285045\pi\)
\(798\) −2.49221 3.60625i −0.0882233 0.127660i
\(799\) 0 0
\(800\) 11.2350 + 1.33214i 0.397218 + 0.0470983i
\(801\) 30.1421 1.06502
\(802\) −5.61750 + 3.88215i −0.198361 + 0.137083i
\(803\) 2.14214 + 2.27411i 0.0755943 + 0.0802516i
\(804\) −1.77817 + 4.70461i −0.0627114 + 0.165919i
\(805\) −55.6105 −1.96001
\(806\) −1.20101 1.73787i −0.0423038 0.0612140i
\(807\) 5.66756i 0.199507i
\(808\) −11.7574 47.3576i −0.413622 1.66603i
\(809\) 0.941967i 0.0331178i 0.999863 + 0.0165589i \(0.00527110\pi\)
−0.999863 + 0.0165589i \(0.994729\pi\)
\(810\) 15.9229 + 23.0407i 0.559475 + 0.809566i
\(811\) 5.65180i 0.198462i −0.995064 0.0992308i \(-0.968362\pi\)
0.995064 0.0992308i \(-0.0316382\pi\)
\(812\) −15.3137 + 40.5163i −0.537406 + 1.42184i
\(813\) −5.21828 −0.183013
\(814\) 22.1891 + 4.74238i 0.777726 + 0.166220i
\(815\) 33.9408i 1.18890i
\(816\) 6.01673 6.82233i 0.210628 0.238829i
\(817\) −14.6274 −0.511749
\(818\) −1.51472 2.19181i −0.0529609 0.0766349i
\(819\) 12.6863 0.443295
\(820\) 18.7801 49.6876i 0.655831 1.73517i
\(821\) −21.3408 −0.744800 −0.372400 0.928072i \(-0.621465\pi\)
−0.372400 + 0.928072i \(0.621465\pi\)
\(822\) −4.17179 + 2.88304i −0.145508 + 0.100558i
\(823\) 35.9446i 1.25295i 0.779441 + 0.626475i \(0.215503\pi\)
−0.779441 + 0.626475i \(0.784497\pi\)
\(824\) 49.5937 12.3125i 1.72768 0.428927i
\(825\) −2.00000 + 1.88393i −0.0696311 + 0.0655902i
\(826\) −12.4142 + 8.57922i −0.431946 + 0.298509i
\(827\) 50.7438i 1.76454i 0.470748 + 0.882268i \(0.343984\pi\)
−0.470748 + 0.882268i \(0.656016\pi\)
\(828\) 33.7990 + 12.7748i 1.17460 + 0.443956i
\(829\) 41.8781i 1.45449i 0.686380 + 0.727243i \(0.259199\pi\)
−0.686380 + 0.727243i \(0.740801\pi\)
\(830\) −14.0000 + 9.67513i −0.485947 + 0.335829i
\(831\) 1.59689 0.0553957
\(832\) −9.63811 + 5.10001i −0.334141 + 0.176811i
\(833\) 21.0188i 0.728257i
\(834\) −6.55635 9.48710i −0.227028 0.328511i
\(835\) 57.9563i 2.00566i
\(836\) 13.9281 5.79298i 0.481712 0.200354i
\(837\) 2.64575i 0.0914505i
\(838\) 18.7801 12.9786i 0.648749 0.448338i
\(839\) 54.3870i 1.87765i 0.344398 + 0.938824i \(0.388083\pi\)
−0.344398 + 0.938824i \(0.611917\pi\)
\(840\) −9.89949 + 2.45772i −0.341565 + 0.0847995i
\(841\) 14.3137 0.493576
\(842\) −6.01673 8.70626i −0.207350 0.300038i
\(843\) 2.66428i 0.0917628i
\(844\) 17.0179 + 6.43215i 0.585779 + 0.221404i
\(845\) 29.4793i 1.01412i
\(846\) 0 0
\(847\) −2.16148 + 36.1326i −0.0742694 + 1.24153i
\(848\) −19.7990 + 22.4499i −0.679900 + 0.770934i
