Properties

Label 6069.2.a.bd.1.4
Level $6069$
Weight $2$
Character 6069.1
Self dual yes
Analytic conductor $48.461$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6069,2,Mod(1,6069)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6069, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6069.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6069 = 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6069.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.4612089867\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 4x^{9} - 8x^{8} + 44x^{7} + 5x^{6} - 144x^{5} + 48x^{4} + 160x^{3} - 44x^{2} - 64x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 357)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.661473\) of defining polynomial
Character \(\chi\) \(=\) 6069.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.661473 q^{2} -1.00000 q^{3} -1.56245 q^{4} +2.35286 q^{5} +0.661473 q^{6} +1.00000 q^{7} +2.35647 q^{8} +1.00000 q^{9} -1.55635 q^{10} +5.25085 q^{11} +1.56245 q^{12} -4.49854 q^{13} -0.661473 q^{14} -2.35286 q^{15} +1.56617 q^{16} -0.661473 q^{18} +3.58834 q^{19} -3.67623 q^{20} -1.00000 q^{21} -3.47329 q^{22} +0.603575 q^{23} -2.35647 q^{24} +0.535927 q^{25} +2.97566 q^{26} -1.00000 q^{27} -1.56245 q^{28} +5.75604 q^{29} +1.55635 q^{30} -0.199739 q^{31} -5.74891 q^{32} -5.25085 q^{33} +2.35286 q^{35} -1.56245 q^{36} +7.65696 q^{37} -2.37359 q^{38} +4.49854 q^{39} +5.54442 q^{40} +6.09517 q^{41} +0.661473 q^{42} +9.93667 q^{43} -8.20421 q^{44} +2.35286 q^{45} -0.399248 q^{46} -6.16149 q^{47} -1.56617 q^{48} +1.00000 q^{49} -0.354501 q^{50} +7.02876 q^{52} -9.47974 q^{53} +0.661473 q^{54} +12.3545 q^{55} +2.35647 q^{56} -3.58834 q^{57} -3.80746 q^{58} -1.92313 q^{59} +3.67623 q^{60} +10.5442 q^{61} +0.132122 q^{62} +1.00000 q^{63} +0.670404 q^{64} -10.5844 q^{65} +3.47329 q^{66} -7.47259 q^{67} -0.603575 q^{69} -1.55635 q^{70} -1.54424 q^{71} +2.35647 q^{72} +9.89000 q^{73} -5.06487 q^{74} -0.535927 q^{75} -5.60662 q^{76} +5.25085 q^{77} -2.97566 q^{78} +10.4711 q^{79} +3.68497 q^{80} +1.00000 q^{81} -4.03178 q^{82} -8.09294 q^{83} +1.56245 q^{84} -6.57283 q^{86} -5.75604 q^{87} +12.3734 q^{88} +12.3039 q^{89} -1.55635 q^{90} -4.49854 q^{91} -0.943058 q^{92} +0.199739 q^{93} +4.07566 q^{94} +8.44285 q^{95} +5.74891 q^{96} -8.25850 q^{97} -0.661473 q^{98} +5.25085 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 4 q^{2} - 10 q^{3} + 12 q^{4} + 6 q^{5} - 4 q^{6} + 10 q^{7} + 12 q^{8} + 10 q^{9} + 2 q^{11} - 12 q^{12} + 6 q^{13} + 4 q^{14} - 6 q^{15} + 20 q^{16} + 4 q^{18} + 6 q^{19} + 16 q^{20} - 10 q^{21}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.661473 −0.467732 −0.233866 0.972269i \(-0.575138\pi\)
−0.233866 + 0.972269i \(0.575138\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.56245 −0.781227
\(5\) 2.35286 1.05223 0.526114 0.850414i \(-0.323648\pi\)
0.526114 + 0.850414i \(0.323648\pi\)
\(6\) 0.661473 0.270045
\(7\) 1.00000 0.377964
\(8\) 2.35647 0.833136
\(9\) 1.00000 0.333333
\(10\) −1.55635 −0.492161
\(11\) 5.25085 1.58319 0.791595 0.611046i \(-0.209251\pi\)
0.791595 + 0.611046i \(0.209251\pi\)
\(12\) 1.56245 0.451042
\(13\) −4.49854 −1.24767 −0.623835 0.781556i \(-0.714426\pi\)
−0.623835 + 0.781556i \(0.714426\pi\)
\(14\) −0.661473 −0.176786
\(15\) −2.35286 −0.607505
\(16\) 1.56617 0.391543
\(17\) 0 0
\(18\) −0.661473 −0.155911
\(19\) 3.58834 0.823222 0.411611 0.911360i \(-0.364966\pi\)
0.411611 + 0.911360i \(0.364966\pi\)
\(20\) −3.67623 −0.822030
\(21\) −1.00000 −0.218218
\(22\) −3.47329 −0.740508
\(23\) 0.603575 0.125854 0.0629271 0.998018i \(-0.479956\pi\)
0.0629271 + 0.998018i \(0.479956\pi\)
\(24\) −2.35647 −0.481012
\(25\) 0.535927 0.107185
