Properties

Label 7744.2.a.dv.1.1
Level $7744$
Weight $2$
Character 7744.1
Self dual yes
Analytic conductor $61.836$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7744,2,Mod(1,7744)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7744, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7744.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7744 = 2^{6} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7744.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.8361513253\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.19898000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} + 7x^{3} + 24x^{2} - 15x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 352)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.86564\) of defining polynomial
Character \(\chi\) \(=\) 7744.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.86564 q^{3} +2.22111 q^{5} -0.973509 q^{7} +0.480595 q^{9} -5.76323 q^{13} -4.14378 q^{15} -3.97580 q^{17} +2.81392 q^{19} +1.81621 q^{21} +1.20615 q^{23} -0.0666695 q^{25} +4.70029 q^{27} -2.08367 q^{29} +6.84856 q^{31} -2.16227 q^{35} +9.41004 q^{37} +10.7521 q^{39} +4.40102 q^{41} +8.84372 q^{43} +1.06745 q^{45} +1.44564 q^{47} -6.05228 q^{49} +7.41739 q^{51} +10.2399 q^{53} -5.24976 q^{57} -3.52945 q^{59} -4.13538 q^{61} -0.467864 q^{63} -12.8008 q^{65} +12.2596 q^{67} -2.25024 q^{69} -9.44515 q^{71} -6.62134 q^{73} +0.124381 q^{75} +7.76432 q^{79} -10.2108 q^{81} -17.2597 q^{83} -8.83068 q^{85} +3.88737 q^{87} -0.470432 q^{89} +5.61056 q^{91} -12.7769 q^{93} +6.25003 q^{95} -9.06025 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{3} - 2 q^{7} + 7 q^{9} - 4 q^{13} - 8 q^{15} - 9 q^{17} + 5 q^{19} - 12 q^{21} - 6 q^{23} + 4 q^{25} + 26 q^{27} - 10 q^{29} - 12 q^{31} - 26 q^{35} + 12 q^{37} - 2 q^{39} - 17 q^{41} + 11 q^{43}+ \cdots - 21 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.86564 −1.07713 −0.538563 0.842586i \(-0.681032\pi\)
−0.538563 + 0.842586i \(0.681032\pi\)
\(4\) 0 0
\(5\) 2.22111 0.993311 0.496655 0.867948i \(-0.334561\pi\)
0.496655 + 0.867948i \(0.334561\pi\)
\(6\) 0 0
\(7\) −0.973509 −0.367952 −0.183976 0.982931i \(-0.558897\pi\)
−0.183976 + 0.982931i \(0.558897\pi\)
\(8\) 0 0
\(9\) 0.480595 0.160198
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −5.76323 −1.59843 −0.799216 0.601044i \(-0.794752\pi\)
−0.799216 + 0.601044i \(0.794752\pi\)
\(14\) 0 0
\(15\) −4.14378 −1.06992
\(16\) 0 0
\(17\) −3.97580 −0.964273 −0.482136 0.876096i \(-0.660139\pi\)
−0.482136 + 0.876096i \(0.660139\pi\)
\(18\) 0 0
\(19\) 2.81392 0.645558 0.322779 0.946474i \(-0.395383\pi\)
0.322779 + 0.946474i \(0.395383\pi\)
\(20\) 0 0
\(21\) 1.81621 0.396330
\(22\) 0 0
\(23\) 1.20615 0.251500 0.125750 0.992062i \(-0.459866\pi\)
0.125750 + 0.992062i \(0.459866\pi\)
\(24\) 0 0
\(25\) −0.0666695 −0.0133339
\(26\) 0 0
\(27\) 4.70029 0.904571
\(28\) 0 0
\(29\) −2.08367 −0.386928 −0.193464 0.981107i \(-0.561972\pi\)
−0.193464 + 0.981107i \(0.561972\pi\)
\(30\) 0 0
\(31\) 6.84856 1.23004 0.615019 0.788512i \(-0.289148\pi\)
0.615019 + 0.788512i \(0.289148\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.16227 −0.365490
\(36\) 0 0
\(37\) 9.41004 1.54700 0.773501 0.633795i \(-0.218504\pi\)
0.773501 + 0.633795i \(0.218504\pi\)
\(38\) 0 0
\(39\) 10.7521 1.72171
\(40\) 0 0
\(41\) 4.40102 0.687323 0.343662 0.939094i \(-0.388333\pi\)
0.343662 + 0.939094i \(0.388333\pi\)
\(42\) 0 0
\(43\) 8.84372 1.34865 0.674327 0.738432i \(-0.264434\pi\)
0.674327 + 0.738432i \(0.264434\pi\)
\(44\) 0 0
\(45\) 1.06745 0.159127
\(46\) 0 0
\(47\) 1.44564 0.210869 0.105434 0.994426i \(-0.466377\pi\)
0.105434 + 0.994426i \(0.466377\pi\)
\(48\) 0 0
\(49\) −6.05228 −0.864611
\(50\) 0 0
\(51\) 7.41739 1.03864
\(52\) 0 0
\(53\) 10.2399 1.40656 0.703282 0.710911i \(-0.251717\pi\)
0.703282 + 0.710911i \(0.251717\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −5.24976 −0.695347
\(58\) 0 0
\(59\) −3.52945 −0.459495 −0.229748 0.973250i \(-0.573790\pi\)
−0.229748 + 0.973250i \(0.573790\pi\)
\(60\) 0 0
\(61\) −4.13538 −0.529482 −0.264741 0.964320i \(-0.585286\pi\)
−0.264741 + 0.964320i \(0.585286\pi\)
\(62\) 0 0
\(63\) −0.467864 −0.0589453
\(64\) 0 0
\(65\) −12.8008 −1.58774
\(66\) 0 0
\(67\) 12.2596 1.49774 0.748872 0.662714i \(-0.230596\pi\)
