Properties

Label 352.2.m.f.225.1
Level $352$
Weight $2$
Character 352.225
Analytic conductor $2.811$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [352,2,Mod(97,352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(352, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("352.97");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 352.m (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.81073415115\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} + 11 x^{10} - 11 x^{9} + 39 x^{8} - 43 x^{7} + 99 x^{6} + 36 x^{5} + 431 x^{4} + \cdots + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 225.1
Root \(0.885530 - 2.72538i\) of defining polynomial
Character \(\chi\) \(=\) 352.225
Dual form 352.2.m.f.97.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50933 - 1.09659i) q^{3} +(-0.686361 + 2.11240i) q^{5} +(0.787585 - 0.572214i) q^{7} +(0.148512 + 0.457073i) q^{9} +(-2.94543 + 1.52462i) q^{11} +(1.78094 + 5.48116i) q^{13} +(3.35239 - 2.43565i) q^{15} +(-1.22859 + 3.78121i) q^{17} +(2.27651 + 1.65398i) q^{19} -1.81621 q^{21} +1.20615 q^{23} +(0.0539368 + 0.0391874i) q^{25} +(-1.45247 + 4.47024i) q^{27} +(-1.68573 + 1.22475i) q^{29} +(2.11632 + 6.51337i) q^{31} +(6.11751 + 0.928786i) q^{33} +(0.668178 + 2.05644i) q^{35} +(7.61289 - 5.53109i) q^{37} +(3.32258 - 10.2258i) q^{39} +(-3.56050 - 2.58685i) q^{41} -8.84372 q^{43} -1.06745 q^{45} +(-1.16955 - 0.849729i) q^{47} +(-1.87026 + 5.75606i) q^{49} +(6.00079 - 4.35983i) q^{51} +(-3.16432 - 9.73877i) q^{53} +(-1.19897 - 7.26836i) q^{55} +(-1.62226 - 4.99281i) q^{57} +(-2.85539 + 2.07456i) q^{59} +(1.27790 - 3.93298i) q^{61} +(0.378510 + 0.275003i) q^{63} -12.8008 q^{65} -12.2596 q^{67} +(-1.82048 - 1.32266i) q^{69} +(-2.91871 + 8.98287i) q^{71} +(5.35678 - 3.89193i) q^{73} +(-0.0384358 - 0.118293i) q^{75} +(-1.44737 + 2.88618i) q^{77} +(2.39931 + 7.38431i) q^{79} +(8.26072 - 6.00177i) q^{81} +(5.33355 - 16.4150i) q^{83} +(-7.14417 - 5.19055i) q^{85} +3.88737 q^{87} -0.470432 q^{89} +(4.53903 + 3.29780i) q^{91} +(3.94828 - 12.1516i) q^{93} +(-5.05638 + 3.67368i) q^{95} +(-2.79977 - 8.61681i) q^{97} +(-1.13429 - 1.11985i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{7} - q^{9} - 11 q^{11} - 2 q^{13} + 4 q^{15} + 12 q^{17} + 5 q^{19} + 24 q^{21} - 12 q^{23} + 13 q^{25} + 3 q^{27} + 16 q^{31} - 7 q^{33} - 28 q^{35} - 4 q^{37} + 46 q^{39} - 4 q^{41} - 22 q^{43}+ \cdots - 65 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/352\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(287\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50933 1.09659i −0.871412 0.633118i 0.0595531 0.998225i \(-0.481032\pi\)
−0.930966 + 0.365107i \(0.881032\pi\)
\(4\) 0 0
\(5\) −0.686361 + 2.11240i −0.306950 + 0.944695i 0.671993 + 0.740558i \(0.265439\pi\)
−0.978942 + 0.204137i \(0.934561\pi\)
\(6\) 0 0
\(7\) 0.787585 0.572214i 0.297679 0.216277i −0.428913 0.903346i \(-0.641103\pi\)
0.726592 + 0.687069i \(0.241103\pi\)
\(8\) 0 0
\(9\) 0.148512 + 0.457073i 0.0495040 + 0.152358i
\(10\) 0 0
\(11\) −2.94543 + 1.52462i −0.888080 + 0.459689i
\(12\) 0 0
\(13\) 1.78094 + 5.48116i 0.493943 + 1.52020i 0.818598 + 0.574367i \(0.194752\pi\)
−0.324655 + 0.945832i \(0.605248\pi\)
\(14\) 0 0
\(15\) 3.35239 2.43565i 0.865583 0.628883i
\(16\) 0 0
\(17\) −1.22859 + 3.78121i −0.297977 + 0.917078i 0.684229 + 0.729267i \(0.260139\pi\)
−0.982205 + 0.187810i \(0.939861\pi\)
\(18\) 0 0
\(19\) 2.27651 + 1.65398i 0.522268 + 0.379450i 0.817457 0.575989i \(-0.195383\pi\)
−0.295190 + 0.955439i \(0.595383\pi\)
\(20\) 0 0
\(21\) −1.81621 −0.396330
\(22\) 0 0
\(23\) 1.20615 0.251500 0.125750 0.992062i \(-0.459866\pi\)
0.125750 + 0.992062i \(0.459866\pi\)
\(24\) 0 0
\(25\) 0.0539368 + 0.0391874i 0.0107874 + 0.00783747i
\(26\) 0 0
\(27\) −1.45247 + 4.47024i −0.279528 + 0.860298i
\(28\) 0 0
\(29\) −1.68573 + 1.22475i −0.313031 + 0.227431i −0.733196 0.680017i \(-0.761972\pi\)
0.420165 + 0.907448i \(0.361972\pi\)
\(30\) 0 0
\(31\) 2.11632 + 6.51337i 0.380103 + 1.16984i 0.939971 + 0.341254i \(0.110852\pi\)
−0.559868 + 0.828581i \(0.689148\pi\)
\(32\) 0 0
\(33\) 6.11751 + 0.928786i 1.06492 + 0.161681i
\(34\) 0 0
\(35\) 0.668178 + 2.05644i 0.112943 + 0.347602i
\(36\) 0 0
\(37\) 7.61289 5.53109i 1.25155 0.909305i 0.253240 0.967404i \(-0.418504\pi\)
0.998311 + 0.0580987i \(0.0185038\pi\)
\(38\) 0 0
\(39\) 3.32258 10.2258i 0.532038 1.63745i
\(40\) 0 0
\(41\) −3.56050 2.58685i −0.556056 0.403998i 0.273957 0.961742i \(-0.411667\pi\)
−0.830013 + 0.557743i \(0.811667\pi\)
\(42\) 0 0
\(43\) −8.84372 −1.34865 −0.674327 0.738432i \(-0.735566\pi\)
−0.674327 + 0.738432i \(0.735566\pi\)
\(44\) 0 0
\(45\) −1.06745 −0.159127
\(46\) 0 0
\(47\) −1.16955 0.849729i −0.170597 0.123946i 0.499211 0.866481i \(-0.333623\pi\)
−0.669807 + 0.742535i \(0.733623\pi\)
\(48\) 0 0
\(49\) −1.87026 + 5.75606i −0.267180 + 0.822294i
\(50\) 0 0
\(51\) 6.00079 4.35983i 0.840279 0.610499i
\(52\) 0 0
\(53\) −3.16432 9.73877i −0.434652 1.33772i −0.893442 0.449178i \(-0.851717\pi\)
0.458790 0.888545i \(-0.348283\pi\)
\(54\) 0 0
\(55\) −1.19897 7.26836i −0.161670 0.980066i
\(56\) 0 0
\(57\) −1.62226 4.99281i −0.214874 0.661314i
\(58\) 0 0
\(59\) −2.85539 + 2.07456i −0.371740 + 0.270085i −0.757932 0.652334i \(-0.773790\pi\)
0.386192 + 0.922418i \(0.373790\pi\)
\(60\) 0 0
\(61\) 1.27790 3.93298i 0.163619 0.503567i −0.835313 0.549775i \(-0.814714\pi\)
0.998932 + 0.0462077i \(0.0147136\pi\)
\(62\) 0 0
\(63\) 0.378510 + 0.275003i 0.0476877 + 0.0346472i
\(64\) 0 0
\(65\) −12.8008 −1.58774