\(849\) 0.780351i 0.0267816i
\(850\) −8.82843 12.7748i −0.302813 0.438173i
\(851\) 30.8995 1.05922
\(852\) 4.94975 + 1.87083i 0.169576 + 0.0640935i
\(853\) −58.1027 −1.98940 −0.994699 0.102833i \(-0.967209\pi\)
−0.994699 + 0.102833i \(0.967209\pi\)
\(854\) 25.1961 17.4125i 0.862192 0.595844i
\(855\) 17.0179 0.581999
\(856\) 23.8995 5.93347i 0.816868 0.202802i
\(857\) 21.9607i 0.750165i −0.926992 0.375082i \(-0.877614\pi\)
0.926992 0.375082i \(-0.122386\pi\)
\(858\) 0.553479 2.58966i 0.0188955 0.0884097i
\(859\) −49.2426 −1.68014 −0.840069 0.542480i \(-0.817485\pi\)
−0.840069 + 0.542480i \(0.817485\pi\)
\(860\) −12.0335 + 31.8375i −0.410337 + 1.08565i
\(861\) 13.6827i 0.466305i
\(862\) 2.51472 1.73787i 0.0856517 0.0591922i
\(863\) 14.9666i 0.509470i 0.967011 + 0.254735i \(0.0819882\pi\)
−0.967011 + 0.254735i \(0.918012\pi\)
\(864\) 13.5619 + 1.60804i 0.461384 + 0.0547066i
\(865\) 14.4250i 0.490465i
\(866\) −20.1774 + 13.9442i −0.685657 + 0.473844i
\(867\) −5.44365 −0.184876
\(868\) 6.74668 + 2.55000i 0.228997 + 0.0865528i
\(869\) −22.4700 + 21.1660i −0.762243 + 0.718008i
\(870\) 5.79899 + 8.39119i 0.196604 + 0.284488i
\(871\) −8.27508 −0.280390
\(872\) 1.85786 + 7.48331i 0.0629152 + 0.253417i
\(873\) −21.1716 −0.716549
\(874\) 16.8995 11.6789i 0.571634 0.395045i
\(875\) 26.1188i 0.882976i
\(876\) 0.729951 + 0.275896i 0.0246628 + 0.00932165i
\(877\) 29.2852 0.988891 0.494445 0.869209i \(-0.335371\pi\)
0.494445 + 0.869209i \(0.335371\pi\)
\(878\) −40.1421 + 27.7414i −1.35473 + 0.936228i
\(879\) −6.01673 −0.202939
\(880\) −1.15069 35.0810i −0.0387897 1.18258i
\(881\) 6.51472 0.219486 0.109743 0.993960i \(-0.464997\pi\)
0.109743 + 0.993960i \(0.464997\pi\)
\(882\) −12.5980 + 8.70626i −0.424198 + 0.293155i
\(883\) −4.34315 −0.146158 −0.0730792 0.997326i \(-0.523283\pi\)
−0.0730792 + 0.997326i \(0.523283\pi\)
\(884\) 14.0000 + 5.29150i 0.470871 + 0.177972i
\(885\) 3.55363i 0.119454i
\(886\) 30.7309 21.2375i 1.03243 0.713489i
\(887\) 46.5369 1.56256 0.781279 0.624183i \(-0.214568\pi\)
0.781279 + 0.624183i \(0.214568\pi\)
\(888\) 5.50057 1.36561i 0.184587 0.0458270i
\(889\) 1.85786 0.0623108
\(890\) −22.6696 32.8032i −0.759888 1.09956i
\(891\) 18.0711 17.0223i 0.605404 0.570270i
\(892\) 7.84924 + 2.96673i 0.262812 + 0.0993336i
\(893\) 0 0
\(894\) 10.1716 7.02938i 0.340188 0.235097i
\(895\) 25.7377i 0.860315i
\(896\) 17.1716 33.0329i 0.573662 1.10355i
\(897\) 3.60625i 0.120409i
\(898\) 18.5805 12.8406i 0.620040 0.428498i
\(899\) 7.21250i 0.240550i
