Properties

Label 6069.2.a.bd.1.4
Level 60696069
Weight 22
Character 6069.1
Self dual yes
Analytic conductor 48.46148.461
Analytic rank 00
Dimension 1010
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6069,2,Mod(1,6069)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6069, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6069.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 6069=37172 6069 = 3 \cdot 7 \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 6069.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 48.461208986748.4612089867
Analytic rank: 00
Dimension: 1010
Coefficient field: Q[x]/(x10)\mathbb{Q}[x]/(x^{10} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x104x98x8+44x7+5x6144x5+48x4+160x344x264x2 x^{10} - 4x^{9} - 8x^{8} + 44x^{7} + 5x^{6} - 144x^{5} + 48x^{4} + 160x^{3} - 44x^{2} - 64x - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 357)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.4
Root 0.661473-0.661473 of defining polynomial
Character χ\chi == 6069.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q0.661473q21.00000q31.56245q4+2.35286q5+0.661473q6+1.00000q7+2.35647q8+1.00000q91.55635q10+5.25085q11+1.56245q124.49854q130.661473q142.35286q15+1.56617q160.661473q18+3.58834q193.67623q201.00000q213.47329q22+0.603575q232.35647q24+0.535927q25+2.97566q261.00000q271.56245q28+5.75604q29+1.55635q300.199739q315.74891q325.25085q33+2.35286q351.56245q36+7.65696q372.37359q38+4.49854q39+5.54442q40+6.09517q41+0.661473q42+9.93667q438.20421q44+2.35286q450.399248q466.16149q471.56617q48+1.00000q490.354501q50+7.02876q529.47974q53+0.661473q54+12.3545q55+2.35647q563.58834q573.80746q581.92313q59+3.67623q60+10.5442q61+0.132122q62+1.00000q63+0.670404q6410.5844q65+3.47329q667.47259q670.603575q691.55635q701.54424q71+2.35647q72+9.89000q735.06487q740.535927q755.60662q76+5.25085q772.97566q78+10.4711q79+3.68497q80+1.00000q814.03178q828.09294q83+1.56245q846.57283q865.75604q87+12.3734q88+12.3039q891.55635q904.49854q910.943058q92+0.199739q93+4.07566q94+8.44285q95+5.74891q968.25850q970.661473q98+5.25085q99+O(q100)q-0.661473 q^{2} -1.00000 q^{3} -1.56245 q^{4} +2.35286 q^{5} +0.661473 q^{6} +1.00000 q^{7} +2.35647 q^{8} +1.00000 q^{9} -1.55635 q^{10} +5.25085 q^{11} +1.56245 q^{12} -4.49854 q^{13} -0.661473 q^{14} -2.35286 q^{15} +1.56617 q^{16} -0.661473 q^{18} +3.58834 q^{19} -3.67623 q^{20} -1.00000 q^{21} -3.47329 q^{22} +0.603575 q^{23} -2.35647 q^{24} +0.535927 q^{25} +2.97566 q^{26} -1.00000 q^{27} -1.56245 q^{28} +5.75604 q^{29} +1.55635 q^{30} -0.199739 q^{31} -5.74891 q^{32} -5.25085 q^{33} +2.35286 q^{35} -1.56245 q^{36} +7.65696 q^{37} -2.37359 q^{38} +4.49854 q^{39} +5.54442 q^{40} +6.09517 q^{41} +0.661473 q^{42} +9.93667 q^{43} -8.20421 q^{44} +2.35286 q^{45} -0.399248 q^{46} -6.16149 q^{47} -1.56617 q^{48} +1.00000 q^{49} -0.354501 q^{50} +7.02876 q^{52} -9.47974 q^{53} +0.661473 q^{54} +12.3545 q^{55} +2.35647 q^{56} -3.58834 q^{57} -3.80746 q^{58} -1.92313 q^{59} +3.67623 q^{60} +10.5442 q^{61} +0.132122 q^{62} +1.00000 q^{63} +0.670404 q^{64} -10.5844 q^{65} +3.47329 q^{66} -7.47259 q^{67} -0.603575 q^{69} -1.55635 q^{70} -1.54424 q^{71} +2.35647 q^{72} +9.89000 q^{73} -5.06487 q^{74} -0.535927 q^{75} -5.60662 q^{76} +5.25085 q^{77} -2.97566 q^{78} +10.4711 q^{79} +3.68497 q^{80} +1.00000 q^{81} -4.03178 q^{82} -8.09294 q^{83} +1.56245 q^{84} -6.57283 q^{86} -5.75604 q^{87} +12.3734 q^{88} +12.3039 q^{89} -1.55635 q^{90} -4.49854 q^{91} -0.943058 q^{92} +0.199739 q^{93} +4.07566 q^{94} +8.44285 q^{95} +5.74891 q^{96} -8.25850 q^{97} -0.661473 q^{98} +5.25085 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q+4q210q3+12q4+6q54q6+10q7+12q8+10q9+2q1112q12+6q13+4q146q15+20q16+4q18+6q19+16q2010q21++2q99+O(q100) 10 q + 4 q^{2} - 10 q^{3} + 12 q^{4} + 6 q^{5} - 4 q^{6} + 10 q^{7} + 12 q^{8} + 10 q^{9} + 2 q^{11} - 12 q^{12} + 6 q^{13} + 4 q^{14} - 6 q^{15} + 20 q^{16} + 4 q^{18} + 6 q^{19} + 16 q^{20} - 10 q^{21}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.661473 −0.467732 −0.233866 0.972269i 0.575138π-0.575138\pi
−0.233866 + 0.972269i 0.575138π0.575138\pi
33 −1.00000 −0.577350
44 −1.56245 −0.781227
55 2.35286 1.05223 0.526114 0.850414i 0.323648π-0.323648\pi
0.526114 + 0.850414i 0.323648π0.323648\pi
66 0.661473 0.270045
77 1.00000 0.377964
88 2.35647 0.833136
99 1.00000 0.333333
1010 −1.55635 −0.492161
1111 5.25085 1.58319 0.791595 0.611046i 0.209251π-0.209251\pi
0.791595 + 0.611046i 0.209251π0.209251\pi
1212 1.56245 0.451042
1313 −4.49854 −1.24767 −0.623835 0.781556i 0.714426π-0.714426\pi
−0.623835 + 0.781556i 0.714426π0.714426\pi
1414 −0.661473 −0.176786
1515 −2.35286 −0.607505
1616 1.56617 0.391543
1717 0 0
1818 −0.661473 −0.155911
1919 3.58834 0.823222 0.411611 0.911360i 0.364966π-0.364966\pi
0.411611 + 0.911360i 0.364966π0.364966\pi
2020 −3.67623 −0.822030
2121 −1.00000 −0.218218
2222 −3.47329 −0.740508
2323 0.603575 0.125854 0.0629271 0.998018i 0.479956π-0.479956\pi
0.0629271 + 0.998018i 0.479956π0.479956\pi
2424 −2.35647 −0.481012
2525 0.535927 0.107185
2626 2.97566 0.583575
2727 −1.00000 −0.192450
2828 −1.56245 −0.295276
2929 5.75604 1.06887 0.534435 0.845210i 0.320524π-0.320524\pi
0.534435 + 0.845210i 0.320524π0.320524\pi
3030 1.55635 0.284149
3131 −0.199739 −0.0358741 −0.0179371 0.999839i 0.505710π-0.505710\pi
−0.0179371 + 0.999839i 0.505710π0.505710\pi