\(66\) 0 0
\(67\) −12.2596 −1.49774 −0.748872 0.662714i \(-0.769404\pi\)
−0.748872 + 0.662714i \(0.769404\pi\)
\(68\) 0 0
\(69\) −1.82048 1.32266i −0.219160 0.159229i
\(70\) 0 0
\(71\) −2.91871 + 8.98287i −0.346387 + 1.06607i 0.614449 + 0.788956i \(0.289378\pi\)
−0.960837 + 0.277115i \(0.910622\pi\)
\(72\) 0 0
\(73\) 5.35678 3.89193i 0.626963 0.455516i −0.228383 0.973571i \(-0.573344\pi\)
0.855347 + 0.518056i \(0.173344\pi\)
\(74\) 0 0
\(75\) −0.0384358 0.118293i −0.00443819 0.0136593i
\(76\) 0 0
\(77\) −1.44737 + 2.88618i −0.164943 + 0.328911i
\(78\) 0 0
\(79\) 2.39931 + 7.38431i 0.269943 + 0.830800i 0.990513 + 0.137417i \(0.0438802\pi\)
−0.720570 + 0.693382i \(0.756120\pi\)
\(80\) 0 0
\(81\) 8.26072 6.00177i 0.917858 0.666863i
\(82\) 0 0
\(83\) 5.33355 16.4150i 0.585434 1.80178i −0.0120889 0.999927i \(-0.503848\pi\)
0.597522 0.801852i \(-0.296152\pi\)
\(84\) 0 0
\(85\) −7.14417 5.19055i −0.774894 0.562994i
\(86\) 0 0
\(87\) 3.88737 0.416770
\(88\) 0 0
\(89\) −0.470432 −0.0498657 −0.0249328 0.999689i \(-0.507937\pi\)
−0.0249328 + 0.999689i \(0.507937\pi\)
\(90\) 0 0
\(91\) 4.53903 + 3.29780i 0.475820 + 0.345704i
\(92\) 0 0
\(93\) 3.94828 12.1516i 0.409418 1.26006i
\(94\) 0 0
\(95\) −5.05638 + 3.67368i −0.518774 + 0.376911i
\(96\) 0 0
\(97\) −2.79977 8.61681i −0.284274 0.874905i −0.986615 0.163065i \(-0.947862\pi\)
0.702342 0.711840i \(-0.252138\pi\)
\(98\) 0 0
\(99\) −1.13429 1.11985i −0.114001 0.112549i
\(100\) 0 0
\(101\) 4.09183 + 12.5933i 0.407152 + 1.25309i 0.919085 + 0.394060i \(0.128930\pi\)
−0.511933 + 0.859025i \(0.671070\pi\)
\(102\) 0 0
\(103\) 12.2970 8.93433i 1.21166 0.880325i 0.216283 0.976331i \(-0.430607\pi\)
0.995381 + 0.0960055i \(0.0306066\pi\)
\(104\) 0 0
\(105\) 1.24658 3.83657i 0.121653 0.374411i
\(106\) 0 0
\(107\) 16.5940 + 12.0562i 1.60420 + 1.16552i 0.878801 + 0.477189i \(0.158344\pi\)
0.725398 + 0.688330i \(0.241656\pi\)
\(108\) 0 0
\(109\) 4.79668 0.459438 0.229719 0.973257i \(-0.426219\pi\)
0.229719 + 0.973257i \(0.426219\pi\)
\(110\) 0 0
\(111\) −17.5557 −1.66631
\(112\) 0 0
\(113\) −5.27699 3.83395i −0.496417 0.360668i 0.311230 0.950335i \(-0.399259\pi\)
−0.807647 + 0.589667i \(0.799259\pi\)
\(114\) 0 0
\(115\) −0.827856 + 2.54788i −0.0771979 + 0.237591i
\(116\) 0 0
\(117\) −2.24080 + 1.62804i −0.207162 + 0.150512i
\(118\) 0 0
\(119\) 1.19604 + 3.68104i 0.109641 + 0.337440i
\(120\) 0 0
\(121\) 6.35109 8.98129i 0.577372 0.816481i
\(122\) 0 0
\(123\) 2.53724 + 7.80883i 0.228776 + 0.704099i
\(124\) 0 0
\(125\) −9.10438 + 6.61472i −0.814320 + 0.591638i
\(126\) 0 0
\(127\) −4.18229 + 12.8718i −0.371118 + 1.14218i 0.574942 + 0.818194i \(0.305025\pi\)
−0.946060 + 0.323990i \(0.894975\pi\)
\(128\) 0 0
\(129\) 13.3481 + 9.69796i 1.17523 + 0.853858i
\(130\) 0 0
\(131\) 11.8240 1.03306 0.516532 0.856268i \(-0.327223\pi\)
0.516532 + 0.856268i \(0.327223\pi\)
\(132\) 0 0
\(133\) 2.73938 0.237534
\(134\) 0 0
\(135\) −8.44603 6.13640i −0.726918 0.528137i
\(136\) 0 0
\(137\) −5.17162 + 15.9166i −0.441841 + 1.35985i 0.444070 + 0.895992i \(0.353534\pi\)
−0.885911 + 0.463855i \(0.846466\pi\)
\(138\) 0 0
\(139\) 9.34431 6.78904i 0.792574 0.575839i −0.116152 0.993231i \(-0.537056\pi\)
0.908726 + 0.417393i \(0.137056\pi\)
\(140\) 0 0
\(141\) 0.833433 + 2.56504i 0.0701877 + 0.216016i
\(142\) 0 0
\(143\) −13.6023 13.4291i −1.13748 1.12300i
\(144\) 0 0
\(145\) −1.43015 4.40155i −0.118768 0.365529i
\(146\) 0 0
\(147\) 9.13489 6.63689i 0.753433 0.547401i
\(148\) 0 0
\(149\) −4.79081 + 14.7446i −0.392478 + 1.20792i 0.538430 + 0.842671i \(0.319018\pi\)
−0.930908 + 0.365254i \(0.880982\pi\)
\(150\) 0 0
\(151\) 7.76046 + 5.63831i 0.631538 + 0.458839i 0.856933 0.515429i \(-0.172367\pi\)
−0.225395 + 0.974267i \(0.572367\pi\)
\(152\) 0 0
\(153\) −1.91075 −0.154475
\(154\) 0 0
\(155\) −15.2114 −1.22181
\(156\) 0 0
\(157\) 2.58988 + 1.88166i 0.206695 + 0.150173i 0.686317 0.727302i \(-0.259226\pi\)
−0.479622 + 0.877475i \(0.659226\pi\)
\(158\) 0 0
\(159\) −5.90346 + 18.1690i −0.468175 + 1.44089i
\(160\) 0 0
\(161\) 0.949948 0.690177i 0.0748664 0.0543936i
\(162\) 0 0
\(163\) −7.30643 22.4869i −0.572284 1.76131i −0.645248 0.763973i \(-0.723246\pi\)
0.0729645 0.997335i \(-0.476754\pi\)
\(164\) 0 0
\(165\) −6.16079 + 12.2851i −0.479617 + 0.956398i
\(166\) 0 0
\(167\) −2.42488 7.46301i −0.187643 0.577505i 0.812341 0.583183i \(-0.198193\pi\)
−0.999984 + 0.00567748i \(0.998193\pi\)
\(168\) 0 0
\(169\) −16.3541 + 11.8820i −1.25801 + 0.913998i
\(170\) 0 0
\(171\) −0.417902 + 1.28617i −0.0319577 + 0.0983558i
\(172\) 0 0
\(173\) −1.52614 1.10881i −0.116030 0.0843009i 0.528257 0.849085i \(-0.322846\pi\)
−0.644287 + 0.764784i \(0.722846\pi\)
\(174\) 0 0
\(175\) 0.0649034 0.00490623
\(176\) 0 0
\(177\) 6.58467 0.494934
\(178\) 0 0
\(179\) −2.48023 1.80199i −0.185381 0.134687i 0.491224 0.871033i \(-0.336550\pi\)
−0.676605 + 0.736346i \(0.736550\pi\)
\(180\) 0 0
\(181\) 2.07757 6.39411i 0.154425 0.475270i −0.843677 0.536850i \(-0.819614\pi\)
0.998102 + 0.0615801i \(0.0196140\pi\)
\(182\) 0 0
\(183\) −6.24166 + 4.53483i −0.461397 + 0.335224i
\(184\) 0 0
\(185\) 6.45869 + 19.8778i 0.474852 + 1.46144i
\(186\) 0 0
\(187\) −2.14617 13.0104i −0.156944 0.951415i
\(188\) 0 0
\(189\) 1.41399 + 4.35182i 0.102853 + 0.316548i
\(190\) 0 0
\(191\) 1.46066 1.06123i 0.105689 0.0767879i −0.533685 0.845683i \(-0.679193\pi\)
0.639375 + 0.768895i \(0.279193\pi\)
\(192\) 0 0
\(193\) −0.250567 + 0.771165i −0.0180362 + 0.0555097i −0.959670 0.281131i \(-0.909291\pi\)
