Properties

Label 357.2.k.b.64.7
Level $357$
Weight $2$
Character 357.64
Analytic conductor $2.851$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [357,2,Mod(64,357)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(357, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("357.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 357 = 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 357.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.85065935216\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 32 x^{18} + 426 x^{16} + 3072 x^{14} + 13121 x^{12} + 34148 x^{10} + 53608 x^{8} + 48276 x^{6} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 64.7
Root \(0.661473i\) of defining polynomial
Character \(\chi\) \(=\) 357.64
Dual form 357.2.k.b.106.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.661473i q^{2} +(-0.707107 - 0.707107i) q^{3} +1.56245 q^{4} +(-1.66372 - 1.66372i) q^{5} +(0.467732 - 0.467732i) q^{6} +(-0.707107 + 0.707107i) q^{7} +2.35647i q^{8} +1.00000i q^{9} +O(q^{10})\) \(q+0.661473i q^{2} +(-0.707107 - 0.707107i) q^{3} +1.56245 q^{4} +(-1.66372 - 1.66372i) q^{5} +(0.467732 - 0.467732i) q^{6} +(-0.707107 + 0.707107i) q^{7} +2.35647i q^{8} +1.00000i q^{9} +(1.10050 - 1.10050i) q^{10} +(3.71291 - 3.71291i) q^{11} +(-1.10482 - 1.10482i) q^{12} +4.49854 q^{13} +(-0.467732 - 0.467732i) q^{14} +2.35286i q^{15} +1.56617 q^{16} +(-0.686963 - 4.06547i) q^{17} -0.661473 q^{18} -3.58834i q^{19} +(-2.59949 - 2.59949i) q^{20} +1.00000 q^{21} +(2.45599 + 2.45599i) q^{22} +(0.426792 - 0.426792i) q^{23} +(1.66627 - 1.66627i) q^{24} +0.535927i q^{25} +2.97566i q^{26} +(0.707107 - 0.707107i) q^{27} +(-1.10482 + 1.10482i) q^{28} +(-4.07014 - 4.07014i) q^{29} -1.55635 q^{30} +(-0.141237 - 0.141237i) q^{31} +5.74891i q^{32} -5.25085 q^{33} +(2.68920 - 0.454407i) q^{34} +2.35286 q^{35} +1.56245i q^{36} +(5.41429 + 5.41429i) q^{37} +2.37359 q^{38} +(-3.18095 - 3.18095i) q^{39} +(3.92050 - 3.92050i) q^{40} +(-4.30993 + 4.30993i) q^{41} +0.661473i q^{42} +9.93667i q^{43} +(5.80125 - 5.80125i) q^{44} +(1.66372 - 1.66372i) q^{45} +(0.282311 + 0.282311i) q^{46} +6.16149 q^{47} +(-1.10745 - 1.10745i) q^{48} -1.00000i q^{49} -0.354501 q^{50} +(-2.38897 + 3.36048i) q^{51} +7.02876 q^{52} +9.47974i q^{53} +(0.467732 + 0.467732i) q^{54} -12.3545 q^{55} +(-1.66627 - 1.66627i) q^{56} +(-2.53734 + 2.53734i) q^{57} +(2.69228 - 2.69228i) q^{58} -1.92313i q^{59} +3.67623i q^{60} +(-7.45587 + 7.45587i) q^{61} +(0.0934241 - 0.0934241i) q^{62} +(-0.707107 - 0.707107i) q^{63} -0.670404 q^{64} +(-7.48431 - 7.48431i) q^{65} -3.47329i q^{66} -7.47259 q^{67} +(-1.07335 - 6.35212i) q^{68} -0.603575 q^{69} +1.55635i q^{70} +(-1.09194 - 1.09194i) q^{71} -2.35647 q^{72} +(-6.99329 - 6.99329i) q^{73} +(-3.58140 + 3.58140i) q^{74} +(0.378957 - 0.378957i) q^{75} -5.60662i q^{76} +5.25085i q^{77} +(2.10411 - 2.10411i) q^{78} +(7.40415 - 7.40415i) q^{79} +(-2.60567 - 2.60567i) q^{80} -1.00000 q^{81} +(-2.85090 - 2.85090i) q^{82} +8.09294i q^{83} +1.56245 q^{84} +(-5.62090 + 7.90672i) q^{85} -6.57283 q^{86} +5.75604i q^{87} +(8.74934 + 8.74934i) q^{88} -12.3039 q^{89} +(1.10050 + 1.10050i) q^{90} +(-3.18095 + 3.18095i) q^{91} +(0.666843 - 0.666843i) q^{92} +0.199739i q^{93} +4.07566i q^{94} +(-5.97000 + 5.97000i) q^{95} +(4.06509 - 4.06509i) q^{96} +(5.83964 + 5.83964i) q^{97} +0.661473 q^{98} +(3.71291 + 3.71291i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 24 q^{4} + 8 q^{5} - 4 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 24 q^{4} + 8 q^{5} - 4 q^{6} + 16 q^{10} + 4 q^{11} - 12 q^{13} + 4 q^{14} + 40 q^{16} + 4 q^{17} + 8 q^{18} - 52 q^{20} + 20 q^{21} - 24 q^{22} - 4 q^{23} + 4 q^{24} - 8 q^{29} + 8 q^{31} - 4 q^{33} - 44 q^{34} + 12 q^{35} + 24 q^{37} - 64 q^{38} - 12 q^{39} - 52 q^{40} - 20 q^{41} + 72 q^{44} - 8 q^{45} + 28 q^{46} - 32 q^{47} + 32 q^{48} + 104 q^{50} + 8 q^{51} + 48 q^{52} - 4 q^{54} - 36 q^{55} - 4 q^{56} - 16 q^{57} - 60 q^{58} + 28 q^{61} + 36 q^{62} - 112 q^{64} - 4 q^{65} + 40 q^{67} - 52 q^{68} + 36 q^{69} + 16 q^{71} - 24 q^{72} - 72 q^{73} - 24 q^{74} - 8 q^{75} + 40 q^{78} - 8 q^{79} + 120 q^{80} - 20 q^{81} + 108 q^{82} - 24 q^{84} + 40 q^{85} - 28 q^{88} - 64 q^{89} + 16 q^{90} - 12 q^{91} - 56 q^{92} + 60 q^{95} + 16 q^{96} + 60 q^{97} - 8 q^{98} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/357\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(190\) \(239\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.661473i 0.467732i 0.972269 + 0.233866i \(0.0751377\pi\)
−0.972269 + 0.233866i \(0.924862\pi\)
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 1.56245 0.781227
\(5\) −1.66372 1.66372i −0.744038 0.744038i 0.229314 0.973352i \(-0.426352\pi\)
−0.973352 + 0.229314i \(0.926352\pi\)
\(6\) 0.467732 0.467732i 0.190951 0.190951i
\(7\) −0.707107 + 0.707107i −0.267261 + 0.267261i
\(8\) 2.35647i 0.833136i
\(9\) 1.00000i 0.333333i
\(10\) 1.10050 1.10050i 0.348010 0.348010i
\(11\) 3.71291 3.71291i 1.11948 1.11948i 0.127668 0.991817i \(-0.459251\pi\)
0.991817 0.127668i \(-0.0407490\pi\)
\(12\) −1.10482 1.10482i −0.318935 0.318935i
\(13\) 4.49854 1.24767 0.623835 0.781556i \(-0.285574\pi\)
0.623835 + 0.781556i \(0.285574\pi\)
\(14\) −0.467732 0.467732i −0.125007 0.125007i
\(15\) 2.35286i 0.607505i
\(16\) 1.56617 0.391543
\(17\) −0.686963 4.06547i −0.166613 0.986022i
\(18\) −0.661473 −0.155911
\(19\) 3.58834i 0.823222i −0.911360 0.411611i \(-0.864966\pi\)
0.911360 0.411611i \(-0.135034\pi\)
\(20\) −2.59949 2.59949i −0.581263 0.581263i
\(21\) 1.00000 0.218218
\(22\) 2.45599 + 2.45599i 0.523618 + 0.523618i
\(23\) 0.426792 0.426792i 0.0889923 0.0889923i −0.661209 0.750202i \(-0.729956\pi\)
0.750202 + 0.661209i \(0.229956\pi\)
\(24\) 1.66627 1.66627i 0.340127 0.340127i
\(25\) 0.535927i 0.107185i
\(26\) 2.97566i 0.583575i
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) −1.10482 + 1.10482i −0.208792 + 0.208792i
\(29\) −4.07014 4.07014i −0.755805 0.755805i 0.219751 0.975556i \(-0.429476\pi\)
−0.975556 + 0.219751i \(0.929476\pi\)
\(30\) −1.55635 −0.284149
\(31\) −0.141237 0.141237i −0.0253668 0.0253668i 0.694310 0.719676i \(-0.255710\pi\)
−0.719676 + 0.694310i \(0.755710\pi\)
\(32\) 5.74891i 1.01627i
\(33\) −5.25085 −0.914055
\(34\) 2.68920 0.454407i 0.461194 0.0779302i
\(35\) 2.35286 0.397705
\(36\) 1.56245i 0.260409i
\(37\) 5.41429 + 5.41429i 0.890104 + 0.890104i 0.994532 0.104429i \(-0.0333014\pi\)
−0.104429 + 0.994532i \(0.533301\pi\)
\(38\) 2.37359 0.385047
\(39\) −3.18095 3.18095i −0.509359 0.509359i
\(40\) 3.92050 3.92050i 0.619885 0.619885i
\(41\) −4.30993 + 4.30993i −0.673098 + 0.673098i −0.958429 0.285331i \(-0.907897\pi\)
0.285331 + 0.958429i \(0.407897\pi\)
\(42\) 0.661473i 0.102067i
\(43\) 9.93667i 1.51533i 0.652645 + 0.757664i \(0.273659\pi\)
−0.652645 + 0.757664i \(0.726341\pi\)
\(44\) 5.80125 5.80125i 0.874572 0.874572i
\(45\) 1.66372 1.66372i 0.248013 0.248013i