3232 −5.74891 −1.01627
3333 −5.25085 −0.914055
3434 0 0
3535 2.35286 0.397705
3636 −1.56245 −0.260409
3737 7.65696 1.25880 0.629398 0.777083i 0.283301π-0.283301\pi
0.629398 + 0.777083i 0.283301π0.283301\pi
3838 −2.37359 −0.385047
3939 4.49854 0.720343
4040 5.54442 0.876650
4141 6.09517 0.951905 0.475952 0.879471i 0.342103π-0.342103\pi
0.475952 + 0.879471i 0.342103π0.342103\pi
4242 0.661473 0.102067
4343 9.93667 1.51533 0.757664 0.652645i 0.226341π-0.226341\pi
0.757664 + 0.652645i 0.226341π0.226341\pi
4444 −8.20421 −1.23683
4545 2.35286 0.350743
4646 −0.399248 −0.0588660
4747 −6.16149 −0.898745 −0.449373 0.893344i 0.648352π-0.648352\pi
−0.449373 + 0.893344i 0.648352π0.648352\pi
4848 −1.56617 −0.226057
4949 1.00000 0.142857
5050 −0.354501 −0.0501340
5151 0 0
5252 7.02876 0.974714
5353 −9.47974 −1.30214 −0.651071 0.759017i 0.725680π-0.725680\pi
−0.651071 + 0.759017i 0.725680π0.725680\pi
5454 0.661473 0.0900150
5555 12.3545 1.66588
5656 2.35647 0.314896
5757 −3.58834 −0.475288
5858 −3.80746 −0.499945
5959 −1.92313 −0.250370 −0.125185 0.992133i 0.539952π-0.539952\pi
−0.125185 + 0.992133i 0.539952π0.539952\pi
6060 3.67623 0.474599
6161 10.5442 1.35005 0.675023 0.737797i 0.264134π-0.264134\pi
0.675023 + 0.737797i 0.264134π0.264134\pi
6262 0.132122 0.0167795
6363 1.00000 0.125988
6464 0.670404 0.0838006
6565 −10.5844 −1.31283
6666 3.47329 0.427533
6767 −7.47259 −0.912922 −0.456461 0.889743i 0.650883π-0.650883\pi
−0.456461 + 0.889743i 0.650883π0.650883\pi
6868 0 0
6969 −0.603575 −0.0726619
7070 −1.55635 −0.186019
7171 −1.54424 −0.183267 −0.0916337 0.995793i 0.529209π-0.529209\pi
−0.0916337 + 0.995793i 0.529209π0.529209\pi
7272 2.35647 0.277712
7373 9.89000 1.15754 0.578769 0.815492i 0.303533π-0.303533\pi
0.578769 + 0.815492i 0.303533π0.303533\pi
7474 −5.06487 −0.588779
7575 −0.535927 −0.0618835
7676 −5.60662 −0.643123
7777 5.25085 0.598390
7878 −2.97566 −0.336927
7979 10.4711 1.17809 0.589043 0.808102i 0.299505π-0.299505\pi
0.589043 + 0.808102i 0.299505π0.299505\pi
8080 3.68497 0.411993
8181 1.00000 0.111111
8282 −4.03178 −0.445236
8383 −8.09294 −0.888316 −0.444158 0.895949i 0.646497π-0.646497\pi
−0.444158 + 0.895949i 0.646497π0.646497\pi
8484 1.56245 0.170478
8585 0 0
8686 −6.57283 −0.708767
8787 −5.75604 −0.617113
8888 12.3734 1.31901
8989 12.3039 1.30421 0.652105 0.758129i 0.273886π-0.273886\pi
0.652105 + 0.758129i 0.273886π0.273886\pi
9090 −1.55635 −0.164054
9191 −4.49854 −0.471575
9292 −0.943058 −0.0983206
9393 0.199739 0.0207119
9494 4.07566 0.420372
9595 8.44285 0.866218
9696 5.74891 0.586746
9797 −8.25850 −0.838523 −0.419262 0.907865i 0.637711π-0.637711\pi
−0.419262 + 0.907865i 0.637711π0.637711\pi
9898 −0.661473 −0.0668188
9999 5.25085 0.527730
100100 −0.837361 −0.0837361
101101 12.3613 1.22999 0.614995 0.788531i 0.289158π-0.289158\pi
0.614995 + 0.788531i 0.289158π0.289158\pi
102102 0 0
103103 3.48146 0.343039 0.171519 0.985181i 0.445132π-0.445132\pi
0.171519 + 0.985181i 0.445132π0.445132\pi
104104 −10.6007 −1.03948
105105 −2.35286 −0.229615
106106 6.27059 0.609053
107107 4.64675 0.449218 0.224609 0.974449i 0.427889π-0.427889\pi
0.224609 + 0.974449i 0.427889π0.427889\pi
108108 1.56245 0.150347
109109 −13.9330 −1.33453 −0.667267 0.744818i 0.732536π-0.732536\pi
−0.667267 + 0.744818i 0.732536π0.732536\pi
110110 −8.17215 −0.779184
111111 −7.65696 −0.726767
112112 1.56617 0.147989
113113 −9.88305 −0.929719 −0.464860 0.885384i 0.653895π-0.653895\pi
−0.464860 + 0.885384i 0.653895π0.653895\pi
114114 2.37359 0.222307
115115 1.42012 0.132427
116116 −8.99355 −0.835030
117117 −4.49854 −0.415890
118118 1.27210 0.117106
119119 0 0
120120 −5.54442 −0.506134
121121 16.5714 1.50649
122122 −6.97469 −0.631459
123123 −6.09517 −0.549583
124124 0.312083 0.0280258
125125 −10.5033 −0.939445
126126 −0.661473 −0.0589287
127127 −14.8193 −1.31500 −0.657499 0.753456i 0.728386π-0.728386\pi
−0.657499 + 0.753456i 0.728386π0.728386\pi
128128 11.0544 0.977077
129129 −9.93667 −0.874875
130130 7.00130 0.614054
131131 −9.13853 −0.798437 −0.399219 0.916856i 0.630719π-0.630719\pi
−0.399219 + 0.916856i 0.630719π0.630719\pi
132132 8.20421 0.714085
133133 3.58834 0.311149
134134 4.94291 0.427003
135135 −2.35286 −0.202502
136136 0 0
137137 −7.53516 −0.643772 −0.321886 0.946778i 0.604317π-0.604317\pi
−0.321886 + 0.946778i 0.604317π0.604317\pi
138138 0.399248 0.0339863
139139 −0.515904 −0.0437584 −0.0218792 0.999761i 0.506965π-0.506965\pi
−0.0218792 + 0.999761i 0.506965π0.506965\pi
140140 −3.67623 −0.310698
141141 6.16149 0.518891
142142 1.02147 0.0857200
143143 −23.6211 −1.97530
144144 1.56617 0.130514
145145 13.5431 1.12470
146146 −6.54197 −0.541417
147147 −1.00000 −0.0824786
148148 −11.9637 −0.983406
149149 −2.24948 −0.184284 −0.0921422 0.995746i 0.529371π-0.529371\pi
−0.0921422 + 0.995746i 0.529371π0.529371\pi
150150 0.354501 0.0289449
151151 −10.1044 −0.822286 −0.411143 0.911571i 0.634870π-0.634870\pi
−0.411143 + 0.911571i 0.634870π0.634870\pi
152152 8.45580 0.685856
153153 0 0
154154 −3.47329 −0.279886
155155 −0.469956 −0.0377478
156156 −7.02876 −0.562751
157157 23.6643 1.88862 0.944310 0.329058i 0.106731π-0.106731\pi
0.944310 + 0.329058i 0.106731π0.106731\pi
158158 −6.92631 −0.551028
159159 9.47974 0.751792
160160 −13.5264 −1.06935
161161 0.603575 0.0475684
162162 −0.661473 −0.0519702
163163 −23.9501 −1.87592 −0.937960 0.346743i 0.887288π-0.887288\pi