0.748872 + 0.662714i \(0.230596\pi\)
\(68\) 0 0
\(69\) −2.25024 −0.270897
\(70\) 0 0
\(71\) −9.44515 −1.12093 −0.560467 0.828177i \(-0.689378\pi\)
−0.560467 + 0.828177i \(0.689378\pi\)
\(72\) 0 0
\(73\) −6.62134 −0.774969 −0.387485 0.921876i \(-0.626656\pi\)
−0.387485 + 0.921876i \(0.626656\pi\)
\(74\) 0 0
\(75\) 0.124381 0.0143623
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 7.76432 0.873554 0.436777 0.899570i \(-0.356120\pi\)
0.436777 + 0.899570i \(0.356120\pi\)
\(80\) 0 0
\(81\) −10.2108 −1.13453
\(82\) 0 0
\(83\) −17.2597 −1.89450 −0.947251 0.320492i \(-0.896152\pi\)
−0.947251 + 0.320492i \(0.896152\pi\)
\(84\) 0 0
\(85\) −8.83068 −0.957822
\(86\) 0 0
\(87\) 3.88737 0.416770
\(88\) 0 0
\(89\) −0.470432 −0.0498657 −0.0249328 0.999689i \(-0.507937\pi\)
−0.0249328 + 0.999689i \(0.507937\pi\)
\(90\) 0 0
\(91\) 5.61056 0.588146
\(92\) 0 0
\(93\) −12.7769 −1.32490
\(94\) 0 0
\(95\) 6.25003 0.641240
\(96\) 0 0
\(97\) −9.06025 −0.919929 −0.459965 0.887937i \(-0.652138\pi\)
−0.459965 + 0.887937i \(0.652138\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −13.2414 −1.31757 −0.658786 0.752331i \(-0.728930\pi\)
−0.658786 + 0.752331i \(0.728930\pi\)
\(102\) 0 0
\(103\) −15.2000 −1.49770 −0.748849 0.662740i \(-0.769393\pi\)
−0.748849 + 0.662740i \(0.769393\pi\)
\(104\) 0 0
\(105\) 4.03401 0.393679
\(106\) 0 0
\(107\) 20.5113 1.98290 0.991449 0.130493i \(-0.0416559\pi\)
0.991449 + 0.130493i \(0.0416559\pi\)
\(108\) 0 0
\(109\) −4.79668 −0.459438 −0.229719 0.973257i \(-0.573781\pi\)
−0.229719 + 0.973257i \(0.573781\pi\)
\(110\) 0 0
\(111\) −17.5557 −1.66631
\(112\) 0 0
\(113\) 6.52271 0.613605 0.306803 0.951773i \(-0.400741\pi\)
0.306803 + 0.951773i \(0.400741\pi\)
\(114\) 0 0
\(115\) 2.67900 0.249818
\(116\) 0 0
\(117\) −2.76978 −0.256066
\(118\) 0 0
\(119\) 3.87047 0.354806
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −8.21069 −0.740333
\(124\) 0 0
\(125\) −11.2536 −1.00656
\(126\) 0 0
\(127\) −13.5342 −1.20096 −0.600482 0.799638i \(-0.705025\pi\)
−0.600482 + 0.799638i \(0.705025\pi\)
\(128\) 0 0
\(129\) −16.4992 −1.45267
\(130\) 0 0
\(131\) −11.8240 −1.03306 −0.516532 0.856268i \(-0.672777\pi\)
−0.516532 + 0.856268i \(0.672777\pi\)
\(132\) 0 0
\(133\) −2.73938 −0.237534
\(134\) 0 0
\(135\) 10.4399 0.898520
\(136\) 0 0
\(137\) −16.7357 −1.42983 −0.714914 0.699212i \(-0.753534\pi\)
−0.714914 + 0.699212i \(0.753534\pi\)
\(138\) 0 0
\(139\) 11.5502 0.979676 0.489838 0.871814i \(-0.337056\pi\)
0.489838 + 0.871814i \(0.337056\pi\)
\(140\) 0 0
\(141\) −2.69705 −0.227132
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −4.62806 −0.384340
\(146\) 0 0
\(147\) 11.2913 0.931295
\(148\) 0 0
\(149\) 15.5034 1.27009 0.635043 0.772476i \(-0.280982\pi\)
0.635043 + 0.772476i \(0.280982\pi\)
\(150\) 0 0
\(151\) −9.59246 −0.780623 −0.390312 0.920683i \(-0.627633\pi\)
−0.390312 + 0.920683i \(0.627633\pi\)
\(152\) 0 0
\(153\) −1.91075 −0.154475
\(154\) 0 0
\(155\) 15.2114 1.22181
\(156\) 0 0
\(157\) 3.20127 0.255489 0.127744 0.991807i \(-0.459226\pi\)
0.127744 + 0.991807i \(0.459226\pi\)
\(158\) 0 0
\(159\) −19.1040 −1.51505
\(160\) 0 0
\(161\) −1.17420 −0.0925399
\(162\) 0 0
\(163\) 23.6441 1.85195 0.925974 0.377587i \(-0.123246\pi\)
0.925974 + 0.377587i \(0.123246\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.84707 −0.607225 −0.303612 0.952796i \(-0.598193\pi\)
−0.303612 + 0.952796i \(0.598193\pi\)
\(168\) 0 0
\(169\) 20.2148 1.55499
\(170\) 0 0
\(171\) 1.35236 0.103417
\(172\) 0 0
\(173\) −1.88641 −0.143421 −0.0717107 0.997425i \(-0.522846\pi\)
−0.0717107 + 0.997425i \(0.522846\pi\)
\(174\) 0 0
\(175\) 0.0649034 0.00490623
\(176\) 0 0
\(177\) 6.58467 0.494934
\(178\) 0 0
\(179\) −3.06573 −0.229144 −0.114572 0.993415i \(-0.536550\pi\)
−0.114572 + 0.993415i \(0.536550\pi\)
\(180\) 0 0
\(181\) −6.72316 −0.499729 −0.249864 0.968281i \(-0.580386\pi\)
−0.249864 + 0.968281i \(0.580386\pi\)
\(182\) 0 0
\(183\) 7.71512 0.570318
\(184\) 0 0
\(185\) 20.9007 1.53665
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −4.57577 −0.332839
\(190\) 0 0
\(191\) −1.80547 −0.130639 −0.0653197 0.997864i \(-0.520807\pi\)
−0.0653197 + 0.997864i \(0.520807\pi\)
\(192\) 0 0
\(193\) −0.810851 −0.0583663 −0.0291832 0.999574i \(-0.509291\pi\)
−0.0291832 + 0.999574i \(0.509291\pi\)