0.941633 + 0.336640i \(0.109291\pi\)
\(194\) 0 0
\(195\) 19.3206 + 14.0372i 1.38358 + 1.00523i
\(196\) 0 0
\(197\) 18.6154 1.32629 0.663147 0.748489i \(-0.269220\pi\)
0.663147 + 0.748489i \(0.269220\pi\)
\(198\) 0 0
\(199\) −16.8109 −1.19170 −0.595848 0.803097i \(-0.703184\pi\)
−0.595848 + 0.803097i \(0.703184\pi\)
\(200\) 0 0
\(201\) 18.5037 + 13.4438i 1.30515 + 0.948249i
\(202\) 0 0
\(203\) −0.626832 + 1.92919i −0.0439950 + 0.135403i
\(204\) 0 0
\(205\) 7.90826 5.74568i 0.552337 0.401296i
\(206\) 0 0
\(207\) 0.179128 + 0.551300i 0.0124503 + 0.0383180i
\(208\) 0 0
\(209\) −9.22699 1.40088i −0.638244 0.0969009i
\(210\) 0 0
\(211\) 0.118697 + 0.365311i 0.00817142 + 0.0251491i 0.955059 0.296415i \(-0.0957913\pi\)
−0.946888 + 0.321565i \(0.895791\pi\)
\(212\) 0 0
\(213\) 14.2559 10.3575i 0.976795 0.709683i
\(214\) 0 0
\(215\) 6.06998 18.6815i 0.413969 1.27407i
\(216\) 0 0
\(217\) 5.39383 + 3.91884i 0.366157 + 0.266028i
\(218\) 0 0
\(219\) −12.3530 −0.834739
\(220\) 0 0
\(221\) −22.9134 −1.54132
\(222\) 0 0
\(223\) 18.8617 + 13.7038i 1.26307 + 0.917676i 0.998904 0.0468004i \(-0.0149025\pi\)
0.264169 + 0.964477i \(0.414902\pi\)
\(224\) 0 0
\(225\) −0.00990123 + 0.0304728i −0.000660082 + 0.00203152i
\(226\) 0 0
\(227\) 2.20487 1.60193i 0.146342 0.106324i −0.512205 0.858863i \(-0.671171\pi\)
0.658547 + 0.752539i \(0.271171\pi\)
\(228\) 0 0
\(229\) 7.71049 + 23.7305i 0.509524 + 1.56815i 0.793030 + 0.609182i \(0.208502\pi\)
−0.283507 + 0.958970i \(0.591498\pi\)
\(230\) 0 0
\(231\) 5.34952 2.76903i 0.351973 0.182189i
\(232\) 0 0
\(233\) −6.53229 20.1043i −0.427944 1.31708i −0.900147 0.435587i \(-0.856541\pi\)
0.472202 0.881490i \(-0.343459\pi\)
\(234\) 0 0
\(235\) 2.59770 1.88734i 0.169455 0.123117i
\(236\) 0 0
\(237\) 4.47623 13.7764i 0.290763 0.894875i
\(238\) 0 0
\(239\) −0.168281 0.122263i −0.0108852 0.00790854i 0.582329 0.812953i \(-0.302141\pi\)
−0.593215 + 0.805044i \(0.702141\pi\)
\(240\) 0 0
\(241\) 1.25123 0.0805990 0.0402995 0.999188i \(-0.487169\pi\)
0.0402995 + 0.999188i \(0.487169\pi\)
\(242\) 0 0
\(243\) −4.94878 −0.317465
\(244\) 0 0
\(245\) −10.8754 7.90147i −0.694806 0.504806i
\(246\) 0 0
\(247\) −5.01142 + 15.4236i −0.318869 + 0.981378i
\(248\) 0 0
\(249\) −26.0507 + 18.9269i −1.65089 + 1.19944i
\(250\) 0 0
\(251\) 6.90297 + 21.2452i 0.435712 + 1.34098i 0.892356 + 0.451333i \(0.149051\pi\)
−0.456644 + 0.889649i \(0.650949\pi\)
\(252\) 0 0
\(253\) −3.55264 + 1.83892i −0.223352 + 0.115612i
\(254\) 0 0
\(255\) 5.09100 + 15.6685i 0.318811 + 0.981200i
\(256\) 0 0
\(257\) −17.5229 + 12.7312i −1.09305 + 0.794148i −0.979912 0.199431i \(-0.936091\pi\)
−0.113139 + 0.993579i \(0.536091\pi\)
\(258\) 0 0
\(259\) 2.83083 8.71240i 0.175899 0.541362i
\(260\) 0 0
\(261\) −0.810151 0.588610i −0.0501471 0.0364340i
\(262\) 0 0
\(263\) 11.3447 0.699545 0.349773 0.936835i \(-0.386259\pi\)
0.349773 + 0.936835i \(0.386259\pi\)
\(264\) 0 0
\(265\) 22.7440 1.39716
\(266\) 0 0
\(267\) 0.710037 + 0.515872i 0.0434536 + 0.0315709i
\(268\) 0 0
\(269\) 4.44338 13.6753i 0.270918 0.833799i −0.719353 0.694645i \(-0.755562\pi\)
0.990271 0.139154i \(-0.0444384\pi\)
\(270\) 0 0
\(271\) 8.90858 6.47246i 0.541158 0.393174i −0.283357 0.959014i \(-0.591448\pi\)
0.824515 + 0.565840i \(0.191448\pi\)
\(272\) 0 0
\(273\) −3.23456 9.95495i −0.195764 0.602501i
\(274\) 0 0
\(275\) −0.218613 0.0331907i −0.0131828 0.00200147i
\(276\) 0 0
\(277\) −1.82394 5.61352i −0.109590 0.337284i 0.881190 0.472762i \(-0.156743\pi\)
−0.990780 + 0.135478i \(0.956743\pi\)
\(278\) 0 0
\(279\) −2.66279 + 1.93463i −0.159417 + 0.115823i
\(280\) 0 0
\(281\) 4.07866 12.5528i 0.243312 0.748839i −0.752597 0.658481i \(-0.771199\pi\)
0.995909 0.0903572i \(-0.0288009\pi\)
\(282\) 0 0
\(283\) −7.07353 5.13922i −0.420478 0.305495i 0.357352 0.933970i \(-0.383680\pi\)
−0.777830 + 0.628475i \(0.783680\pi\)
\(284\) 0 0
\(285\) 11.6603 0.690696
\(286\) 0 0
\(287\) −4.28443 −0.252902
\(288\) 0 0
\(289\) 0.965183 + 0.701247i 0.0567755 + 0.0412498i
\(290\) 0 0
\(291\) −5.22335 + 16.0758i −0.306198 + 0.942382i
\(292\) 0 0
\(293\) 1.22671 0.891257i 0.0716652 0.0520678i −0.551376 0.834257i \(-0.685897\pi\)
0.623041 + 0.782189i \(0.285897\pi\)
\(294\) 0 0
\(295\) −2.42248 7.45562i −0.141042 0.434083i
\(296\) 0 0
\(297\) −2.53726 15.3812i −0.147227 0.892510i
\(298\) 0 0
\(299\) 2.14808 + 6.61111i 0.124227 + 0.382330i
\(300\) 0 0
\(301\) −6.96518 + 5.06050i −0.401467 + 0.291683i
\(302\) 0 0
\(303\) 7.63386 23.4946i 0.438554 1.34973i
\(304\) 0 0
\(305\) 7.43094 + 5.39889i 0.425494 + 0.309140i
\(306\) 0 0
\(307\) 5.53572 0.315940 0.157970 0.987444i \(-0.449505\pi\)
0.157970 + 0.987444i \(0.449505\pi\)
\(308\) 0 0
\(309\) −28.3576 −1.61321
\(310\) 0 0
\(311\) −7.41098 5.38439i −0.420238 0.305321i 0.357495 0.933915i \(-0.383631\pi\)
−0.777734 + 0.628594i \(0.783631\pi\)
\(312\) 0 0
\(313\) 5.02906 15.4779i 0.284259 0.874860i −0.702361 0.711821i \(-0.747871\pi\)
0.986620 0.163038i \(-0.0521295\pi\)
\(314\) 0 0
\(315\) −0.840712 + 0.610813i −0.0473687 + 0.0344154i
\(316\) 0 0
\(317\) −1.09591 3.37286i −0.0615524 0.189439i 0.915552 0.402200i \(-0.131754\pi\)
−0.977104 + 0.212761i \(0.931754\pi\)
\(318\) 0 0
\(319\) 3.09791 6.17750i 0.173450 0.345874i
\(320\) 0 0
\(321\) −11.8250 36.3936i −0.660008 2.03129i
\(322\) 0 0
\(323\) −9.05095 + 6.57590i −0.503608 + 0.365893i
\(324\) 0 0
\(325\) −0.118734 + 0.365426i −0.00658619 + 0.0202702i
\(326\) 0 0
\(327\) −7.23977 5.26000i −0.400360 0.290879i
\(328\) 0 0
\(329\) −1.40735 −0.0775896
\(330\) 0 0