−0.937960 + 0.346743i 0.887288π0.887288\pi
164164 −9.52342 −0.743654
165165 −12.3545 −0.961795
166166 5.35326 0.415493
167167 25.1742 1.94803 0.974017 0.226474i 0.0727197π-0.0727197\pi
0.974017 + 0.226474i 0.0727197π0.0727197\pi
168168 −2.35647 −0.181805
169169 7.23686 0.556681
170170 0 0
171171 3.58834 0.274407
172172 −15.5256 −1.18381
173173 11.1650 0.848857 0.424428 0.905462i 0.360475π-0.360475\pi
0.424428 + 0.905462i 0.360475π0.360475\pi
174174 3.80746 0.288643
175175 0.535927 0.0405123
176176 8.22373 0.619887
177177 1.92313 0.144551
178178 −8.13869 −0.610020
179179 −2.39571 −0.179064 −0.0895320 0.995984i 0.528537π-0.528537\pi
−0.0895320 + 0.995984i 0.528537π0.528537\pi
180180 −3.67623 −0.274010
181181 −19.6381 −1.45969 −0.729845 0.683613i 0.760408π-0.760408\pi
−0.729845 + 0.683613i 0.760408π0.760408\pi
182182 2.97566 0.220571
183183 −10.5442 −0.779449
184184 1.42230 0.104854
185185 18.0157 1.32454
186186 −0.132122 −0.00968763
187187 0 0
188188 9.62704 0.702124
189189 −1.00000 −0.0727393
190190 −5.58471 −0.405158
191191 −5.22705 −0.378216 −0.189108 0.981956i 0.560560π-0.560560\pi
−0.189108 + 0.981956i 0.560560π0.560560\pi
192192 −0.670404 −0.0483823
193193 −21.6970 −1.56178 −0.780891 0.624667i 0.785235π-0.785235\pi
−0.780891 + 0.624667i 0.785235π0.785235\pi
194194 5.46277 0.392204
195195 10.5844 0.757965
196196 −1.56245 −0.111604
197197 −6.69620 −0.477085 −0.238542 0.971132i 0.576670π-0.576670\pi
−0.238542 + 0.971132i 0.576670π0.576670\pi
198198 −3.47329 −0.246836
199199 6.71661 0.476128 0.238064 0.971250i 0.423487π-0.423487\pi
0.238064 + 0.971250i 0.423487π0.423487\pi
200200 1.26289 0.0893000
201201 7.47259 0.527076
202202 −8.17663 −0.575306
203203 5.75604 0.403995
204204 0 0
205205 14.3410 1.00162
206206 −2.30289 −0.160450
207207 0.603575 0.0419514
208208 −7.04548 −0.488516
209209 18.8418 1.30332
210210 1.55635 0.107398
211211 13.1733 0.906889 0.453444 0.891285i 0.350195π-0.350195\pi
0.453444 + 0.891285i 0.350195π0.350195\pi
212212 14.8117 1.01727
213213 1.54424 0.105809
214214 −3.07370 −0.210114
215215 23.3795 1.59447
216216 −2.35647 −0.160337
217217 −0.199739 −0.0135591
218218 9.21627 0.624204
219219 −9.89000 −0.668305
220220 −19.3033 −1.30143
221221 0 0
222222 5.06487 0.339932
223223 12.0749 0.808596 0.404298 0.914627i 0.367516π-0.367516\pi
0.404298 + 0.914627i 0.367516π0.367516\pi
224224 −5.74891 −0.384115
225225 0.535927 0.0357285
226226 6.53737 0.434859
227227 9.96214 0.661211 0.330605 0.943769i 0.392747π-0.392747\pi
0.330605 + 0.943769i 0.392747π0.392747\pi
228228 5.60662 0.371307
229229 0.341524 0.0225685 0.0112843 0.999936i 0.496408π-0.496408\pi
0.0112843 + 0.999936i 0.496408π0.496408\pi
230230 −0.939374 −0.0619405
231231 −5.25085 −0.345480
232232 13.5639 0.890515
233233 −15.8961 −1.04139 −0.520693 0.853744i 0.674326π-0.674326\pi
−0.520693 + 0.853744i 0.674326π0.674326\pi
234234 2.97566 0.194525
235235 −14.4971 −0.945686
236236 3.00480 0.195596
237237 −10.4711 −0.680168
238238 0 0
239239 −1.16131 −0.0751187 −0.0375594 0.999294i 0.511958π-0.511958\pi
−0.0375594 + 0.999294i 0.511958π0.511958\pi
240240 −3.68497 −0.237864
241241 9.12543 0.587821 0.293910 0.955833i 0.405043π-0.405043\pi
0.293910 + 0.955833i 0.405043π0.405043\pi
242242 −10.9615 −0.704634
243243 −1.00000 −0.0641500
244244 −16.4748 −1.05469
245245 2.35286 0.150318
246246 4.03178 0.257057
247247 −16.1423 −1.02711
248248 −0.470677 −0.0298880
249249 8.09294 0.512869
250250 6.94766 0.439408
251251 2.02464 0.127794 0.0638970 0.997956i 0.479647π-0.479647\pi
0.0638970 + 0.997956i 0.479647π0.479647\pi
252252 −1.56245 −0.0984254
253253 3.16928 0.199251
254254 9.80254 0.615066
255255 0 0
256256 −8.65297 −0.540811
257257 −19.5756 −1.22109 −0.610545 0.791982i 0.709049π-0.709049\pi
−0.610545 + 0.791982i 0.709049π0.709049\pi
258258 6.57283 0.409207
259259 7.65696 0.475780
260260 16.5377 1.02562
261261 5.75604 0.356290
262262 6.04489 0.373454
263263 −23.4356 −1.44510 −0.722550 0.691319i 0.757030π-0.757030\pi
−0.722550 + 0.691319i 0.757030π0.757030\pi
264264 −12.3734 −0.761533
265265 −22.3044 −1.37015
266266 −2.37359 −0.145534
267267 −12.3039 −0.752986
268268 11.6756 0.713200
269269 8.00374 0.487997 0.243998 0.969776i 0.421541π-0.421541\pi
0.243998 + 0.969776i 0.421541π0.421541\pi
270270 1.55635 0.0947164
271271 24.5987 1.49427 0.747133 0.664675i 0.231430π-0.231430\pi
0.747133 + 0.664675i 0.231430π0.231430\pi
272272 0 0
273273 4.49854 0.272264
274274 4.98430 0.301112
275275 2.81407 0.169695
276276 0.943058 0.0567654
277277 26.7647 1.60814 0.804069 0.594536i 0.202664π-0.202664\pi
0.804069 + 0.594536i 0.202664π0.202664\pi
278278 0.341257 0.0204672
279279 −0.199739 −0.0119580
280280 5.54442 0.331343
281281 24.2978 1.44948 0.724742 0.689020i 0.241959π-0.241959\pi
0.724742 + 0.689020i 0.241959π0.241959\pi
282282 −4.07566 −0.242702
283283 −9.16677 −0.544908 −0.272454 0.962169i 0.587835π-0.587835\pi
−0.272454 + 0.962169i 0.587835π0.587835\pi
284284 2.41280 0.143173
285285 −8.44285 −0.500111
286286 15.6247 0.923910
287287 6.09517 0.359786
288288 −5.74891 −0.338758
289289 0 0
290290 −8.95841 −0.526056
291291 8.25850 0.484122
292292 −15.4527 −0.904300
293293 −2.19698 −0.128349 −0.0641746 0.997939i 0.520441π-0.520441\pi
−0.0641746 + 0.997939i 0.520441π0.520441\pi
294294 0.661473 0.0385779
295295 −4.52485 −0.263447
296296 18.0434 1.04875