\(46\) 0.282311 + 0.282311i 0.0416245 + 0.0416245i
\(47\) 6.16149 0.898745 0.449373 0.893344i \(-0.351648\pi\)
0.449373 + 0.893344i \(0.351648\pi\)
\(48\) −1.10745 1.10745i −0.159847 0.159847i
\(49\) 1.00000i 0.142857i
\(50\) −0.354501 −0.0501340
\(51\) −2.38897 + 3.36048i −0.334522 + 0.470561i
\(52\) 7.02876 0.974714
\(53\) 9.47974i 1.30214i 0.759017 + 0.651071i \(0.225680\pi\)
−0.759017 + 0.651071i \(0.774320\pi\)
\(54\) 0.467732 + 0.467732i 0.0636502 + 0.0636502i
\(55\) −12.3545 −1.66588
\(56\) −1.66627 1.66627i −0.222665 0.222665i
\(57\) −2.53734 + 2.53734i −0.336079 + 0.336079i
\(58\) 2.69228 2.69228i 0.353514 0.353514i
\(59\) 1.92313i 0.250370i −0.992133 0.125185i \(-0.960048\pi\)
0.992133 0.125185i \(-0.0399525\pi\)
\(60\) 3.67623i 0.474599i
\(61\) −7.45587 + 7.45587i −0.954626 + 0.954626i −0.999014 0.0443882i \(-0.985866\pi\)
0.0443882 + 0.999014i \(0.485866\pi\)
\(62\) 0.0934241 0.0934241i 0.0118649 0.0118649i
\(63\) −0.707107 0.707107i −0.0890871 0.0890871i
\(64\) −0.670404 −0.0838006
\(65\) −7.48431 7.48431i −0.928314 0.928314i
\(66\) 3.47329i 0.427533i
\(67\) −7.47259 −0.912922 −0.456461 0.889743i \(-0.650883\pi\)
−0.456461 + 0.889743i \(0.650883\pi\)
\(68\) −1.07335 6.35212i −0.130163 0.770307i
\(69\) −0.603575 −0.0726619
\(70\) 1.55635i 0.186019i
\(71\) −1.09194 1.09194i −0.129590 0.129590i 0.639337 0.768927i \(-0.279209\pi\)
−0.768927 + 0.639337i \(0.779209\pi\)
\(72\) −2.35647 −0.277712
\(73\) −6.99329 6.99329i −0.818503 0.818503i 0.167388 0.985891i \(-0.446467\pi\)
−0.985891 + 0.167388i \(0.946467\pi\)
\(74\) −3.58140 + 3.58140i −0.416330 + 0.416330i
\(75\) 0.378957 0.378957i 0.0437582 0.0437582i
\(76\) 5.60662i 0.643123i
\(77\) 5.25085i 0.598390i
\(78\) 2.10411 2.10411i 0.238243 0.238243i
\(79\) 7.40415 7.40415i 0.833032 0.833032i −0.154898 0.987930i \(-0.549505\pi\)
0.987930 + 0.154898i \(0.0495049\pi\)
\(80\) −2.60567 2.60567i −0.291323 0.291323i
\(81\) −1.00000 −0.111111
\(82\) −2.85090 2.85090i −0.314829 0.314829i
\(83\) 8.09294i 0.888316i 0.895949 + 0.444158i \(0.146497\pi\)
−0.895949 + 0.444158i \(0.853503\pi\)
\(84\) 1.56245 0.170478
\(85\) −5.62090 + 7.90672i −0.609672 + 0.857605i
\(86\) −6.57283 −0.708767
\(87\) 5.75604i 0.617113i
\(88\) 8.74934 + 8.74934i 0.932683 + 0.932683i
\(89\) −12.3039 −1.30421 −0.652105 0.758129i \(-0.726114\pi\)
−0.652105 + 0.758129i \(0.726114\pi\)
\(90\) 1.10050 + 1.10050i 0.116003 + 0.116003i
\(91\) −3.18095 + 3.18095i −0.333454 + 0.333454i
\(92\) 0.666843 0.666843i 0.0695232 0.0695232i
\(93\) 0.199739i 0.0207119i
\(94\) 4.07566i 0.420372i
\(95\) −5.97000 + 5.97000i −0.612509 + 0.612509i
\(96\) 4.06509 4.06509i 0.414892 0.414892i
\(97\) 5.83964 + 5.83964i 0.592925 + 0.592925i 0.938421 0.345495i \(-0.112289\pi\)
−0.345495 + 0.938421i \(0.612289\pi\)
\(98\) 0.661473 0.0668188
\(99\) 3.71291 + 3.71291i 0.373162 + 0.373162i
\(100\) 0.837361i 0.0837361i
\(101\) 12.3613 1.22999 0.614995 0.788531i \(-0.289158\pi\)
0.614995 + 0.788531i \(0.289158\pi\)
\(102\) −2.22287 1.58024i −0.220097 0.156467i
\(103\) 3.48146 0.343039 0.171519 0.985181i \(-0.445132\pi\)
0.171519 + 0.985181i \(0.445132\pi\)
\(104\) 10.6007i 1.03948i
\(105\) −1.66372 1.66372i −0.162362 0.162362i
\(106\) −6.27059 −0.609053
\(107\) −3.28575 3.28575i −0.317645 0.317645i 0.530217 0.847862i \(-0.322111\pi\)
−0.847862 + 0.530217i \(0.822111\pi\)
\(108\) 1.10482 1.10482i 0.106312 0.106312i
\(109\) 9.85208 9.85208i 0.943659 0.943659i −0.0548368 0.998495i \(-0.517464\pi\)
0.998495 + 0.0548368i \(0.0174638\pi\)
\(110\) 8.17215i 0.779184i
\(111\) 7.65696i 0.726767i
\(112\) −1.10745 + 1.10745i −0.104644 + 0.104644i
\(113\) −6.98837 + 6.98837i −0.657411 + 0.657411i −0.954767 0.297356i \(-0.903895\pi\)
0.297356 + 0.954767i \(0.403895\pi\)
\(114\) −1.67838 1.67838i −0.157195 0.157195i
\(115\) −1.42012 −0.132427
\(116\) −6.35940 6.35940i −0.590456 0.590456i
\(117\) 4.49854i 0.415890i
\(118\) 1.27210 0.117106
\(119\) 3.36048 + 2.38897i 0.308055 + 0.218996i
\(120\) −5.54442 −0.506134
\(121\) 16.5714i 1.50649i
\(122\) −4.93185 4.93185i −0.446509 0.446509i
\(123\) 6.09517 0.549583
\(124\) −0.220676 0.220676i −0.0198173 0.0198173i
\(125\) −7.42697 + 7.42697i −0.664288 + 0.664288i
\(126\) 0.467732 0.467732i 0.0416689 0.0416689i
\(127\) 14.8193i 1.31500i −0.753456 0.657499i \(-0.771614\pi\)
0.753456 0.657499i \(-0.228386\pi\)
\(128\) 11.0544i 0.977077i
\(129\) 7.02628 7.02628i 0.618630 0.618630i
\(130\) 4.95066 4.95066i 0.434202 0.434202i
\(131\) 6.46192 + 6.46192i 0.564580 + 0.564580i 0.930605 0.366025i \(-0.119281\pi\)
−0.366025 + 0.930605i \(0.619281\pi\)
\(132\) −8.20421 −0.714085
\(133\) 2.53734 + 2.53734i 0.220015 + 0.220015i
\(134\) 4.94291i 0.427003i
\(135\) −2.35286 −0.202502
\(136\) 9.58015 1.61881i 0.821491 0.138811i
\(137\) −7.53516 −0.643772 −0.321886 0.946778i \(-0.604317\pi\)
−0.321886 + 0.946778i \(0.604317\pi\)
\(138\) 0.399248i 0.0339863i
\(139\) −0.364800 0.364800i −0.0309419 0.0309419i 0.691467 0.722408i \(-0.256965\pi\)
−0.722408 + 0.691467i \(0.756965\pi\)
\(140\) 3.67623 0.310698
\(141\) −4.35683 4.35683i −0.366911 0.366911i
\(142\) 0.722289 0.722289i 0.0606132 0.0606132i
\(143\) 16.7027 16.7027i 1.39675 1.39675i
\(144\) 1.56617i 0.130514i
\(145\) 13.5431i 1.12470i
\(146\) 4.62587 4.62587i 0.382840 0.382840i
\(147\) −0.707107 + 0.707107i −0.0583212 + 0.0583212i
\(148\) 8.45958 + 8.45958i 0.695373 + 0.695373i
\(149\) 2.24948 0.184284 0.0921422 0.995746i \(-0.470629\pi\)
0.0921422 + 0.995746i \(0.470629\pi\)
\(150\) 0.250670 + 0.250670i 0.0204671 + 0.0204671i
\(151\) 10.1044i 0.822286i 0.911571 + 0.411143i \(0.134870\pi\)
−0.911571 + 0.411143i \(0.865130\pi\)
\(152\) 8.45580 0.685856
\(153\) 4.06547 0.686963i 0.328674 0.0555377i
\(154\) −3.47329 −0.279886
\(155\) 0.469956i 0.0377478i
\(156\) −4.97008 4.97008i −0.397925 0.397925i
\(157\) −23.6643 −1.88862 −0.944310 0.329058i \(-0.893269\pi\)
−0.944310 + 0.329058i \(0.893269\pi\)
\(158\) 4.89764 + 4.89764i 0.389636 + 0.389636i
\(159\) 6.70319 6.70319i 0.531597 0.531597i
\(160\) 9.56458 9.56458i 0.756146 0.756146i
\(161\) 0.603575i 0.0475684i
\(162\) 0.661473i 0.0519702i
\(163\) 16.9353 16.9353i 1.32648 1.32648i 0.418054 0.908422i \(-0.362712\pi\)
0.908422 0.418054i \(-0.137288\pi\)
\(164\) −6.73407 + 6.73407i −0.525843 + 0.525843i
\(165\) 8.73594 + 8.73594i 0.680092 + 0.680092i
\(166\) −5.35326 −0.415493
\(167\) 17.8008 + 17.8008i 1.37747 + 1.37747i 0.848875 + 0.528593i \(0.177280\pi\)
0.528593 + 0.848875i \(0.322720\pi\)
\(168\) 2.35647i 0.181805i
\(169\) 7.23686 0.556681
\(170\) −5.23008 3.71807i −0.401129 0.285163i
\(171\) 3.58834 0.274407
\(172\) 15.5256i 1.18381i
\(173\) 7.89482 + 7.89482i 0.600232 + 0.600232i 0.940374 0.340142i \(-0.110475\pi\)
−0.340142 + 0.940374i \(0.610475\pi\)
\(174\) −3.80746 −0.288643
\(175\) −0.378957 0.378957i −0.0286465 0.0286465i
\(176\) 5.81505 5.81505i 0.438326 0.438326i
