Properties

Label 704.2.m.m.577.1
Level $704$
Weight $2$
Character 704.577
Analytic conductor $5.621$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,2,Mod(257,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.257");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 704.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.62146830230\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} + 11 x^{10} - 11 x^{9} + 39 x^{8} - 43 x^{7} + 99 x^{6} + 36 x^{5} + 431 x^{4} + \cdots + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 352)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 577.1
Root \(0.885530 - 2.72538i\) of defining polynomial
Character \(\chi\) \(=\) 704.577
Dual form 704.2.m.m.449.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50933 - 1.09659i) q^{3} +(0.686361 - 2.11240i) q^{5} +(-0.787585 + 0.572214i) q^{7} +(0.148512 + 0.457073i) q^{9} +(-2.94543 + 1.52462i) q^{11} +(-1.78094 - 5.48116i) q^{13} +(-3.35239 + 2.43565i) q^{15} +(-1.22859 + 3.78121i) q^{17} +(2.27651 + 1.65398i) q^{19} +1.81621 q^{21} -1.20615 q^{23} +(0.0539368 + 0.0391874i) q^{25} +(-1.45247 + 4.47024i) q^{27} +(1.68573 - 1.22475i) q^{29} +(-2.11632 - 6.51337i) q^{31} +(6.11751 + 0.928786i) q^{33} +(0.668178 + 2.05644i) q^{35} +(-7.61289 + 5.53109i) q^{37} +(-3.32258 + 10.2258i) q^{39} +(-3.56050 - 2.58685i) q^{41} -8.84372 q^{43} +1.06745 q^{45} +(1.16955 + 0.849729i) q^{47} +(-1.87026 + 5.75606i) q^{49} +(6.00079 - 4.35983i) q^{51} +(3.16432 + 9.73877i) q^{53} +(1.19897 + 7.26836i) q^{55} +(-1.62226 - 4.99281i) q^{57} +(-2.85539 + 2.07456i) q^{59} +(-1.27790 + 3.93298i) q^{61} +(-0.378510 - 0.275003i) q^{63} -12.8008 q^{65} -12.2596 q^{67} +(1.82048 + 1.32266i) q^{69} +(2.91871 - 8.98287i) q^{71} +(5.35678 - 3.89193i) q^{73} +(-0.0384358 - 0.118293i) q^{75} +(1.44737 - 2.88618i) q^{77} +(-2.39931 - 7.38431i) q^{79} +(8.26072 - 6.00177i) q^{81} +(5.33355 - 16.4150i) q^{83} +(7.14417 + 5.19055i) q^{85} -3.88737 q^{87} -0.470432 q^{89} +(4.53903 + 3.29780i) q^{91} +(-3.94828 + 12.1516i) q^{93} +(5.05638 - 3.67368i) q^{95} +(-2.79977 - 8.61681i) q^{97} +(-1.13429 - 1.11985i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{7} - q^{9} - 11 q^{11} + 2 q^{13} - 4 q^{15} + 12 q^{17} + 5 q^{19} - 24 q^{21} + 12 q^{23} + 13 q^{25} + 3 q^{27} - 16 q^{31} - 7 q^{33} - 28 q^{35} + 4 q^{37} - 46 q^{39} - 4 q^{41} - 22 q^{43}+ \cdots - 65 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50933 1.09659i −0.871412 0.633118i 0.0595531 0.998225i \(-0.481032\pi\)
−0.930966 + 0.365107i \(0.881032\pi\)
\(4\) 0 0
\(5\) 0.686361 2.11240i 0.306950 0.944695i −0.671993 0.740558i \(-0.734561\pi\)
0.978942 0.204137i \(-0.0654387\pi\)
\(6\) 0 0
\(7\) −0.787585 + 0.572214i −0.297679 + 0.216277i −0.726592 0.687069i \(-0.758897\pi\)
0.428913 + 0.903346i \(0.358897\pi\)
\(8\) 0 0
\(9\) 0.148512 + 0.457073i 0.0495040 + 0.152358i
\(10\) 0 0
\(11\) −2.94543 + 1.52462i −0.888080 + 0.459689i
\(12\) 0 0
\(13\) −1.78094 5.48116i −0.493943 1.52020i −0.818598 0.574367i \(-0.805248\pi\)
0.324655 0.945832i \(-0.394752\pi\)
\(14\) 0 0
\(15\) −3.35239 + 2.43565i −0.865583 + 0.628883i
\(16\) 0 0
\(17\) −1.22859 + 3.78121i −0.297977 + 0.917078i 0.684229 + 0.729267i \(0.260139\pi\)
−0.982205 + 0.187810i \(0.939861\pi\)
\(18\) 0 0
\(19\) 2.27651 + 1.65398i 0.522268 + 0.379450i 0.817457 0.575989i \(-0.195383\pi\)
−0.295190 + 0.955439i \(0.595383\pi\)
\(20\) 0 0
\(21\) 1.81621 0.396330
\(22\) 0 0
\(23\) −1.20615 −0.251500 −0.125750 0.992062i \(-0.540134\pi\)
−0.125750 + 0.992062i \(0.540134\pi\)
\(24\) 0 0
\(25\) 0.0539368 + 0.0391874i 0.0107874 + 0.00783747i
\(26\) 0 0
\(27\) −1.45247 + 4.47024i −0.279528 + 0.860298i
\(28\) 0 0
\(29\) 1.68573 1.22475i 0.313031 0.227431i −0.420165 0.907448i \(-0.638028\pi\)
0.733196 + 0.680017i \(0.238028\pi\)
\(30\) 0 0
\(31\) −2.11632 6.51337i −0.380103 1.16984i −0.939971 0.341254i \(-0.889148\pi\)
0.559868 0.828581i \(-0.310852\pi\)
\(32\) 0 0
\(33\) 6.11751 + 0.928786i 1.06492 + 0.161681i
\(34\) 0 0
\(35\) 0.668178 + 2.05644i 0.112943 + 0.347602i
\(36\) 0 0
\(37\) −7.61289 + 5.53109i −1.25155 + 0.909305i −0.998311 0.0580987i \(-0.981496\pi\)
−0.253240 + 0.967404i \(0.581496\pi\)
\(38\) 0 0
\(39\) −3.32258 + 10.2258i −0.532038 + 1.63745i
\(40\) 0 0
\(41\) −3.56050 2.58685i −0.556056 0.403998i 0.273957 0.961742i \(-0.411667\pi\)
−0.830013 + 0.557743i \(0.811667\pi\)
\(42\) 0 0
\(43\) −8.84372 −1.34865 −0.674327 0.738432i \(-0.735566\pi\)
−0.674327 + 0.738432i \(0.735566\pi\)
\(44\) 0 0
\(45\) 1.06745 0.159127
\(46\) 0 0
\(47\) 1.16955 + 0.849729i 0.170597 + 0.123946i 0.669807 0.742535i \(-0.266377\pi\)
−0.499211 + 0.866481i \(0.666377\pi\)
\(48\) 0 0
\(49\) −1.87026 + 5.75606i −0.267180 + 0.822294i
\(50\) 0 0
\(51\) 6.00079 4.35983i 0.840279 0.610499i
\(52\) 0 0
\(53\) 3.16432 + 9.73877i 0.434652 + 1.33772i 0.893442 + 0.449178i \(0.148283\pi\)
−0.458790 + 0.888545i \(0.651717\pi\)
\(54\) 0 0
\(55\) 1.19897 + 7.26836i 0.161670 + 0.980066i
\(56\) 0 0
\(57\) −1.62226 4.99281i −0.214874 0.661314i
\(58\) 0 0
\(59\) −2.85539 + 2.07456i −0.371740 + 0.270085i −0.757932 0.652334i \(-0.773790\pi\)
0.386192 + 0.922418i \(0.373790\pi\)
\(60\) 0 0
\(61\) −1.27790 + 3.93298i −0.163619 + 0.503567i −0.998932 0.0462077i \(-0.985286\pi\)
0.835313 + 0.549775i \(0.185286\pi\)
\(62\) 0 0
\(63\) −0.378510 0.275003i −0.0476877 0.0346472i
\(64\) 0 0
\(65\) −12.8008 −1.58774
\(66\) 0 0
\(67\) −12.2596 −1.49774 −0.748872 0.662714i \(-0.769404\pi\)