297297 −5.25085 −0.304685
298298 1.48797 0.0861956
299299 −2.71521 −0.157024
300300 0.837361 0.0483451
301301 9.93667 0.572740
302302 6.68379 0.384609
303303 −12.3613 −0.710136
304304 5.61996 0.322327
305305 24.8090 1.42056
306306 0 0
307307 21.0887 1.20360 0.601798 0.798648i 0.294451π-0.294451\pi
0.601798 + 0.798648i 0.294451π0.294451\pi
308308 −8.20421 −0.467478
309309 −3.48146 −0.198053
310310 0.310863 0.0176558
311311 11.2787 0.639556 0.319778 0.947492i 0.396392π-0.396392\pi
0.319778 + 0.947492i 0.396392π0.396392\pi
312312 10.6007 0.600144
313313 19.9287 1.12644 0.563218 0.826308i 0.309563π-0.309563\pi
0.563218 + 0.826308i 0.309563π0.309563\pi
314314 −15.6533 −0.883367
315315 2.35286 0.132568
316316 −16.3605 −0.920352
317317 −30.5111 −1.71367 −0.856837 0.515588i 0.827574π-0.827574\pi
−0.856837 + 0.515588i 0.827574π0.827574\pi
318318 −6.27059 −0.351637
319319 30.2241 1.69222
320320 1.57736 0.0881774
321321 −4.64675 −0.259356
322322 −0.399248 −0.0222492
323323 0 0
324324 −1.56245 −0.0868030
325325 −2.41089 −0.133732
326326 15.8424 0.877427
327327 13.9330 0.770494
328328 14.3630 0.793067
329329 −6.16149 −0.339694
330330 8.17215 0.449862
331331 24.7998 1.36312 0.681560 0.731763i 0.261302π-0.261302\pi
0.681560 + 0.731763i 0.261302π0.261302\pi
332332 12.6448 0.693976
333333 7.65696 0.419599
334334 −16.6520 −0.911158
335335 −17.5819 −0.960603
336336 −1.56617 −0.0854416
337337 8.73557 0.475857 0.237928 0.971283i 0.423532π-0.423532\pi
0.237928 + 0.971283i 0.423532π0.423532\pi
338338 −4.78698 −0.260378
339339 9.88305 0.536774
340340 0 0
341341 −1.04880 −0.0567956
342342 −2.37359 −0.128349
343343 1.00000 0.0539949
344344 23.4154 1.26247
345345 −1.42012 −0.0764570
346346 −7.38532 −0.397037
347347 7.99169 0.429016 0.214508 0.976722i 0.431185π-0.431185\pi
0.214508 + 0.976722i 0.431185π0.431185\pi
348348 8.99355 0.482105
349349 −20.2193 −1.08232 −0.541158 0.840921i 0.682014π-0.682014\pi
−0.541158 + 0.840921i 0.682014π0.682014\pi
350350 −0.354501 −0.0189489
351351 4.49854 0.240114
352352 −30.1867 −1.60895
353353 −0.363744 −0.0193601 −0.00968007 0.999953i 0.503081π-0.503081\pi
−0.00968007 + 0.999953i 0.503081π0.503081\pi
354354 −1.27210 −0.0676113
355355 −3.63337 −0.192839
356356 −19.2243 −1.01888
357357 0 0
358358 1.58470 0.0837539
359359 26.3254 1.38940 0.694701 0.719299i 0.255537π-0.255537\pi
0.694701 + 0.719299i 0.255537π0.255537\pi
360360 5.54442 0.292217
361361 −6.12380 −0.322305
362362 12.9901 0.682743
363363 −16.5714 −0.869773
364364 7.02876 0.368407
365365 23.2697 1.21799
366366 6.97469 0.364573
367367 9.89556 0.516544 0.258272 0.966072i 0.416847π-0.416847\pi
0.258272 + 0.966072i 0.416847π0.416847\pi
368368 0.945302 0.0492773
369369 6.09517 0.317302
370370 −11.9169 −0.619530
371371 −9.47974 −0.492163
372372 −0.312083 −0.0161807
373373 12.9157 0.668751 0.334376 0.942440i 0.391475π-0.391475\pi
0.334376 + 0.942440i 0.391475π0.391475\pi
374374 0 0
375375 10.5033 0.542389
376376 −14.5193 −0.748778
377377 −25.8938 −1.33360
378378 0.661473 0.0340225
379379 −15.9141 −0.817452 −0.408726 0.912657i 0.634027π-0.634027\pi
−0.408726 + 0.912657i 0.634027π0.634027\pi
380380 −13.1916 −0.676713
381381 14.8193 0.759214
382382 3.45755 0.176904
383383 19.1824 0.980176 0.490088 0.871673i 0.336965π-0.336965\pi
0.490088 + 0.871673i 0.336965π0.336965\pi
384384 −11.0544 −0.564116
385385 12.3545 0.629643
386386 14.3520 0.730495
387387 9.93667 0.505109
388388 12.9035 0.655077
389389 24.5986 1.24720 0.623598 0.781745i 0.285670π-0.285670\pi
0.623598 + 0.781745i 0.285670π0.285670\pi
390390 −7.00130 −0.354524
391391 0 0
392392 2.35647 0.119019
393393 9.13853 0.460978
394394 4.42936 0.223148
395395 24.6369 1.23962
396396 −8.20421 −0.412277
397397 −22.3328 −1.12085 −0.560425 0.828205i 0.689362π-0.689362\pi
−0.560425 + 0.828205i 0.689362π0.689362\pi
398398 −4.44285 −0.222700
399399 −3.58834 −0.179642
400400 0.839353 0.0419676
401401 25.8421 1.29049 0.645247 0.763974i 0.276754π-0.276754\pi
0.645247 + 0.763974i 0.276754π0.276754\pi
402402 −4.94291 −0.246530
403403 0.898533 0.0447591
404404 −19.3139 −0.960902
405405 2.35286 0.116914
406406 −3.80746 −0.188961
407407 40.2055 1.99291
408408 0 0
409409 15.7611 0.779339 0.389669 0.920955i 0.372589π-0.372589\pi
0.389669 + 0.920955i 0.372589π0.372589\pi
410410 −9.48620 −0.468490
411411 7.53516 0.371682
412412 −5.43962 −0.267991
413413 −1.92313 −0.0946311
414414 −0.399248 −0.0196220
415415 −19.0415 −0.934711
416416 25.8617 1.26797
417417 0.515904 0.0252640
418418 −12.4634 −0.609603
419419 13.4203 0.655624 0.327812 0.944743i 0.393689π-0.393689\pi
0.327812 + 0.944743i 0.393689π0.393689\pi
420420 3.67623 0.179382
421421 10.2759 0.500818 0.250409 0.968140i 0.419435π-0.419435\pi
0.250409 + 0.968140i 0.419435π0.419435\pi
422422 −8.71379 −0.424181
423423 −6.16149 −0.299582
424424 −22.3387 −1.08486
425425 0 0
426426 −1.02147 −0.0494904
427427 10.5442 0.510269
428428 −7.26034 −0.350942
429429 23.6211 1.14044
430430 −15.4649 −0.745785
431431 28.8097 1.38771 0.693856 0.720114i 0.255910π-0.255910\pi
0.693856 + 0.720114i 0.255910π0.255910\pi
432432 −1.56617 −0.0753524
433433 −25.4783 −1.22441 −0.612205 0.790699i 0.709717π-0.709717\pi
−0.612205 + 0.790699i 0.709717π0.709717\pi
434434 0.132122 0.00634204
435435 −13.5431 −0.649344
436436 21.7696 1.04257
437437 2.16583 0.103606
438438 6.54197 0.312587