\(331\) −16.2332 −0.892257 −0.446128 0.894969i \(-0.647198\pi\)
−0.446128 + 0.894969i \(0.647198\pi\)
\(332\) 0 0
\(333\) 3.65872 + 2.65821i 0.200496 + 0.145669i
\(334\) 0 0
\(335\) 8.41449 25.8971i 0.459733 1.41491i
\(336\) 0 0
\(337\) 6.84497 4.97316i 0.372869 0.270905i −0.385531 0.922695i \(-0.625982\pi\)
0.758400 + 0.651790i \(0.225982\pi\)
\(338\) 0 0
\(339\) 3.76043 + 11.5734i 0.204238 + 0.628581i
\(340\) 0 0
\(341\) −16.1639 15.9581i −0.875322 0.864178i
\(342\) 0 0
\(343\) 3.92653 + 12.0846i 0.212013 + 0.652508i
\(344\) 0 0
\(345\) 4.04349 2.93777i 0.217694 0.158164i
\(346\) 0 0
\(347\) 1.66589 5.12710i 0.0894299 0.275237i −0.896332 0.443383i \(-0.853778\pi\)
0.985762 + 0.168146i \(0.0537781\pi\)
\(348\) 0 0
\(349\) −10.4565 7.59712i −0.559725 0.406664i 0.271633 0.962401i \(-0.412436\pi\)
−0.831358 + 0.555737i \(0.812436\pi\)
\(350\) 0 0
\(351\) −27.0889 −1.44590
\(352\) 0 0
\(353\) 34.5770 1.84035 0.920173 0.391511i \(-0.128047\pi\)
0.920173 + 0.391511i \(0.128047\pi\)
\(354\) 0 0
\(355\) −16.9721 12.3310i −0.900788 0.654461i
\(356\) 0 0
\(357\) 2.23138 6.86748i 0.118097 0.363465i
\(358\) 0 0
\(359\) 18.7680 13.6358i 0.990539 0.719669i 0.0305003 0.999535i \(-0.490290\pi\)
0.960039 + 0.279866i \(0.0902899\pi\)
\(360\) 0 0
\(361\) −3.42448 10.5395i −0.180236 0.554708i
\(362\) 0 0
\(363\) −19.4347 + 6.59118i −1.02006 + 0.345947i
\(364\) 0 0
\(365\) 4.54463 + 13.9869i 0.237877 + 0.732109i
\(366\) 0 0
\(367\) 12.5161 9.09348i 0.653335 0.474676i −0.211071 0.977471i \(-0.567695\pi\)
0.864406 + 0.502795i \(0.167695\pi\)
\(368\) 0 0
\(369\) 0.653604 2.01159i 0.0340253 0.104719i
\(370\) 0 0
\(371\) −8.06483 5.85944i −0.418705 0.304207i
\(372\) 0 0
\(373\) 30.5787 1.58331 0.791653 0.610970i \(-0.209221\pi\)
0.791653 + 0.610970i \(0.209221\pi\)
\(374\) 0 0
\(375\) 20.9952 1.08419
\(376\) 0 0
\(377\) −9.71522 7.05852i −0.500360 0.363532i
\(378\) 0 0
\(379\) 0.840099 2.58556i 0.0431530 0.132811i −0.927159 0.374668i \(-0.877757\pi\)
0.970312 + 0.241857i \(0.0777565\pi\)
\(380\) 0 0
\(381\) 20.4275 14.8415i 1.04653 0.760352i
\(382\) 0 0
\(383\) 5.68665 + 17.5017i 0.290574 + 0.894296i 0.984672 + 0.174415i \(0.0558035\pi\)
−0.694098 + 0.719881i \(0.744196\pi\)
\(384\) 0 0
\(385\) −5.10335 5.03838i −0.260091 0.256780i
\(386\) 0 0
\(387\) −1.31340 4.04223i −0.0667638 0.205478i
\(388\) 0 0
\(389\) −0.514886 + 0.374087i −0.0261058 + 0.0189669i −0.600762 0.799428i \(-0.705136\pi\)
0.574656 + 0.818395i \(0.305136\pi\)
\(390\) 0 0
\(391\) −1.48187 + 4.56071i −0.0749412 + 0.230645i
\(392\) 0 0
\(393\) −17.8463 12.9661i −0.900225 0.654052i
\(394\) 0 0
\(395\) −17.2454 −0.867711
\(396\) 0 0
\(397\) −19.6411 −0.985760 −0.492880 0.870097i \(-0.664056\pi\)
−0.492880 + 0.870097i \(0.664056\pi\)
\(398\) 0 0
\(399\) −4.13463 3.00398i −0.206990 0.150387i
\(400\) 0 0
\(401\) −1.77896 + 5.47507i −0.0888369 + 0.273412i −0.985599 0.169102i \(-0.945913\pi\)
0.896762 + 0.442514i \(0.145913\pi\)
\(402\) 0 0
\(403\) −31.9318 + 23.1998i −1.59063 + 1.15566i
\(404\) 0 0
\(405\) 7.00830 + 21.5693i 0.348245 + 1.07179i
\(406\) 0 0
\(407\) −13.9904 + 27.8981i −0.693480 + 1.38286i
\(408\) 0 0
\(409\) 7.14831 + 22.0002i 0.353461 + 1.08784i 0.956896 + 0.290429i \(0.0937981\pi\)
−0.603436 + 0.797412i \(0.706202\pi\)
\(410\) 0 0
\(411\) 25.2597 18.3523i 1.24597 0.905250i
\(412\) 0 0
\(413\) −1.06177 + 3.26778i −0.0522462 + 0.160797i
\(414\) 0 0
\(415\) 31.0143 + 22.5332i 1.52243 + 1.10611i
\(416\) 0 0
\(417\) −21.5485 −1.05523
\(418\) 0 0
\(419\) 20.6359 1.00813 0.504065 0.863666i \(-0.331837\pi\)
0.504065 + 0.863666i \(0.331837\pi\)
\(420\) 0 0
\(421\) −24.3859 17.7174i −1.18850 0.863494i −0.195392 0.980725i \(-0.562598\pi\)
−0.993105 + 0.117231i \(0.962598\pi\)
\(422\) 0 0
\(423\) 0.214696 0.660765i 0.0104389 0.0321275i
\(424\) 0 0
\(425\) −0.214442 + 0.155801i −0.0104020 + 0.00755746i
\(426\) 0 0
\(427\) −1.24405 3.82879i −0.0602038 0.185288i
\(428\) 0 0
\(429\) 5.80407 + 35.1851i 0.280223 + 1.69875i
\(430\) 0 0
\(431\) −10.0976 31.0772i −0.486384 1.49694i −0.829967 0.557813i \(-0.811641\pi\)
0.343583 0.939122i \(-0.388359\pi\)
\(432\) 0 0
\(433\) −22.6740 + 16.4736i −1.08964 + 0.791672i −0.979339 0.202226i \(-0.935182\pi\)
−0.110304 + 0.993898i \(0.535182\pi\)
\(434\) 0 0
\(435\) −2.66814 + 8.21169i −0.127927 + 0.393720i
\(436\) 0 0
\(437\) 2.74582 + 1.99496i 0.131350 + 0.0954317i
\(438\) 0 0
\(439\) 19.4940 0.930399 0.465200 0.885206i \(-0.345983\pi\)
0.465200 + 0.885206i \(0.345983\pi\)
\(440\) 0 0
\(441\) −2.90870 −0.138509
\(442\) 0 0
\(443\) 7.21362 + 5.24100i 0.342729 + 0.249007i 0.745812 0.666156i \(-0.232061\pi\)
−0.403083 + 0.915163i \(0.632061\pi\)
\(444\) 0 0
\(445\) 0.322886 0.993741i 0.0153063 0.0471078i
\(446\) 0 0
\(447\) 23.3997 17.0009i 1.10677 0.804115i
\(448\) 0 0
\(449\) 0.225866 + 0.695145i 0.0106593 + 0.0328059i 0.956245 0.292568i \(-0.0945098\pi\)
−0.945585 + 0.325374i \(0.894510\pi\)
\(450\) 0 0
\(451\) 14.4311 + 2.19100i 0.679536 + 0.103170i
\(452\) 0 0
\(453\) −5.53018 17.0201i −0.259830 0.799676i
\(454\) 0 0
\(455\) −10.0817 + 7.32478i −0.472637 + 0.343391i
\(456\) 0 0
\(457\) 0.504920 1.55398i 0.0236192 0.0726923i −0.938552 0.345137i \(-0.887832\pi\)
0.962171 + 0.272445i \(0.0878323\pi\)
\(458\) 0 0
\(459\) −15.1184 10.9842i −0.705668 0.512698i
\(460\) 0 0
\(461\) −2.38755 −0.111199 −0.0555996 0.998453i \(-0.517707\pi\)
−0.0555996 + 0.998453i \(0.517707\pi\)
\(462\) 0 0
\(463\) 16.3739 0.760961 0.380480 0.924789i \(-0.375759\pi\)
0.380480 + 0.924789i \(0.375759\pi\)
\(464\) 0 0