\(194\) 0 0
\(195\) 23.8816 1.71019
\(196\) 0 0
\(197\) −18.6154 −1.32629 −0.663147 0.748489i \(-0.730780\pi\)
−0.663147 + 0.748489i \(0.730780\pi\)
\(198\) 0 0
\(199\) −16.8109 −1.19170 −0.595848 0.803097i \(-0.703184\pi\)
−0.595848 + 0.803097i \(0.703184\pi\)
\(200\) 0 0
\(201\) −22.8719 −1.61326
\(202\) 0 0
\(203\) 2.02847 0.142371
\(204\) 0 0
\(205\) 9.77514 0.682726
\(206\) 0 0
\(207\) 0.579671 0.0402899
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −0.384111 −0.0264433 −0.0132216 0.999913i \(-0.504209\pi\)
−0.0132216 + 0.999913i \(0.504209\pi\)
\(212\) 0 0
\(213\) 17.6212 1.20739
\(214\) 0 0
\(215\) 19.6429 1.33963
\(216\) 0 0
\(217\) −6.66713 −0.452595
\(218\) 0 0
\(219\) 12.3530 0.834739
\(220\) 0 0
\(221\) 22.9134 1.54132
\(222\) 0 0
\(223\) −23.3143 −1.56124 −0.780622 0.625004i \(-0.785098\pi\)
−0.780622 + 0.625004i \(0.785098\pi\)
\(224\) 0 0
\(225\) −0.0320410 −0.00213607
\(226\) 0 0
\(227\) 2.72537 0.180889 0.0904445 0.995901i \(-0.471171\pi\)
0.0904445 + 0.995901i \(0.471171\pi\)
\(228\) 0 0
\(229\) −24.9517 −1.64885 −0.824426 0.565969i \(-0.808502\pi\)
−0.824426 + 0.565969i \(0.808502\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −21.1389 −1.38486 −0.692428 0.721487i \(-0.743459\pi\)
−0.692428 + 0.721487i \(0.743459\pi\)
\(234\) 0 0
\(235\) 3.21094 0.209458
\(236\) 0 0
\(237\) −14.4854 −0.940927
\(238\) 0 0
\(239\) 0.208006 0.0134548 0.00672741 0.999977i \(-0.497859\pi\)
0.00672741 + 0.999977i \(0.497859\pi\)
\(240\) 0 0
\(241\) 1.25123 0.0805990 0.0402995 0.999188i \(-0.487169\pi\)
0.0402995 + 0.999188i \(0.487169\pi\)
\(242\) 0 0
\(243\) 4.94878 0.317465
\(244\) 0 0
\(245\) −13.4428 −0.858828
\(246\) 0 0
\(247\) −16.2173 −1.03188
\(248\) 0 0
\(249\) 32.2004 2.04062
\(250\) 0 0
\(251\) −22.3385 −1.40999 −0.704996 0.709211i \(-0.749051\pi\)
−0.704996 + 0.709211i \(0.749051\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 16.4748 1.03169
\(256\) 0 0
\(257\) 21.6595 1.35108 0.675542 0.737321i \(-0.263909\pi\)
0.675542 + 0.737321i \(0.263909\pi\)
\(258\) 0 0
\(259\) −9.16076 −0.569222
\(260\) 0 0
\(261\) −1.00140 −0.0619852
\(262\) 0 0
\(263\) 11.3447 0.699545 0.349773 0.936835i \(-0.386259\pi\)
0.349773 + 0.936835i \(0.386259\pi\)
\(264\) 0 0
\(265\) 22.7440 1.39716
\(266\) 0 0
\(267\) 0.877654 0.0537116
\(268\) 0 0
\(269\) −14.3791 −0.876708 −0.438354 0.898802i \(-0.644438\pi\)
−0.438354 + 0.898802i \(0.644438\pi\)
\(270\) 0 0
\(271\) −11.0116 −0.668908 −0.334454 0.942412i \(-0.608552\pi\)
−0.334454 + 0.942412i \(0.608552\pi\)
\(272\) 0 0
\(273\) −10.4673 −0.633507
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 5.90241 0.354641 0.177321 0.984153i \(-0.443257\pi\)
0.177321 + 0.984153i \(0.443257\pi\)
\(278\) 0 0
\(279\) 3.29139 0.197050
\(280\) 0 0
\(281\) 13.1988 0.787376 0.393688 0.919244i \(-0.371199\pi\)
0.393688 + 0.919244i \(0.371199\pi\)
\(282\) 0 0
\(283\) −8.74336 −0.519739 −0.259869 0.965644i \(-0.583680\pi\)
−0.259869 + 0.965644i \(0.583680\pi\)
\(284\) 0 0
\(285\) −11.6603 −0.690696
\(286\) 0 0
\(287\) −4.28443 −0.252902
\(288\) 0 0
\(289\) −1.19303 −0.0701783
\(290\) 0 0
\(291\) 16.9031 0.990879
\(292\) 0 0
\(293\) 1.51630 0.0885830 0.0442915 0.999019i \(-0.485897\pi\)
0.0442915 + 0.999019i \(0.485897\pi\)
\(294\) 0 0
\(295\) −7.83930 −0.456422
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.95133 −0.402006
\(300\) 0 0
\(301\) −8.60944 −0.496240
\(302\) 0 0
\(303\) 24.7037 1.41919
\(304\) 0 0
\(305\) −9.18514 −0.525940
\(306\) 0 0
\(307\) −5.53572 −0.315940 −0.157970 0.987444i \(-0.550495\pi\)
−0.157970 + 0.987444i \(0.550495\pi\)
\(308\) 0 0
\(309\) 28.3576 1.61321
\(310\) 0 0
\(311\) 9.16048 0.519443 0.259722 0.965684i \(-0.416369\pi\)
0.259722 + 0.965684i \(0.416369\pi\)
\(312\) 0 0
\(313\) 16.2744 0.919882 0.459941 0.887949i \(-0.347871\pi\)
0.459941 + 0.887949i \(0.347871\pi\)
\(314\) 0 0
\(315\) −1.03918 −0.0585510
\(316\) 0 0
\(317\) 3.54644 0.199188 0.0995938 0.995028i \(-0.468246\pi\)
0.0995938 + 0.995028i \(0.468246\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −38.2665 −2.13583
\(322\) 0 0
\(323\) −11.1876 −0.622494
\(324\) 0 0
\(325\) 0.384232 0.0213133
\(326\) 0 0
\(327\) 8.94885 0.494873
\(328\) 0 0
\(329\) −1.40735 −0.0775896
\(330\) 0 0