439439 −33.8768 −1.61685 −0.808425 0.588599i 0.799680π-0.799680\pi
−0.808425 + 0.588599i 0.799680π0.799680\pi
440440 29.1129 1.38790
441441 1.00000 0.0476190
442442 0 0
443443 −10.6561 −0.506289 −0.253144 0.967429i 0.581465π-0.581465\pi
−0.253144 + 0.967429i 0.581465π0.581465\pi
444444 11.9637 0.567770
445445 28.9493 1.37233
446446 −7.98722 −0.378206
447447 2.24948 0.106397
448448 0.670404 0.0316736
449449 −41.1981 −1.94426 −0.972130 0.234444i 0.924673π-0.924673\pi
−0.972130 + 0.234444i 0.924673π0.924673\pi
450450 −0.354501 −0.0167113
451451 32.0048 1.50705
452452 15.4418 0.726322
453453 10.1044 0.474747
454454 −6.58968 −0.309269
455455 −10.5844 −0.496205
456456 −8.45580 −0.395979
457457 42.1677 1.97252 0.986260 0.165202i 0.0528275π-0.0528275\pi
0.986260 + 0.165202i 0.0528275π0.0528275\pi
458458 −0.225909 −0.0105560
459459 0 0
460460 −2.21888 −0.103456
461461 8.08845 0.376717 0.188358 0.982100i 0.439683π-0.439683\pi
0.188358 + 0.982100i 0.439683π0.439683\pi
462462 3.47329 0.161592
463463 −31.1333 −1.44688 −0.723442 0.690385i 0.757441π-0.757441\pi
−0.723442 + 0.690385i 0.757441π0.757441\pi
464464 9.01495 0.418508
465465 0.469956 0.0217937
466466 10.5148 0.487089
467467 7.39951 0.342408 0.171204 0.985236i 0.445234π-0.445234\pi
0.171204 + 0.985236i 0.445234π0.445234\pi
468468 7.02876 0.324905
469469 −7.47259 −0.345052
470470 9.58943 0.442327
471471 −23.6643 −1.09040
472472 −4.53179 −0.208593
473473 52.1759 2.39905
474474 6.92631 0.318136
475475 1.92309 0.0882374
476476 0 0
477477 −9.47974 −0.434047
478478 0.768173 0.0351354
479479 27.1142 1.23888 0.619439 0.785045i 0.287360π-0.287360\pi
0.619439 + 0.785045i 0.287360π0.287360\pi
480480 13.5264 0.617391
481481 −34.4451 −1.57056
482482 −6.03622 −0.274942
483483 −0.603575 −0.0274636
484484 −25.8921 −1.17691
485485 −19.4310 −0.882318
486486 0.661473 0.0300050
487487 31.4999 1.42740 0.713699 0.700452i 0.247018π-0.247018\pi
0.713699 + 0.700452i 0.247018π0.247018\pi
488488 24.8470 1.12477
489489 23.9501 1.08306
490490 −1.55635 −0.0703087
491491 −3.17369 −0.143227 −0.0716133 0.997432i 0.522815π-0.522815\pi
−0.0716133 + 0.997432i 0.522815π0.522815\pi
492492 9.52342 0.429349
493493 0 0
494494 10.6777 0.480412
495495 12.3545 0.555293
496496 −0.312825 −0.0140463
497497 −1.54424 −0.0692686
498498 −5.35326 −0.239885
499499 −10.0220 −0.448648 −0.224324 0.974515i 0.572017π-0.572017\pi
−0.224324 + 0.974515i 0.572017π0.572017\pi
500500 16.4110 0.733920
501501 −25.1742 −1.12470
502502 −1.33924 −0.0597734
503503 32.6493 1.45576 0.727881 0.685703i 0.240505π-0.240505\pi
0.727881 + 0.685703i 0.240505π0.240505\pi
504504 2.35647 0.104965
505505 29.0842 1.29423
506506 −2.09639 −0.0931960
507507 −7.23686 −0.321400
508508 23.1544 1.02731
509509 −6.78115 −0.300569 −0.150285 0.988643i 0.548019π-0.548019\pi
−0.150285 + 0.988643i 0.548019π0.548019\pi
510510 0 0
511511 9.89000 0.437508
512512 −16.3850 −0.724123
513513 −3.58834 −0.158429
514514 12.9487 0.571142
515515 8.19137 0.360955
516516 15.5256 0.683476
517517 −32.3530 −1.42289
518518 −5.06487 −0.222538
519519 −11.1650 −0.490088
520520 −24.9418 −1.09377
521521 13.5823 0.595052 0.297526 0.954714i 0.403839π-0.403839\pi
0.297526 + 0.954714i 0.403839π0.403839\pi
522522 −3.80746 −0.166648
523523 43.7951 1.91502 0.957512 0.288392i 0.0931207π-0.0931207\pi
0.957512 + 0.288392i 0.0931207π0.0931207\pi
524524 14.2785 0.623761
525525 −0.535927 −0.0233898
526526 15.5020 0.675919
527527 0 0
528528 −8.22373 −0.357892
529529 −22.6357 −0.984161
530530 14.7538 0.640863
531531 −1.92313 −0.0834568
532532 −5.60662 −0.243078
533533 −27.4193 −1.18766
534534 8.13869 0.352195
535535 10.9331 0.472681
536536 −17.6089 −0.760589
537537 2.39571 0.103383
538538 −5.29425 −0.228251
539539 5.25085 0.226170
540540 3.67623 0.158200
541541 −1.88211 −0.0809180 −0.0404590 0.999181i 0.512882π-0.512882\pi
−0.0404590 + 0.999181i 0.512882π0.512882\pi
542542 −16.2714 −0.698915
543543 19.6381 0.842752
544544 0 0
545545 −32.7822 −1.40424
546546 −2.97566 −0.127347
547547 −18.0180 −0.770394 −0.385197 0.922834i 0.625866π-0.625866\pi
−0.385197 + 0.922834i 0.625866π0.625866\pi
548548 11.7733 0.502932
549549 10.5442 0.450015
550550 −1.86143 −0.0793716
551551 20.6546 0.879918
552552 −1.42230 −0.0605373
553553 10.4711 0.445275
554554 −17.7041 −0.752177
555555 −18.0157 −0.764725
556556 0.806077 0.0341853
557557 19.5144 0.826851 0.413426 0.910538i 0.364332π-0.364332\pi
0.413426 + 0.910538i 0.364332π0.364332\pi
558558 0.132122 0.00559316
559559 −44.7005 −1.89063
560560 3.68497 0.155719
561561 0 0
562562 −16.0723 −0.677970
563563 −32.4814 −1.36893 −0.684465 0.729046i 0.739964π-0.739964\pi
−0.684465 + 0.729046i 0.739964π0.739964\pi
564564 −9.62704 −0.405372
565565 −23.2534 −0.978278
566566 6.06357 0.254871
567567 1.00000 0.0419961
568568 −3.63894 −0.152687
569569 −32.6889 −1.37039 −0.685194 0.728361i 0.740283π-0.740283\pi
−0.685194 + 0.728361i 0.740283π0.740283\pi
570570 5.58471 0.233918
571571 −19.6459 −0.822157 −0.411079 0.911600i 0.634848π-0.634848\pi
−0.411079 + 0.911600i 0.634848π0.634848\pi
572572 36.9070 1.54316
573573 5.22705 0.218363
574574 −4.03178 −0.168283
575575 0.323472 0.0134897
576576 0.670404 0.0279335
577577 −22.6080 −0.941182 −0.470591 0.882351i 0.655959π-0.655959\pi
−0.470591 + 0.882351i 0.655959π0.655959\pi
578578 0 0
579579 21.6970 0.901696
580580 −21.1605 −0.878643