\(465\) 22.9590 + 16.6807i 1.06470 + 0.773550i
\(466\) 0 0
\(467\) −6.80913 + 20.9564i −0.315089 + 0.969745i 0.660629 + 0.750713i \(0.270290\pi\)
−0.975718 + 0.219032i \(0.929710\pi\)
\(468\) 0 0
\(469\) −9.65545 + 7.01510i −0.445847 + 0.323927i
\(470\) 0 0
\(471\) −1.84557 5.68009i −0.0850395 0.261725i
\(472\) 0 0
\(473\) 26.0485 13.4833i 1.19771 0.619962i
\(474\) 0 0
\(475\) 0.0579725 + 0.178421i 0.00265996 + 0.00818652i
\(476\) 0 0
\(477\) 3.98139 2.89265i 0.182295 0.132445i
\(478\) 0 0
\(479\) −7.62945 + 23.4810i −0.348598 + 1.07288i 0.611031 + 0.791607i \(0.290755\pi\)
−0.959629 + 0.281268i \(0.909245\pi\)
\(480\) 0 0
\(481\) 43.8748 + 31.8769i 2.00052 + 1.45346i
\(482\) 0 0
\(483\) −2.19063 −0.0996771
\(484\) 0 0
\(485\) 20.1238 0.913776
\(486\) 0 0
\(487\) −15.7904 11.4724i −0.715532 0.519864i 0.169422 0.985544i \(-0.445810\pi\)
−0.884953 + 0.465679i \(0.845810\pi\)
\(488\) 0 0
\(489\) −13.6311 + 41.9523i −0.616421 + 1.89715i
\(490\) 0 0
\(491\) 11.9467 8.67982i 0.539149 0.391715i −0.284620 0.958641i \(-0.591867\pi\)
0.823769 + 0.566926i \(0.191867\pi\)
\(492\) 0 0
\(493\) −2.55998 7.87880i −0.115296 0.354843i
\(494\) 0 0
\(495\) 3.14411 1.62746i 0.141317 0.0731488i
\(496\) 0 0
\(497\) 2.84139 + 8.74491i 0.127454 + 0.392263i
\(498\) 0 0
\(499\) −14.3683 + 10.4392i −0.643212 + 0.467321i −0.860952 0.508686i \(-0.830131\pi\)
0.217740 + 0.976007i \(0.430131\pi\)
\(500\) 0 0
\(501\) −4.52394 + 13.9233i −0.202115 + 0.622045i
\(502\) 0 0
\(503\) 13.2819 + 9.64987i 0.592211 + 0.430266i 0.843106 0.537748i \(-0.180725\pi\)
−0.250895 + 0.968014i \(0.580725\pi\)
\(504\) 0 0
\(505\) −29.4107 −1.30876
\(506\) 0 0
\(507\) 37.7135 1.67491
\(508\) 0 0
\(509\) 10.8901 + 7.91213i 0.482696 + 0.350699i 0.802368 0.596829i \(-0.203573\pi\)
−0.319673 + 0.947528i \(0.603573\pi\)
\(510\) 0 0
\(511\) 1.99190 6.13045i 0.0881166 0.271195i
\(512\) 0 0
\(513\) −10.7003 + 7.77420i −0.472428 + 0.343239i
\(514\) 0 0
\(515\) 10.4327 + 32.1085i 0.459718 + 1.41487i
\(516\) 0 0
\(517\) 4.74034 + 0.719698i 0.208480 + 0.0316523i
\(518\) 0 0
\(519\) 1.08754 + 3.34711i 0.0477378 + 0.146922i
\(520\) 0 0
\(521\) 29.4858 21.4227i 1.29179 0.938544i 0.291954 0.956432i \(-0.405694\pi\)
0.999840 + 0.0178887i \(0.00569445\pi\)
\(522\) 0 0
\(523\) −3.50372 + 10.7833i −0.153207 + 0.471523i −0.997975 0.0636104i \(-0.979739\pi\)
0.844768 + 0.535133i \(0.179739\pi\)
\(524\) 0 0
\(525\) −0.0979606 0.0711726i −0.00427535 0.00310623i
\(526\) 0 0
\(527\) −27.2285 −1.18609
\(528\) 0 0
\(529\) −21.5452 −0.936748
\(530\) 0 0
\(531\) −1.37228 0.997023i −0.0595521 0.0432671i
\(532\) 0 0
\(533\) 7.83793 24.1227i 0.339498 1.04487i
\(534\) 0 0
\(535\) −36.8570 + 26.7782i −1.59347 + 1.15772i
\(536\) 0 0
\(537\) 1.76744 + 5.43961i 0.0762705 + 0.234736i
\(538\) 0 0
\(539\) −3.26707 19.8055i −0.140723 0.853083i
\(540\) 0 0
\(541\) 12.6257 + 38.8579i 0.542821 + 1.67063i 0.726116 + 0.687572i \(0.241323\pi\)
−0.183296 + 0.983058i \(0.558677\pi\)
\(542\) 0 0
\(543\) −10.1475 + 7.37257i −0.435470 + 0.316387i
\(544\) 0 0
\(545\) −3.29225 + 10.1325i −0.141025 + 0.434029i
\(546\) 0 0
\(547\) −26.5326 19.2770i −1.13445 0.824227i −0.148115 0.988970i \(-0.547320\pi\)
−0.986336 + 0.164743i \(0.947320\pi\)
\(548\) 0 0
\(549\) 1.98744 0.0848221
\(550\) 0 0
\(551\) −5.86329 −0.249785
\(552\) 0 0
\(553\) 6.11506 + 4.44285i 0.260039 + 0.188929i
\(554\) 0 0
\(555\) 12.0496 37.0847i 0.511475 1.57416i
\(556\) 0 0
\(557\) 6.06808 4.40872i 0.257113 0.186803i −0.451760 0.892139i \(-0.649204\pi\)
0.708873 + 0.705336i \(0.249204\pi\)
\(558\) 0 0
\(559\) −15.7501 48.4738i −0.666158 2.05022i
\(560\) 0 0
\(561\) −11.0278 + 21.9905i −0.465596 + 0.928439i
\(562\) 0 0
\(563\) −3.62177 11.1467i −0.152639 0.469775i 0.845275 0.534332i \(-0.179437\pi\)
−0.997914 + 0.0645565i \(0.979437\pi\)
\(564\) 0 0
\(565\) 11.7208 8.51563i 0.493096 0.358255i
\(566\) 0 0
\(567\) 3.07173 9.45380i 0.129000 0.397022i
\(568\) 0 0
\(569\) −6.00794 4.36502i −0.251866 0.182991i 0.454687 0.890651i \(-0.349751\pi\)
−0.706553 + 0.707660i \(0.749751\pi\)
\(570\) 0 0
\(571\) 37.7892 1.58143 0.790714 0.612185i \(-0.209709\pi\)
0.790714 + 0.612185i \(0.209709\pi\)
\(572\) 0 0
\(573\) −3.36835 −0.140715
\(574\) 0 0
\(575\) 0.0650560 + 0.0472659i 0.00271302 + 0.00197113i
\(576\) 0 0
\(577\) −6.63455 + 20.4190i −0.276200 + 0.850056i 0.712699 + 0.701470i \(0.247472\pi\)
−0.988899 + 0.148587i \(0.952528\pi\)
\(578\) 0 0
\(579\) 1.22384 0.889173i 0.0508611 0.0369528i
\(580\) 0 0
\(581\) −5.19226 15.9801i −0.215411 0.662968i
\(582\) 0 0
\(583\) 24.1681 + 23.8605i 1.00094 + 0.988199i
\(584\) 0 0
\(585\) −1.90107 5.85089i −0.0785995 0.241904i
\(586\) 0 0
\(587\) 1.59529 1.15904i 0.0658445 0.0478388i −0.554376 0.832266i \(-0.687043\pi\)
0.620221 + 0.784427i \(0.287043\pi\)
\(588\) 0 0
\(589\) −5.95517 + 18.3281i −0.245378 + 0.755197i
\(590\) 0 0
\(591\) −28.0968 20.4135i −1.15575 0.839701i
\(592\) 0 0
\(593\) 7.57118 0.310911 0.155456 0.987843i \(-0.450315\pi\)
0.155456 + 0.987843i \(0.450315\pi\)
\(594\) 0 0
\(595\) −8.59675 −0.352432
\(596\) 0 0
\(597\) 25.3733 + 18.4348i 1.03846 + 0.754484i
\(598\) 0 0
\(599\) 3.16675 9.74625i 0.129390 0.398221i −0.865286 0.501279i \(-0.832863\pi\)
0.994675 + 0.103059i \(0.0328629\pi\)
\(600\) 0 0
\(601\) −2.79241 + 2.02880i −0.113905 + 0.0827567i −0.643279 0.765632i \(-0.722427\pi\)
0.529375 + 0.848388i \(0.322427\pi\)
\(602\) 0 0
\(603\) −1.82069 5.60352i −0.0741444 0.228193i
\(604\) 0 0
\(605\) 14.6130 + 19.5805i 0.594101 + 0.796059i