\(331\) 16.2332 0.892257 0.446128 0.894969i \(-0.352802\pi\)
0.446128 + 0.894969i \(0.352802\pi\)
\(332\) 0 0
\(333\) 4.52242 0.247827
\(334\) 0 0
\(335\) 27.2299 1.48773
\(336\) 0 0
\(337\) −8.46084 −0.460892 −0.230446 0.973085i \(-0.574018\pi\)
−0.230446 + 0.973085i \(0.574018\pi\)
\(338\) 0 0
\(339\) −12.1690 −0.660929
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 12.7065 0.686087
\(344\) 0 0
\(345\) −4.99803 −0.269085
\(346\) 0 0
\(347\) −5.39095 −0.289401 −0.144701 0.989475i \(-0.546222\pi\)
−0.144701 + 0.989475i \(0.546222\pi\)
\(348\) 0 0
\(349\) −12.9250 −0.691859 −0.345929 0.938261i \(-0.612436\pi\)
−0.345929 + 0.938261i \(0.612436\pi\)
\(350\) 0 0
\(351\) −27.0889 −1.44590
\(352\) 0 0
\(353\) 34.5770 1.84035 0.920173 0.391511i \(-0.128047\pi\)
0.920173 + 0.391511i \(0.128047\pi\)
\(354\) 0 0
\(355\) −20.9787 −1.11343
\(356\) 0 0
\(357\) −7.22089 −0.382170
\(358\) 0 0
\(359\) −23.1986 −1.22437 −0.612187 0.790713i \(-0.709710\pi\)
−0.612187 + 0.790713i \(0.709710\pi\)
\(360\) 0 0
\(361\) −11.0818 −0.583254
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −14.7067 −0.769785
\(366\) 0 0
\(367\) −15.4707 −0.807566 −0.403783 0.914855i \(-0.632305\pi\)
−0.403783 + 0.914855i \(0.632305\pi\)
\(368\) 0 0
\(369\) 2.11511 0.110108
\(370\) 0 0
\(371\) −9.96868 −0.517548
\(372\) 0 0
\(373\) −30.5787 −1.58331 −0.791653 0.610970i \(-0.790779\pi\)
−0.791653 + 0.610970i \(0.790779\pi\)
\(374\) 0 0
\(375\) 20.9952 1.08419
\(376\) 0 0
\(377\) 12.0087 0.618478
\(378\) 0 0
\(379\) −2.71862 −0.139646 −0.0698230 0.997559i \(-0.522243\pi\)
−0.0698230 + 0.997559i \(0.522243\pi\)
\(380\) 0 0
\(381\) 25.2498 1.29359
\(382\) 0 0
\(383\) 18.4024 0.940319 0.470159 0.882582i \(-0.344196\pi\)
0.470159 + 0.882582i \(0.344196\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.25025 0.216052
\(388\) 0 0
\(389\) −0.636434 −0.0322685 −0.0161342 0.999870i \(-0.505136\pi\)
−0.0161342 + 0.999870i \(0.505136\pi\)
\(390\) 0 0
\(391\) −4.79542 −0.242515
\(392\) 0 0
\(393\) 22.0592 1.11274
\(394\) 0 0
\(395\) 17.2454 0.867711
\(396\) 0 0
\(397\) 19.6411 0.985760 0.492880 0.870097i \(-0.335944\pi\)
0.492880 + 0.870097i \(0.335944\pi\)
\(398\) 0 0
\(399\) 5.11068 0.255854
\(400\) 0 0
\(401\) −5.75683 −0.287482 −0.143741 0.989615i \(-0.545913\pi\)
−0.143741 + 0.989615i \(0.545913\pi\)
\(402\) 0 0
\(403\) −39.4698 −1.96613
\(404\) 0 0
\(405\) −22.6793 −1.12695
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 23.1324 1.14382 0.571912 0.820315i \(-0.306202\pi\)
0.571912 + 0.820315i \(0.306202\pi\)
\(410\) 0 0
\(411\) 31.2227 1.54010
\(412\) 0 0
\(413\) 3.43595 0.169072
\(414\) 0 0
\(415\) −38.3358 −1.88183
\(416\) 0 0
\(417\) −21.5485 −1.05523
\(418\) 0 0
\(419\) −20.6359 −1.00813 −0.504065 0.863666i \(-0.668163\pi\)
−0.504065 + 0.863666i \(0.668163\pi\)
\(420\) 0 0
\(421\) −30.1427 −1.46906 −0.734532 0.678574i \(-0.762598\pi\)
−0.734532 + 0.678574i \(0.762598\pi\)
\(422\) 0 0
\(423\) 0.694770 0.0337809
\(424\) 0 0
\(425\) 0.265065 0.0128575
\(426\) 0 0
\(427\) 4.02583 0.194824
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −32.6765 −1.57397 −0.786985 0.616972i \(-0.788359\pi\)
−0.786985 + 0.616972i \(0.788359\pi\)
\(432\) 0 0
\(433\) 28.0266 1.34687 0.673436 0.739245i \(-0.264818\pi\)
0.673436 + 0.739245i \(0.264818\pi\)
\(434\) 0 0
\(435\) 8.63428 0.413982
\(436\) 0 0
\(437\) 3.39402 0.162358
\(438\) 0 0
\(439\) 19.4940 0.930399 0.465200 0.885206i \(-0.345983\pi\)
0.465200 + 0.885206i \(0.345983\pi\)
\(440\) 0 0
\(441\) −2.90870 −0.138509
\(442\) 0 0
\(443\) 8.91652 0.423637 0.211818 0.977309i \(-0.432061\pi\)
0.211818 + 0.977309i \(0.432061\pi\)
\(444\) 0 0
\(445\) −1.04488 −0.0495321
\(446\) 0 0
\(447\) −28.9237 −1.36804
\(448\) 0 0
\(449\) 0.730919 0.0344942 0.0172471 0.999851i \(-0.494510\pi\)
0.0172471 + 0.999851i \(0.494510\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 17.8960 0.840829
\(454\) 0 0
\(455\) 12.4617 0.584212
\(456\) 0 0
\(457\) 1.63396 0.0764332 0.0382166 0.999269i \(-0.487832\pi\)
0.0382166 + 0.999269i \(0.487832\pi\)
\(458\) 0 0
\(459\) −18.6874 −0.872253
\(460\) 0 0
\(461\) 2.38755 0.111199 0.0555996 0.998453i \(-0.482293\pi\)
0.0555996 + 0.998453i \(0.482293\pi\)
\(462\) 0 0
\(463\) 16.3739 0.760961 0.380480 0.924789i \(-0.375759\pi\)
0.380480 + 0.924789i \(0.375759\pi\)