581581 −8.09294 −0.335752
582582 −5.46277 −0.226439
583583 −49.7767 −2.06154
584584 23.3055 0.964387
585585 −10.5844 −0.437612
586586 1.45324 0.0600330
587587 1.89079 0.0780414 0.0390207 0.999238i 0.487576π-0.487576\pi
0.0390207 + 0.999238i 0.487576π0.487576\pi
588588 1.56245 0.0644345
589589 −0.716731 −0.0295324
590590 2.99306 0.123222
591591 6.69620 0.275445
592592 11.9921 0.492873
593593 33.0067 1.35542 0.677711 0.735329i 0.262972π-0.262972\pi
0.677711 + 0.735329i 0.262972π0.262972\pi
594594 3.47329 0.142511
595595 0 0
596596 3.51470 0.143968
597597 −6.71661 −0.274892
598598 1.79603 0.0734453
599599 12.9658 0.529767 0.264884 0.964280i 0.414666π-0.414666\pi
0.264884 + 0.964280i 0.414666π0.414666\pi
600600 −1.26289 −0.0515574
601601 34.7211 1.41630 0.708152 0.706060i 0.249529π-0.249529\pi
0.708152 + 0.706060i 0.249529π0.249529\pi
602602 −6.57283 −0.267889
603603 −7.47259 −0.304307
604604 15.7877 0.642392
605605 38.9901 1.58517
606606 8.17663 0.332153
607607 −20.3530 −0.826104 −0.413052 0.910708i 0.635537π-0.635537\pi
−0.413052 + 0.910708i 0.635537π0.635537\pi
608608 −20.6291 −0.836619
609609 −5.75604 −0.233247
610610 −16.4104 −0.664439
611611 27.7177 1.12134
612612 0 0
613613 34.0233 1.37419 0.687095 0.726568i 0.258886π-0.258886\pi
0.687095 + 0.726568i 0.258886π0.258886\pi
614614 −13.9496 −0.562960
615615 −14.3410 −0.578287
616616 12.3734 0.498540
617617 29.5230 1.18855 0.594276 0.804261i 0.297439π-0.297439\pi
0.594276 + 0.804261i 0.297439π0.297439\pi
618618 2.30289 0.0926358
619619 −6.20342 −0.249337 −0.124668 0.992198i 0.539787π-0.539787\pi
−0.124668 + 0.992198i 0.539787π0.539787\pi
620620 0.734285 0.0294896
621621 −0.603575 −0.0242206
622622 −7.46055 −0.299141
623623 12.3039 0.492945
624624 7.04548 0.282045
625625 −27.3924 −1.09570
626626 −13.1823 −0.526870
627627 −18.8418 −0.752471
628628 −36.9744 −1.47544
629629 0 0
630630 −1.55635 −0.0620064
631631 5.22637 0.208059 0.104029 0.994574i 0.466826π-0.466826\pi
0.104029 + 0.994574i 0.466826π0.466826\pi
632632 24.6747 0.981506
633633 −13.1733 −0.523592
634634 20.1822 0.801539
635635 −34.8676 −1.38368
636636 −14.8117 −0.587320
637637 −4.49854 −0.178239
638638 −19.9924 −0.791507
639639 −1.54424 −0.0610891
640640 26.0093 1.02811
641641 22.9866 0.907917 0.453958 0.891023i 0.350011π-0.350011\pi
0.453958 + 0.891023i 0.350011π0.350011\pi
642642 3.07370 0.121309
643643 −3.61099 −0.142404 −0.0712018 0.997462i 0.522683π-0.522683\pi
−0.0712018 + 0.997462i 0.522683π0.522683\pi
644644 −0.943058 −0.0371617
645645 −23.3795 −0.920568
646646 0 0
647647 7.56712 0.297494 0.148747 0.988875i 0.452476π-0.452476\pi
0.148747 + 0.988875i 0.452476π0.452476\pi
648648 2.35647 0.0925707
649649 −10.0981 −0.396384
650650 1.59474 0.0625507
651651 0.199739 0.00782838
652652 37.4210 1.46552
653653 16.6225 0.650487 0.325243 0.945630i 0.394554π-0.394554\pi
0.325243 + 0.945630i 0.394554π0.394554\pi
654654 −9.21627 −0.360384
655655 −21.5016 −0.840139
656656 9.54607 0.372711
657657 9.89000 0.385846
658658 4.07566 0.158886
659659 20.8412 0.811859 0.405929 0.913904i 0.366948π-0.366948\pi
0.405929 + 0.913904i 0.366948π0.366948\pi
660660 19.3033 0.751380
661661 −8.01914 −0.311908 −0.155954 0.987764i 0.549845π-0.549845\pi
−0.155954 + 0.987764i 0.549845π0.549845\pi
662662 −16.4044 −0.637574
663663 0 0
664664 −19.0707 −0.740088
665665 8.44285 0.327400
666666 −5.06487 −0.196260
667667 3.47420 0.134522
668668 −39.3335 −1.52186
669669 −12.0749 −0.466843
670670 11.6300 0.449305
671671 55.3659 2.13738
672672 5.74891 0.221769
673673 2.90453 0.111962 0.0559808 0.998432i 0.482171π-0.482171\pi
0.0559808 + 0.998432i 0.482171π0.482171\pi
674674 −5.77834 −0.222573
675675 −0.535927 −0.0206278
676676 −11.3073 −0.434894
677677 −15.1204 −0.581124 −0.290562 0.956856i 0.593842π-0.593842\pi
−0.290562 + 0.956856i 0.593842π0.593842\pi
678678 −6.53737 −0.251066
679679 −8.25850 −0.316932
680680 0 0
681681 −9.96214 −0.381750
682682 0.693751 0.0265651
683683 −20.5579 −0.786625 −0.393313 0.919405i 0.628671π-0.628671\pi
−0.393313 + 0.919405i 0.628671π0.628671\pi
684684 −5.60662 −0.214374
685685 −17.7291 −0.677395
686686 −0.661473 −0.0252551
687687 −0.341524 −0.0130300
688688 15.5625 0.593315
689689 42.6450 1.62464
690690 0.939374 0.0357613
691691 −14.9243 −0.567748 −0.283874 0.958862i 0.591620π-0.591620\pi
−0.283874 + 0.958862i 0.591620π0.591620\pi
692692 −17.4447 −0.663150
693693 5.25085 0.199463
694694 −5.28628 −0.200665
695695 −1.21385 −0.0460439
696696 −13.5639 −0.514139
697697 0 0
698698 13.3745 0.506234
699699 15.8961 0.601245
700700 −0.837361 −0.0316493
701701 −42.2529 −1.59587 −0.797936 0.602743i 0.794075π-0.794075\pi
−0.797936 + 0.602743i 0.794075π0.794075\pi
702702 −2.97566 −0.112309
703703 27.4758 1.03627
704704 3.52019 0.132672
705705 14.4971 0.545992
706706 0.240607 0.00905535
707707 12.3613 0.464893
708708 −3.00480 −0.112927
709709 −41.7973 −1.56973 −0.784865 0.619667i 0.787268π-0.787268\pi
−0.784865 + 0.619667i 0.787268π0.787268\pi
710710 2.40337 0.0901970
711711 10.4711 0.392695
712712 28.9937 1.08658
713713 −0.120557 −0.00451491
714714 0 0
715715 −55.5771 −2.07847
716716 3.74319 0.139890
717717 1.16131 0.0433698
718718 −17.4135 −0.649867
719719 26.1251 0.974303 0.487152 0.873317i 0.338036π-0.338036\pi
0.487152 + 0.873317i 0.338036π0.338036\pi
720720 3.68497 0.137331
721721 3.48146 0.129656
722722 4.05073 0.150752