\(177\) −1.35986 + 1.35986i −0.102213 + 0.102213i
\(178\) 8.13869i 0.610020i
\(179\) 2.39571i 0.179064i −0.995984 0.0895320i \(-0.971463\pi\)
0.995984 0.0895320i \(-0.0285371\pi\)
\(180\) 2.59949 2.59949i 0.193754 0.193754i
\(181\) −13.8862 + 13.8862i −1.03216 + 1.03216i −0.0326907 + 0.999466i \(0.510408\pi\)
−0.999466 + 0.0326907i \(0.989592\pi\)
\(182\) −2.10411 2.10411i −0.155967 0.155967i
\(183\) 10.5442 0.779449
\(184\) 1.00572 + 1.00572i 0.0741427 + 0.0741427i
\(185\) 18.0157i 1.32454i
\(186\) −0.132122 −0.00968763
\(187\) −17.6454 12.5441i −1.29036 0.917316i
\(188\) 9.62704 0.702124
\(189\) 1.00000i 0.0727393i
\(190\) −3.94899 3.94899i −0.286490 0.286490i
\(191\) 5.22705 0.378216 0.189108 0.981956i \(-0.439440\pi\)
0.189108 + 0.981956i \(0.439440\pi\)
\(192\) 0.474048 + 0.474048i 0.0342114 + 0.0342114i
\(193\) −15.3421 + 15.3421i −1.10435 + 1.10435i −0.110467 + 0.993880i \(0.535235\pi\)
−0.993880 + 0.110467i \(0.964765\pi\)
\(194\) −3.86276 + 3.86276i −0.277330 + 0.277330i
\(195\) 10.5844i 0.757965i
\(196\) 1.56245i 0.111604i
\(197\) 4.73493 4.73493i 0.337350 0.337350i −0.518019 0.855369i \(-0.673330\pi\)
0.855369 + 0.518019i \(0.173330\pi\)
\(198\) −2.45599 + 2.45599i −0.174539 + 0.174539i
\(199\) −4.74936 4.74936i −0.336673 0.336673i 0.518441 0.855114i \(-0.326513\pi\)
−0.855114 + 0.518441i \(0.826513\pi\)
\(200\) −1.26289 −0.0893000
\(201\) 5.28392 + 5.28392i 0.372699 + 0.372699i
\(202\) 8.17663i 0.575306i
\(203\) 5.75604 0.403995
\(204\) −3.73265 + 5.25060i −0.261338 + 0.367615i
\(205\) 14.3410 1.00162
\(206\) 2.30289i 0.160450i
\(207\) 0.426792 + 0.426792i 0.0296641 + 0.0296641i
\(208\) 7.04548 0.488516
\(209\) −13.3232 13.3232i −0.921584 0.921584i
\(210\) 1.10050 1.10050i 0.0759421 0.0759421i
\(211\) −9.31494 + 9.31494i −0.641267 + 0.641267i −0.950867 0.309600i \(-0.899805\pi\)
0.309600 + 0.950867i \(0.399805\pi\)
\(212\) 14.8117i 1.01727i
\(213\) 1.54424i 0.105809i
\(214\) 2.17343 2.17343i 0.148573 0.148573i
\(215\) 16.5318 16.5318i 1.12746 1.12746i
\(216\) 1.66627 + 1.66627i 0.113376 + 0.113376i
\(217\) 0.199739 0.0135591
\(218\) 6.51688 + 6.51688i 0.441379 + 0.441379i
\(219\) 9.89000i 0.668305i
\(220\) −19.3033 −1.30143
\(221\) −3.09033 18.2887i −0.207878 1.23023i
\(222\) 5.06487 0.339932
\(223\) 12.0749i 0.808596i −0.914627 0.404298i \(-0.867516\pi\)
0.914627 0.404298i \(-0.132484\pi\)
\(224\) −4.06509 4.06509i −0.271610 0.271610i
\(225\) −0.535927 −0.0357285
\(226\) −4.62262 4.62262i −0.307492 0.307492i
\(227\) 7.04430 7.04430i 0.467547 0.467547i −0.433572 0.901119i \(-0.642747\pi\)
0.901119 + 0.433572i \(0.142747\pi\)
\(228\) −3.96448 + 3.96448i −0.262554 + 0.262554i
\(229\) 0.341524i 0.0225685i 0.999936 + 0.0112843i \(0.00359197\pi\)
−0.999936 + 0.0112843i \(0.996408\pi\)
\(230\) 0.939374i 0.0619405i
\(231\) 3.71291 3.71291i 0.244292 0.244292i
\(232\) 9.59114 9.59114i 0.629689 0.629689i
\(233\) 11.2402 + 11.2402i 0.736371 + 0.736371i 0.971874 0.235502i \(-0.0756736\pi\)
−0.235502 + 0.971874i \(0.575674\pi\)
\(234\) −2.97566 −0.194525
\(235\) −10.2510 10.2510i −0.668701 0.668701i
\(236\) 3.00480i 0.195596i
\(237\) −10.4711 −0.680168
\(238\) −1.58024 + 2.22287i −0.102432 + 0.144087i
\(239\) −1.16131 −0.0751187 −0.0375594 0.999294i \(-0.511958\pi\)
−0.0375594 + 0.999294i \(0.511958\pi\)
\(240\) 3.68497i 0.237864i
\(241\) 6.45266 + 6.45266i 0.415652 + 0.415652i 0.883702 0.468050i \(-0.155043\pi\)
−0.468050 + 0.883702i \(0.655043\pi\)
\(242\) 10.9615 0.704634
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) −11.6495 + 11.6495i −0.745780 + 0.745780i
\(245\) −1.66372 + 1.66372i −0.106291 + 0.106291i
\(246\) 4.03178i 0.257057i
\(247\) 16.1423i 1.02711i
\(248\) 0.332819 0.332819i 0.0211340 0.0211340i
\(249\) 5.72257 5.72257i 0.362653 0.362653i
\(250\) −4.91273 4.91273i −0.310709 0.310709i
\(251\) −2.02464 −0.127794 −0.0638970 0.997956i \(-0.520353\pi\)
−0.0638970 + 0.997956i \(0.520353\pi\)
\(252\) −1.10482 1.10482i −0.0695972 0.0695972i
\(253\) 3.16928i 0.199251i
\(254\) 9.80254 0.615066
\(255\) 9.56547 1.61632i 0.599013 0.101218i
\(256\) −8.65297 −0.540811
\(257\) 19.5756i 1.22109i 0.791982 + 0.610545i \(0.209049\pi\)
−0.791982 + 0.610545i \(0.790951\pi\)
\(258\) 4.64769 + 4.64769i 0.289353 + 0.289353i
\(259\) −7.65696 −0.475780
\(260\) −11.6939 11.6939i −0.725224 0.725224i
\(261\) 4.07014 4.07014i 0.251935 0.251935i
\(262\) −4.27438 + 4.27438i −0.264072 + 0.264072i
\(263\) 23.4356i 1.44510i −0.691319 0.722550i \(-0.742970\pi\)
0.691319 0.722550i \(-0.257030\pi\)
\(264\) 12.3734i 0.761533i
\(265\) 15.7716 15.7716i 0.968843 0.968843i
\(266\) −1.67838 + 1.67838i −0.102908 + 0.102908i
\(267\) 8.70017 + 8.70017i 0.532441 + 0.532441i
\(268\) −11.6756 −0.713200
\(269\) 5.65950 + 5.65950i 0.345066 + 0.345066i 0.858268 0.513202i \(-0.171541\pi\)
−0.513202 + 0.858268i \(0.671541\pi\)
\(270\) 1.55635i 0.0947164i
\(271\) 24.5987 1.49427 0.747133 0.664675i \(-0.231430\pi\)
0.747133 + 0.664675i \(0.231430\pi\)
\(272\) −1.07590 6.36723i −0.0652361 0.386070i
\(273\) 4.49854 0.272264
\(274\) 4.98430i 0.301112i
\(275\) 1.98985 + 1.98985i 0.119992 + 0.119992i
\(276\) −0.943058 −0.0567654
\(277\) −18.9255 18.9255i −1.13712 1.13712i −0.988963 0.148162i \(-0.952664\pi\)
−0.148162 0.988963i \(-0.547336\pi\)
\(278\) 0.241305 0.241305i 0.0144725 0.0144725i
\(279\) 0.141237 0.141237i 0.00845562 0.00845562i
\(280\) 5.54442i 0.331343i
\(281\) 24.2978i 1.44948i 0.689020 + 0.724742i \(0.258041\pi\)
−0.689020 + 0.724742i \(0.741959\pi\)
\(282\) 2.88192 2.88192i 0.171616 0.171616i
\(283\) −6.48189 + 6.48189i −0.385308 + 0.385308i −0.873010 0.487702i \(-0.837835\pi\)
0.487702 + 0.873010i \(0.337835\pi\)
\(284\) −1.70611 1.70611i −0.101239 0.101239i
\(285\) 8.44285 0.500111
\(286\) 11.0484 + 11.0484i 0.653303 + 0.653303i
\(287\) 6.09517i 0.359786i
\(288\) −5.74891 −0.338758
\(289\) −16.0562 + 5.58566i −0.944480 + 0.328568i
\(290\) −8.95841 −0.526056
\(291\) 8.25850i 0.484122i
\(292\) −10.9267 10.9267i −0.639436 0.639436i
\(293\) 2.19698 0.128349 0.0641746 0.997939i \(-0.479559\pi\)
0.0641746 + 0.997939i \(0.479559\pi\)
\(294\) −0.467732 0.467732i −0.0272787 0.0272787i
\(295\) −3.19955 + 3.19955i −0.186285 + 0.186285i
\(296\) −12.7586 + 12.7586i −0.741578 + 0.741578i
\(297\) 5.25085i 0.304685i
\(298\) 1.48797i 0.0861956i
\(299\) 1.91994 1.91994i 0.111033 0.111033i
\(300\) 0.592104 0.592104i 0.0341851 0.0341851i
\(301\) −7.02628 7.02628i −0.404988 0.404988i
\(302\) −6.68379 −0.384609
\(303\) −8.74073 8.74073i −0.502142 0.502142i
\(304\) 5.61996i 0.322327i
\(305\) 24.8090 1.42056
\(306\) 0.454407 + 2.68920i 0.0259767 + 0.153731i
\(307\) 21.0887 1.20360 0.601798 0.798648i \(-0.294451\pi\)
0.601798 + 0.798648i \(0.294451\pi\)
\(308\) 8.20421i 0.467478i
\(309\) −2.46176 2.46176i −0.140045 0.140045i
\(310\) −0.310863 −0.0176558
\(311\) −7.97525 7.97525i −0.452235 0.452235i 0.443861 0.896096i \(-0.353608\pi\)
−0.896096 + 0.443861i \(0.853608\pi\)