\(464\) 0 0
\(465\) −28.3789 −1.31604
\(466\) 0 0
\(467\) 22.0348 1.01965 0.509825 0.860278i \(-0.329710\pi\)
0.509825 + 0.860278i \(0.329710\pi\)
\(468\) 0 0
\(469\) −11.9348 −0.551098
\(470\) 0 0
\(471\) −5.97240 −0.275194
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −0.187603 −0.00860781
\(476\) 0 0
\(477\) 4.92127 0.225329
\(478\) 0 0
\(479\) −24.6894 −1.12809 −0.564044 0.825745i \(-0.690755\pi\)
−0.564044 + 0.825745i \(0.690755\pi\)
\(480\) 0 0
\(481\) −54.2323 −2.47278
\(482\) 0 0
\(483\) 2.19063 0.0996771
\(484\) 0 0
\(485\) −20.1238 −0.913776
\(486\) 0 0
\(487\) 19.5180 0.884446 0.442223 0.896905i \(-0.354190\pi\)
0.442223 + 0.896905i \(0.354190\pi\)
\(488\) 0 0
\(489\) −44.1113 −1.99478
\(490\) 0 0
\(491\) 14.7670 0.666425 0.333213 0.942852i \(-0.391867\pi\)
0.333213 + 0.942852i \(0.391867\pi\)
\(492\) 0 0
\(493\) 8.28426 0.373104
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.19494 0.412449
\(498\) 0 0
\(499\) −17.7602 −0.795054 −0.397527 0.917590i \(-0.630131\pi\)
−0.397527 + 0.917590i \(0.630131\pi\)
\(500\) 0 0
\(501\) 14.6398 0.654057
\(502\) 0 0
\(503\) −16.4173 −0.732013 −0.366007 0.930612i \(-0.619275\pi\)
−0.366007 + 0.930612i \(0.619275\pi\)
\(504\) 0 0
\(505\) −29.4107 −1.30876
\(506\) 0 0
\(507\) −37.7135 −1.67491
\(508\) 0 0
\(509\) 13.4609 0.596645 0.298322 0.954465i \(-0.403573\pi\)
0.298322 + 0.954465i \(0.403573\pi\)
\(510\) 0 0
\(511\) 6.44593 0.285151
\(512\) 0 0
\(513\) 13.2263 0.583954
\(514\) 0 0
\(515\) −33.7608 −1.48768
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 3.51936 0.154483
\(520\) 0 0
\(521\) −36.4464 −1.59675 −0.798373 0.602163i \(-0.794306\pi\)
−0.798373 + 0.602163i \(0.794306\pi\)
\(522\) 0 0
\(523\) 11.3383 0.495788 0.247894 0.968787i \(-0.420261\pi\)
0.247894 + 0.968787i \(0.420261\pi\)
\(524\) 0 0
\(525\) −0.121086 −0.00528463
\(526\) 0 0
\(527\) −27.2285 −1.18609
\(528\) 0 0
\(529\) −21.5452 −0.936748
\(530\) 0 0
\(531\) −1.69624 −0.0736104
\(532\) 0 0
\(533\) −25.3641 −1.09864
\(534\) 0 0
\(535\) 45.5578 1.96963
\(536\) 0 0
\(537\) 5.71954 0.246816
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −40.8576 −1.75660 −0.878302 0.478106i \(-0.841323\pi\)
−0.878302 + 0.478106i \(0.841323\pi\)
\(542\) 0 0
\(543\) 12.5430 0.538270
\(544\) 0 0
\(545\) −10.6539 −0.456365
\(546\) 0 0
\(547\) −32.7961 −1.40226 −0.701129 0.713034i \(-0.747320\pi\)
−0.701129 + 0.713034i \(0.747320\pi\)
\(548\) 0 0
\(549\) −1.98744 −0.0848221
\(550\) 0 0
\(551\) −5.86329 −0.249785
\(552\) 0 0
\(553\) −7.55864 −0.321426
\(554\) 0 0
\(555\) −38.9932 −1.65517
\(556\) 0 0
\(557\) 7.50056 0.317809 0.158904 0.987294i \(-0.449204\pi\)
0.158904 + 0.987294i \(0.449204\pi\)
\(558\) 0 0
\(559\) −50.9684 −2.15573
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 11.7203 0.493951 0.246976 0.969022i \(-0.420563\pi\)
0.246976 + 0.969022i \(0.420563\pi\)
\(564\) 0 0
\(565\) 14.4877 0.609501
\(566\) 0 0
\(567\) 9.94032 0.417454
\(568\) 0 0
\(569\) 7.42622 0.311323 0.155662 0.987810i \(-0.450249\pi\)
0.155662 + 0.987810i \(0.450249\pi\)
\(570\) 0 0
\(571\) −37.7892 −1.58143 −0.790714 0.612185i \(-0.790291\pi\)
−0.790714 + 0.612185i \(0.790291\pi\)
\(572\) 0 0
\(573\) 3.36835 0.140715
\(574\) 0 0
\(575\) −0.0804136 −0.00335348
\(576\) 0 0
\(577\) −21.4699 −0.893802 −0.446901 0.894583i \(-0.647472\pi\)
−0.446901 + 0.894583i \(0.647472\pi\)
\(578\) 0 0
\(579\) 1.51275 0.0628678
\(580\) 0 0
\(581\) 16.8025 0.697086
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −6.15199 −0.254353
\(586\) 0 0
\(587\) 1.97188 0.0813883 0.0406941 0.999172i \(-0.487043\pi\)
0.0406941 + 0.999172i \(0.487043\pi\)
\(588\) 0 0
\(589\) 19.2713 0.794061
\(590\) 0 0
\(591\) 34.7296 1.42858
\(592\) 0 0
\(593\) 7.57118 0.310911 0.155456 0.987843i \(-0.450315\pi\)
0.155456 + 0.987843i \(0.450315\pi\)
\(594\) 0 0
\(595\) 8.59675 0.352432
\(596\) 0 0
\(597\) 31.3631 1.28361
\(598\) 0 0
\(599\) 10.2478 0.418714 0.209357 0.977839i \(-0.432863\pi\)
0.209357 + 0.977839i \(0.432863\pi\)
\(600\) 0 0
\(601\) 3.45161 0.140794 0.0703970 0.997519i \(-0.477573\pi\)
0.0703970 + 0.997519i \(0.477573\pi\)
\(602\) 0 0
\(603\) 5.89189 0.239936
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −3.14665 −0.127719 −0.0638593 0.997959i \(-0.520341\pi\)