723723 −9.12543 −0.339379
724724 30.6836 1.14035
725725 3.08482 0.114567
726726 10.9615 0.406820
727727 18.5323 0.687325 0.343663 0.939093i 0.388332π-0.388332\pi
0.343663 + 0.939093i 0.388332π0.388332\pi
728728 −10.6007 −0.392886
729729 1.00000 0.0370370
730730 −15.3923 −0.569695
731731 0 0
732732 16.4748 0.608927
733733 −42.9060 −1.58477 −0.792385 0.610021i 0.791161π-0.791161\pi
−0.792385 + 0.610021i 0.791161π0.791161\pi
734734 −6.54564 −0.241604
735735 −2.35286 −0.0867864
736736 −3.46990 −0.127902
737737 −39.2374 −1.44533
738738 −4.03178 −0.148412
739739 19.1622 0.704893 0.352446 0.935832i 0.385350π-0.385350\pi
0.352446 + 0.935832i 0.385350π0.385350\pi
740740 −28.1487 −1.03477
741741 16.1423 0.593002
742742 6.27059 0.230200
743743 28.6338 1.05047 0.525236 0.850956i 0.323977π-0.323977\pi
0.525236 + 0.850956i 0.323977π0.323977\pi
744744 0.470677 0.0172559
745745 −5.29269 −0.193909
746746 −8.54340 −0.312796
747747 −8.09294 −0.296105
748748 0 0
749749 4.64675 0.169789
750750 −6.94766 −0.253693
751751 −9.25310 −0.337650 −0.168825 0.985646i 0.553997π-0.553997\pi
−0.168825 + 0.985646i 0.553997π0.553997\pi
752752 −9.64994 −0.351897
753753 −2.02464 −0.0737820
754754 17.1280 0.623766
755755 −23.7742 −0.865233
756756 1.56245 0.0568259
757757 30.7343 1.11706 0.558529 0.829485i 0.311366π-0.311366\pi
0.558529 + 0.829485i 0.311366π0.311366\pi
758758 10.5267 0.382348
759759 −3.16928 −0.115038
760760 19.8953 0.721678
761761 −2.54666 −0.0923164 −0.0461582 0.998934i 0.514698π-0.514698\pi
−0.0461582 + 0.998934i 0.514698π0.514698\pi
762762 −9.80254 −0.355109
763763 −13.9330 −0.504407
764764 8.16703 0.295473
765765 0 0
766766 −12.6886 −0.458459
767767 8.65128 0.312380
768768 8.65297 0.312237
769769 −8.31448 −0.299828 −0.149914 0.988699i 0.547900π-0.547900\pi
−0.149914 + 0.988699i 0.547900π0.547900\pi
770770 −8.17215 −0.294504
771771 19.5756 0.704996
772772 33.9005 1.22011
773773 −37.8279 −1.36058 −0.680288 0.732945i 0.738145π-0.738145\pi
−0.680288 + 0.732945i 0.738145π0.738145\pi
774774 −6.57283 −0.236256
775775 −0.107045 −0.00384518
776776 −19.4609 −0.698604
777777 −7.65696 −0.274692
778778 −16.2713 −0.583353
779779 21.8715 0.783629
780780 −16.5377 −0.592143
781781 −8.10856 −0.290147
782782 0 0
783783 −5.75604 −0.205704
784784 1.56617 0.0559347
785785 55.6788 1.98726
786786 −6.04489 −0.215614
787787 45.1711 1.61018 0.805088 0.593155i 0.202118π-0.202118\pi
0.805088 + 0.593155i 0.202118π0.202118\pi
788788 10.4625 0.372712
789789 23.4356 0.834329
790790 −16.2966 −0.579808
791791 −9.88305 −0.351401
792792 12.3734 0.439671
793793 −47.4335 −1.68441
794794 14.7725 0.524257
795795 22.3044 0.791057
796796 −10.4944 −0.371964
797797 −6.59399 −0.233571 −0.116786 0.993157i 0.537259π-0.537259\pi
−0.116786 + 0.993157i 0.537259π0.537259\pi
798798 2.37359 0.0840242
799799 0 0
800800 −3.08099 −0.108930
801801 12.3039 0.434737
802802 −17.0939 −0.603605
803803 51.9309 1.83260
804804 −11.6756 −0.411766
805805 1.42012 0.0500528
806806 −0.594355 −0.0209352
807807 −8.00374 −0.281745
808808 29.1289 1.02475
809809 40.7345 1.43215 0.716075 0.698024i 0.245937π-0.245937\pi
0.716075 + 0.698024i 0.245937π0.245937\pi
810810 −1.55635 −0.0546845
811811 −17.5707 −0.616991 −0.308496 0.951226i 0.599825π-0.599825\pi
−0.308496 + 0.951226i 0.599825π0.599825\pi
812812 −8.99355 −0.315612
813813 −24.5987 −0.862714
814814 −26.5949 −0.932149
815815 −56.3512 −1.97390
816816 0 0
817817 35.6562 1.24745
818818 −10.4256 −0.364521
819819 −4.49854 −0.157192
820820 −22.4072 −0.782494
821821 3.39184 0.118376 0.0591880 0.998247i 0.481149π-0.481149\pi
0.0591880 + 0.998247i 0.481149π0.481149\pi
822822 −4.98430 −0.173847
823823 25.3479 0.883574 0.441787 0.897120i 0.354345π-0.354345\pi
0.441787 + 0.897120i 0.354345π0.354345\pi
824824 8.20394 0.285798
825825 −2.81407 −0.0979733
826826 1.27210 0.0442620
827827 8.39886 0.292057 0.146029 0.989280i 0.453351π-0.453351\pi
0.146029 + 0.989280i 0.453351π0.453351\pi
828828 −0.943058 −0.0327735
829829 −0.720245 −0.0250151 −0.0125076 0.999922i 0.503981π-0.503981\pi
−0.0125076 + 0.999922i 0.503981π0.503981\pi
830830 12.5954 0.437194
831831 −26.7647 −0.928458
832832 −3.01584 −0.104555
833833 0 0
834834 −0.341257 −0.0118168
835835 59.2311 2.04978
836836 −29.4395 −1.01819
837837 0.199739 0.00690398
838838 −8.87716 −0.306656
839839 −44.7395 −1.54458 −0.772289 0.635271i 0.780888π-0.780888\pi
−0.772289 + 0.635271i 0.780888π0.780888\pi
840840 −5.54442 −0.191301
841841 4.13202 0.142484
842842 −6.79724 −0.234248
843843 −24.2978 −0.836860
844844 −20.5827 −0.708486
845845 17.0273 0.585756
846846 4.07566 0.140124
847847 16.5714 0.569400
848848 −14.8469 −0.509844
849849 9.16677 0.314603
850850 0 0
851851 4.62155 0.158425
852852 −2.41280 −0.0826612
853853 6.86208 0.234953 0.117477 0.993076i 0.462519π-0.462519\pi
0.117477 + 0.993076i 0.462519π0.462519\pi
854854 −6.97469 −0.238669
855855 8.44285 0.288739
856856 10.9499 0.374260
857857 −20.6553 −0.705573 −0.352787 0.935704i 0.614766π-0.614766\pi
−0.352787 + 0.935704i 0.614766π0.614766\pi
858858 −15.6247 −0.533420
859859 5.76996 0.196868 0.0984342 0.995144i 0.468617π-0.468617\pi
0.0984342 + 0.995144i 0.468617π0.468617\pi
860860 −36.5294 −1.24564
861861 −6.09517 −0.207723
862862 −19.0568 −0.649077
863863 −45.6981 −1.55558 −0.777790 0.628524i 0.783659π-0.783659\pi
−0.777790 + 0.628524i 0.783659π0.783659\pi