\(312\) 7.49579 7.49579i 0.424366 0.424366i
\(313\) −14.0917 + 14.0917i −0.796511 + 0.796511i −0.982544 0.186033i \(-0.940437\pi\)
0.186033 + 0.982544i \(0.440437\pi\)
\(314\) 15.6533i 0.883367i
\(315\) 2.35286i 0.132568i
\(316\) 11.5686 11.5686i 0.650787 0.650787i
\(317\) −21.5746 + 21.5746i −1.21175 + 1.21175i −0.241299 + 0.970451i \(0.577574\pi\)
−0.970451 + 0.241299i \(0.922426\pi\)
\(318\) 4.43397 + 4.43397i 0.248645 + 0.248645i
\(319\) −30.2241 −1.69222
\(320\) 1.11537 + 1.11537i 0.0623508 + 0.0623508i
\(321\) 4.64675i 0.259356i
\(322\) −0.399248 −0.0222492
\(323\) −14.5883 + 2.46506i −0.811715 + 0.137160i
\(324\) −1.56245 −0.0868030
\(325\) 2.41089i 0.133732i
\(326\) 11.2022 + 11.2022i 0.620435 + 0.620435i
\(327\) −13.9330 −0.770494
\(328\) −10.1562 10.1562i −0.560783 0.560783i
\(329\) −4.35683 + 4.35683i −0.240200 + 0.240200i
\(330\) −5.77858 + 5.77858i −0.318101 + 0.318101i
\(331\) 24.7998i 1.36312i 0.731763 + 0.681560i \(0.238698\pi\)
−0.731763 + 0.681560i \(0.761302\pi\)
\(332\) 12.6448i 0.693976i
\(333\) −5.41429 + 5.41429i −0.296701 + 0.296701i
\(334\) −11.7748 + 11.7748i −0.644286 + 0.644286i
\(335\) 12.4323 + 12.4323i 0.679249 + 0.679249i
\(336\) 1.56617 0.0854416
\(337\) 6.17698 + 6.17698i 0.336482 + 0.336482i 0.855041 0.518560i \(-0.173532\pi\)
−0.518560 + 0.855041i \(0.673532\pi\)
\(338\) 4.78698i 0.260378i
\(339\) 9.88305 0.536774
\(340\) −8.78239 + 12.3539i −0.476292 + 0.669984i
\(341\) −1.04880 −0.0567956
\(342\) 2.37359i 0.128349i
\(343\) 0.707107 + 0.707107i 0.0381802 + 0.0381802i
\(344\) −23.4154 −1.26247
\(345\) 1.00418 + 1.00418i 0.0540632 + 0.0540632i
\(346\) −5.22221 + 5.22221i −0.280748 + 0.280748i
\(347\) −5.65098 + 5.65098i −0.303360 + 0.303360i −0.842327 0.538967i \(-0.818815\pi\)
0.538967 + 0.842327i \(0.318815\pi\)
\(348\) 8.99355i 0.482105i
\(349\) 20.2193i 1.08232i −0.840921 0.541158i \(-0.817986\pi\)
0.840921 0.541158i \(-0.182014\pi\)
\(350\) 0.250670 0.250670i 0.0133989 0.0133989i
\(351\) 3.18095 3.18095i 0.169786 0.169786i
\(352\) 21.3452 + 21.3452i 1.13770 + 1.13770i
\(353\) 0.363744 0.0193601 0.00968007 0.999953i \(-0.496919\pi\)
0.00968007 + 0.999953i \(0.496919\pi\)
\(354\) −0.899509 0.899509i −0.0478084 0.0478084i
\(355\) 3.63337i 0.192839i
\(356\) −19.2243 −1.01888
\(357\) −0.686963 4.06547i −0.0363579 0.215168i
\(358\) 1.58470 0.0837539
\(359\) 26.3254i 1.38940i −0.719299 0.694701i \(-0.755537\pi\)
0.719299 0.694701i \(-0.244463\pi\)
\(360\) 3.92050 + 3.92050i 0.206628 + 0.206628i
\(361\) 6.12380 0.322305
\(362\) −9.18537 9.18537i −0.482772 0.482772i
\(363\) −11.7178 + 11.7178i −0.615022 + 0.615022i
\(364\) −4.97008 + 4.97008i −0.260503 + 0.260503i
\(365\) 23.2697i 1.21799i
\(366\) 6.97469i 0.364573i
\(367\) −6.99722 + 6.99722i −0.365252 + 0.365252i −0.865742 0.500490i \(-0.833153\pi\)
0.500490 + 0.865742i \(0.333153\pi\)
\(368\) 0.668429 0.668429i 0.0348443 0.0348443i
\(369\) −4.30993 4.30993i −0.224366 0.224366i
\(370\) 11.9169 0.619530
\(371\) −6.70319 6.70319i −0.348012 0.348012i
\(372\) 0.312083i 0.0161807i
\(373\) 12.9157 0.668751 0.334376 0.942440i \(-0.391475\pi\)
0.334376 + 0.942440i \(0.391475\pi\)
\(374\) 8.29758 11.6719i 0.429058 0.603541i
\(375\) 10.5033 0.542389
\(376\) 14.5193i 0.748778i
\(377\) −18.3097 18.3097i −0.942996 0.942996i
\(378\) −0.661473 −0.0340225
\(379\) 11.2530 + 11.2530i 0.578026 + 0.578026i 0.934359 0.356333i \(-0.115973\pi\)
−0.356333 + 0.934359i \(0.615973\pi\)
\(380\) −9.32784 + 9.32784i −0.478508 + 0.478508i
\(381\) −10.4788 + 10.4788i −0.536846 + 0.536846i
\(382\) 3.45755i 0.176904i
\(383\) 19.1824i 0.980176i 0.871673 + 0.490088i \(0.163035\pi\)
−0.871673 + 0.490088i \(0.836965\pi\)
\(384\) 7.81662 7.81662i 0.398890 0.398890i
\(385\) 8.73594 8.73594i 0.445225 0.445225i
\(386\) −10.1484 10.1484i −0.516538 0.516538i
\(387\) −9.93667 −0.505109
\(388\) 9.12417 + 9.12417i 0.463209 + 0.463209i
\(389\) 24.5986i 1.24720i −0.781745 0.623598i \(-0.785670\pi\)
0.781745 0.623598i \(-0.214330\pi\)
\(390\) −7.00130 −0.354524
\(391\) −2.02830 1.44192i −0.102576 0.0729211i
\(392\) 2.35647 0.119019
\(393\) 9.13853i 0.460978i
\(394\) 3.13203 + 3.13203i 0.157789 + 0.157789i
\(395\) −24.6369 −1.23962
\(396\) 5.80125 + 5.80125i 0.291524 + 0.291524i
\(397\) −15.7916 + 15.7916i −0.792560 + 0.792560i −0.981910 0.189350i \(-0.939362\pi\)
0.189350 + 0.981910i \(0.439362\pi\)
\(398\) 3.14157 3.14157i 0.157473 0.157473i
\(399\) 3.58834i 0.179642i
\(400\) 0.839353i 0.0419676i
\(401\) −18.2732 + 18.2732i −0.912518 + 0.912518i −0.996470 0.0839522i \(-0.973246\pi\)
0.0839522 + 0.996470i \(0.473246\pi\)
\(402\) −3.49517 + 3.49517i −0.174323 + 0.174323i
\(403\) −0.635358 0.635358i −0.0316495 0.0316495i
\(404\) 19.3139 0.960902
\(405\) 1.66372 + 1.66372i 0.0826709 + 0.0826709i
\(406\) 3.80746i 0.188961i
\(407\) 40.2055 1.99291
\(408\) −7.91886 5.62952i −0.392042 0.278703i
\(409\) 15.7611 0.779339 0.389669 0.920955i \(-0.372589\pi\)
0.389669 + 0.920955i \(0.372589\pi\)
\(410\) 9.48620i 0.468490i
\(411\) 5.32816 + 5.32816i 0.262819 + 0.262819i
\(412\) 5.43962 0.267991
\(413\) 1.35986 + 1.35986i 0.0669143 + 0.0669143i
\(414\) −0.282311 + 0.282311i −0.0138748 + 0.0138748i
\(415\) 13.4644 13.4644i 0.660941 0.660941i
\(416\) 25.8617i 1.26797i
\(417\) 0.515904i 0.0252640i
\(418\) 8.81293 8.81293i 0.431054 0.431054i
\(419\) 9.48958 9.48958i 0.463597 0.463597i −0.436236 0.899832i \(-0.643689\pi\)
0.899832 + 0.436236i \(0.143689\pi\)
\(420\) −2.59949 2.59949i −0.126842 0.126842i
\(421\) −10.2759 −0.500818 −0.250409 0.968140i \(-0.580565\pi\)
−0.250409 + 0.968140i \(0.580565\pi\)
\(422\) −6.16158 6.16158i −0.299941 0.299941i
\(423\) 6.16149i 0.299582i
\(424\) −22.3387 −1.08486
\(425\) 2.17880 0.368162i 0.105687 0.0178585i
\(426\) −1.02147 −0.0494904
\(427\) 10.5442i 0.510269i
\(428\) −5.13383 5.13383i −0.248153 0.248153i
\(429\) −23.6211 −1.14044
\(430\) 10.9353 + 10.9353i 0.527349 + 0.527349i
\(431\) 20.3715 20.3715i 0.981261 0.981261i −0.0185668 0.999828i \(-0.505910\pi\)
0.999828 + 0.0185668i \(0.00591032\pi\)
\(432\) 1.10745 1.10745i 0.0532822 0.0532822i
\(433\) 25.4783i 1.22441i −0.790699 0.612205i \(-0.790283\pi\)
0.790699 0.612205i \(-0.209717\pi\)
\(434\) 0.132122i 0.00634204i
\(435\) 9.57644 9.57644i 0.459155 0.459155i
\(436\) 15.3934 15.3934i 0.737212 0.737212i
\(437\) −1.53148 1.53148i −0.0732604 0.0732604i
\(438\) −6.54197 −0.312587
\(439\) −23.9545 23.9545i −1.14329 1.14329i −0.987845 0.155441i \(-0.950320\pi\)
−0.155441 0.987845i \(-0.549680\pi\)
\(440\) 29.1129i 1.38790i
\(441\) 1.00000 0.0476190
\(442\) 12.0975 2.04417i 0.575418 0.0972312i
\(443\) −10.6561 −0.506289 −0.253144 0.967429i \(-0.581465\pi\)
−0.253144 + 0.967429i \(0.581465\pi\)
\(444\) 11.9637i 0.567770i
\(445\) 20.4702 + 20.4702i 0.970382 + 0.970382i
\(446\) 7.98722 0.378206
\(447\) −1.59062 1.59062i −0.0752338 0.0752338i
\(448\) 0.474048 0.474048i 0.0223966 0.0223966i