−0.748872 + 0.662714i \(0.769404\pi\)
\(68\) 0 0
\(69\) 1.82048 + 1.32266i 0.219160 + 0.159229i
\(70\) 0 0
\(71\) 2.91871 8.98287i 0.346387 1.06607i −0.614449 0.788956i \(-0.710622\pi\)
0.960837 0.277115i \(-0.0893782\pi\)
\(72\) 0 0
\(73\) 5.35678 3.89193i 0.626963 0.455516i −0.228383 0.973571i \(-0.573344\pi\)
0.855347 + 0.518056i \(0.173344\pi\)
\(74\) 0 0
\(75\) −0.0384358 0.118293i −0.00443819 0.0136593i
\(76\) 0 0
\(77\) 1.44737 2.88618i 0.164943 0.328911i
\(78\) 0 0
\(79\) −2.39931 7.38431i −0.269943 0.830800i −0.990513 0.137417i \(-0.956120\pi\)
0.720570 0.693382i \(-0.243880\pi\)
\(80\) 0 0
\(81\) 8.26072 6.00177i 0.917858 0.666863i
\(82\) 0 0
\(83\) 5.33355 16.4150i 0.585434 1.80178i −0.0120889 0.999927i \(-0.503848\pi\)
0.597522 0.801852i \(-0.296152\pi\)
\(84\) 0 0
\(85\) 7.14417 + 5.19055i 0.774894 + 0.562994i
\(86\) 0 0
\(87\) −3.88737 −0.416770
\(88\) 0 0
\(89\) −0.470432 −0.0498657 −0.0249328 0.999689i \(-0.507937\pi\)
−0.0249328 + 0.999689i \(0.507937\pi\)
\(90\) 0 0
\(91\) 4.53903 + 3.29780i 0.475820 + 0.345704i
\(92\) 0 0
\(93\) −3.94828 + 12.1516i −0.409418 + 1.26006i
\(94\) 0 0
\(95\) 5.05638 3.67368i 0.518774 0.376911i
\(96\) 0 0
\(97\) −2.79977 8.61681i −0.284274 0.874905i −0.986615 0.163065i \(-0.947862\pi\)
0.702342 0.711840i \(-0.252138\pi\)
\(98\) 0 0
\(99\) −1.13429 1.11985i −0.114001 0.112549i
\(100\) 0 0
\(101\) −4.09183 12.5933i −0.407152 1.25309i −0.919085 0.394060i \(-0.871070\pi\)
0.511933 0.859025i \(-0.328930\pi\)
\(102\) 0 0
\(103\) −12.2970 + 8.93433i −1.21166 + 0.880325i −0.995381 0.0960055i \(-0.969393\pi\)
−0.216283 + 0.976331i \(0.569393\pi\)
\(104\) 0 0
\(105\) 1.24658 3.83657i 0.121653 0.374411i
\(106\) 0 0
\(107\) 16.5940 + 12.0562i 1.60420 + 1.16552i 0.878801 + 0.477189i \(0.158344\pi\)
0.725398 + 0.688330i \(0.241656\pi\)
\(108\) 0 0
\(109\) −4.79668 −0.459438 −0.229719 0.973257i \(-0.573781\pi\)
−0.229719 + 0.973257i \(0.573781\pi\)
\(110\) 0 0
\(111\) 17.5557 1.66631
\(112\) 0 0
\(113\) −5.27699 3.83395i −0.496417 0.360668i 0.311230 0.950335i \(-0.399259\pi\)
−0.807647 + 0.589667i \(0.799259\pi\)
\(114\) 0 0
\(115\) −0.827856 + 2.54788i −0.0771979 + 0.237591i
\(116\) 0 0
\(117\) 2.24080 1.62804i 0.207162 0.150512i
\(118\) 0 0
\(119\) −1.19604 3.68104i −0.109641 0.337440i
\(120\) 0 0
\(121\) 6.35109 8.98129i 0.577372 0.816481i
\(122\) 0 0
\(123\) 2.53724 + 7.80883i 0.228776 + 0.704099i
\(124\) 0 0
\(125\) 9.10438 6.61472i 0.814320 0.591638i
\(126\) 0 0
\(127\) 4.18229 12.8718i 0.371118 1.14218i −0.574942 0.818194i \(-0.694975\pi\)
0.946060 0.323990i \(-0.105025\pi\)
\(128\) 0 0
\(129\) 13.3481 + 9.69796i 1.17523 + 0.853858i
\(130\) 0 0
\(131\) 11.8240 1.03306 0.516532 0.856268i \(-0.327223\pi\)
0.516532 + 0.856268i \(0.327223\pi\)
\(132\) 0 0
\(133\) −2.73938 −0.237534
\(134\) 0 0
\(135\) 8.44603 + 6.13640i 0.726918 + 0.528137i
\(136\) 0 0
\(137\) −5.17162 + 15.9166i −0.441841 + 1.35985i 0.444070 + 0.895992i \(0.353534\pi\)
−0.885911 + 0.463855i \(0.846466\pi\)
\(138\) 0 0
\(139\) 9.34431 6.78904i 0.792574 0.575839i −0.116152 0.993231i \(-0.537056\pi\)
0.908726 + 0.417393i \(0.137056\pi\)
\(140\) 0 0
\(141\) −0.833433 2.56504i −0.0701877 0.216016i
\(142\) 0 0
\(143\) 13.6023 + 13.4291i 1.13748 + 1.12300i
\(144\) 0 0
\(145\) −1.43015 4.40155i −0.118768 0.365529i
\(146\) 0 0
\(147\) 9.13489 6.63689i 0.753433 0.547401i
\(148\) 0 0
\(149\) 4.79081 14.7446i 0.392478 1.20792i −0.538430 0.842671i \(-0.680982\pi\)
0.930908 0.365254i \(-0.119018\pi\)
\(150\) 0 0
\(151\) −7.76046 5.63831i −0.631538 0.458839i 0.225395 0.974267i \(-0.427633\pi\)
−0.856933 + 0.515429i \(0.827633\pi\)
\(152\) 0 0
\(153\) −1.91075 −0.154475
\(154\) 0 0
\(155\) −15.2114 −1.22181
\(156\) 0 0
\(157\) −2.58988 1.88166i −0.206695 0.150173i 0.479622 0.877475i \(-0.340774\pi\)
−0.686317 + 0.727302i \(0.740774\pi\)
\(158\) 0 0
\(159\) 5.90346 18.1690i 0.468175 1.44089i
\(160\) 0 0
\(161\) 0.949948 0.690177i 0.0748664 0.0543936i
\(162\) 0 0
\(163\) −7.30643 22.4869i −0.572284 1.76131i −0.645248 0.763973i \(-0.723246\pi\)
0.0729645 0.997335i \(-0.476754\pi\)
\(164\) 0 0
\(165\) 6.16079 12.2851i 0.479617 0.956398i
\(166\) 0 0
\(167\) 2.42488 + 7.46301i 0.187643 + 0.577505i 0.999984 0.00567748i \(-0.00180721\pi\)
−0.812341 + 0.583183i \(0.801807\pi\)
\(168\) 0 0
\(169\) −16.3541 + 11.8820i −1.25801 + 0.913998i
\(170\) 0 0
\(171\) −0.417902 + 1.28617i −0.0319577 + 0.0983558i
\(172\) 0 0
\(173\) 1.52614 + 1.10881i 0.116030 + 0.0843009i 0.644287 0.764784i \(-0.277154\pi\)
−0.528257 + 0.849085i \(0.677154\pi\)
\(174\) 0 0
\(175\) −0.0649034 −0.00490623
\(176\) 0 0
\(177\) 6.58467 0.494934
\(178\) 0 0
\(179\) −2.48023 1.80199i −0.185381 0.134687i 0.491224 0.871033i \(-0.336550\pi\)
−0.676605 + 0.736346i \(0.736550\pi\)
\(180\) 0 0
\(181\) −2.07757 + 6.39411i −0.154425 + 0.475270i −0.998102 0.0615801i \(-0.980386\pi\)
0.843677 + 0.536850i \(0.180386\pi\)
\(182\) 0 0
\(183\) 6.24166 4.53483i 0.461397 0.335224i
\(184\) 0 0
\(185\) 6.45869 + 19.8778i 0.474852 + 1.46144i
\(186\) 0 0
\(187\) −2.14617 13.0104i −0.156944 0.951415i
\(188\) 0 0
\(189\) −1.41399 4.35182i −0.102853 0.316548i
\(190\) 0 0
\(191\) −1.46066 + 1.06123i −0.105689 + 0.0767879i −0.639375 0.768895i \(-0.720807\pi\)
0.533685 + 0.845683i \(0.320807\pi\)
\(192\) 0 0
\(193\) −0.250567 + 0.771165i −0.0180362 + 0.0555097i −0.959670 0.281131i \(-0.909291\pi\)
0.941633 + 0.336640i \(0.109291\pi\)
\(194\) 0 0
\(195\) 19.3206 + 14.0372i 1.38358 + 1.00523i
\(196\) 0 0
\(197\) −18.6154 −1.32629 −0.663147 0.748489i \(-0.730780\pi\)