\(606\) 0 0
\(607\) −0.972368 2.99264i −0.0394672 0.121468i 0.929382 0.369120i \(-0.120341\pi\)
−0.968849 + 0.247652i \(0.920341\pi\)
\(608\) 0 0
\(609\) 3.06164 2.22441i 0.124064 0.0901376i
\(610\) 0 0
\(611\) 2.57460 7.92381i 0.104157 0.320563i
\(612\) 0 0
\(613\) −37.0732 26.9353i −1.49737 1.08791i −0.971413 0.237397i \(-0.923706\pi\)
−0.525961 0.850508i \(-0.676294\pi\)
\(614\) 0 0
\(615\) −18.2369 −0.735381
\(616\) 0 0
\(617\) 6.41440 0.258234 0.129117 0.991629i \(-0.458786\pi\)
0.129117 + 0.991629i \(0.458786\pi\)
\(618\) 0 0
\(619\) 24.0778 + 17.4936i 0.967770 + 0.703126i 0.954942 0.296792i \(-0.0959168\pi\)
0.0128275 + 0.999918i \(0.495917\pi\)
\(620\) 0 0
\(621\) −1.75190 + 5.39179i −0.0703013 + 0.216365i
\(622\) 0 0
\(623\) −0.370505 + 0.269188i −0.0148440 + 0.0107848i
\(624\) 0 0
\(625\) −7.62104 23.4552i −0.304842 0.938206i
\(626\) 0 0
\(627\) 12.3904 + 12.2326i 0.494824 + 0.488525i
\(628\) 0 0
\(629\) 11.5611 + 35.5813i 0.460970 + 1.41872i
\(630\) 0 0
\(631\) −39.4007 + 28.6263i −1.56852 + 1.13959i −0.639959 + 0.768409i \(0.721049\pi\)
−0.928559 + 0.371186i \(0.878951\pi\)
\(632\) 0 0
\(633\) 0.221445 0.681537i 0.00880164 0.0270887i
\(634\) 0 0
\(635\) −24.3198 17.6693i −0.965101 0.701187i
\(636\) 0 0
\(637\) −34.8807 −1.38202
\(638\) 0 0
\(639\) −4.53929 −0.179572
\(640\) 0 0
\(641\) −13.6347 9.90618i −0.538538 0.391270i 0.285004 0.958526i \(-0.408005\pi\)
−0.823542 + 0.567256i \(0.808005\pi\)
\(642\) 0 0
\(643\) −2.02874 + 6.24381i −0.0800056 + 0.246232i −0.983057 0.183301i \(-0.941322\pi\)
0.903051 + 0.429533i \(0.141322\pi\)
\(644\) 0 0
\(645\) −29.6476 + 21.5402i −1.16737 + 0.848146i
\(646\) 0 0
\(647\) 1.09099 + 3.35774i 0.0428914 + 0.132006i 0.970209 0.242269i \(-0.0778916\pi\)
−0.927318 + 0.374275i \(0.877892\pi\)
\(648\) 0 0
\(649\) 5.24743 10.4638i 0.205980 0.410741i
\(650\) 0 0
\(651\) −3.84369 11.8297i −0.150646 0.463641i
\(652\) 0 0
\(653\) 4.96362 3.60628i 0.194241 0.141125i −0.486414 0.873729i \(-0.661695\pi\)
0.680655 + 0.732604i \(0.261695\pi\)
\(654\) 0 0
\(655\) −8.11550 + 24.9770i −0.317099 + 0.975930i
\(656\) 0 0
\(657\) 2.57444 + 1.87044i 0.100439 + 0.0729729i
\(658\) 0 0
\(659\) 27.9511 1.08882 0.544410 0.838819i \(-0.316754\pi\)
0.544410 + 0.838819i \(0.316754\pi\)
\(660\) 0 0
\(661\) 11.5665 0.449886 0.224943 0.974372i \(-0.427780\pi\)
0.224943 + 0.974372i \(0.427780\pi\)
\(662\) 0 0
\(663\) 34.5840 + 25.1267i 1.34313 + 0.975841i
\(664\) 0 0
\(665\) −1.88020 + 5.78667i −0.0729111 + 0.224397i
\(666\) 0 0
\(667\) −2.03324 + 1.47724i −0.0787274 + 0.0571988i
\(668\) 0 0
\(669\) −13.4410 41.3672i −0.519660 1.59935i
\(670\) 0 0
\(671\) 2.23232 + 13.5326i 0.0861776 + 0.522421i
\(672\) 0 0
\(673\) −4.37705 13.4712i −0.168723 0.519276i 0.830568 0.556917i \(-0.188016\pi\)
−0.999291 + 0.0376407i \(0.988016\pi\)
\(674\) 0 0
\(675\) −0.253519 + 0.184192i −0.00975793 + 0.00708955i
\(676\) 0 0
\(677\) 7.84568 24.1465i 0.301534 0.928026i −0.679414 0.733755i \(-0.737766\pi\)
0.980948 0.194271i \(-0.0622341\pi\)
\(678\) 0 0
\(679\) −7.13572 5.18441i −0.273844 0.198959i
\(680\) 0 0
\(681\) −5.08454 −0.194840
\(682\) 0 0
\(683\) 14.6841 0.561870 0.280935 0.959727i \(-0.409355\pi\)
0.280935 + 0.959727i \(0.409355\pi\)
\(684\) 0 0
\(685\) −30.0727 21.8491i −1.14902 0.834810i
\(686\) 0 0
\(687\) 14.3850 44.2724i 0.548821 1.68910i
\(688\) 0 0
\(689\) 47.7443 34.6882i 1.81891 1.32152i
\(690\) 0 0
\(691\) −9.85170 30.3204i −0.374776 1.15344i −0.943629 0.331004i \(-0.892613\pi\)
0.568853 0.822439i \(-0.307387\pi\)
\(692\) 0 0
\(693\) −1.53415 0.232921i −0.0582774 0.00884792i
\(694\) 0 0
\(695\) 7.92761 + 24.3987i 0.300711 + 0.925494i
\(696\) 0 0
\(697\) 14.1558 10.2848i 0.536190 0.389565i
\(698\) 0 0
\(699\) −12.1869 + 37.5073i −0.460949 + 1.41866i
\(700\) 0 0
\(701\) 13.5108 + 9.81615i 0.510295 + 0.370751i 0.812935 0.582354i \(-0.197868\pi\)
−0.302641 + 0.953105i \(0.597868\pi\)
\(702\) 0 0
\(703\) 26.4791 0.998680
\(704\) 0 0
\(705\) −5.99044 −0.225613
\(706\) 0 0
\(707\) 10.4288 + 7.57693i 0.392214 + 0.284960i
\(708\) 0 0
\(709\) −8.24276 + 25.3686i −0.309564 + 0.952739i 0.668371 + 0.743828i \(0.266992\pi\)
−0.977935 + 0.208911i \(0.933008\pi\)
\(710\) 0 0
\(711\) −3.01884 + 2.19332i −0.113215 + 0.0822558i
\(712\) 0 0
\(713\) 2.55261 + 7.85612i 0.0955959 + 0.294214i
\(714\) 0 0
\(715\) 37.7037 19.5163i 1.41004 0.729867i
\(716\) 0 0
\(717\) 0.119918 + 0.369071i 0.00447843 + 0.0137832i
\(718\) 0 0
\(719\) −15.8748 + 11.5337i −0.592032 + 0.430136i −0.843042 0.537848i \(-0.819237\pi\)
0.251010 + 0.967984i \(0.419237\pi\)
\(720\) 0 0
\(721\) 4.57262 14.0731i 0.170293 0.524109i
\(722\) 0 0
\(723\) −1.88852 1.37209i −0.0702349 0.0510287i
\(724\) 0 0
\(725\) −0.138917 −0.00515926
\(726\) 0 0
\(727\) −23.9815 −0.889424 −0.444712 0.895674i \(-0.646694\pi\)
−0.444712 + 0.895674i \(0.646694\pi\)
\(728\) 0 0
\(729\) −17.3128 12.5785i −0.641215 0.465870i
\(730\) 0 0
\(731\) 10.8653 33.4400i 0.401868 1.23682i
\(732\) 0 0
\(733\) 12.4119 9.01779i 0.458445 0.333080i −0.334476 0.942404i \(-0.608559\pi\)
0.792921 + 0.609325i \(0.208559\pi\)
\(734\) 0 0
\(735\) 7.74994 + 23.8519i 0.285861 + 0.879789i
\(736\) 0 0
\(737\) 36.1097 18.6911i 1.33012 0.688497i
\(738\) 0 0
\(739\) 0.987413 + 3.03894i 0.0363226 + 0.111789i 0.967574 0.252588i \(-0.0812818\pi\)
−0.931251 + 0.364378i \(0.881282\pi\)
\(740\) 0 0
\(741\) 24.4773 17.7838i 0.899194 0.653303i
\(742\) 0 0
\(743\) −9.56687 + 29.4438i −0.350974 + 1.08019i 0.607333 + 0.794448i \(0.292239\pi\)