\(449\) 29.1315 29.1315i 1.37480 1.37480i 0.521622 0.853176i \(-0.325327\pi\)
0.853176 0.521622i \(-0.174673\pi\)
\(450\) 0.354501i 0.0167113i
\(451\) 32.0048i 1.50705i
\(452\) −10.9190 + 10.9190i −0.513587 + 0.513587i
\(453\) 7.14490 7.14490i 0.335697 0.335697i
\(454\) 4.65961 + 4.65961i 0.218686 + 0.218686i
\(455\) 10.5844 0.496205
\(456\) −5.97916 5.97916i −0.280000 0.280000i
\(457\) 42.1677i 1.97252i −0.165202 0.986260i \(-0.552828\pi\)
0.165202 0.986260i \(-0.447172\pi\)
\(458\) −0.225909 −0.0105560
\(459\) −3.36048 2.38897i −0.156854 0.111507i
\(460\) −2.21888 −0.103456
\(461\) 8.08845i 0.376717i −0.982100 0.188358i \(-0.939683\pi\)
0.982100 0.188358i \(-0.0603167\pi\)
\(462\) 2.45599 + 2.45599i 0.114263 + 0.114263i
\(463\) 31.1333 1.44688 0.723442 0.690385i \(-0.242559\pi\)
0.723442 + 0.690385i \(0.242559\pi\)
\(464\) −6.37453 6.37453i −0.295930 0.295930i
\(465\) 0.332309 0.332309i 0.0154105 0.0154105i
\(466\) −7.43510 + 7.43510i −0.344424 + 0.344424i
\(467\) 7.39951i 0.342408i 0.985236 + 0.171204i \(0.0547658\pi\)
−0.985236 + 0.171204i \(0.945234\pi\)
\(468\) 7.02876i 0.324905i
\(469\) 5.28392 5.28392i 0.243989 0.243989i
\(470\) 6.78075 6.78075i 0.312773 0.312773i
\(471\) 16.7332 + 16.7332i 0.771026 + 0.771026i
\(472\) 4.53179 0.208593
\(473\) 36.8939 + 36.8939i 1.69639 + 1.69639i
\(474\) 6.92631i 0.318136i
\(475\) 1.92309 0.0882374
\(476\) 5.25060 + 3.73265i 0.240661 + 0.171086i
\(477\) −9.47974 −0.434047
\(478\) 0.768173i 0.0351354i
\(479\) 19.1726 + 19.1726i 0.876019 + 0.876019i 0.993120 0.117101i \(-0.0373601\pi\)
−0.117101 + 0.993120i \(0.537360\pi\)
\(480\) −13.5264 −0.617391
\(481\) 24.3564 + 24.3564i 1.11056 + 1.11056i
\(482\) −4.26825 + 4.26825i −0.194414 + 0.194414i
\(483\) 0.426792 0.426792i 0.0194197 0.0194197i
\(484\) 25.8921i 1.17691i
\(485\) 19.4310i 0.882318i
\(486\) −0.467732 + 0.467732i −0.0212167 + 0.0212167i
\(487\) 22.2738 22.2738i 1.00932 1.00932i 0.00936691 0.999956i \(-0.497018\pi\)
0.999956 0.00936691i \(-0.00298162\pi\)
\(488\) −17.5695 17.5695i −0.795334 0.795334i
\(489\) −23.9501 −1.08306
\(490\) −1.10050 1.10050i −0.0497157 0.0497157i
\(491\) 3.17369i 0.143227i 0.997432 + 0.0716133i \(0.0228148\pi\)
−0.997432 + 0.0716133i \(0.977185\pi\)
\(492\) 9.52342 0.429349
\(493\) −13.7510 + 19.3431i −0.619314 + 0.871168i
\(494\) 10.6777 0.480412
\(495\) 12.3545i 0.555293i
\(496\) −0.221201 0.221201i −0.00993220 0.00993220i
\(497\) 1.54424 0.0692686
\(498\) 3.78532 + 3.78532i 0.169624 + 0.169624i
\(499\) −7.08666 + 7.08666i −0.317242 + 0.317242i −0.847707 0.530465i \(-0.822017\pi\)
0.530465 + 0.847707i \(0.322017\pi\)
\(500\) −11.6043 + 11.6043i −0.518960 + 0.518960i
\(501\) 25.1742i 1.12470i
\(502\) 1.33924i 0.0597734i
\(503\) −23.0866 + 23.0866i −1.02938 + 1.02938i −0.0298242 + 0.999555i \(0.509495\pi\)
−0.999555 + 0.0298242i \(0.990505\pi\)
\(504\) 1.66627 1.66627i 0.0742217 0.0742217i
\(505\) −20.5657 20.5657i −0.915160 0.915160i
\(506\) 2.09639 0.0931960
\(507\) −5.11723 5.11723i −0.227264 0.227264i
\(508\) 23.1544i 1.02731i
\(509\) −6.78115 −0.300569 −0.150285 0.988643i \(-0.548019\pi\)
−0.150285 + 0.988643i \(0.548019\pi\)
\(510\) 1.06915 + 6.32730i 0.0473430 + 0.280177i
\(511\) 9.89000 0.437508
\(512\) 16.3850i 0.724123i
\(513\) −2.53734 2.53734i −0.112026 0.112026i
\(514\) −12.9487 −0.571142
\(515\) −5.79217 5.79217i −0.255234 0.255234i
\(516\) 10.9782 10.9782i 0.483290 0.483290i
\(517\) 22.8771 22.8771i 1.00613 1.00613i
\(518\) 5.06487i 0.222538i
\(519\) 11.1650i 0.490088i
\(520\) 17.6365 17.6365i 0.773412 0.773412i
\(521\) 9.60414 9.60414i 0.420765 0.420765i −0.464702 0.885467i \(-0.653839\pi\)
0.885467 + 0.464702i \(0.153839\pi\)
\(522\) 2.69228 + 2.69228i 0.117838 + 0.117838i
\(523\) −43.7951 −1.91502 −0.957512 0.288392i \(-0.906879\pi\)
−0.957512 + 0.288392i \(0.906879\pi\)
\(524\) 10.0965 + 10.0965i 0.441065 + 0.441065i
\(525\) 0.535927i 0.0233898i
\(526\) 15.5020 0.675919
\(527\) −0.477169 + 0.671218i −0.0207858 + 0.0292387i
\(528\) −8.22373 −0.357892
\(529\) 22.6357i 0.984161i
\(530\) 10.4325 + 10.4325i 0.453159 + 0.453159i
\(531\) 1.92313 0.0834568
\(532\) 3.96448 + 3.96448i 0.171882 + 0.171882i
\(533\) −19.3884 + 19.3884i −0.839805 + 0.839805i
\(534\) −5.75492 + 5.75492i −0.249040 + 0.249040i
\(535\) 10.9331i 0.472681i
\(536\) 17.6089i 0.760589i
\(537\) −1.69403 + 1.69403i −0.0731026 + 0.0731026i
\(538\) −3.74360 + 3.74360i −0.161398 + 0.161398i
\(539\) −3.71291 3.71291i −0.159926 0.159926i
\(540\) −3.67623 −0.158200
\(541\) −1.33085 1.33085i −0.0572177 0.0572177i 0.677919 0.735137i \(-0.262882\pi\)
−0.735137 + 0.677919i \(0.762882\pi\)
\(542\) 16.2714i 0.698915i
\(543\) 19.6381 0.842752
\(544\) 23.3720 3.94929i 1.00207 0.169324i
\(545\) −32.7822 −1.40424
\(546\) 2.97566i 0.127347i
\(547\) −12.7406 12.7406i −0.544751 0.544751i 0.380167 0.924918i \(-0.375866\pi\)
−0.924918 + 0.380167i \(0.875866\pi\)
\(548\) −11.7733 −0.502932
\(549\) −7.45587 7.45587i −0.318209 0.318209i
\(550\) −1.31623 + 1.31623i −0.0561242 + 0.0561242i
\(551\) −14.6050 + 14.6050i −0.622196 + 0.622196i
\(552\) 1.42230i 0.0605373i
\(553\) 10.4711i 0.445275i
\(554\) 12.5187 12.5187i 0.531869 0.531869i
\(555\) −12.7390 + 12.7390i −0.540742 + 0.540742i
\(556\) −0.569983 0.569983i −0.0241726 0.0241726i
\(557\) −19.5144 −0.826851 −0.413426 0.910538i \(-0.635668\pi\)
−0.413426 + 0.910538i \(0.635668\pi\)
\(558\) 0.0934241 + 0.0934241i 0.00395496 + 0.00395496i
\(559\) 44.7005i 1.89063i
\(560\) 3.68497 0.155719
\(561\) 3.60714 + 21.3472i 0.152294 + 0.901279i
\(562\) −16.0723 −0.677970
\(563\) 32.4814i 1.36893i 0.729046 + 0.684465i \(0.239964\pi\)
−0.729046 + 0.684465i \(0.760036\pi\)
\(564\) −6.80735 6.80735i −0.286641 0.286641i
\(565\) 23.2534 0.978278
\(566\) −4.28759 4.28759i −0.180221 0.180221i
\(567\) 0.707107 0.707107i 0.0296957 0.0296957i
\(568\) 2.57312 2.57312i 0.107966 0.107966i
\(569\) 32.6889i 1.37039i −0.728361 0.685194i \(-0.759717\pi\)
0.728361 0.685194i \(-0.240283\pi\)
\(570\) 5.58471i 0.233918i
\(571\) 13.8918 13.8918i 0.581353 0.581353i −0.353922 0.935275i \(-0.615152\pi\)
0.935275 + 0.353922i \(0.115152\pi\)
\(572\) 26.0972 26.0972i 1.09118 1.09118i
\(573\) −3.69608 3.69608i −0.154406 0.154406i
\(574\) 4.03178 0.168283
\(575\) 0.228729 + 0.228729i 0.00953867 + 0.00953867i
\(576\) 0.670404i 0.0279335i
\(577\) −22.6080 −0.941182 −0.470591 0.882351i \(-0.655959\pi\)
−0.470591 + 0.882351i \(0.655959\pi\)
\(578\) −3.69476 10.6207i −0.153682 0.441763i
\(579\) 21.6970 0.901696
\(580\) 21.1605i 0.878643i
\(581\) −5.72257 5.72257i −0.237412 0.237412i
\(582\) 5.46277 0.226439
\(583\) 35.1974 + 35.1974i 1.45773 + 1.45773i
\(584\) 16.4794 16.4794i 0.681924 0.681924i
\(585\) 7.48431 7.48431i 0.309438 0.309438i
\(586\) 1.45324i 0.0600330i
\(587\) 1.89079i 0.0780414i 0.999238 + 0.0390207i \(0.0124238\pi\)
−0.999238 + 0.0390207i \(0.987576\pi\)
\(588\) −1.10482 + 1.10482i −0.0455621 + 0.0455621i