−0.663147 + 0.748489i \(0.730780\pi\)
\(198\) 0 0
\(199\) 16.8109 1.19170 0.595848 0.803097i \(-0.296816\pi\)
0.595848 + 0.803097i \(0.296816\pi\)
\(200\) 0 0
\(201\) 18.5037 + 13.4438i 1.30515 + 0.948249i
\(202\) 0 0
\(203\) −0.626832 + 1.92919i −0.0439950 + 0.135403i
\(204\) 0 0
\(205\) −7.90826 + 5.74568i −0.552337 + 0.401296i
\(206\) 0 0
\(207\) −0.179128 0.551300i −0.0124503 0.0383180i
\(208\) 0 0
\(209\) −9.22699 1.40088i −0.638244 0.0969009i
\(210\) 0 0
\(211\) 0.118697 + 0.365311i 0.00817142 + 0.0251491i 0.955059 0.296415i \(-0.0957913\pi\)
−0.946888 + 0.321565i \(0.895791\pi\)
\(212\) 0 0
\(213\) −14.2559 + 10.3575i −0.976795 + 0.709683i
\(214\) 0 0
\(215\) −6.06998 + 18.6815i −0.413969 + 1.27407i
\(216\) 0 0
\(217\) 5.39383 + 3.91884i 0.366157 + 0.266028i
\(218\) 0 0
\(219\) −12.3530 −0.834739
\(220\) 0 0
\(221\) 22.9134 1.54132
\(222\) 0 0
\(223\) −18.8617 13.7038i −1.26307 0.917676i −0.264169 0.964477i \(-0.585098\pi\)
−0.998904 + 0.0468004i \(0.985098\pi\)
\(224\) 0 0
\(225\) −0.00990123 + 0.0304728i −0.000660082 + 0.00203152i
\(226\) 0 0
\(227\) 2.20487 1.60193i 0.146342 0.106324i −0.512205 0.858863i \(-0.671171\pi\)
0.658547 + 0.752539i \(0.271171\pi\)
\(228\) 0 0
\(229\) −7.71049 23.7305i −0.509524 1.56815i −0.793030 0.609182i \(-0.791498\pi\)
0.283507 0.958970i \(-0.408502\pi\)
\(230\) 0 0
\(231\) −5.34952 + 2.76903i −0.351973 + 0.182189i
\(232\) 0 0
\(233\) −6.53229 20.1043i −0.427944 1.31708i −0.900147 0.435587i \(-0.856541\pi\)
0.472202 0.881490i \(-0.343459\pi\)
\(234\) 0 0
\(235\) 2.59770 1.88734i 0.169455 0.123117i
\(236\) 0 0
\(237\) −4.47623 + 13.7764i −0.290763 + 0.894875i
\(238\) 0 0
\(239\) 0.168281 + 0.122263i 0.0108852 + 0.00790854i 0.593215 0.805044i \(-0.297859\pi\)
−0.582329 + 0.812953i \(0.697859\pi\)
\(240\) 0 0
\(241\) 1.25123 0.0805990 0.0402995 0.999188i \(-0.487169\pi\)
0.0402995 + 0.999188i \(0.487169\pi\)
\(242\) 0 0
\(243\) −4.94878 −0.317465
\(244\) 0 0
\(245\) 10.8754 + 7.90147i 0.694806 + 0.504806i
\(246\) 0 0
\(247\) 5.01142 15.4236i 0.318869 0.981378i
\(248\) 0 0
\(249\) −26.0507 + 18.9269i −1.65089 + 1.19944i
\(250\) 0 0
\(251\) 6.90297 + 21.2452i 0.435712 + 1.34098i 0.892356 + 0.451333i \(0.149051\pi\)
−0.456644 + 0.889649i \(0.650949\pi\)
\(252\) 0 0
\(253\) 3.55264 1.83892i 0.223352 0.115612i
\(254\) 0 0
\(255\) −5.09100 15.6685i −0.318811 0.981200i
\(256\) 0 0
\(257\) −17.5229 + 12.7312i −1.09305 + 0.794148i −0.979912 0.199431i \(-0.936091\pi\)
−0.113139 + 0.993579i \(0.536091\pi\)
\(258\) 0 0
\(259\) 2.83083 8.71240i 0.175899 0.541362i
\(260\) 0 0
\(261\) 0.810151 + 0.588610i 0.0501471 + 0.0364340i
\(262\) 0 0
\(263\) −11.3447 −0.699545 −0.349773 0.936835i \(-0.613741\pi\)
−0.349773 + 0.936835i \(0.613741\pi\)
\(264\) 0 0
\(265\) 22.7440 1.39716
\(266\) 0 0
\(267\) 0.710037 + 0.515872i 0.0434536 + 0.0315709i
\(268\) 0 0
\(269\) −4.44338 + 13.6753i −0.270918 + 0.833799i 0.719353 + 0.694645i \(0.244438\pi\)
−0.990271 + 0.139154i \(0.955562\pi\)
\(270\) 0 0
\(271\) −8.90858 + 6.47246i −0.541158 + 0.393174i −0.824515 0.565840i \(-0.808552\pi\)
0.283357 + 0.959014i \(0.408552\pi\)
\(272\) 0 0
\(273\) −3.23456 9.95495i −0.195764 0.602501i
\(274\) 0 0
\(275\) −0.218613 0.0331907i −0.0131828 0.00200147i
\(276\) 0 0
\(277\) 1.82394 + 5.61352i 0.109590 + 0.337284i 0.990780 0.135478i \(-0.0432570\pi\)
−0.881190 + 0.472762i \(0.843257\pi\)
\(278\) 0 0
\(279\) 2.66279 1.93463i 0.159417 0.115823i
\(280\) 0 0
\(281\) 4.07866 12.5528i 0.243312 0.748839i −0.752597 0.658481i \(-0.771199\pi\)
0.995909 0.0903572i \(-0.0288009\pi\)
\(282\) 0 0
\(283\) −7.07353 5.13922i −0.420478 0.305495i 0.357352 0.933970i \(-0.383680\pi\)
−0.777830 + 0.628475i \(0.783680\pi\)
\(284\) 0 0
\(285\) −11.6603 −0.690696
\(286\) 0 0
\(287\) 4.28443 0.252902
\(288\) 0 0
\(289\) 0.965183 + 0.701247i 0.0567755 + 0.0412498i
\(290\) 0 0
\(291\) −5.22335 + 16.0758i −0.306198 + 0.942382i
\(292\) 0 0
\(293\) −1.22671 + 0.891257i −0.0716652 + 0.0520678i −0.623041 0.782189i \(-0.714103\pi\)
0.551376 + 0.834257i \(0.314103\pi\)
\(294\) 0 0
\(295\) 2.42248 + 7.45562i 0.141042 + 0.434083i
\(296\) 0 0
\(297\) −2.53726 15.3812i −0.147227 0.892510i
\(298\) 0 0
\(299\) 2.14808 + 6.61111i 0.124227 + 0.382330i
\(300\) 0 0
\(301\) 6.96518 5.06050i 0.401467 0.291683i
\(302\) 0 0
\(303\) −7.63386 + 23.4946i −0.438554 + 1.34973i
\(304\) 0 0
\(305\) 7.43094 + 5.39889i 0.425494 + 0.309140i
\(306\) 0 0
\(307\) 5.53572 0.315940 0.157970 0.987444i \(-0.449505\pi\)
0.157970 + 0.987444i \(0.449505\pi\)
\(308\) 0 0
\(309\) 28.3576 1.61321
\(310\) 0 0
\(311\) 7.41098 + 5.38439i 0.420238 + 0.305321i 0.777734 0.628594i \(-0.216369\pi\)
−0.357495 + 0.933915i \(0.616369\pi\)
\(312\) 0 0
\(313\) 5.02906 15.4779i 0.284259 0.874860i −0.702361 0.711821i \(-0.747871\pi\)
0.986620 0.163038i \(-0.0521295\pi\)
\(314\) 0 0
\(315\) −0.840712 + 0.610813i −0.0473687 + 0.0344154i
\(316\) 0 0
\(317\) 1.09591 + 3.37286i 0.0615524 + 0.189439i 0.977104 0.212761i \(-0.0682457\pi\)
−0.915552 + 0.402200i \(0.868246\pi\)
\(318\) 0 0
\(319\) −3.09791 + 6.17750i −0.173450 + 0.345874i
\(320\) 0 0
\(321\) −11.8250 36.3936i −0.660008 2.03129i
\(322\) 0 0
\(323\) −9.05095 + 6.57590i −0.503608 + 0.365893i
\(324\) 0 0
\(325\) 0.118734 0.365426i 0.00658619 0.0202702i
\(326\) 0 0
\(327\) 7.23977 + 5.26000i 0.400360 + 0.290879i
\(328\) 0 0
\(329\) −1.40735 −0.0775896
\(330\) 0 0
\(331\) −16.2332 −0.892257 −0.446128 0.894969i \(-0.647198\pi\)
−0.446128 + 0.894969i \(0.647198\pi\)