\(900\) 4.00000 10.5830i 0.133333 0.352767i
\(901\) 41.0848 1.36873
\(902\) −46.0444 9.84090i −1.53311 0.327666i
\(903\) 8.76725i 0.291756i
\(904\) −4.20603 16.9415i −0.139891 0.563467i
\(905\) 7.00000 0.232688
\(906\) 6.34315 4.38362i 0.210737 0.145636i
\(907\) −33.5147 −1.11284 −0.556419 0.830902i \(-0.687825\pi\)
−0.556419 + 0.830902i \(0.687825\pi\)
\(908\) −24.7969 9.37233i −0.822913 0.311032i
\(909\) −48.7953 −1.61844
\(910\) −9.54124 13.8063i −0.316289 0.457673i
\(911\) 44.8999i 1.48760i −0.668402 0.743800i \(-0.733022\pi\)
0.668402 0.743800i \(-0.266978\pi\)
\(912\) 2.49221 2.82590i 0.0825253 0.0935749i
\(913\) 10.3431 + 10.9804i 0.342308 + 0.363397i
\(914\) 18.2843 + 26.4575i 0.604790 + 0.875137i
\(915\) 7.21250i 0.238438i
\(916\) 18.9497 + 7.16233i 0.626117 + 0.236650i
\(917\) 22.4499i 0.741362i
\(918\) −10.6569 15.4206i −0.351729 0.508955i
\(919\) −23.5992 −0.778465 −0.389233 0.921139i \(-0.627260\pi\)
−0.389233 + 0.921139i \(0.627260\pi\)
\(920\) −11.5173 46.3907i −0.379714 1.52946i
\(921\) 9.25805i 0.305063i
\(922\) 4.48528 3.09969i 0.147715 0.102083i
\(923\) 8.70626i 0.286570i
\(924\) 3.47214 + 8.34807i 0.114225 + 0.274631i
\(925\) 9.67513i 0.318116i
\(926\) 17.8990 + 25.9000i 0.588198 + 0.851128i
\(927\) 51.0993i 1.67832i
\(928\) −36.9706 4.38362i −1.21362 0.143900i
\(929\) 34.4853 1.13143 0.565713 0.824602i \(-0.308601\pi\)
0.565713 + 0.824602i \(0.308601\pi\)
\(930\) 1.39728 0.965635i 0.0458187 0.0316644i
\(931\) 8.70626i 0.285336i
\(932\) 15.5580 + 5.88036i 0.509618 + 0.192618i
\(933\) 6.19938i 0.202959i
\(934\) 41.9659 29.0018i 1.37317 0.948969i
\(935\) −35.0681 + 33.0329i −1.14685 + 1.08029i
\(936\) 2.62742 + 10.5830i 0.0858798 + 0.345916i
\(937\) 21.7991i 0.712146i 0.934458 + 0.356073i \(0.115885\pi\)
−0.934458 + 0.356073i \(0.884115\pi\)
\(938\) 23.2426 16.0625i 0.758899 0.524460i
\(939\) 3.24264 0.105820
\(940\) 0 0
\(941\) 14.7595 0.481147 0.240573 0.970631i \(-0.422665\pi\)
0.240573 + 0.970631i \(0.422665\pi\)
\(942\) 0.151178 + 0.218756i 0.00492564 + 0.00712745i
\(943\) −64.1194 −2.08801
\(944\) −9.72792 8.57922i −0.316617 0.279230i
\(945\) 21.0188i 0.683741i
\(946\) 29.5032 + 6.30560i 0.959230 + 0.205013i
\(947\) 24.4142 0.793355 0.396678 0.917958i \(-0.370163\pi\)
0.396678 + 0.917958i \(0.370163\pi\)
\(948\) −2.72607 + 7.21250i −0.0885386 + 0.234251i
\(949\) 1.28393i 0.0416783i
\(950\) −3.65685 5.29150i −0.118644 0.171679i
\(951\) 6.38741i 0.207126i
\(952\) −49.5937 + 12.3125i −1.60734 + 0.399051i