\(589\) −0.506805 + 0.506805i −0.0208825 + 0.0208825i
\(590\) −2.11642 2.11642i −0.0871314 0.0871314i
\(591\) −6.69620 −0.275445
\(592\) 8.47970 + 8.47970i 0.348514 + 0.348514i
\(593\) 33.0067i 1.35542i −0.735329 0.677711i \(-0.762972\pi\)
0.735329 0.677711i \(-0.237028\pi\)
\(594\) 3.47329 0.142511
\(595\) −1.61632 9.56547i −0.0662629 0.392146i
\(596\) 3.51470 0.143968
\(597\) 6.71661i 0.274892i
\(598\) 1.26999 + 1.26999i 0.0519337 + 0.0519337i
\(599\) −12.9658 −0.529767 −0.264884 0.964280i \(-0.585334\pi\)
−0.264884 + 0.964280i \(0.585334\pi\)
\(600\) 0.893000 + 0.893000i 0.0364566 + 0.0364566i
\(601\) 24.5515 24.5515i 1.00148 1.00148i 0.00147859 0.999999i \(-0.499529\pi\)
0.999999 0.00147859i \(-0.000470649\pi\)
\(602\) 4.64769 4.64769i 0.189426 0.189426i
\(603\) 7.47259i 0.304307i
\(604\) 15.7877i 0.642392i
\(605\) −27.5702 + 27.5702i −1.12089 + 1.12089i
\(606\) 5.78175 5.78175i 0.234868 0.234868i
\(607\) 14.3918 + 14.3918i 0.584143 + 0.584143i 0.936039 0.351896i \(-0.114463\pi\)
−0.351896 + 0.936039i \(0.614463\pi\)
\(608\) 20.6291 0.836619
\(609\) −4.07014 4.07014i −0.164930 0.164930i
\(610\) 16.4104i 0.664439i
\(611\) 27.7177 1.12134
\(612\) 6.35212 1.07335i 0.256769 0.0433875i
\(613\) 34.0233 1.37419 0.687095 0.726568i \(-0.258886\pi\)
0.687095 + 0.726568i \(0.258886\pi\)
\(614\) 13.9496i 0.562960i
\(615\) −10.1406 10.1406i −0.408910 0.408910i
\(616\) −12.3734 −0.498540
\(617\) −20.8759 20.8759i −0.840433 0.840433i 0.148482 0.988915i \(-0.452561\pi\)
−0.988915 + 0.148482i \(0.952561\pi\)
\(618\) 1.62839 1.62839i 0.0655034 0.0655034i
\(619\) 4.38648 4.38648i 0.176308 0.176308i −0.613436 0.789744i \(-0.710213\pi\)
0.789744 + 0.613436i \(0.210213\pi\)
\(620\) 0.734285i 0.0294896i
\(621\) 0.603575i 0.0242206i
\(622\) 5.27541 5.27541i 0.211525 0.211525i
\(623\) 8.70017 8.70017i 0.348565 0.348565i
\(624\) −4.98191 4.98191i −0.199436 0.199436i
\(625\) 27.3924 1.09570
\(626\) −9.32128 9.32128i −0.372553 0.372553i
\(627\) 18.8418i 0.752471i
\(628\) −36.9744 −1.47544
\(629\) 18.2922 25.7311i 0.729359 1.02597i
\(630\) −1.55635 −0.0620064
\(631\) 5.22637i 0.208059i −0.994574 0.104029i \(-0.966826\pi\)
0.994574 0.104029i \(-0.0331736\pi\)
\(632\) 17.4476 + 17.4476i 0.694030 + 0.694030i
\(633\) 13.1733 0.523592
\(634\) −14.2710 14.2710i −0.566774 0.566774i
\(635\) −24.6551 + 24.6551i −0.978408 + 0.978408i
\(636\) 10.4734 10.4734i 0.415298 0.415298i
\(637\) 4.49854i 0.178239i
\(638\) 19.9924i 0.791507i
\(639\) 1.09194 1.09194i 0.0431965 0.0431965i
\(640\) 18.3914 18.3914i 0.726983 0.726983i
\(641\) −16.2540 16.2540i −0.641994 0.641994i 0.309051 0.951045i \(-0.399989\pi\)
−0.951045 + 0.309051i \(0.899989\pi\)
\(642\) −3.07370 −0.121309
\(643\) −2.55336 2.55336i −0.100695 0.100695i 0.654965 0.755659i \(-0.272683\pi\)
−0.755659 + 0.654965i \(0.772683\pi\)
\(644\) 0.943058i 0.0371617i
\(645\) −23.3795 −0.920568
\(646\) −1.63057 9.64977i −0.0641539 0.379665i
\(647\) 7.56712 0.297494 0.148747 0.988875i \(-0.452476\pi\)
0.148747 + 0.988875i \(0.452476\pi\)
\(648\) 2.35647i 0.0925707i
\(649\) −7.14041 7.14041i −0.280286 0.280286i
\(650\) −1.59474 −0.0625507
\(651\) −0.141237 0.141237i −0.00553550 0.00553550i
\(652\) 26.4606 26.4606i 1.03628 1.03628i
\(653\) −11.7538 + 11.7538i −0.459964 + 0.459964i −0.898643 0.438680i \(-0.855446\pi\)
0.438680 + 0.898643i \(0.355446\pi\)
\(654\) 9.21627i 0.360384i
\(655\) 21.5016i 0.840139i
\(656\) −6.75009 + 6.75009i −0.263547 + 0.263547i
\(657\) 6.99329 6.99329i 0.272834 0.272834i
\(658\) −2.88192 2.88192i −0.112349 0.112349i
\(659\) −20.8412 −0.811859 −0.405929 0.913904i \(-0.633052\pi\)
−0.405929 + 0.913904i \(0.633052\pi\)
\(660\) 13.6495 + 13.6495i 0.531306 + 0.531306i
\(661\) 8.01914i 0.311908i 0.987764 + 0.155954i \(0.0498452\pi\)
−0.987764 + 0.155954i \(0.950155\pi\)
\(662\) −16.4044 −0.637574
\(663\) −10.7469 + 15.1173i −0.417374 + 0.587106i
\(664\) −19.0707 −0.740088
\(665\) 8.44285i 0.327400i
\(666\) −3.58140 3.58140i −0.138777 0.138777i
\(667\) −3.47420 −0.134522
\(668\) 27.8130 + 27.8130i 1.07612 + 1.07612i
\(669\) −8.53825 + 8.53825i −0.330108 + 0.330108i
\(670\) −8.22362 + 8.22362i −0.317706 + 0.317706i
\(671\) 55.3659i 2.13738i
\(672\) 5.74891i 0.221769i
\(673\) −2.05382 + 2.05382i −0.0791688 + 0.0791688i −0.745582 0.666414i \(-0.767829\pi\)
0.666414 + 0.745582i \(0.267829\pi\)
\(674\) −4.08590 + 4.08590i −0.157383 + 0.157383i
\(675\) 0.378957 + 0.378957i 0.0145861 + 0.0145861i
\(676\) 11.3073 0.434894
\(677\) −10.6917 10.6917i −0.410917 0.410917i 0.471141 0.882058i \(-0.343842\pi\)
−0.882058 + 0.471141i \(0.843842\pi\)
\(678\) 6.53737i 0.251066i
\(679\) −8.25850 −0.316932
\(680\) −18.6319 13.2454i −0.714502 0.507940i
\(681\) −9.96214 −0.381750
\(682\) 0.693751i 0.0265651i
\(683\) −14.5366 14.5366i −0.556228 0.556228i 0.372003 0.928231i \(-0.378671\pi\)
−0.928231 + 0.372003i \(0.878671\pi\)
\(684\) 5.60662 0.214374
\(685\) 12.5364 + 12.5364i 0.478991 + 0.478991i
\(686\) −0.467732 + 0.467732i −0.0178581 + 0.0178581i
\(687\) 0.241494 0.241494i 0.00921357 0.00921357i
\(688\) 15.5625i 0.593315i
\(689\) 42.6450i 1.62464i
\(690\) −0.664237 + 0.664237i −0.0252871 + 0.0252871i
\(691\) −10.5531 + 10.5531i −0.401458 + 0.401458i −0.878747 0.477288i \(-0.841620\pi\)
0.477288 + 0.878747i \(0.341620\pi\)
\(692\) 12.3353 + 12.3353i 0.468918 + 0.468918i
\(693\) −5.25085 −0.199463
\(694\) −3.73797 3.73797i −0.141891 0.141891i
\(695\) 1.21385i 0.0460439i
\(696\) −13.5639 −0.514139
\(697\) 20.4827 + 14.5612i 0.775837 + 0.551543i
\(698\) 13.3745 0.506234
\(699\) 15.8961i 0.601245i
\(700\) −0.592104 0.592104i −0.0223794 0.0223794i
\(701\) 42.2529 1.59587 0.797936 0.602743i \(-0.205925\pi\)
0.797936 + 0.602743i \(0.205925\pi\)
\(702\) 2.10411 + 2.10411i 0.0794145 + 0.0794145i
\(703\) 19.4283 19.4283i 0.732753 0.732753i
\(704\) −2.48915 + 2.48915i −0.0938134 + 0.0938134i
\(705\) 14.4971i 0.545992i
\(706\) 0.240607i 0.00905535i
\(707\) −8.74073 + 8.74073i −0.328729 + 0.328729i
\(708\) −2.12472 + 2.12472i −0.0798518 + 0.0798518i
\(709\) 29.5551 + 29.5551i 1.10997 + 1.10997i 0.993154 + 0.116813i \(0.0372678\pi\)
0.116813 + 0.993154i \(0.462732\pi\)
\(710\) −2.40337 −0.0901970
\(711\) 7.40415 + 7.40415i 0.277677 + 0.277677i
\(712\) 28.9937i 1.08658i
\(713\) −0.120557 −0.00451491
\(714\) 2.68920 0.454407i 0.100641 0.0170058i
\(715\) −55.5771 −2.07847
\(716\) 3.74319i 0.139890i
\(717\) 0.821168 + 0.821168i 0.0306671 + 0.0306671i
\(718\) 17.4135 0.649867
\(719\) −18.4733 18.4733i −0.688936 0.688936i 0.273060 0.961997i \(-0.411964\pi\)
−0.961997 + 0.273060i \(0.911964\pi\)
\(720\) 2.60567 2.60567i 0.0971076 0.0971076i
\(721\) −2.46176 + 2.46176i −0.0916809 + 0.0916809i
\(722\) 4.05073i 0.150752i
\(723\) 9.12543i 0.339379i
\(724\) −21.6966 + 21.6966i −0.806348 + 0.806348i
\(725\) 2.18130 2.18130i 0.0810113 0.0810113i
\(726\) −7.75097 7.75097i −0.287666 0.287666i
\(727\) −18.5323 −0.687325 −0.343663 0.939093i \(-0.611668\pi\)