\(332\) 0 0
\(333\) −3.65872 2.65821i −0.200496 0.145669i
\(334\) 0 0
\(335\) −8.41449 + 25.8971i −0.459733 + 1.41491i
\(336\) 0 0
\(337\) 6.84497 4.97316i 0.372869 0.270905i −0.385531 0.922695i \(-0.625982\pi\)
0.758400 + 0.651790i \(0.225982\pi\)
\(338\) 0 0
\(339\) 3.76043 + 11.5734i 0.204238 + 0.628581i
\(340\) 0 0
\(341\) 16.1639 + 15.9581i 0.875322 + 0.864178i
\(342\) 0 0
\(343\) −3.92653 12.0846i −0.212013 0.652508i
\(344\) 0 0
\(345\) 4.04349 2.93777i 0.217694 0.158164i
\(346\) 0 0
\(347\) 1.66589 5.12710i 0.0894299 0.275237i −0.896332 0.443383i \(-0.853778\pi\)
0.985762 + 0.168146i \(0.0537781\pi\)
\(348\) 0 0
\(349\) 10.4565 + 7.59712i 0.559725 + 0.406664i 0.831358 0.555737i \(-0.187564\pi\)
−0.271633 + 0.962401i \(0.587564\pi\)
\(350\) 0 0
\(351\) 27.0889 1.44590
\(352\) 0 0
\(353\) 34.5770 1.84035 0.920173 0.391511i \(-0.128047\pi\)
0.920173 + 0.391511i \(0.128047\pi\)
\(354\) 0 0
\(355\) −16.9721 12.3310i −0.900788 0.654461i
\(356\) 0 0
\(357\) −2.23138 + 6.86748i −0.118097 + 0.363465i
\(358\) 0 0
\(359\) −18.7680 + 13.6358i −0.990539 + 0.719669i −0.960039 0.279866i \(-0.909710\pi\)
−0.0305003 + 0.999535i \(0.509710\pi\)
\(360\) 0 0
\(361\) −3.42448 10.5395i −0.180236 0.554708i
\(362\) 0 0
\(363\) −19.4347 + 6.59118i −1.02006 + 0.345947i
\(364\) 0 0
\(365\) −4.54463 13.9869i −0.237877 0.732109i
\(366\) 0 0
\(367\) −12.5161 + 9.09348i −0.653335 + 0.474676i −0.864406 0.502795i \(-0.832305\pi\)
0.211071 + 0.977471i \(0.432305\pi\)
\(368\) 0 0
\(369\) 0.653604 2.01159i 0.0340253 0.104719i
\(370\) 0 0
\(371\) −8.06483 5.85944i −0.418705 0.304207i
\(372\) 0 0
\(373\) −30.5787 −1.58331 −0.791653 0.610970i \(-0.790779\pi\)
−0.791653 + 0.610970i \(0.790779\pi\)
\(374\) 0 0
\(375\) −20.9952 −1.08419
\(376\) 0 0
\(377\) −9.71522 7.05852i −0.500360 0.363532i
\(378\) 0 0
\(379\) 0.840099 2.58556i 0.0431530 0.132811i −0.927159 0.374668i \(-0.877757\pi\)
0.970312 + 0.241857i \(0.0777565\pi\)
\(380\) 0 0
\(381\) −20.4275 + 14.8415i −1.04653 + 0.760352i
\(382\) 0 0
\(383\) −5.68665 17.5017i −0.290574 0.894296i −0.984672 0.174415i \(-0.944196\pi\)
0.694098 0.719881i \(-0.255804\pi\)
\(384\) 0 0
\(385\) −5.10335 5.03838i −0.260091 0.256780i
\(386\) 0 0
\(387\) −1.31340 4.04223i −0.0667638 0.205478i
\(388\) 0 0
\(389\) 0.514886 0.374087i 0.0261058 0.0189669i −0.574656 0.818395i \(-0.694864\pi\)
0.600762 + 0.799428i \(0.294864\pi\)
\(390\) 0 0
\(391\) 1.48187 4.56071i 0.0749412 0.230645i
\(392\) 0 0
\(393\) −17.8463 12.9661i −0.900225 0.654052i
\(394\) 0 0
\(395\) −17.2454 −0.867711
\(396\) 0 0
\(397\) 19.6411 0.985760 0.492880 0.870097i \(-0.335944\pi\)
0.492880 + 0.870097i \(0.335944\pi\)
\(398\) 0 0
\(399\) 4.13463 + 3.00398i 0.206990 + 0.150387i
\(400\) 0 0
\(401\) −1.77896 + 5.47507i −0.0888369 + 0.273412i −0.985599 0.169102i \(-0.945913\pi\)
0.896762 + 0.442514i \(0.145913\pi\)
\(402\) 0 0
\(403\) −31.9318 + 23.1998i −1.59063 + 1.15566i
\(404\) 0 0
\(405\) −7.00830 21.5693i −0.348245 1.07179i
\(406\) 0 0
\(407\) 13.9904 27.8981i 0.693480 1.38286i
\(408\) 0 0
\(409\) 7.14831 + 22.0002i 0.353461 + 1.08784i 0.956896 + 0.290429i \(0.0937981\pi\)
−0.603436 + 0.797412i \(0.706202\pi\)
\(410\) 0 0
\(411\) 25.2597 18.3523i 1.24597 0.905250i
\(412\) 0 0
\(413\) 1.06177 3.26778i 0.0522462 0.160797i
\(414\) 0 0
\(415\) −31.0143 22.5332i −1.52243 1.10611i
\(416\) 0 0
\(417\) −21.5485 −1.05523
\(418\) 0 0
\(419\) 20.6359 1.00813 0.504065 0.863666i \(-0.331837\pi\)
0.504065 + 0.863666i \(0.331837\pi\)
\(420\) 0 0
\(421\) 24.3859 + 17.7174i 1.18850 + 0.863494i 0.993105 0.117231i \(-0.0374019\pi\)
0.195392 + 0.980725i \(0.437402\pi\)
\(422\) 0 0
\(423\) −0.214696 + 0.660765i −0.0104389 + 0.0321275i
\(424\) 0 0
\(425\) −0.214442 + 0.155801i −0.0104020 + 0.00755746i
\(426\) 0 0
\(427\) −1.24405 3.82879i −0.0602038 0.185288i
\(428\) 0 0
\(429\) −5.80407 35.1851i −0.280223 1.69875i
\(430\) 0 0
\(431\) 10.0976 + 31.0772i 0.486384 + 1.49694i 0.829967 + 0.557813i \(0.188359\pi\)
−0.343583 + 0.939122i \(0.611641\pi\)
\(432\) 0 0
\(433\) −22.6740 + 16.4736i −1.08964 + 0.791672i −0.979339 0.202226i \(-0.935182\pi\)
−0.110304 + 0.993898i \(0.535182\pi\)
\(434\) 0 0
\(435\) −2.66814 + 8.21169i −0.127927 + 0.393720i
\(436\) 0 0
\(437\) −2.74582 1.99496i −0.131350 0.0954317i
\(438\) 0 0
\(439\) −19.4940 −0.930399 −0.465200 0.885206i \(-0.654017\pi\)
−0.465200 + 0.885206i \(0.654017\pi\)
\(440\) 0 0
\(441\) −2.90870 −0.138509
\(442\) 0 0
\(443\) 7.21362 + 5.24100i 0.342729 + 0.249007i 0.745812 0.666156i \(-0.232061\pi\)
−0.403083 + 0.915163i \(0.632061\pi\)
\(444\) 0 0
\(445\) −0.322886 + 0.993741i −0.0153063 + 0.0471078i
\(446\) 0 0
\(447\) −23.3997 + 17.0009i −1.10677 + 0.804115i
\(448\) 0 0
\(449\) 0.225866 + 0.695145i 0.0106593 + 0.0328059i 0.956245 0.292568i \(-0.0945098\pi\)
−0.945585 + 0.325374i \(0.894510\pi\)
\(450\) 0 0
\(451\) 14.4311 + 2.19100i 0.679536 + 0.103170i
\(452\) 0 0
\(453\) 5.53018 + 17.0201i 0.259830 + 0.799676i
\(454\) 0 0
\(455\) 10.0817 7.32478i 0.472637 0.343391i
\(456\) 0 0
\(457\) 0.504920 1.55398i 0.0236192 0.0726923i −0.938552 0.345137i \(-0.887832\pi\)
0.962171 + 0.272445i \(0.0878323\pi\)
\(458\) 0 0
\(459\) −15.1184 10.9842i −0.705668 0.512698i
\(460\) 0 0
\(461\) 2.38755 0.111199 0.0555996 0.998453i \(-0.482293\pi\)
0.0555996 + 0.998453i \(0.482293\pi\)
\(462\) 0 0
\(463\) −16.3739 −0.760961 −0.380480 0.924789i \(-0.624241\pi\)
−0.380480 + 0.924789i \(0.624241\pi\)
\(464\) 0 0
\(465\) 22.9590 + 16.6807i 1.06470 + 0.773550i