−0.958307 + 0.285740i \(0.907761\pi\)
\(744\) 0 0
\(745\) −27.8583 20.2402i −1.02065 0.741545i
\(746\) 0 0
\(747\) 8.29495 0.303496
\(748\) 0 0
\(749\) 19.9679 0.729611
\(750\) 0 0
\(751\) 14.5388 + 10.5630i 0.530528 + 0.385451i 0.820555 0.571567i \(-0.193664\pi\)
−0.290027 + 0.957018i \(0.593664\pi\)
\(752\) 0 0
\(753\) 12.8784 39.6357i 0.469316 1.44441i
\(754\) 0 0
\(755\) −17.2368 + 12.5233i −0.627313 + 0.455770i
\(756\) 0 0
\(757\) 4.53896 + 13.9695i 0.164971 + 0.507729i 0.999034 0.0439400i \(-0.0139910\pi\)
−0.834063 + 0.551669i \(0.813991\pi\)
\(758\) 0 0
\(759\) 7.37865 + 1.12026i 0.267828 + 0.0406628i
\(760\) 0 0
\(761\) −4.09898 12.6154i −0.148588 0.457307i 0.848867 0.528606i \(-0.177285\pi\)
−0.997455 + 0.0712999i \(0.977285\pi\)
\(762\) 0 0
\(763\) 3.77779 2.74473i 0.136765 0.0993658i
\(764\) 0 0
\(765\) 1.31146 4.03627i 0.0474161 0.145932i
\(766\) 0 0
\(767\) −16.4562 11.9562i −0.594201 0.431712i
\(768\) 0 0
\(769\) −30.0680 −1.08428 −0.542139 0.840289i \(-0.682385\pi\)
−0.542139 + 0.840289i \(0.682385\pi\)
\(770\) 0 0
\(771\) 40.4088 1.45529
\(772\) 0 0
\(773\) −8.52718 6.19536i −0.306701 0.222832i 0.423778 0.905766i \(-0.360703\pi\)
−0.730480 + 0.682934i \(0.760703\pi\)
\(774\) 0 0
\(775\) −0.141094 + 0.434243i −0.00506825 + 0.0155985i
\(776\) 0 0
\(777\) −13.8266 + 10.0456i −0.496027 + 0.360385i
\(778\) 0 0
\(779\) −3.82690 11.7780i −0.137113 0.421991i
\(780\) 0 0
\(781\) −5.09857 30.9083i −0.182441 1.10599i
\(782\) 0 0
\(783\) −3.02647 9.31452i −0.108157 0.332874i
\(784\) 0 0
\(785\) −5.75241 + 4.17937i −0.205312 + 0.149168i
\(786\) 0 0
\(787\) −11.6052 + 35.7171i −0.413680 + 1.27318i 0.499746 + 0.866172i \(0.333427\pi\)
−0.913426 + 0.407004i \(0.866573\pi\)
\(788\) 0 0
\(789\) −17.1229 12.4405i −0.609592 0.442895i
\(790\) 0 0
\(791\) −6.34992 −0.225777
\(792\) 0 0
\(793\) 23.8332 0.846340
\(794\) 0 0
\(795\) −34.3283 24.9410i −1.21750 0.884565i
\(796\) 0 0
\(797\) 4.86857 14.9839i 0.172454 0.530758i −0.827054 0.562122i \(-0.809985\pi\)
0.999508 + 0.0313641i \(0.00998515\pi\)
\(798\) 0 0
\(799\) 4.64990 3.37835i 0.164502 0.119517i
\(800\) 0 0
\(801\) −0.0698648 0.215022i −0.00246855 0.00759742i
\(802\) 0 0
\(803\) −9.84431 + 19.6304i −0.347398 + 0.692742i
\(804\) 0 0
\(805\) 0.805925 + 2.48038i 0.0284051 + 0.0874220i
\(806\) 0 0
\(807\) −21.7028 + 15.7680i −0.763975 + 0.555060i
\(808\) 0 0
\(809\) −10.9888 + 33.8200i −0.386345 + 1.18905i 0.549154 + 0.835721i \(0.314950\pi\)
−0.935500 + 0.353328i \(0.885050\pi\)
\(810\) 0 0
\(811\) 6.30228 + 4.57888i 0.221303 + 0.160786i 0.692913 0.721021i \(-0.256327\pi\)
−0.471610 + 0.881807i \(0.656327\pi\)
\(812\) 0 0
\(813\) −20.5436 −0.720497
\(814\) 0 0
\(815\) 52.5161 1.83956
\(816\) 0 0
\(817\) −20.1328 14.6274i −0.704359 0.511747i
\(818\) 0 0
\(819\) −0.833235 + 2.56443i −0.0291156 + 0.0896086i
\(820\) 0 0
\(821\) 4.87943 3.54511i 0.170293 0.123725i −0.499374 0.866386i \(-0.666437\pi\)
0.669667 + 0.742661i \(0.266437\pi\)
\(822\) 0 0
\(823\) −15.4682 47.6063i −0.539188 1.65945i −0.734422 0.678694i \(-0.762546\pi\)
0.195234 0.980757i \(-0.437454\pi\)
\(824\) 0 0
\(825\) 0.293562 + 0.289825i 0.0102205 + 0.0100904i
\(826\) 0 0
\(827\) −8.75315 26.9394i −0.304377 0.936776i −0.979909 0.199445i \(-0.936086\pi\)
0.675532 0.737331i \(-0.263914\pi\)
\(828\) 0 0
\(829\) 4.38986 3.18942i 0.152466 0.110773i −0.508937 0.860804i \(-0.669961\pi\)
0.661403 + 0.750031i \(0.269961\pi\)
\(830\) 0 0
\(831\) −3.40281 + 10.4728i −0.118042 + 0.363297i
\(832\) 0 0
\(833\) −19.4671 14.1437i −0.674495 0.490049i
\(834\) 0 0
\(835\) 17.4292 0.603163
\(836\) 0 0
\(837\) −32.1902 −1.11266
\(838\) 0 0
\(839\) −32.6943 23.7538i −1.12873 0.820071i −0.143222 0.989691i \(-0.545746\pi\)
−0.985510 + 0.169619i \(0.945746\pi\)
\(840\) 0 0
\(841\) −7.61984 + 23.4514i −0.262753 + 0.808671i
\(842\) 0 0
\(843\) −19.9214 + 14.4737i −0.686129 + 0.498502i
\(844\) 0 0
\(845\) −13.8747 42.7018i −0.477303 1.46899i
\(846\) 0 0
\(847\) −0.137197 10.7077i −0.00471416 0.367922i
\(848\) 0 0
\(849\) 5.04066 + 15.5136i 0.172995 + 0.532424i
\(850\) 0 0
\(851\) 9.18230 6.67133i 0.314765 0.228690i
\(852\) 0 0
\(853\) −7.42894 + 22.8639i −0.254362 + 0.782846i 0.739593 + 0.673055i \(0.235018\pi\)
−0.993955 + 0.109791i \(0.964982\pi\)
\(854\) 0 0
\(855\) −2.43007 1.76555i −0.0831068 0.0603806i
\(856\) 0 0
\(857\) 42.9442 1.46695 0.733474 0.679718i \(-0.237898\pi\)
0.733474 + 0.679718i \(0.237898\pi\)
\(858\) 0 0
\(859\) 12.9486 0.441800 0.220900 0.975296i \(-0.429101\pi\)
0.220900 + 0.975296i \(0.429101\pi\)
\(860\) 0 0
\(861\) 6.46662 + 4.69827i 0.220382 + 0.160117i
\(862\) 0 0
\(863\) 3.63584 11.1900i 0.123765 0.380910i −0.869909 0.493213i \(-0.835822\pi\)
0.993674 + 0.112302i \(0.0358225\pi\)
\(864\) 0 0
\(865\) 3.38973 2.46278i 0.115254 0.0837370i
\(866\) 0 0
\(867\) −0.687798 2.11683i −0.0233589 0.0718912i
\(868\) 0 0
\(869\) −18.3252 18.0919i −0.621641 0.613727i
\(870\) 0 0
\(871\) −21.8335 67.1966i −0.739800 2.27687i
\(872\) 0 0
\(873\) 3.52271 2.55940i 0.119226 0.0866226i
\(874\) 0 0
\(875\) −3.38544 + 10.4193i −0.114449 + 0.352237i
\(876\) 0 0
\(877\) 33.5126 + 24.3483i 1.13164 + 0.822185i 0.985933 0.167142i \(-0.0534539\pi\)
0.145708 + 0.989328i \(0.453454\pi\)
\(878\) 0 0
\(879\) −2.82886 −0.0954150
\(880\) 0 0
\(881\) −44.7091 −1.50629 −0.753143 0.657857i \(-0.771463\pi\)
−0.753143 + 0.657857i \(0.771463\pi\)
\(882\) 0 0
\(883\) 17.7445 + 12.8922i 0.597151 + 0.433856i 0.844867 0.534977i \(-0.179680\pi\)
−0.247715 + 0.968833i \(0.579680\pi\)
\(884\) 0 0