−0.343663 + 0.939093i \(0.611668\pi\)
\(728\) −7.49579 7.49579i −0.277813 0.277813i
\(729\) 1.00000i 0.0370370i
\(730\) −15.3923 −0.569695
\(731\) 40.3973 6.82612i 1.49415 0.252473i
\(732\) 16.4748 0.608927
\(733\) 42.9060i 1.58477i 0.610021 + 0.792385i \(0.291161\pi\)
−0.610021 + 0.792385i \(0.708839\pi\)
\(734\) −4.62847 4.62847i −0.170840 0.170840i
\(735\) 2.35286 0.0867864
\(736\) 2.45359 + 2.45359i 0.0904405 + 0.0904405i
\(737\) −27.7451 + 27.7451i −1.02200 + 1.02200i
\(738\) 2.85090 2.85090i 0.104943 0.104943i
\(739\) 19.1622i 0.704893i 0.935832 + 0.352446i \(0.114650\pi\)
−0.935832 + 0.352446i \(0.885350\pi\)
\(740\) 28.1487i 1.03477i
\(741\) −11.4143 + 11.4143i −0.419316 + 0.419316i
\(742\) 4.43397 4.43397i 0.162776 0.162776i
\(743\) −20.2472 20.2472i −0.742797 0.742797i 0.230319 0.973115i \(-0.426023\pi\)
−0.973115 + 0.230319i \(0.926023\pi\)
\(744\) −0.470677 −0.0172559
\(745\) −3.74250 3.74250i −0.137115 0.137115i
\(746\) 8.54340i 0.312796i
\(747\) −8.09294 −0.296105
\(748\) −27.5701 19.5996i −1.00806 0.716632i
\(749\) 4.64675 0.169789
\(750\) 6.94766i 0.253693i
\(751\) −6.54293 6.54293i −0.238755 0.238755i 0.577580 0.816334i \(-0.303997\pi\)
−0.816334 + 0.577580i \(0.803997\pi\)
\(752\) 9.64994 0.351897
\(753\) 1.43164 + 1.43164i 0.0521717 + 0.0521717i
\(754\) 12.1113 12.1113i 0.441069 0.441069i
\(755\) 16.8109 16.8109i 0.611812 0.611812i
\(756\) 1.56245i 0.0568259i
\(757\) 30.7343i 1.11706i 0.829485 + 0.558529i \(0.188634\pi\)
−0.829485 + 0.558529i \(0.811366\pi\)
\(758\) −7.44352 + 7.44352i −0.270361 + 0.270361i
\(759\) −2.24102 + 2.24102i −0.0813439 + 0.0813439i
\(760\) −14.0681 14.0681i −0.510303 0.510303i
\(761\) 2.54666 0.0923164 0.0461582 0.998934i \(-0.485302\pi\)
0.0461582 + 0.998934i \(0.485302\pi\)
\(762\) −6.93144 6.93144i −0.251100 0.251100i
\(763\) 13.9330i 0.504407i
\(764\) 8.16703 0.295473
\(765\) −7.90672 5.62090i −0.285868 0.203224i
\(766\) −12.6886 −0.458459
\(767\) 8.65128i 0.312380i
\(768\) 6.11857 + 6.11857i 0.220785 + 0.220785i
\(769\) 8.31448 0.299828 0.149914 0.988699i \(-0.452100\pi\)
0.149914 + 0.988699i \(0.452100\pi\)
\(770\) 5.77858 + 5.77858i 0.208246 + 0.208246i
\(771\) 13.8420 13.8420i 0.498508 0.498508i
\(772\) −23.9713 + 23.9713i −0.862746 + 0.862746i
\(773\) 37.8279i 1.36058i −0.732945 0.680288i \(-0.761855\pi\)
0.732945 0.680288i \(-0.238145\pi\)
\(774\) 6.57283i 0.236256i
\(775\) 0.0756925 0.0756925i 0.00271895 0.00271895i
\(776\) −13.7609 + 13.7609i −0.493988 + 0.493988i
\(777\) 5.41429 + 5.41429i 0.194237 + 0.194237i
\(778\) 16.2713 0.583353
\(779\) 15.4655 + 15.4655i 0.554110 + 0.554110i
\(780\) 16.5377i 0.592143i
\(781\) −8.10856 −0.290147
\(782\) 0.953792 1.34167i 0.0341075 0.0479779i
\(783\) −5.75604 −0.205704
\(784\) 1.56617i 0.0559347i
\(785\) 39.3708 + 39.3708i 1.40520 + 1.40520i
\(786\) 6.04489 0.215614
\(787\) −31.9408 31.9408i −1.13857 1.13857i −0.988707 0.149859i \(-0.952118\pi\)
−0.149859 0.988707i \(-0.547882\pi\)
\(788\) 7.39811 7.39811i 0.263547 0.263547i
\(789\) −16.5715 + 16.5715i −0.589959 + 0.589959i
\(790\) 16.2966i 0.579808i
\(791\) 9.88305i 0.351401i
\(792\) −8.74934 + 8.74934i −0.310894 + 0.310894i
\(793\) −33.5405 + 33.5405i −1.19106 + 1.19106i
\(794\) −10.4457 10.4457i −0.370705 0.370705i
\(795\) −22.3044 −0.791057
\(796\) −7.42066 7.42066i −0.263018 0.263018i
\(797\) 6.59399i 0.233571i 0.993157 + 0.116786i \(0.0372590\pi\)
−0.993157 + 0.116786i \(0.962741\pi\)
\(798\) 2.37359 0.0840242
\(799\) −4.23272 25.0494i −0.149743 0.886183i
\(800\) −3.08099 −0.108930
\(801\) 12.3039i 0.434737i
\(802\) −12.0872 12.0872i −0.426813 0.426813i
\(803\) −51.9309 −1.83260
\(804\) 8.25588 + 8.25588i 0.291163 + 0.291163i
\(805\) 1.00418 1.00418i 0.0353927 0.0353927i
\(806\) 0.420272 0.420272i 0.0148035 0.0148035i
\(807\) 8.00374i 0.281745i
\(808\) 29.1289i 1.02475i
\(809\) −28.8037 + 28.8037i −1.01268 + 1.01268i −0.0127642 + 0.999919i \(0.504063\pi\)
−0.999919 + 0.0127642i \(0.995937\pi\)
\(810\) −1.10050 + 1.10050i −0.0386678 + 0.0386678i
\(811\) 12.4244 + 12.4244i 0.436279 + 0.436279i 0.890758 0.454479i \(-0.150175\pi\)
−0.454479 + 0.890758i \(0.650175\pi\)
\(812\) 8.99355 0.315612
\(813\) −17.3939 17.3939i −0.610031 0.610031i
\(814\) 26.5949i 0.932149i
\(815\) −56.3512 −1.97390
\(816\) −3.74153 + 5.26309i −0.130980 + 0.184245i
\(817\) 35.6562 1.24745
\(818\) 10.4256i 0.364521i
\(819\) −3.18095 3.18095i −0.111151 0.111151i
\(820\) 22.4072 0.782494
\(821\) −2.39839 2.39839i −0.0837045 0.0837045i 0.664015 0.747719i \(-0.268851\pi\)
−0.747719 + 0.664015i \(0.768851\pi\)
\(822\) −3.52443 + 3.52443i −0.122929 + 0.122929i
\(823\) −17.9237 + 17.9237i −0.624781 + 0.624781i −0.946750 0.321969i \(-0.895655\pi\)
0.321969 + 0.946750i \(0.395655\pi\)
\(824\) 8.20394i 0.285798i
\(825\) 2.81407i 0.0979733i
\(826\) −0.899509 + 0.899509i −0.0312979 + 0.0312979i
\(827\) 5.93889 5.93889i 0.206516 0.206516i −0.596269 0.802785i \(-0.703351\pi\)
0.802785 + 0.596269i \(0.203351\pi\)
\(828\) 0.666843 + 0.666843i 0.0231744 + 0.0231744i
\(829\) 0.720245 0.0250151 0.0125076 0.999922i \(-0.496019\pi\)
0.0125076 + 0.999922i \(0.496019\pi\)
\(830\) 8.90632 + 8.90632i 0.309143 + 0.309143i
\(831\) 26.7647i 0.928458i
\(832\) −3.01584 −0.104555
\(833\) −4.06547 + 0.686963i −0.140860 + 0.0238019i
\(834\) −0.341257 −0.0118168
\(835\) 59.2311i 2.04978i
\(836\) −20.8169 20.8169i −0.719967 0.719967i
\(837\) −0.199739 −0.00690398
\(838\) 6.27710 + 6.27710i 0.216839 + 0.216839i
\(839\) −31.6356 + 31.6356i −1.09218 + 1.09218i −0.0968861 + 0.995295i \(0.530888\pi\)
−0.995295 + 0.0968861i \(0.969112\pi\)
\(840\) 3.92050 3.92050i 0.135270 0.135270i
\(841\) 4.13202i 0.142484i
\(842\) 6.79724i 0.234248i
\(843\) 17.1811 17.1811i 0.591749 0.591749i
\(844\) −14.5542 + 14.5542i −0.500975 + 0.500975i
\(845\) −12.0401 12.0401i −0.414192 0.414192i
\(846\) −4.07566 −0.140124
\(847\) 11.7178 + 11.7178i 0.402627 + 0.402627i
\(848\) 14.8469i 0.509844i
\(849\) 9.16677 0.314603
\(850\) 0.243529 + 1.44121i 0.00835298 + 0.0494332i
\(851\) 4.62155 0.158425
\(852\) 2.41280i 0.0826612i
\(853\) 4.85222 + 4.85222i 0.166137 + 0.166137i 0.785279 0.619142i \(-0.212519\pi\)
−0.619142 + 0.785279i \(0.712519\pi\)
\(854\) 6.97469 0.238669
\(855\) −5.97000 5.97000i −0.204170 0.204170i
\(856\) 7.74276 7.74276i 0.264642 0.264642i
\(857\) 14.6055 14.6055i 0.498916 0.498916i −0.412185 0.911100i \(-0.635234\pi\)
0.911100 + 0.412185i \(0.135234\pi\)
\(858\) 15.6247i 0.533420i
\(859\) 5.76996i 0.196868i 0.995144 + 0.0984342i \(0.0313834\pi\)
−0.995144 + 0.0984342i \(0.968617\pi\)
\(860\) 25.8302 25.8302i 0.880803 0.880803i
\(861\) −4.30993 + 4.30993i −0.146882 + 0.146882i
\(862\) 13.4752 + 13.4752i 0.458967 + 0.458967i
\(863\) 45.6981 1.55558 0.777790 0.628524i \(-0.216341\pi\)
0.777790 + 0.628524i \(0.216341\pi\)
\(864\) 4.06509 + 4.06509i 0.138297 + 0.138297i
\(865\) 26.2696i 0.893191i
\(866\) 16.8532 0.572696