\(466\) 0 0
\(467\) −6.80913 + 20.9564i −0.315089 + 0.969745i 0.660629 + 0.750713i \(0.270290\pi\)
−0.975718 + 0.219032i \(0.929710\pi\)
\(468\) 0 0
\(469\) 9.65545 7.01510i 0.445847 0.323927i
\(470\) 0 0
\(471\) 1.84557 + 5.68009i 0.0850395 + 0.261725i
\(472\) 0 0
\(473\) 26.0485 13.4833i 1.19771 0.619962i
\(474\) 0 0
\(475\) 0.0579725 + 0.178421i 0.00265996 + 0.00818652i
\(476\) 0 0
\(477\) −3.98139 + 2.89265i −0.182295 + 0.132445i
\(478\) 0 0
\(479\) 7.62945 23.4810i 0.348598 1.07288i −0.611031 0.791607i \(-0.709245\pi\)
0.959629 0.281268i \(-0.0907551\pi\)
\(480\) 0 0
\(481\) 43.8748 + 31.8769i 2.00052 + 1.45346i
\(482\) 0 0
\(483\) −2.19063 −0.0996771
\(484\) 0 0
\(485\) −20.1238 −0.913776
\(486\) 0 0
\(487\) 15.7904 + 11.4724i 0.715532 + 0.519864i 0.884953 0.465679i \(-0.154190\pi\)
−0.169422 + 0.985544i \(0.554190\pi\)
\(488\) 0 0
\(489\) −13.6311 + 41.9523i −0.616421 + 1.89715i
\(490\) 0 0
\(491\) 11.9467 8.67982i 0.539149 0.391715i −0.284620 0.958641i \(-0.591867\pi\)
0.823769 + 0.566926i \(0.191867\pi\)
\(492\) 0 0
\(493\) 2.55998 + 7.87880i 0.115296 + 0.354843i
\(494\) 0 0
\(495\) −3.14411 + 1.62746i −0.141317 + 0.0731488i
\(496\) 0 0
\(497\) 2.84139 + 8.74491i 0.127454 + 0.392263i
\(498\) 0 0
\(499\) −14.3683 + 10.4392i −0.643212 + 0.467321i −0.860952 0.508686i \(-0.830131\pi\)
0.217740 + 0.976007i \(0.430131\pi\)
\(500\) 0 0
\(501\) 4.52394 13.9233i 0.202115 0.622045i
\(502\) 0 0
\(503\) −13.2819 9.64987i −0.592211 0.430266i 0.250895 0.968014i \(-0.419275\pi\)
−0.843106 + 0.537748i \(0.819275\pi\)
\(504\) 0 0
\(505\) −29.4107 −1.30876
\(506\) 0 0
\(507\) 37.7135 1.67491
\(508\) 0 0
\(509\) −10.8901 7.91213i −0.482696 0.350699i 0.319673 0.947528i \(-0.396427\pi\)
−0.802368 + 0.596829i \(0.796427\pi\)
\(510\) 0 0
\(511\) −1.99190 + 6.13045i −0.0881166 + 0.271195i
\(512\) 0 0
\(513\) −10.7003 + 7.77420i −0.472428 + 0.343239i
\(514\) 0 0
\(515\) 10.4327 + 32.1085i 0.459718 + 1.41487i
\(516\) 0 0
\(517\) −4.74034 0.719698i −0.208480 0.0316523i
\(518\) 0 0
\(519\) −1.08754 3.34711i −0.0477378 0.146922i
\(520\) 0 0
\(521\) 29.4858 21.4227i 1.29179 0.938544i 0.291954 0.956432i \(-0.405694\pi\)
0.999840 + 0.0178887i \(0.00569445\pi\)
\(522\) 0 0
\(523\) −3.50372 + 10.7833i −0.153207 + 0.471523i −0.997975 0.0636104i \(-0.979739\pi\)
0.844768 + 0.535133i \(0.179739\pi\)
\(524\) 0 0
\(525\) 0.0979606 + 0.0711726i 0.00427535 + 0.00310623i
\(526\) 0 0
\(527\) 27.2285 1.18609
\(528\) 0 0
\(529\) −21.5452 −0.936748
\(530\) 0 0
\(531\) −1.37228 0.997023i −0.0595521 0.0432671i
\(532\) 0 0
\(533\) −7.83793 + 24.1227i −0.339498 + 1.04487i
\(534\) 0 0
\(535\) 36.8570 26.7782i 1.59347 1.15772i
\(536\) 0 0
\(537\) 1.76744 + 5.43961i 0.0762705 + 0.234736i
\(538\) 0 0
\(539\) −3.26707 19.8055i −0.140723 0.853083i
\(540\) 0 0
\(541\) −12.6257 38.8579i −0.542821 1.67063i −0.726116 0.687572i \(-0.758677\pi\)
0.183296 0.983058i \(-0.441323\pi\)
\(542\) 0 0
\(543\) 10.1475 7.37257i 0.435470 0.316387i
\(544\) 0 0
\(545\) −3.29225 + 10.1325i −0.141025 + 0.434029i
\(546\) 0 0
\(547\) −26.5326 19.2770i −1.13445 0.824227i −0.148115 0.988970i \(-0.547320\pi\)
−0.986336 + 0.164743i \(0.947320\pi\)
\(548\) 0 0
\(549\) −1.98744 −0.0848221
\(550\) 0 0
\(551\) 5.86329 0.249785
\(552\) 0 0
\(553\) 6.11506 + 4.44285i 0.260039 + 0.188929i
\(554\) 0 0
\(555\) 12.0496 37.0847i 0.511475 1.57416i
\(556\) 0 0
\(557\) −6.06808 + 4.40872i −0.257113 + 0.186803i −0.708873 0.705336i \(-0.750796\pi\)
0.451760 + 0.892139i \(0.350796\pi\)
\(558\) 0 0
\(559\) 15.7501 + 48.4738i 0.666158 + 2.05022i
\(560\) 0 0
\(561\) −11.0278 + 21.9905i −0.465596 + 0.928439i
\(562\) 0 0
\(563\) −3.62177 11.1467i −0.152639 0.469775i 0.845275 0.534332i \(-0.179437\pi\)
−0.997914 + 0.0645565i \(0.979437\pi\)
\(564\) 0 0
\(565\) −11.7208 + 8.51563i −0.493096 + 0.358255i
\(566\) 0 0
\(567\) −3.07173 + 9.45380i −0.129000 + 0.397022i
\(568\) 0 0
\(569\) −6.00794 4.36502i −0.251866 0.182991i 0.454687 0.890651i \(-0.349751\pi\)
−0.706553 + 0.707660i \(0.749751\pi\)
\(570\) 0 0
\(571\) 37.7892 1.58143 0.790714 0.612185i \(-0.209709\pi\)
0.790714 + 0.612185i \(0.209709\pi\)
\(572\) 0 0
\(573\) 3.36835 0.140715
\(574\) 0 0
\(575\) −0.0650560 0.0472659i −0.00271302 0.00197113i
\(576\) 0 0
\(577\) −6.63455 + 20.4190i −0.276200 + 0.850056i 0.712699 + 0.701470i \(0.247472\pi\)
−0.988899 + 0.148587i \(0.952528\pi\)
\(578\) 0 0
\(579\) 1.22384 0.889173i 0.0508611 0.0369528i
\(580\) 0 0
\(581\) 5.19226 + 15.9801i 0.215411 + 0.662968i
\(582\) 0 0
\(583\) −24.1681 23.8605i −1.00094 0.988199i
\(584\) 0 0
\(585\) −1.90107 5.85089i −0.0785995 0.241904i
\(586\) 0 0
\(587\) 1.59529 1.15904i 0.0658445 0.0478388i −0.554376 0.832266i \(-0.687043\pi\)
0.620221 + 0.784427i \(0.287043\pi\)
\(588\) 0 0
\(589\) 5.95517 18.3281i 0.245378 0.755197i
\(590\) 0 0
\(591\) 28.0968 + 20.4135i 1.15575 + 0.839701i
\(592\) 0 0
\(593\) 7.57118 0.310911 0.155456 0.987843i \(-0.450315\pi\)
0.155456 + 0.987843i \(0.450315\pi\)
\(594\) 0 0
\(595\) −8.59675 −0.352432
\(596\) 0 0
\(597\) −25.3733 18.4348i −1.03846 0.754484i
\(598\) 0 0
\(599\) −3.16675 + 9.74625i −0.129390 + 0.398221i −0.994675 0.103059i \(-0.967137\pi\)
0.865286 + 0.501279i \(0.167137\pi\)
\(600\) 0 0
\(601\) −2.79241 + 2.02880i −0.113905 + 0.0827567i −0.643279 0.765632i \(-0.722427\pi\)
0.529375 + 0.848388i \(0.322427\pi\)
\(602\) 0 0
\(603\) −1.82069 5.60352i −0.0741444 0.228193i
\(604\) 0 0
\(605\) −14.6130 19.5805i −0.594101 0.796059i
\(606\) 0 0