\(885\) −4.51946 + 13.9095i −0.151920 + 0.467561i
\(886\) 0 0
\(887\) −14.1400 + 10.2733i −0.474776 + 0.344945i −0.799300 0.600933i \(-0.794796\pi\)
0.324524 + 0.945877i \(0.394796\pi\)
\(888\) 0 0
\(889\) 4.07150 + 12.5308i 0.136554 + 0.420269i
\(890\) 0 0
\(891\) −15.1810 + 30.2722i −0.508582 + 1.01416i
\(892\) 0 0
\(893\) −1.25706 3.86884i −0.0420659 0.129466i
\(894\) 0 0
\(895\) 5.50887 4.00243i 0.184141 0.133786i
\(896\) 0 0
\(897\) 4.00753 12.3339i 0.133808 0.411818i
\(898\) 0 0
\(899\) −11.5448 8.38778i −0.385040 0.279748i
\(900\) 0 0
\(901\) 40.7119 1.35631
\(902\) 0 0
\(903\) 16.0621 0.534513
\(904\) 0 0
\(905\) 12.0810 + 8.77733i 0.401585 + 0.291768i
\(906\) 0 0
\(907\) 5.08397 15.6469i 0.168810 0.519545i −0.830486 0.557039i \(-0.811937\pi\)
0.999297 + 0.0374937i \(0.0119374\pi\)
\(908\) 0 0
\(909\) −5.14840 + 3.74053i −0.170762 + 0.124066i
\(910\) 0 0
\(911\) −4.69348 14.4450i −0.155502 0.478585i 0.842710 0.538368i \(-0.180959\pi\)
−0.998211 + 0.0597831i \(0.980959\pi\)
\(912\) 0 0
\(913\) 9.31696 + 56.4808i 0.308346 + 1.86924i
\(914\) 0 0
\(915\) −5.29535 16.2974i −0.175059 0.538776i
\(916\) 0 0
\(917\) 9.31238 6.76584i 0.307522 0.223428i
\(918\) 0 0
\(919\) −12.9316 + 39.7994i −0.426575 + 1.31286i 0.474904 + 0.880038i \(0.342483\pi\)
−0.901478 + 0.432824i \(0.857517\pi\)
\(920\) 0 0
\(921\) −8.35523 6.07043i −0.275314 0.200027i
\(922\) 0 0
\(923\) −54.4346 −1.79174
\(924\) 0 0
\(925\) 0.627363 0.0206276
\(926\) 0 0
\(927\) 5.90990 + 4.29379i 0.194107 + 0.141027i
\(928\) 0 0
\(929\) 0.0970194 0.298595i 0.00318310 0.00979659i −0.949452 0.313911i \(-0.898361\pi\)
0.952635 + 0.304115i \(0.0983606\pi\)
\(930\) 0 0
\(931\) −13.7781 + 10.0104i −0.451559 + 0.328077i
\(932\) 0 0
\(933\) 5.28113 + 16.2537i 0.172897 + 0.532121i
\(934\) 0 0
\(935\) 28.9562 + 4.39626i 0.946970 + 0.143773i
\(936\) 0 0
\(937\) −3.27217 10.0707i −0.106897 0.328996i 0.883274 0.468857i \(-0.155334\pi\)
−0.990171 + 0.139862i \(0.955334\pi\)
\(938\) 0 0
\(939\) −24.5634 + 17.8464i −0.801597 + 0.582394i
\(940\) 0 0
\(941\) 18.1868 55.9733i 0.592874 1.82468i 0.0278375 0.999612i \(-0.491138\pi\)
0.565036 0.825066i \(-0.308862\pi\)
\(942\) 0 0
\(943\) −4.29450 3.12014i −0.139848 0.101606i
\(944\) 0 0
\(945\) −10.1633 −0.330612
\(946\) 0 0
\(947\) 15.0139 0.487887 0.243943 0.969789i \(-0.421559\pi\)
0.243943 + 0.969789i \(0.421559\pi\)
\(948\) 0 0
\(949\) 30.8723 + 22.4301i 1.00216 + 0.728111i
\(950\) 0 0
\(951\) −2.04457 + 6.29253i −0.0662996 + 0.204049i
\(952\) 0 0
\(953\) −8.67162 + 6.30030i −0.280901 + 0.204087i −0.719310 0.694689i \(-0.755542\pi\)
0.438409 + 0.898775i \(0.355542\pi\)
\(954\) 0 0
\(955\) 1.23920 + 3.81388i 0.0400997 + 0.123414i
\(956\) 0 0
\(957\) −11.4500 + 5.92675i −0.370125 + 0.191585i
\(958\) 0 0
\(959\) 5.03462 + 15.4950i 0.162576 + 0.500358i
\(960\) 0 0
\(961\) −12.8656 + 9.34743i −0.415020 + 0.301530i
\(962\) 0 0
\(963\) −3.04617 + 9.37515i −0.0981615 + 0.302110i
\(964\) 0 0
\(965\) −1.45703 1.05859i −0.0469035 0.0340774i
\(966\) 0 0
\(967\) 43.1296 1.38695 0.693477 0.720479i \(-0.256078\pi\)
0.693477 + 0.720479i \(0.256078\pi\)
\(968\) 0 0
\(969\) 20.8720 0.670504
\(970\) 0 0
\(971\) 13.3942 + 9.73143i 0.429839 + 0.312296i 0.781585 0.623799i \(-0.214412\pi\)
−0.351745 + 0.936096i \(0.614412\pi\)
\(972\) 0 0
\(973\) 3.47466 10.6939i 0.111392 0.342831i
\(974\) 0 0
\(975\) 0.579933 0.421346i 0.0185727 0.0134939i
\(976\) 0 0
\(977\) 0.482558 + 1.48516i 0.0154384 + 0.0475145i 0.958479 0.285163i \(-0.0920478\pi\)
−0.943041 + 0.332678i \(0.892048\pi\)
\(978\) 0 0
\(979\) 1.38562 0.717228i 0.0442847 0.0229227i
\(980\) 0 0
\(981\) 0.712364 + 2.19243i 0.0227440 + 0.0699990i
\(982\) 0 0
\(983\) 39.3187 28.5667i 1.25407 0.911136i 0.255621 0.966777i \(-0.417720\pi\)
0.998451 + 0.0556406i \(0.0177201\pi\)
\(984\) 0 0
\(985\) −12.7769 + 39.3232i −0.407106 + 1.25294i
\(986\) 0 0
\(987\) 2.12415 + 1.54329i 0.0676126 + 0.0491234i
\(988\) 0 0
\(989\) −10.6669 −0.339187
\(990\) 0 0
\(991\) 13.0806 0.415518 0.207759 0.978180i \(-0.433383\pi\)
0.207759 + 0.978180i \(0.433383\pi\)
\(992\) 0 0
\(993\) 24.5012 + 17.8012i 0.777524 + 0.564904i
\(994\) 0 0
\(995\) 11.5384 35.5114i 0.365791 1.12579i
\(996\) 0 0
\(997\) −24.7329 + 17.9695i −0.783299 + 0.569100i −0.905967 0.423348i \(-0.860855\pi\)
0.122668 + 0.992448i \(0.460855\pi\)
\(998\) 0 0
\(999\) 13.6678 + 42.0652i 0.432430 + 1.33088i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 352.2.m.f.225.1 yes 12
4.3 odd 2 352.2.m.e.225.3 yes 12
8.3 odd 2 704.2.m.m.577.1 12
8.5 even 2 704.2.m.n.577.3 12
11.3 even 5 3872.2.a.bn.1.6 6
11.8 odd 10 3872.2.a.bo.1.6 6
11.9 even 5 inner 352.2.m.f.97.1 yes 12
44.3 odd 10 3872.2.a.bq.1.1 6
44.19 even 10 3872.2.a.bp.1.1 6
44.31 odd 10 352.2.m.e.97.3 12
88.3 odd 10 7744.2.a.du.1.6 6
88.19 even 10 7744.2.a.dt.1.6 6
88.53 even 10 704.2.m.n.449.3 12
88.69 even 10 7744.2.a.dv.1.1 6
88.75 odd 10 704.2.m.m.449.1 12
88.85 odd 10 7744.2.a.dw.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.2.m.e.97.3 12 44.31 odd 10
352.2.m.e.225.3 yes 12 4.3 odd 2
352.2.m.f.97.1 yes 12 11.9 even 5 inner
352.2.m.f.225.1 yes 12 1.1 even 1 trivial
704.2.m.m.449.1 12 88.75 odd 10
704.2.m.m.577.1 12 8.3 odd 2
704.2.m.n.449.3 12 88.53 even 10
704.2.m.n.577.3 12 8.5 even 2
3872.2.a.bn.1.6 6 11.3 even 5
3872.2.a.bo.1.6 6 11.8 odd 10
3872.2.a.bp.1.1 6 44.19 even 10
3872.2.a.bq.1.1 6 44.3 odd 10
7744.2.a.dt.1.6 6 88.19 even 10
7744.2.a.du.1.6 6 88.3 odd 10
7744.2.a.dv.1.1 6 88.69 even 10
7744.2.a.dw.1.1 6 88.85 odd 10