\(953\) 36.5474i 1.18389i −0.805980 0.591943i \(-0.798361\pi\)
0.805980 0.591943i \(-0.201639\pi\)
\(954\) 17.0179 + 24.6250i 0.550974 + 0.797265i
\(955\) 44.8995 1.45291
\(956\) 3.85525 10.2000i 0.124688 0.329892i
\(957\) 6.58132 6.19938i 0.212744 0.200398i
\(958\) −31.8284 + 21.9960i −1.02833 + 0.710659i
\(959\) 28.4867 0.919885
\(960\) −4.10051 7.74923i −0.132343 0.250105i
\(961\) 29.7990 0.961258
\(962\) 5.30152 + 7.67134i 0.170928 + 0.247334i
\(963\) 24.6250i 0.793530i
\(964\) −8.50894 3.21608i −0.274054 0.103583i
\(965\) 34.0358 1.09565
\(966\) 7.00000 + 10.1291i 0.225221 + 0.325897i
\(967\) 3.85525 0.123976 0.0619882 0.998077i \(-0.480256\pi\)
0.0619882 + 0.998077i \(0.480256\pi\)
\(968\) −30.5898 + 5.68019i −0.983193 + 0.182568i
\(969\) −5.17157 −0.166135
\(970\) 15.9229 + 23.0407i 0.511255 + 0.739791i
\(971\) 32.8406 1.05391 0.526953 0.849895i \(-0.323334\pi\)
0.526953 + 0.849895i \(0.323334\pi\)
\(972\) 7.31371 19.3503i 0.234587 0.620660i
\(973\) 64.7820i 2.07681i
\(974\) −21.4235 31.0000i −0.686454 0.993305i
\(975\) −1.12918 −0.0361625
\(976\) 19.7439 + 17.4125i 0.631988 + 0.557361i
\(977\) −45.6274 −1.45975 −0.729875 0.683580i \(-0.760422\pi\)
−0.729875 + 0.683580i \(0.760422\pi\)
\(978\) −6.18209 + 4.27232i −0.197681 + 0.136614i
\(979\) −25.7279 + 24.2349i −0.822268 + 0.774549i
\(980\) 18.9497 + 7.16233i 0.605327 + 0.228792i
\(981\) 7.71049 0.246177
\(982\) 20.6863 + 29.9333i 0.660126 + 0.955209i
\(983\) 17.8783i 0.570229i −0.958493 0.285114i \(-0.907968\pi\)
0.958493 0.285114i \(-0.0920316\pi\)
\(984\) −11.4142 + 2.83378i −0.363872 + 0.0903376i
\(985\) 27.6125i 0.879809i
\(986\) 29.0513 + 42.0375i 0.925183 + 1.33875i
\(987\) 0 0
\(988\) 5.79899 + 2.19181i 0.184490 + 0.0697308i
\(989\) 41.0848 1.30642
\(990\) −34.3247 7.33608i −1.09091 0.233156i
\(991\) 29.9333i 0.950861i −0.879753 0.475431i \(-0.842292\pi\)
0.879753 0.475431i \(-0.157708\pi\)
\(992\) −0.729951 + 6.15626i −0.0231760 + 0.195461i
\(993\) −7.48528 −0.237538
\(994\) −16.8995 24.4537i −0.536019 0.775625i
\(995\) 56.0000 1.77532
\(996\) 3.52452 + 1.33214i 0.111679 + 0.0422105i
\(997\) 55.6105 1.76120 0.880600 0.473860i \(-0.157140\pi\)
0.880600 + 0.473860i \(0.157140\pi\)
\(998\) 21.5062 14.8625i 0.680767 0.470465i
\(999\) 11.6789i 0.369504i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 88.2.g.b.43.7 yes 8
3.2 odd 2 792.2.h.g.307.2 8
4.3 odd 2 352.2.g.b.175.4 8
8.3 odd 2 inner 88.2.g.b.43.1 8
8.5 even 2 352.2.g.b.175.1 8
11.2 odd 10 968.2.k.g.403.8 32