\(607\) 0.972368 + 2.99264i 0.0394672 + 0.121468i 0.968849 0.247652i \(-0.0796591\pi\)
−0.929382 + 0.369120i \(0.879659\pi\)
\(608\) 0 0
\(609\) 3.06164 2.22441i 0.124064 0.0901376i
\(610\) 0 0
\(611\) 2.57460 7.92381i 0.104157 0.320563i
\(612\) 0 0
\(613\) 37.0732 + 26.9353i 1.49737 + 1.08791i 0.971413 + 0.237397i \(0.0762944\pi\)
0.525961 + 0.850508i \(0.323706\pi\)
\(614\) 0 0
\(615\) 18.2369 0.735381
\(616\) 0 0
\(617\) 6.41440 0.258234 0.129117 0.991629i \(-0.458786\pi\)
0.129117 + 0.991629i \(0.458786\pi\)
\(618\) 0 0
\(619\) 24.0778 + 17.4936i 0.967770 + 0.703126i 0.954942 0.296792i \(-0.0959168\pi\)
0.0128275 + 0.999918i \(0.495917\pi\)
\(620\) 0 0
\(621\) 1.75190 5.39179i 0.0703013 0.216365i
\(622\) 0 0
\(623\) 0.370505 0.269188i 0.0148440 0.0107848i
\(624\) 0 0
\(625\) −7.62104 23.4552i −0.304842 0.938206i
\(626\) 0 0
\(627\) 12.3904 + 12.2326i 0.494824 + 0.488525i
\(628\) 0 0
\(629\) −11.5611 35.5813i −0.460970 1.41872i
\(630\) 0 0
\(631\) 39.4007 28.6263i 1.56852 1.13959i 0.639959 0.768409i \(-0.278951\pi\)
0.928559 0.371186i \(-0.121049\pi\)
\(632\) 0 0
\(633\) 0.221445 0.681537i 0.00880164 0.0270887i
\(634\) 0 0
\(635\) −24.3198 17.6693i −0.965101 0.701187i
\(636\) 0 0
\(637\) 34.8807 1.38202
\(638\) 0 0
\(639\) 4.53929 0.179572
\(640\) 0 0
\(641\) −13.6347 9.90618i −0.538538 0.391270i 0.285004 0.958526i \(-0.408005\pi\)
−0.823542 + 0.567256i \(0.808005\pi\)
\(642\) 0 0
\(643\) −2.02874 + 6.24381i −0.0800056 + 0.246232i −0.983057 0.183301i \(-0.941322\pi\)
0.903051 + 0.429533i \(0.141322\pi\)
\(644\) 0 0
\(645\) 29.6476 21.5402i 1.16737 0.848146i
\(646\) 0 0
\(647\) −1.09099 3.35774i −0.0428914 0.132006i 0.927318 0.374275i \(-0.122108\pi\)
−0.970209 + 0.242269i \(0.922108\pi\)
\(648\) 0 0
\(649\) 5.24743 10.4638i 0.205980 0.410741i
\(650\) 0 0
\(651\) −3.84369 11.8297i −0.150646 0.463641i
\(652\) 0 0
\(653\) −4.96362 + 3.60628i −0.194241 + 0.141125i −0.680655 0.732604i \(-0.738305\pi\)
0.486414 + 0.873729i \(0.338305\pi\)
\(654\) 0 0
\(655\) 8.11550 24.9770i 0.317099 0.975930i
\(656\) 0 0
\(657\) 2.57444 + 1.87044i 0.100439 + 0.0729729i
\(658\) 0 0
\(659\) 27.9511 1.08882 0.544410 0.838819i \(-0.316754\pi\)
0.544410 + 0.838819i \(0.316754\pi\)
\(660\) 0 0
\(661\) −11.5665 −0.449886 −0.224943 0.974372i \(-0.572220\pi\)
−0.224943 + 0.974372i \(0.572220\pi\)
\(662\) 0 0
\(663\) −34.5840 25.1267i −1.34313 0.975841i
\(664\) 0 0
\(665\) −1.88020 + 5.78667i −0.0729111 + 0.224397i
\(666\) 0 0
\(667\) −2.03324 + 1.47724i −0.0787274 + 0.0571988i
\(668\) 0 0
\(669\) 13.4410 + 41.3672i 0.519660 + 1.59935i
\(670\) 0 0
\(671\) −2.23232 13.5326i −0.0861776 0.522421i
\(672\) 0 0
\(673\) −4.37705 13.4712i −0.168723 0.519276i 0.830568 0.556917i \(-0.188016\pi\)
−0.999291 + 0.0376407i \(0.988016\pi\)
\(674\) 0 0
\(675\) −0.253519 + 0.184192i −0.00975793 + 0.00708955i
\(676\) 0 0
\(677\) −7.84568 + 24.1465i −0.301534 + 0.928026i 0.679414 + 0.733755i \(0.262234\pi\)
−0.980948 + 0.194271i \(0.937766\pi\)
\(678\) 0 0
\(679\) 7.13572 + 5.18441i 0.273844 + 0.198959i
\(680\) 0 0
\(681\) −5.08454 −0.194840
\(682\) 0 0
\(683\) 14.6841 0.561870 0.280935 0.959727i \(-0.409355\pi\)
0.280935 + 0.959727i \(0.409355\pi\)
\(684\) 0 0
\(685\) 30.0727 + 21.8491i 1.14902 + 0.834810i
\(686\) 0 0
\(687\) −14.3850 + 44.2724i −0.548821 + 1.68910i
\(688\) 0 0
\(689\) 47.7443 34.6882i 1.81891 1.32152i
\(690\) 0 0
\(691\) −9.85170 30.3204i −0.374776 1.15344i −0.943629 0.331004i \(-0.892613\pi\)
0.568853 0.822439i \(-0.307387\pi\)
\(692\) 0 0
\(693\) 1.53415 + 0.232921i 0.0582774 + 0.00884792i
\(694\) 0 0
\(695\) −7.92761 24.3987i −0.300711 0.925494i
\(696\) 0 0
\(697\) 14.1558 10.2848i 0.536190 0.389565i
\(698\) 0 0
\(699\) −12.1869 + 37.5073i −0.460949 + 1.41866i
\(700\) 0 0
\(701\) −13.5108 9.81615i −0.510295 0.370751i 0.302641 0.953105i \(-0.402132\pi\)
−0.812935 + 0.582354i \(0.802132\pi\)
\(702\) 0 0
\(703\) −26.4791 −0.998680
\(704\) 0 0
\(705\) −5.99044 −0.225613
\(706\) 0 0
\(707\) 10.4288 + 7.57693i 0.392214 + 0.284960i
\(708\) 0 0
\(709\) 8.24276 25.3686i 0.309564 0.952739i −0.668371 0.743828i \(-0.733008\pi\)
0.977935 0.208911i \(-0.0669918\pi\)
\(710\) 0 0
\(711\) 3.01884 2.19332i 0.113215 0.0822558i
\(712\) 0 0
\(713\) 2.55261 + 7.85612i 0.0955959 + 0.294214i
\(714\) 0 0
\(715\) 37.7037 19.5163i 1.41004 0.729867i
\(716\) 0 0
\(717\) −0.119918 0.369071i −0.00447843 0.0137832i
\(718\) 0 0
\(719\) 15.8748 11.5337i 0.592032 0.430136i −0.251010 0.967984i \(-0.580763\pi\)
0.843042 + 0.537848i \(0.180763\pi\)
\(720\) 0 0
\(721\) 4.57262 14.0731i 0.170293 0.524109i
\(722\) 0 0
\(723\) −1.88852 1.37209i −0.0702349 0.0510287i
\(724\) 0 0
\(725\) 0.138917 0.00515926
\(726\) 0 0
\(727\) 23.9815 0.889424 0.444712 0.895674i \(-0.353306\pi\)
0.444712 + 0.895674i \(0.353306\pi\)
\(728\) 0 0
\(729\) −17.3128 12.5785i −0.641215 0.465870i
\(730\) 0 0
\(731\) 10.8653 33.4400i 0.401868 1.23682i
\(732\) 0 0
\(733\) −12.4119 + 9.01779i −0.458445 + 0.333080i −0.792921 0.609325i \(-0.791441\pi\)
0.334476 + 0.942404i \(0.391441\pi\)
\(734\) 0 0
\(735\) −7.74994 23.8519i −0.285861 0.879789i
\(736\) 0 0
\(737\) 36.1097 18.6911i 1.33012 0.688497i
\(738\) 0 0
\(739\) 0.987413 + 3.03894i 0.0363226 + 0.111789i 0.967574 0.252588i \(-0.0812818\pi\)
−0.931251 + 0.364378i \(0.881282\pi\)
\(740\) 0 0
\(741\) −24.4773 + 17.7838i −0.899194 + 0.653303i
\(742\) 0 0
\(743\) 9.56687 29.4438i 0.350974 1.08019i −0.607333 0.794448i \(-0.707761\pi\)
0.958307 0.285740i \(-0.0922395\pi\)
\(744\) 0 0