−0.0638593 + 0.997959i \(0.520341\pi\)
\(608\) 0 0
\(609\) −3.78439 −0.153351
\(610\) 0 0
\(611\) −8.33158 −0.337060
\(612\) 0 0
\(613\) −45.8250 −1.85086 −0.925428 0.378923i \(-0.876294\pi\)
−0.925428 + 0.378923i \(0.876294\pi\)
\(614\) 0 0
\(615\) −18.2369 −0.735381
\(616\) 0 0
\(617\) 6.41440 0.258234 0.129117 0.991629i \(-0.458786\pi\)
0.129117 + 0.991629i \(0.458786\pi\)
\(618\) 0 0
\(619\) 29.7618 1.19623 0.598115 0.801411i \(-0.295917\pi\)
0.598115 + 0.801411i \(0.295917\pi\)
\(620\) 0 0
\(621\) 5.66927 0.227500
\(622\) 0 0
\(623\) 0.457969 0.0183482
\(624\) 0 0
\(625\) −24.6622 −0.986488
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −37.4124 −1.49173
\(630\) 0 0
\(631\) 48.7020 1.93879 0.969397 0.245498i \(-0.0789514\pi\)
0.969397 + 0.245498i \(0.0789514\pi\)
\(632\) 0 0
\(633\) 0.716611 0.0284827
\(634\) 0 0
\(635\) −30.0609 −1.19293
\(636\) 0 0
\(637\) 34.8807 1.38202
\(638\) 0 0
\(639\) −4.53929 −0.179572
\(640\) 0 0
\(641\) 16.8534 0.665669 0.332835 0.942985i \(-0.391995\pi\)
0.332835 + 0.942985i \(0.391995\pi\)
\(642\) 0 0
\(643\) 6.56513 0.258903 0.129452 0.991586i \(-0.458678\pi\)
0.129452 + 0.991586i \(0.458678\pi\)
\(644\) 0 0
\(645\) −36.6465 −1.44295
\(646\) 0 0
\(647\) 3.53053 0.138800 0.0693998 0.997589i \(-0.477892\pi\)
0.0693998 + 0.997589i \(0.477892\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 12.4384 0.487501
\(652\) 0 0
\(653\) 6.13537 0.240096 0.120048 0.992768i \(-0.461695\pi\)
0.120048 + 0.992768i \(0.461695\pi\)
\(654\) 0 0
\(655\) −26.2623 −1.02615
\(656\) 0 0
\(657\) −3.18218 −0.124149
\(658\) 0 0
\(659\) −27.9511 −1.08882 −0.544410 0.838819i \(-0.683246\pi\)
−0.544410 + 0.838819i \(0.683246\pi\)
\(660\) 0 0
\(661\) −11.5665 −0.449886 −0.224943 0.974372i \(-0.572220\pi\)
−0.224943 + 0.974372i \(0.572220\pi\)
\(662\) 0 0
\(663\) −42.7481 −1.66020
\(664\) 0 0
\(665\) −6.08446 −0.235945
\(666\) 0 0
\(667\) −2.51323 −0.0973125
\(668\) 0 0
\(669\) 43.4961 1.68165
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −14.1644 −0.545999 −0.273000 0.962014i \(-0.588016\pi\)
−0.273000 + 0.962014i \(0.588016\pi\)
\(674\) 0 0
\(675\) −0.313366 −0.0120615
\(676\) 0 0
\(677\) −25.3891 −0.975784 −0.487892 0.872904i \(-0.662234\pi\)
−0.487892 + 0.872904i \(0.662234\pi\)
\(678\) 0 0
\(679\) 8.82024 0.338490
\(680\) 0 0
\(681\) −5.08454 −0.194840
\(682\) 0 0
\(683\) −14.6841 −0.561870 −0.280935 0.959727i \(-0.590645\pi\)
−0.280935 + 0.959727i \(0.590645\pi\)
\(684\) 0 0
\(685\) −37.1719 −1.42026
\(686\) 0 0
\(687\) 46.5507 1.77602
\(688\) 0 0
\(689\) −59.0152 −2.24830
\(690\) 0 0
\(691\) 31.8808 1.21280 0.606401 0.795159i \(-0.292613\pi\)
0.606401 + 0.795159i \(0.292613\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 25.6543 0.973122
\(696\) 0 0
\(697\) −17.4976 −0.662767
\(698\) 0 0
\(699\) 39.4375 1.49166
\(700\) 0 0
\(701\) 16.7002 0.630759 0.315380 0.948966i \(-0.397868\pi\)
0.315380 + 0.948966i \(0.397868\pi\)
\(702\) 0 0
\(703\) 26.4791 0.998680
\(704\) 0 0
\(705\) −5.99044 −0.225613
\(706\) 0 0
\(707\) 12.8907 0.484803
\(708\) 0 0
\(709\) 26.6741 1.00177 0.500884 0.865514i \(-0.333008\pi\)
0.500884 + 0.865514i \(0.333008\pi\)
\(710\) 0 0
\(711\) 3.73149 0.139942
\(712\) 0 0
\(713\) 8.26041 0.309355
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −0.388064 −0.0144925
\(718\) 0 0
\(719\) 19.6224 0.731791 0.365896 0.930656i \(-0.380763\pi\)
0.365896 + 0.930656i \(0.380763\pi\)
\(720\) 0 0
\(721\) 14.7973 0.551081
\(722\) 0 0
\(723\) −2.33434 −0.0868152
\(724\) 0 0
\(725\) 0.138917 0.00515926
\(726\) 0 0
\(727\) −23.9815 −0.889424 −0.444712 0.895674i \(-0.646694\pi\)
−0.444712 + 0.895674i \(0.646694\pi\)
\(728\) 0 0
\(729\) 21.3998 0.792586
\(730\) 0 0
\(731\) −35.1609 −1.30047
\(732\) 0 0
\(733\) 15.3420 0.566669 0.283334 0.959021i \(-0.408559\pi\)
0.283334 + 0.959021i \(0.408559\pi\)
\(734\) 0 0
\(735\) 25.0793 0.925065
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −3.19534 −0.117542 −0.0587712 0.998271i \(-0.518718\pi\)
−0.0587712 + 0.998271i \(0.518718\pi\)
\(740\) 0 0
\(741\) 30.2555 1.11147
\(742\) 0 0
\(743\) −30.9590 −1.13578 −0.567888 0.823106i \(-0.692239\pi\)
−0.567888 + 0.823106i \(0.692239\pi\)
\(744\) 0 0
\(745\) 34.4347 1.26159
\(746\) 0 0
\(747\) −8.29495 −0.303496
\(748\) 0 0