11.3 even 5 968.2.k.g.475.4 32
11.4 even 5 968.2.k.g.699.7 32
11.5 even 5 968.2.k.g.723.3 32
11.6 odd 10 968.2.k.g.723.6 32
11.7 odd 10 968.2.k.g.699.2 32
11.8 odd 10 968.2.k.g.475.5 32
11.9 even 5 968.2.k.g.403.1 32
11.10 odd 2 inner 88.2.g.b.43.2 yes 8
12.11 even 2 3168.2.h.g.2287.4 8
16.3 odd 4 2816.2.e.o.2815.7 16
16.5 even 4 2816.2.e.o.2815.6 16
16.11 odd 4 2816.2.e.o.2815.9 16
16.13 even 4 2816.2.e.o.2815.12 16
24.5 odd 2 3168.2.h.g.2287.5 8
24.11 even 2 792.2.h.g.307.8 8
33.32 even 2 792.2.h.g.307.7 8
44.43 even 2 352.2.g.b.175.3 8
88.3 odd 10 968.2.k.g.475.2 32
88.19 even 10 968.2.k.g.475.7 32
88.21 odd 2 352.2.g.b.175.2 8
88.27 odd 10 968.2.k.g.723.8 32
88.35 even 10 968.2.k.g.403.3 32
88.43 even 2 inner 88.2.g.b.43.8 yes 8
88.51 even 10 968.2.k.g.699.4 32
88.59 odd 10 968.2.k.g.699.5 32
88.75 odd 10 968.2.k.g.403.6 32
88.83 even 10 968.2.k.g.723.1 32
132.131 odd 2 3168.2.h.g.2287.1 8
176.21 odd 4 2816.2.e.o.2815.5 16
176.43 even 4 2816.2.e.o.2815.10 16
176.109 odd 4 2816.2.e.o.2815.11 16
176.131 even 4 2816.2.e.o.2815.8 16
264.131 odd 2 792.2.h.g.307.1 8
264.197 even 2 3168.2.h.g.2287.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.g.b.43.1 8 8.3 odd 2 inner
88.2.g.b.43.2 yes 8 11.10 odd 2 inner
88.2.g.b.43.7 yes 8 1.1 even 1 trivial
88.2.g.b.43.8 yes 8 88.43 even 2 inner
352.2.g.b.175.1 8 8.5 even 2
352.2.g.b.175.2 8 88.21 odd 2
352.2.g.b.175.3 8 44.43 even 2
352.2.g.b.175.4 8 4.3 odd 2
792.2.h.g.307.1 8 264.131 odd 2
792.2.h.g.307.2 8 3.2 odd 2
792.2.h.g.307.7 8 33.32 even 2
792.2.h.g.307.8 8 24.11 even 2
968.2.k.g.403.1 32 11.9 even 5
968.2.k.g.403.3 32 88.35 even 10
968.2.k.g.403.6 32 88.75 odd 10
968.2.k.g.403.8 32 11.2 odd 10
968.2.k.g.475.2 32 88.3 odd 10
968.2.k.g.475.4 32 11.3 even 5
968.2.k.g.475.5 32 11.8 odd 10
968.2.k.g.475.7 32 88.19 even 10
968.2.k.g.699.2 32 11.7 odd 10
968.2.k.g.699.4 32 88.51 even 10
968.2.k.g.699.5 32 88.59 odd 10
968.2.k.g.699.7 32 11.4 even 5
968.2.k.g.723.1 32 88.83 even 10
968.2.k.g.723.3 32 11.5 even 5
968.2.k.g.723.6 32 11.6 odd 10
968.2.k.g.723.8 32 88.27 odd 10
2816.2.e.o.2815.5 16 176.21 odd 4
2816.2.e.o.2815.6 16 16.5 even 4
2816.2.e.o.2815.7 16 16.3 odd 4
2816.2.e.o.2815.8 16 176.131 even 4
2816.2.e.o.2815.9 16 16.11 odd 4
2816.2.e.o.2815.10 16 176.43 even 4
2816.2.e.o.2815.11 16 176.109 odd 4
2816.2.e.o.2815.12 16 16.13 even 4
3168.2.h.g.2287.1 8 132.131 odd 2
3168.2.h.g.2287.4 8 12.11 even 2
3168.2.h.g.2287.5 8 24.5 odd 2
3168.2.h.g.2287.8 8 264.197 even 2