\(745\) −27.8583 20.2402i −1.02065 0.741545i
\(746\) 0 0
\(747\) 8.29495 0.303496
\(748\) 0 0
\(749\) −19.9679 −0.729611
\(750\) 0 0
\(751\) −14.5388 10.5630i −0.530528 0.385451i 0.290027 0.957018i \(-0.406336\pi\)
−0.820555 + 0.571567i \(0.806336\pi\)
\(752\) 0 0
\(753\) 12.8784 39.6357i 0.469316 1.44441i
\(754\) 0 0
\(755\) −17.2368 + 12.5233i −0.627313 + 0.455770i
\(756\) 0 0
\(757\) −4.53896 13.9695i −0.164971 0.507729i 0.834063 0.551669i \(-0.186009\pi\)
−0.999034 + 0.0439400i \(0.986009\pi\)
\(758\) 0 0
\(759\) −7.37865 1.12026i −0.267828 0.0406628i
\(760\) 0 0
\(761\) −4.09898 12.6154i −0.148588 0.457307i 0.848867 0.528606i \(-0.177285\pi\)
−0.997455 + 0.0712999i \(0.977285\pi\)
\(762\) 0 0
\(763\) 3.77779 2.74473i 0.136765 0.0993658i
\(764\) 0 0
\(765\) −1.31146 + 4.03627i −0.0474161 + 0.145932i
\(766\) 0 0
\(767\) 16.4562 + 11.9562i 0.594201 + 0.431712i
\(768\) 0 0
\(769\) −30.0680 −1.08428 −0.542139 0.840289i \(-0.682385\pi\)
−0.542139 + 0.840289i \(0.682385\pi\)
\(770\) 0 0
\(771\) 40.4088 1.45529
\(772\) 0 0
\(773\) 8.52718 + 6.19536i 0.306701 + 0.222832i 0.730480 0.682934i \(-0.239297\pi\)
−0.423778 + 0.905766i \(0.639297\pi\)
\(774\) 0 0
\(775\) 0.141094 0.434243i 0.00506825 0.0155985i
\(776\) 0 0
\(777\) −13.8266 + 10.0456i −0.496027 + 0.360385i
\(778\) 0 0
\(779\) −3.82690 11.7780i −0.137113 0.421991i
\(780\) 0 0
\(781\) 5.09857 + 30.9083i 0.182441 + 1.10599i
\(782\) 0 0
\(783\) 3.02647 + 9.31452i 0.108157 + 0.332874i
\(784\) 0 0
\(785\) −5.75241 + 4.17937i −0.205312 + 0.149168i
\(786\) 0 0
\(787\) −11.6052 + 35.7171i −0.413680 + 1.27318i 0.499746 + 0.866172i \(0.333427\pi\)
−0.913426 + 0.407004i \(0.866573\pi\)
\(788\) 0 0
\(789\) 17.1229 + 12.4405i 0.609592 + 0.442895i
\(790\) 0 0
\(791\) 6.34992 0.225777
\(792\) 0 0
\(793\) 23.8332 0.846340
\(794\) 0 0
\(795\) −34.3283 24.9410i −1.21750 0.884565i
\(796\) 0 0
\(797\) −4.86857 + 14.9839i −0.172454 + 0.530758i −0.999508 0.0313641i \(-0.990015\pi\)
0.827054 + 0.562122i \(0.190015\pi\)
\(798\) 0 0
\(799\) −4.64990 + 3.37835i −0.164502 + 0.119517i
\(800\) 0 0
\(801\) −0.0698648 0.215022i −0.00246855 0.00759742i
\(802\) 0 0
\(803\) −9.84431 + 19.6304i −0.347398 + 0.692742i
\(804\) 0 0
\(805\) −0.805925 2.48038i −0.0284051 0.0874220i
\(806\) 0 0
\(807\) 21.7028 15.7680i 0.763975 0.555060i
\(808\) 0 0
\(809\) −10.9888 + 33.8200i −0.386345 + 1.18905i 0.549154 + 0.835721i \(0.314950\pi\)
−0.935500 + 0.353328i \(0.885050\pi\)
\(810\) 0 0
\(811\) 6.30228 + 4.57888i 0.221303 + 0.160786i 0.692913 0.721021i \(-0.256327\pi\)
−0.471610 + 0.881807i \(0.656327\pi\)
\(812\) 0 0
\(813\) 20.5436 0.720497
\(814\) 0 0
\(815\) −52.5161 −1.83956
\(816\) 0 0
\(817\) −20.1328 14.6274i −0.704359 0.511747i
\(818\) 0 0
\(819\) −0.833235 + 2.56443i −0.0291156 + 0.0896086i
\(820\) 0 0
\(821\) −4.87943 + 3.54511i −0.170293 + 0.123725i −0.669667 0.742661i \(-0.733563\pi\)
0.499374 + 0.866386i \(0.333563\pi\)
\(822\) 0 0
\(823\) 15.4682 + 47.6063i 0.539188 + 1.65945i 0.734422 + 0.678694i \(0.237454\pi\)
−0.195234 + 0.980757i \(0.562546\pi\)
\(824\) 0 0
\(825\) 0.293562 + 0.289825i 0.0102205 + 0.0100904i
\(826\) 0 0
\(827\) −8.75315 26.9394i −0.304377 0.936776i −0.979909 0.199445i \(-0.936086\pi\)
0.675532 0.737331i \(-0.263914\pi\)
\(828\) 0 0
\(829\) −4.38986 + 3.18942i −0.152466 + 0.110773i −0.661403 0.750031i \(-0.730039\pi\)
0.508937 + 0.860804i \(0.330039\pi\)
\(830\) 0 0
\(831\) 3.40281 10.4728i 0.118042 0.363297i
\(832\) 0 0
\(833\) −19.4671 14.1437i −0.674495 0.490049i
\(834\) 0 0
\(835\) 17.4292 0.603163
\(836\) 0 0
\(837\) 32.1902 1.11266
\(838\) 0 0
\(839\) 32.6943 + 23.7538i 1.12873 + 0.820071i 0.985510 0.169619i \(-0.0542538\pi\)
0.143222 + 0.989691i \(0.454254\pi\)
\(840\) 0 0
\(841\) −7.61984 + 23.4514i −0.262753 + 0.808671i
\(842\) 0 0
\(843\) −19.9214 + 14.4737i −0.686129 + 0.498502i
\(844\) 0 0
\(845\) 13.8747 + 42.7018i 0.477303 + 1.46899i
\(846\) 0 0
\(847\) 0.137197 + 10.7077i 0.00471416 + 0.367922i
\(848\) 0 0
\(849\) 5.04066 + 15.5136i 0.172995 + 0.532424i
\(850\) 0 0
\(851\) 9.18230 6.67133i 0.314765 0.228690i
\(852\) 0 0
\(853\) 7.42894 22.8639i 0.254362 0.782846i −0.739593 0.673055i \(-0.764982\pi\)
0.993955 0.109791i \(-0.0350182\pi\)
\(854\) 0 0
\(855\) 2.43007 + 1.76555i 0.0831068 + 0.0603806i
\(856\) 0 0
\(857\) 42.9442 1.46695 0.733474 0.679718i \(-0.237898\pi\)
0.733474 + 0.679718i \(0.237898\pi\)
\(858\) 0 0
\(859\) 12.9486 0.441800 0.220900 0.975296i \(-0.429101\pi\)
0.220900 + 0.975296i \(0.429101\pi\)
\(860\) 0 0
\(861\) −6.46662 4.69827i −0.220382 0.160117i
\(862\) 0 0
\(863\) −3.63584 + 11.1900i −0.123765 + 0.380910i −0.993674 0.112302i \(-0.964178\pi\)
0.869909 + 0.493213i \(0.164178\pi\)
\(864\) 0 0
\(865\) 3.38973 2.46278i 0.115254 0.0837370i
\(866\) 0 0
\(867\) −0.687798 2.11683i −0.0233589 0.0718912i
\(868\) 0 0
\(869\) 18.3252 + 18.0919i 0.621641 + 0.613727i
\(870\) 0 0
\(871\) 21.8335 + 67.1966i 0.739800 + 2.27687i
\(872\) 0 0
\(873\) 3.52271 2.55940i 0.119226 0.0866226i
\(874\) 0 0
\(875\) −3.38544 + 10.4193i −0.114449 + 0.352237i
\(876\) 0 0
\(877\) −33.5126 24.3483i −1.13164 0.822185i −0.145708 0.989328i \(-0.546546\pi\)
−0.985933 + 0.167142i \(0.946546\pi\)
\(878\) 0 0
\(879\) 2.82886 0.0954150
\(880\) 0 0
\(881\) −44.7091 −1.50629 −0.753143 0.657857i \(-0.771463\pi\)
−0.753143 + 0.657857i \(0.771463\pi\)
\(882\) 0 0
\(883\) 17.7445 + 12.8922i 0.597151 + 0.433856i 0.844867 0.534977i \(-0.179680\pi\)
−0.247715 + 0.968833i \(0.579680\pi\)
\(884\) 0 0
\(885\) 4.51946 13.9095i 0.151920 0.467561i