\(749\) −19.9679 −0.729611
\(750\) 0 0
\(751\) −17.9709 −0.655769 −0.327884 0.944718i \(-0.606336\pi\)
−0.327884 + 0.944718i \(0.606336\pi\)
\(752\) 0 0
\(753\) 41.6755 1.51874
\(754\) 0 0
\(755\) −21.3059 −0.775402
\(756\) 0 0
\(757\) −14.6884 −0.533858 −0.266929 0.963716i \(-0.586009\pi\)
−0.266929 + 0.963716i \(0.586009\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −13.2646 −0.480841 −0.240420 0.970669i \(-0.577285\pi\)
−0.240420 + 0.970669i \(0.577285\pi\)
\(762\) 0 0
\(763\) 4.66961 0.169051
\(764\) 0 0
\(765\) −4.24398 −0.153442
\(766\) 0 0
\(767\) 20.3410 0.734472
\(768\) 0 0
\(769\) −30.0680 −1.08428 −0.542139 0.840289i \(-0.682385\pi\)
−0.542139 + 0.840289i \(0.682385\pi\)
\(770\) 0 0
\(771\) −40.4088 −1.45529
\(772\) 0 0
\(773\) −10.5402 −0.379104 −0.189552 0.981871i \(-0.560703\pi\)
−0.189552 + 0.981871i \(0.560703\pi\)
\(774\) 0 0
\(775\) −0.456590 −0.0164012
\(776\) 0 0
\(777\) 17.0906 0.613123
\(778\) 0 0
\(779\) 12.3841 0.443707
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −9.79386 −0.350004
\(784\) 0 0
\(785\) 7.11037 0.253780
\(786\) 0 0
\(787\) 37.5551 1.33870 0.669348 0.742949i \(-0.266573\pi\)
0.669348 + 0.742949i \(0.266573\pi\)
\(788\) 0 0
\(789\) −21.1651 −0.753498
\(790\) 0 0
\(791\) −6.34992 −0.225777
\(792\) 0 0
\(793\) 23.8332 0.846340
\(794\) 0 0
\(795\) −42.4321 −1.50491
\(796\) 0 0
\(797\) −15.7550 −0.558072 −0.279036 0.960281i \(-0.590015\pi\)
−0.279036 + 0.960281i \(0.590015\pi\)
\(798\) 0 0
\(799\) −5.74759 −0.203335
\(800\) 0 0
\(801\) −0.226087 −0.00798840
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −2.60803 −0.0919209
\(806\) 0 0
\(807\) 26.8261 0.944325
\(808\) 0 0
\(809\) −35.5605 −1.25024 −0.625120 0.780529i \(-0.714950\pi\)
−0.625120 + 0.780529i \(0.714950\pi\)
\(810\) 0 0
\(811\) 7.79005 0.273546 0.136773 0.990602i \(-0.456327\pi\)
0.136773 + 0.990602i \(0.456327\pi\)
\(812\) 0 0
\(813\) 20.5436 0.720497
\(814\) 0 0
\(815\) 52.5161 1.83956
\(816\) 0 0
\(817\) 24.8856 0.870635
\(818\) 0 0
\(819\) 2.69641 0.0942200
\(820\) 0 0
\(821\) 6.03130 0.210494 0.105247 0.994446i \(-0.466437\pi\)
0.105247 + 0.994446i \(0.466437\pi\)
\(822\) 0 0
\(823\) −50.0562 −1.74485 −0.872425 0.488749i \(-0.837454\pi\)
−0.872425 + 0.488749i \(0.837454\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28.3258 0.984985 0.492492 0.870317i \(-0.336086\pi\)
0.492492 + 0.870317i \(0.336086\pi\)
\(828\) 0 0
\(829\) 5.42617 0.188459 0.0942293 0.995551i \(-0.469961\pi\)
0.0942293 + 0.995551i \(0.469961\pi\)
\(830\) 0 0
\(831\) −11.0117 −0.381993
\(832\) 0 0
\(833\) 24.0626 0.833721
\(834\) 0 0
\(835\) −17.4292 −0.603163
\(836\) 0 0
\(837\) 32.1902 1.11266
\(838\) 0 0
\(839\) 40.4123 1.39519 0.697594 0.716493i \(-0.254254\pi\)
0.697594 + 0.716493i \(0.254254\pi\)
\(840\) 0 0
\(841\) −24.6583 −0.850287
\(842\) 0 0
\(843\) −24.6242 −0.848102
\(844\) 0 0
\(845\) 44.8993 1.54458
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 16.3119 0.559824
\(850\) 0 0
\(851\) 11.3499 0.389071
\(852\) 0 0
\(853\) 24.0406 0.823133 0.411566 0.911380i \(-0.364982\pi\)
0.411566 + 0.911380i \(0.364982\pi\)
\(854\) 0 0
\(855\) 3.00374 0.102726
\(856\) 0 0
\(857\) 42.9442 1.46695 0.733474 0.679718i \(-0.237898\pi\)
0.733474 + 0.679718i \(0.237898\pi\)
\(858\) 0 0
\(859\) −12.9486 −0.441800 −0.220900 0.975296i \(-0.570899\pi\)
−0.220900 + 0.975296i \(0.570899\pi\)
\(860\) 0 0
\(861\) 7.99318 0.272407
\(862\) 0 0
\(863\) 11.7658 0.400513 0.200256 0.979744i \(-0.435822\pi\)
0.200256 + 0.979744i \(0.435822\pi\)
\(864\) 0 0
\(865\) −4.18993 −0.142462
\(866\) 0 0
\(867\) 2.22576 0.0755909
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −70.6547 −2.39404
\(872\) 0 0
\(873\) −4.35431 −0.147371
\(874\) 0 0
\(875\) 10.9555 0.370364
\(876\) 0 0
\(877\) 41.4239 1.39879 0.699393 0.714738i \(-0.253454\pi\)
0.699393 + 0.714738i \(0.253454\pi\)
\(878\) 0 0
\(879\) −2.82886 −0.0954150
\(880\) 0 0
\(881\) −44.7091 −1.50629 −0.753143 0.657857i \(-0.771463\pi\)
−0.753143 + 0.657857i \(0.771463\pi\)
\(882\) 0 0
\(883\) 21.9335 0.738119 0.369060 0.929406i \(-0.379680\pi\)
0.369060 + 0.929406i \(0.379680\pi\)
\(884\) 0 0
\(885\) 14.6253 0.491623
\(886\) 0 0
\(887\) 17.4780 0.586855 0.293427 0.955981i \(-0.405204\pi\)
0.293427 + 0.955981i \(0.405204\pi\)