864864 5.74891 0.195582
865865 26.2696 0.893191
866866 16.8532 0.572696
867867 0 0
868868 0.312083 0.0105928
869869 54.9819 1.86513
870870 8.95841 0.303719
871871 33.6158 1.13903
872872 −32.8325 −1.11185
873873 −8.25850 −0.279508
874874 −1.43264 −0.0484598
875875 −10.5033 −0.355077
876876 15.4527 0.522098
877877 −5.89643 −0.199108 −0.0995541 0.995032i 0.531742π-0.531742\pi
−0.0995541 + 0.995032i 0.531742π0.531742\pi
878878 22.4086 0.756252
879879 2.19698 0.0741024
880880 19.3492 0.652263
881881 −28.3117 −0.953846 −0.476923 0.878945i 0.658248π-0.658248\pi
−0.476923 + 0.878945i 0.658248π0.658248\pi
882882 −0.661473 −0.0222729
883883 −39.7453 −1.33754 −0.668768 0.743471i 0.733178π-0.733178\pi
−0.668768 + 0.743471i 0.733178π0.733178\pi
884884 0 0
885885 4.52485 0.152101
886886 7.04875 0.236807
887887 12.7691 0.428746 0.214373 0.976752i 0.431229π-0.431229\pi
0.214373 + 0.976752i 0.431229π0.431229\pi
888888 −18.0434 −0.605496
889889 −14.8193 −0.497022
890890 −19.1491 −0.641881
891891 5.25085 0.175910
892892 −18.8665 −0.631697
893893 −22.1095 −0.739867
894894 −1.48797 −0.0497651
895895 −5.63677 −0.188416
896896 11.0544 0.369300
897897 2.71521 0.0906581
898898 27.2514 0.909392
899899 −1.14970 −0.0383448
900900 −0.837361 −0.0279120
901901 0 0
902902 −21.1703 −0.704893
903903 −9.93667 −0.330672
904904 −23.2891 −0.774583
905905 −46.2056 −1.53593
906906 −6.68379 −0.222054
907907 12.4016 0.411787 0.205894 0.978574i 0.433990π-0.433990\pi
0.205894 + 0.978574i 0.433990π0.433990\pi
908908 −15.5654 −0.516556
909909 12.3613 0.409997
910910 7.00130 0.232091
911911 5.75035 0.190517 0.0952587 0.995453i 0.469632π-0.469632\pi
0.0952587 + 0.995453i 0.469632π0.469632\pi
912912 −5.61996 −0.186095
913913 −42.4948 −1.40637
914914 −27.8927 −0.922610
915915 −24.8090 −0.820159
916916 −0.533616 −0.0176312
917917 −9.13853 −0.301781
918918 0 0
919919 −42.2895 −1.39500 −0.697500 0.716585i 0.745704π-0.745704\pi
−0.697500 + 0.716585i 0.745704π0.745704\pi
920920 3.34648 0.110330
921921 −21.0887 −0.694897
922922 −5.35029 −0.176202
923923 6.94682 0.228657
924924 8.20421 0.269899
925925 4.10357 0.134925
926926 20.5938 0.676754
927927 3.48146 0.114346
928928 −33.0910 −1.08626
929929 11.7820 0.386556 0.193278 0.981144i 0.438088π-0.438088\pi
0.193278 + 0.981144i 0.438088π0.438088\pi
930930 −0.310863 −0.0101936
931931 3.58834 0.117603
932932 24.8369 0.813559
933933 −11.2787 −0.369248
934934 −4.89457 −0.160155
935935 0 0
936936 −10.6007 −0.346493
937937 39.3993 1.28712 0.643560 0.765396i 0.277457π-0.277457\pi
0.643560 + 0.765396i 0.277457π0.277457\pi
938938 4.94291 0.161392
939939 −19.9287 −0.650348
940940 22.6510 0.738795
941941 −1.70550 −0.0555977 −0.0277989 0.999614i 0.508850π-0.508850\pi
−0.0277989 + 0.999614i 0.508850π0.508850\pi
942942 15.6533 0.510012
943943 3.67889 0.119801
944944 −3.01195 −0.0980307
945945 −2.35286 −0.0765384
946946 −34.5129 −1.12211
947947 38.3272 1.24547 0.622733 0.782434i 0.286022π-0.286022\pi
0.622733 + 0.782434i 0.286022π0.286022\pi
948948 16.3605 0.531366
949949 −44.4906 −1.44423
950950 −1.27207 −0.0412714
951951 30.5111 0.989390
952952 0 0
953953 −43.5262 −1.40995 −0.704975 0.709232i 0.749042π-0.749042\pi
−0.704975 + 0.709232i 0.749042π0.749042\pi
954954 6.27059 0.203018
955955 −12.2985 −0.397970
956956 1.81449 0.0586848
957957 −30.2241 −0.977006
958958 −17.9353 −0.579463
959959 −7.53516 −0.243323
960960 −1.57736 −0.0509092
961961 −30.9601 −0.998713
962962 22.7845 0.734602
963963 4.64675 0.149739
964964 −14.2581 −0.459222
965965 −51.0498 −1.64335
966966 0.399248 0.0128456
967967 9.46568 0.304396 0.152198 0.988350i 0.451365π-0.451365\pi
0.152198 + 0.988350i 0.451365π0.451365\pi
968968 39.0499 1.25511
969969 0 0
970970 12.8531 0.412688
971971 −1.89708 −0.0608801 −0.0304400 0.999537i 0.509691π-0.509691\pi
−0.0304400 + 0.999537i 0.509691π0.509691\pi
972972 1.56245 0.0501157
973973 −0.515904 −0.0165391
974974 −20.8363 −0.667639
975975 2.41089 0.0772102
976976 16.5140 0.528600
977977 13.9325 0.445739 0.222869 0.974848i 0.428458π-0.428458\pi
0.222869 + 0.974848i 0.428458π0.428458\pi
978978 −15.8424 −0.506583
979979 64.6059 2.06481
980980 −3.67623 −0.117433
981981 −13.9330 −0.444845
982982 2.09931 0.0669917
983983 −25.4582 −0.811991 −0.405995 0.913875i 0.633075π-0.633075\pi
−0.405995 + 0.913875i 0.633075π0.633075\pi
984984 −14.3630 −0.457877
985985 −15.7552 −0.502002
986986 0 0
987987 6.16149 0.196122
988988 25.2216 0.802406
989989 5.99752 0.190710
990990 −8.17215 −0.259728
991991 −30.2935 −0.962305 −0.481152 0.876637i 0.659782π-0.659782\pi
−0.481152 + 0.876637i 0.659782π0.659782\pi
992992 1.14828 0.0364579
993993 −24.7998 −0.786997
994994 1.02147 0.0323991
995995 15.8032 0.500995
996996 −12.6448 −0.400667
997997 29.7213 0.941282 0.470641 0.882325i 0.344023π-0.344023\pi
0.470641 + 0.882325i 0.344023π0.344023\pi
998998 6.62931 0.209847
999999 −7.65696 −0.242256
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6069.2.a.bd.1.4 10
17.2 even 8 357.2.k.b.106.4 yes 20
17.9 even 8 357.2.k.b.64.7 20
17.16 even 2 6069.2.a.be.1.4 10
51.2 odd 8 1071.2.n.b.820.7 20
51.26 odd 8 1071.2.n.b.64.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.k.b.64.7 20 17.9 even 8
357.2.k.b.106.4 yes 20 17.2 even 8
1071.2.n.b.64.4 20 51.26 odd 8
1071.2.n.b.820.7 20 51.2 odd 8
6069.2.a.bd.1.4 10 1.1 even 1 trivial
6069.2.a.be.1.4 10 17.16 even 2