\(886\) 0 0
\(887\) 14.1400 10.2733i 0.474776 0.344945i −0.324524 0.945877i \(-0.605204\pi\)
0.799300 + 0.600933i \(0.205204\pi\)
\(888\) 0 0
\(889\) 4.07150 + 12.5308i 0.136554 + 0.420269i
\(890\) 0 0
\(891\) −15.1810 + 30.2722i −0.508582 + 1.01416i
\(892\) 0 0
\(893\) 1.25706 + 3.86884i 0.0420659 + 0.129466i
\(894\) 0 0
\(895\) −5.50887 + 4.00243i −0.184141 + 0.133786i
\(896\) 0 0
\(897\) 4.00753 12.3339i 0.133808 0.411818i
\(898\) 0 0
\(899\) −11.5448 8.38778i −0.385040 0.279748i
\(900\) 0 0
\(901\) −40.7119 −1.35631
\(902\) 0 0
\(903\) −16.0621 −0.534513
\(904\) 0 0
\(905\) 12.0810 + 8.77733i 0.401585 + 0.291768i
\(906\) 0 0
\(907\) 5.08397 15.6469i 0.168810 0.519545i −0.830486 0.557039i \(-0.811937\pi\)
0.999297 + 0.0374937i \(0.0119374\pi\)
\(908\) 0 0
\(909\) 5.14840 3.74053i 0.170762 0.124066i
\(910\) 0 0
\(911\) 4.69348 + 14.4450i 0.155502 + 0.478585i 0.998211 0.0597831i \(-0.0190409\pi\)
−0.842710 + 0.538368i \(0.819041\pi\)
\(912\) 0 0
\(913\) 9.31696 + 56.4808i 0.308346 + 1.86924i
\(914\) 0 0
\(915\) −5.29535 16.2974i −0.175059 0.538776i
\(916\) 0 0
\(917\) −9.31238 + 6.76584i −0.307522 + 0.223428i
\(918\) 0 0
\(919\) 12.9316 39.7994i 0.426575 1.31286i −0.474904 0.880038i \(-0.657517\pi\)
0.901478 0.432824i \(-0.142483\pi\)
\(920\) 0 0
\(921\) −8.35523 6.07043i −0.275314 0.200027i
\(922\) 0 0
\(923\) −54.4346 −1.79174
\(924\) 0 0
\(925\) −0.627363 −0.0206276
\(926\) 0 0
\(927\) −5.90990 4.29379i −0.194107 0.141027i
\(928\) 0 0
\(929\) 0.0970194 0.298595i 0.00318310 0.00979659i −0.949452 0.313911i \(-0.898361\pi\)
0.952635 + 0.304115i \(0.0983606\pi\)
\(930\) 0 0
\(931\) −13.7781 + 10.0104i −0.451559 + 0.328077i
\(932\) 0 0
\(933\) −5.28113 16.2537i −0.172897 0.532121i
\(934\) 0 0
\(935\) −28.9562 4.39626i −0.946970 0.143773i
\(936\) 0 0
\(937\) −3.27217 10.0707i −0.106897 0.328996i 0.883274 0.468857i \(-0.155334\pi\)
−0.990171 + 0.139862i \(0.955334\pi\)
\(938\) 0 0
\(939\) −24.5634 + 17.8464i −0.801597 + 0.582394i
\(940\) 0 0
\(941\) −18.1868 + 55.9733i −0.592874 + 1.82468i −0.0278375 + 0.999612i \(0.508862\pi\)
−0.565036 + 0.825066i \(0.691138\pi\)
\(942\) 0 0
\(943\) 4.29450 + 3.12014i 0.139848 + 0.101606i
\(944\) 0 0
\(945\) −10.1633 −0.330612
\(946\) 0 0
\(947\) 15.0139 0.487887 0.243943 0.969789i \(-0.421559\pi\)
0.243943 + 0.969789i \(0.421559\pi\)
\(948\) 0 0
\(949\) −30.8723 22.4301i −1.00216 0.728111i
\(950\) 0 0
\(951\) 2.04457 6.29253i 0.0662996 0.204049i
\(952\) 0 0
\(953\) −8.67162 + 6.30030i −0.280901 + 0.204087i −0.719310 0.694689i \(-0.755542\pi\)
0.438409 + 0.898775i \(0.355542\pi\)
\(954\) 0 0
\(955\) 1.23920 + 3.81388i 0.0400997 + 0.123414i
\(956\) 0 0
\(957\) 11.4500 5.92675i 0.370125 0.191585i
\(958\) 0 0
\(959\) −5.03462 15.4950i −0.162576 0.500358i
\(960\) 0 0
\(961\) −12.8656 + 9.34743i −0.415020 + 0.301530i
\(962\) 0 0
\(963\) −3.04617 + 9.37515i −0.0981615 + 0.302110i
\(964\) 0 0
\(965\) 1.45703 + 1.05859i 0.0469035 + 0.0340774i
\(966\) 0 0
\(967\) −43.1296 −1.38695 −0.693477 0.720479i \(-0.743922\pi\)
−0.693477 + 0.720479i \(0.743922\pi\)
\(968\) 0 0
\(969\) 20.8720 0.670504
\(970\) 0 0
\(971\) 13.3942 + 9.73143i 0.429839 + 0.312296i 0.781585 0.623799i \(-0.214412\pi\)
−0.351745 + 0.936096i \(0.614412\pi\)
\(972\) 0 0
\(973\) −3.47466 + 10.6939i −0.111392 + 0.342831i
\(974\) 0 0
\(975\) −0.579933 + 0.421346i −0.0185727 + 0.0134939i
\(976\) 0 0
\(977\) 0.482558 + 1.48516i 0.0154384 + 0.0475145i 0.958479 0.285163i \(-0.0920478\pi\)
−0.943041 + 0.332678i \(0.892048\pi\)
\(978\) 0 0
\(979\) 1.38562 0.717228i 0.0442847 0.0229227i
\(980\) 0 0
\(981\) −0.712364 2.19243i −0.0227440 0.0699990i
\(982\) 0 0
\(983\) −39.3187 + 28.5667i −1.25407 + 0.911136i −0.998451 0.0556406i \(-0.982280\pi\)
−0.255621 + 0.966777i \(0.582280\pi\)
\(984\) 0 0
\(985\) −12.7769 + 39.3232i −0.407106 + 1.25294i
\(986\) 0 0
\(987\) 2.12415 + 1.54329i 0.0676126 + 0.0491234i
\(988\) 0 0
\(989\) 10.6669 0.339187
\(990\) 0 0
\(991\) −13.0806 −0.415518 −0.207759 0.978180i \(-0.566617\pi\)
−0.207759 + 0.978180i \(0.566617\pi\)
\(992\) 0 0
\(993\) 24.5012 + 17.8012i 0.777524 + 0.564904i
\(994\) 0 0
\(995\) 11.5384 35.5114i 0.365791 1.12579i
\(996\) 0 0
\(997\) 24.7329 17.9695i 0.783299 0.569100i −0.122668 0.992448i \(-0.539145\pi\)
0.905967 + 0.423348i \(0.139145\pi\)
\(998\) 0 0
\(999\) −13.6678 42.0652i −0.432430 1.33088i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 704.2.m.m.577.1 12
4.3 odd 2 704.2.m.n.577.3 12
8.3 odd 2 352.2.m.f.225.1 yes 12
8.5 even 2 352.2.m.e.225.3 yes 12
11.3 even 5 7744.2.a.du.1.6 6
11.8 odd 10 7744.2.a.dt.1.6 6
11.9 even 5 inner 704.2.m.m.449.1 12
44.3 odd 10 7744.2.a.dv.1.1 6
44.19 even 10 7744.2.a.dw.1.1 6
44.31 odd 10 704.2.m.n.449.3 12
88.3 odd 10 3872.2.a.bn.1.6 6
88.19 even 10 3872.2.a.bo.1.6 6
88.53 even 10 352.2.m.e.97.3 12
88.69 even 10 3872.2.a.bq.1.1 6
88.75 odd 10 352.2.m.f.97.1 yes 12
88.85 odd 10 3872.2.a.bp.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.2.m.e.97.3 12 88.53 even 10
352.2.m.e.225.3 yes 12 8.5 even 2
352.2.m.f.97.1 yes 12 88.75 odd 10
352.2.m.f.225.1 yes 12 8.3 odd 2
704.2.m.m.449.1 12 11.9 even 5 inner
704.2.m.m.577.1 12 1.1 even 1 trivial
704.2.m.n.449.3 12 44.31 odd 10
704.2.m.n.577.3 12 4.3 odd 2
3872.2.a.bn.1.6 6 88.3 odd 10
3872.2.a.bo.1.6 6 88.19 even 10
3872.2.a.bp.1.1 6 88.85 odd 10
3872.2.a.bq.1.1 6 88.69 even 10
7744.2.a.dt.1.6 6 11.8 odd 10
7744.2.a.du.1.6 6 11.3 even 5
7744.2.a.dv.1.1 6 44.3 odd 10
7744.2.a.dw.1.1 6 44.19 even 10