\(867\) 15.3031 + 7.40376i 0.519720 + 0.251445i
\(868\) 0.312083 0.0105928
\(869\) 54.9819i 1.86513i
\(870\) 6.33455 + 6.33455i 0.214761 + 0.214761i
\(871\) −33.6158 −1.13903
\(872\) 23.2161 + 23.2161i 0.786196 + 0.786196i
\(873\) −5.83964 + 5.83964i −0.197642 + 0.197642i
\(874\) 1.01303 1.01303i 0.0342662 0.0342662i
\(875\) 10.5033i 0.355077i
\(876\) 15.4527i 0.522098i
\(877\) 4.16940 4.16940i 0.140791 0.140791i −0.633199 0.773989i \(-0.718258\pi\)
0.773989 + 0.633199i \(0.218258\pi\)
\(878\) 15.8452 15.8452i 0.534751 0.534751i
\(879\) −1.55350 1.55350i −0.0523983 0.0523983i
\(880\) −19.3492 −0.652263
\(881\) −20.0194 20.0194i −0.674471 0.674471i 0.284273 0.958744i \(-0.408248\pi\)
−0.958744 + 0.284273i \(0.908248\pi\)
\(882\) 0.661473i 0.0222729i
\(883\) −39.7453 −1.33754 −0.668768 0.743471i \(-0.733178\pi\)
−0.668768 + 0.743471i \(0.733178\pi\)
\(884\) −4.82850 28.5752i −0.162400 0.961090i
\(885\) 4.52485 0.152101
\(886\) 7.04875i 0.236807i
\(887\) 9.02914 + 9.02914i 0.303169 + 0.303169i 0.842252 0.539083i \(-0.181229\pi\)
−0.539083 + 0.842252i \(0.681229\pi\)
\(888\) 18.0434 0.605496
\(889\) 10.4788 + 10.4788i 0.351448 + 0.351448i
\(890\) −13.5405 + 13.5405i −0.453878 + 0.453878i
\(891\) −3.71291 + 3.71291i −0.124387 + 0.124387i
\(892\) 18.8665i 0.631697i
\(893\) 22.1095i 0.739867i
\(894\) 1.05215 1.05215i 0.0351892 0.0351892i
\(895\) −3.98580 + 3.98580i −0.133230 + 0.133230i
\(896\) −7.81662 7.81662i −0.261135 0.261135i
\(897\) −2.71521 −0.0906581
\(898\) 19.2697 + 19.2697i 0.643037 + 0.643037i
\(899\) 1.14970i 0.0383448i
\(900\) −0.837361 −0.0279120
\(901\) 38.5396 6.51223i 1.28394 0.216954i
\(902\) −21.1703 −0.704893
\(903\) 9.93667i 0.330672i
\(904\) −16.4679 16.4679i −0.547713 0.547713i
\(905\) 46.2056 1.53593
\(906\) 4.72616 + 4.72616i 0.157016 + 0.157016i
\(907\) 8.76923 8.76923i 0.291177 0.291177i −0.546368 0.837545i \(-0.683990\pi\)
0.837545 + 0.546368i \(0.183990\pi\)
\(908\) 11.0064 11.0064i 0.365260 0.365260i
\(909\) 12.3613i 0.409997i
\(910\) 7.00130i 0.232091i
\(911\) −4.06611 + 4.06611i −0.134716 + 0.134716i −0.771249 0.636533i \(-0.780368\pi\)
0.636533 + 0.771249i \(0.280368\pi\)
\(912\) −3.97391 + 3.97391i −0.131589 + 0.131589i
\(913\) 30.0484 + 30.0484i 0.994455 + 0.994455i
\(914\) 27.8927 0.922610
\(915\) −17.5426 17.5426i −0.579940 0.579940i
\(916\) 0.533616i 0.0176312i
\(917\) −9.13853 −0.301781
\(918\) 1.58024 2.22287i 0.0521556 0.0733655i
\(919\) −42.2895 −1.39500 −0.697500 0.716585i \(-0.745704\pi\)
−0.697500 + 0.716585i \(0.745704\pi\)
\(920\) 3.34648i 0.110330i
\(921\) −14.9120 14.9120i −0.491366 0.491366i
\(922\) 5.35029 0.176202
\(923\) −4.91214 4.91214i −0.161685 0.161685i
\(924\) 5.80125 5.80125i 0.190847 0.190847i
\(925\) −2.90166 + 2.90166i −0.0954061 + 0.0954061i
\(926\) 20.5938i 0.676754i
\(927\) 3.48146i 0.114346i
\(928\) 23.3988 23.3988i 0.768105 0.768105i
\(929\) 8.33116 8.33116i 0.273337 0.273337i −0.557105 0.830442i \(-0.688088\pi\)
0.830442 + 0.557105i \(0.188088\pi\)
\(930\) 0.219813 + 0.219813i 0.00720797 + 0.00720797i
\(931\) −3.58834 −0.117603
\(932\) 17.5623 + 17.5623i 0.575273 + 0.575273i
\(933\) 11.2787i 0.369248i
\(934\) −4.89457 −0.160155
\(935\) 8.48708 + 50.2268i 0.277557 + 1.64259i
\(936\) −10.6007 −0.346493
\(937\) 39.3993i 1.28712i −0.765396 0.643560i \(-0.777457\pi\)
0.765396 0.643560i \(-0.222543\pi\)
\(938\) 3.49517 + 3.49517i 0.114121 + 0.114121i
\(939\) 19.9287 0.650348
\(940\) −16.0167 16.0167i −0.522407 0.522407i
\(941\) −1.20597 + 1.20597i −0.0393135 + 0.0393135i −0.726490 0.687177i \(-0.758850\pi\)
0.687177 + 0.726490i \(0.258850\pi\)
\(942\) −11.0686 + 11.0686i −0.360633 + 0.360633i
\(943\) 3.67889i 0.119801i
\(944\) 3.01195i 0.0980307i
\(945\) 1.66372 1.66372i 0.0541208 0.0541208i
\(946\) −24.4043 + 24.4043i −0.793453 + 0.793453i
\(947\) −27.1014 27.1014i −0.880678 0.880678i 0.112926 0.993603i \(-0.463978\pi\)
−0.993603 + 0.112926i \(0.963978\pi\)
\(948\) −16.3605 −0.531366
\(949\) −31.4596 31.4596i −1.02122 1.02122i
\(950\) 1.27207i 0.0412714i
\(951\) 30.5111 0.989390
\(952\) −5.62952 + 7.91886i −0.182454 + 0.256652i
\(953\) −43.5262 −1.40995 −0.704975 0.709232i \(-0.749042\pi\)
−0.704975 + 0.709232i \(0.749042\pi\)
\(954\) 6.27059i 0.203018i
\(955\) −8.69635 8.69635i −0.281407 0.281407i
\(956\) −1.81449 −0.0586848
\(957\) 21.3717 + 21.3717i 0.690848 + 0.690848i
\(958\) −12.6822 + 12.6822i −0.409742 + 0.409742i
\(959\) 5.32816 5.32816i 0.172055 0.172055i
\(960\) 1.57736i 0.0509092i
\(961\) 30.9601i 0.998713i
\(962\) −16.1111 + 16.1111i −0.519442 + 0.519442i
\(963\) 3.28575 3.28575i 0.105882 0.105882i
\(964\) 10.0820 + 10.0820i 0.324719 + 0.324719i
\(965\) 51.0498 1.64335
\(966\) 0.282311 + 0.282311i 0.00908322 + 0.00908322i
\(967\) 9.46568i 0.304396i −0.988350 0.152198i \(-0.951365\pi\)
0.988350 0.152198i \(-0.0486351\pi\)
\(968\) 39.0499 1.25511
\(969\) 12.0586 + 8.57243i 0.387377 + 0.275386i
\(970\) 12.8531 0.412688
\(971\) 1.89708i 0.0608801i 0.999537 + 0.0304400i \(0.00969086\pi\)
−0.999537 + 0.0304400i \(0.990309\pi\)
\(972\) 1.10482 + 1.10482i 0.0354372 + 0.0354372i
\(973\) 0.515904 0.0165391
\(974\) 14.7335 + 14.7335i 0.472092 + 0.472092i
\(975\) 1.70476 1.70476i 0.0545959 0.0545959i
\(976\) −11.6772 + 11.6772i −0.373777 + 0.373777i
\(977\) 13.9325i 0.445739i 0.974848 + 0.222869i \(0.0715423\pi\)
−0.974848 + 0.222869i \(0.928458\pi\)
\(978\) 15.8424i 0.506583i
\(979\) −45.6832 + 45.6832i −1.46004 + 1.46004i
\(980\) −2.59949 + 2.59949i −0.0830375 + 0.0830375i
\(981\) 9.85208 + 9.85208i 0.314553 + 0.314553i
\(982\) −2.09931 −0.0669917
\(983\) −18.0017 18.0017i −0.574164 0.574164i 0.359125 0.933289i \(-0.383075\pi\)
−0.933289 + 0.359125i \(0.883075\pi\)
\(984\) 14.3630i 0.457877i
\(985\) −15.7552 −0.502002
\(986\) −12.7949 9.09591i −0.407473 0.289673i
\(987\) 6.16149 0.196122
\(988\) 25.2216i 0.802406i
\(989\) 4.24089 + 4.24089i 0.134852 + 0.134852i
\(990\) 8.17215 0.259728
\(991\) 21.4207 + 21.4207i 0.680452 + 0.680452i 0.960102 0.279650i \(-0.0902184\pi\)
−0.279650 + 0.960102i \(0.590218\pi\)
\(992\) 0.811957 0.811957i 0.0257796 0.0257796i
\(993\) 17.5361 17.5361i 0.556491 0.556491i
\(994\) 1.02147i 0.0323991i
\(995\) 15.8032i 0.500995i
\(996\) 8.94126 8.94126i 0.283315 0.283315i
\(997\) 21.0161 21.0161i 0.665587 0.665587i −0.291104 0.956691i \(-0.594023\pi\)
0.956691 + 0.291104i \(0.0940227\pi\)
\(998\) −4.68763 4.68763i −0.148384 0.148384i
\(999\) 7.65696 0.242256
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 357.2.k.b.64.7 20
3.2 odd 2 1071.2.n.b.64.4 20
17.2 even 8 6069.2.a.bd.1.4 10
17.4 even 4 inner 357.2.k.b.106.4 yes 20
17.15 even 8 6069.2.a.be.1.4 10
51.38 odd 4 1071.2.n.b.820.7 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.k.b.64.7 20 1.1 even 1 trivial
357.2.k.b.106.4 yes 20 17.4 even 4 inner
1071.2.n.b.64.4 20 3.2 odd 2
1071.2.n.b.820.7 20 51.38 odd 4
6069.2.a.bd.1.4 10 17.2 even 8
6069.2.a.be.1.4 10 17.15 even 8