\(888\) 0 0
\(889\) 13.1756 0.441897
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.06793 0.136128
\(894\) 0 0
\(895\) −6.80933 −0.227611
\(896\) 0 0
\(897\) 12.9687 0.433011
\(898\) 0 0
\(899\) −14.2702 −0.475936
\(900\) 0 0
\(901\) −40.7119 −1.35631
\(902\) 0 0
\(903\) 16.0621 0.534513
\(904\) 0 0
\(905\) −14.9329 −0.496386
\(906\) 0 0
\(907\) −16.4521 −0.546282 −0.273141 0.961974i \(-0.588063\pi\)
−0.273141 + 0.961974i \(0.588063\pi\)
\(908\) 0 0
\(909\) −6.36377 −0.211073
\(910\) 0 0
\(911\) −15.1884 −0.503214 −0.251607 0.967829i \(-0.580959\pi\)
−0.251607 + 0.967829i \(0.580959\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 17.1361 0.566503
\(916\) 0 0
\(917\) 11.5107 0.380118
\(918\) 0 0
\(919\) −41.8476 −1.38042 −0.690212 0.723607i \(-0.742483\pi\)
−0.690212 + 0.723607i \(0.742483\pi\)
\(920\) 0 0
\(921\) 10.3276 0.340307
\(922\) 0 0
\(923\) 54.4346 1.79174
\(924\) 0 0
\(925\) −0.627363 −0.0206276
\(926\) 0 0
\(927\) −7.30504 −0.239929
\(928\) 0 0
\(929\) 0.313961 0.0103007 0.00515037 0.999987i \(-0.498361\pi\)
0.00515037 + 0.999987i \(0.498361\pi\)
\(930\) 0 0
\(931\) −17.0307 −0.558157
\(932\) 0 0
\(933\) −17.0901 −0.559505
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −10.5890 −0.345927 −0.172963 0.984928i \(-0.555334\pi\)
−0.172963 + 0.984928i \(0.555334\pi\)
\(938\) 0 0
\(939\) −30.3620 −0.990828
\(940\) 0 0
\(941\) −58.8538 −1.91858 −0.959290 0.282422i \(-0.908862\pi\)
−0.959290 + 0.282422i \(0.908862\pi\)
\(942\) 0 0
\(943\) 5.30830 0.172862
\(944\) 0 0
\(945\) −10.1633 −0.330612
\(946\) 0 0
\(947\) −15.0139 −0.487887 −0.243943 0.969789i \(-0.578441\pi\)
−0.243943 + 0.969789i \(0.578441\pi\)
\(948\) 0 0
\(949\) 38.1603 1.23874
\(950\) 0 0
\(951\) −6.61635 −0.214550
\(952\) 0 0
\(953\) 10.7187 0.347213 0.173607 0.984815i \(-0.444458\pi\)
0.173607 + 0.984815i \(0.444458\pi\)
\(954\) 0 0
\(955\) −4.01015 −0.129765
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 16.2924 0.526108
\(960\) 0 0
\(961\) 15.9028 0.512993
\(962\) 0 0
\(963\) 9.85761 0.317657
\(964\) 0 0
\(965\) −1.80099 −0.0579759
\(966\) 0 0
\(967\) 43.1296 1.38695 0.693477 0.720479i \(-0.256078\pi\)
0.693477 + 0.720479i \(0.256078\pi\)
\(968\) 0 0
\(969\) 20.8720 0.670504
\(970\) 0 0
\(971\) 16.5561 0.531310 0.265655 0.964068i \(-0.414412\pi\)
0.265655 + 0.964068i \(0.414412\pi\)
\(972\) 0 0
\(973\) −11.2442 −0.360473
\(974\) 0 0
\(975\) −0.716836 −0.0229571
\(976\) 0 0
\(977\) 1.56159 0.0499597 0.0249799 0.999688i \(-0.492048\pi\)
0.0249799 + 0.999688i \(0.492048\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −2.30526 −0.0736013
\(982\) 0 0
\(983\) −48.6006 −1.55012 −0.775059 0.631889i \(-0.782280\pi\)
−0.775059 + 0.631889i \(0.782280\pi\)
\(984\) 0 0
\(985\) −41.3469 −1.31742
\(986\) 0 0
\(987\) 2.62560 0.0835737
\(988\) 0 0
\(989\) 10.6669 0.339187
\(990\) 0 0
\(991\) 13.0806 0.415518 0.207759 0.978180i \(-0.433383\pi\)
0.207759 + 0.978180i \(0.433383\pi\)
\(992\) 0 0
\(993\) −30.2852 −0.961072
\(994\) 0 0
\(995\) −37.3389 −1.18372
\(996\) 0 0
\(997\) −30.5715 −0.968211 −0.484105 0.875010i \(-0.660855\pi\)
−0.484105 + 0.875010i \(0.660855\pi\)
\(998\) 0 0
\(999\) 44.2299 1.39937
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7744.2.a.dv.1.1 6
4.3 odd 2 7744.2.a.du.1.6 6
8.3 odd 2 3872.2.a.bq.1.1 6
8.5 even 2 3872.2.a.bn.1.6 6
11.3 even 5 704.2.m.n.449.3 12
11.4 even 5 704.2.m.n.577.3 12
11.10 odd 2 7744.2.a.dw.1.1 6
44.3 odd 10 704.2.m.m.449.1 12
44.15 odd 10 704.2.m.m.577.1 12
44.43 even 2 7744.2.a.dt.1.6 6
88.3 odd 10 352.2.m.e.97.3 12
88.21 odd 2 3872.2.a.bo.1.6 6
88.37 even 10 352.2.m.f.225.1 yes 12
88.43 even 2 3872.2.a.bp.1.1 6
88.59 odd 10 352.2.m.e.225.3 yes 12
88.69 even 10 352.2.m.f.97.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.2.m.e.97.3 12 88.3 odd 10
352.2.m.e.225.3 yes 12 88.59 odd 10
352.2.m.f.97.1 yes 12 88.69 even 10
352.2.m.f.225.1 yes 12 88.37 even 10
704.2.m.m.449.1 12 44.3 odd 10
704.2.m.m.577.1 12 44.15 odd 10
704.2.m.n.449.3 12 11.3 even 5
704.2.m.n.577.3 12 11.4 even 5
3872.2.a.bn.1.6 6 8.5 even 2
3872.2.a.bo.1.6 6 88.21 odd 2
3872.2.a.bp.1.1 6 88.43 even 2
3872.2.a.bq.1.1 6 8.3 odd 2
7744.2.a.dt.1.6 6 44.43 even 2
7744.2.a.du.1.6 6 4.3 odd 2
7744.2.a.dv.1.1 6 1.1 even 1 trivial
7744.2.a.dw.1.1 6 11.10 odd 2