\(26\) 2.97566 0.583575
\(27\) −1.00000 −0.192450
\(28\) −1.56245 −0.295276
\(29\) 5.75604 1.06887 0.534435 0.845210i \(-0.320524\pi\)
0.534435 + 0.845210i \(0.320524\pi\)
\(30\) 1.55635 0.284149
\(31\) −0.199739 −0.0358741 −0.0179371 0.999839i \(-0.505710\pi\)
−0.0179371 + 0.999839i \(0.505710\pi\)
\(32\) −5.74891 −1.01627
\(33\) −5.25085 −0.914055
\(34\) 0 0
\(35\) 2.35286 0.397705
\(36\) −1.56245 −0.260409
\(37\) 7.65696 1.25880 0.629398 0.777083i \(-0.283301\pi\)
0.629398 + 0.777083i \(0.283301\pi\)
\(38\) −2.37359 −0.385047
\(39\) 4.49854 0.720343
\(40\) 5.54442 0.876650
\(41\) 6.09517 0.951905 0.475952 0.879471i \(-0.342103\pi\)
0.475952 + 0.879471i \(0.342103\pi\)
\(42\) 0.661473 0.102067
\(43\) 9.93667 1.51533 0.757664 0.652645i \(-0.226341\pi\)
0.757664 + 0.652645i \(0.226341\pi\)
\(44\) −8.20421 −1.23683
\(45\) 2.35286 0.350743
\(46\) −0.399248 −0.0588660
\(47\) −6.16149 −0.898745 −0.449373 0.893344i \(-0.648352\pi\)
−0.449373 + 0.893344i \(0.648352\pi\)
\(48\) −1.56617 −0.226057
\(49\) 1.00000 0.142857
\(50\) −0.354501 −0.0501340
\(51\) 0 0
\(52\) 7.02876 0.974714
\(53\) −9.47974 −1.30214 −0.651071 0.759017i \(-0.725680\pi\)
−0.651071 + 0.759017i \(0.725680\pi\)
\(54\) 0.661473 0.0900150
\(55\) 12.3545 1.66588
\(56\) 2.35647 0.314896
\(57\) −3.58834 −0.475288
\(58\) −3.80746 −0.499945
\(59\) −1.92313 −0.250370 −0.125185 0.992133i \(-0.539952\pi\)
−0.125185 + 0.992133i \(0.539952\pi\)
\(60\) 3.67623 0.474599
\(61\) 10.5442 1.35005 0.675023 0.737797i \(-0.264134\pi\)
0.675023 + 0.737797i \(0.264134\pi\)
\(62\) 0.132122 0.0167795
\(63\) 1.00000 0.125988
\(64\) 0.670404 0.0838006
\(65\) −10.5844 −1.31283
\(66\) 3.47329 0.427533
\(67\) −7.47259 −0.912922 −0.456461 0.889743i \(-0.650883\pi\)
−0.456461 + 0.889743i \(0.650883\pi\)
\(68\) 0 0
\(69\) −0.603575 −0.0726619
\(70\) −1.55635 −0.186019
\(71\) −1.54424 −0.183267 −0.0916337 0.995793i \(-0.529209\pi\)
−0.0916337 + 0.995793i \(0.529209\pi\)
\(72\) 2.35647 0.277712
\(73\) 9.89000 1.15754 0.578769 0.815492i \(-0.303533\pi\)
0.578769 + 0.815492i \(0.303533\pi\)
\(74\) −5.06487 −0.588779
\(75\) −0.535927 −0.0618835
\(76\) −5.60662 −0.643123
\(77\) 5.25085 0.598390
\(78\) −2.97566 −0.336927
\(79\) 10.4711 1.17809 0.589043 0.808102i \(-0.299505\pi\)
0.589043 + 0.808102i \(0.299505\pi\)
\(80\) 3.68497 0.411993
\(81\) 1.00000 0.111111
\(82\) −4.03178 −0.445236
\(83\) −8.09294 −0.888316 −0.444158 0.895949i \(-0.646497\pi\)
−0.444158 + 0.895949i \(0.646497\pi\)
\(84\) 1.56245 0.170478
\(85\) 0 0
\(86\) −6.57283 −0.708767
\(87\) −5.75604 −0.617113
\(88\) 12.3734 1.31901
\(89\) 12.3039 1.30421 0.652105 0.758129i \(-0.273886\pi\)
0.652105 + 0.758129i \(0.273886\pi\)
\(90\) −1.55635 −0.164054
\(91\) −4.49854 −0.471575
\(92\) −0.943058 −0.0983206
\(93\) 0.199739 0.0207119
\(94\) 4.07566 0.420372
\(95\) 8.44285 0.866218
\(96\) 5.74891 0.586746
\(97\) −8.25850 −0.838523 −0.419262 0.907865i \(-0.637711\pi\)
−0.419262 + 0.907865i \(0.637711\pi\)
\(98\) −0.661473 −0.0668188
\(99\) 5.25085 0.527730
\(100\) −0.837361 −0.0837361
\(101\) 12.3613 1.22999 0.614995 0.788531i \(-0.289158\pi\)
0.614995 + 0.788531i \(0.289158\pi\)
\(102\) 0 0
\(103\) 3.48146 0.343039 0.171519 0.985181i \(-0.445132\pi\)
0.171519 + 0.985181i \(0.445132\pi\)
\(104\) −10.6007 −1.03948
\(105\) −2.35286 −0.229615
\(106\) 6.27059 0.609053
\(107\) 4.64675 0.449218 0.224609 0.974449i \(-0.427889\pi\)
0.224609 + 0.974449i \(0.427889\pi\)
\(108\) 1.56245 0.150347
\(109\) −13.9330 −1.33453 −0.667267 0.744818i \(-0.732536\pi\)
−0.667267 + 0.744818i \(0.732536\pi\)
\(110\) −8.17215 −0.779184
\(111\) −7.65696 −0.726767
\(112\) 1.56617 0.147989
\(113\) −9.88305 −0.929719 −0.464860 0.885384i \(-0.653895\pi\)
−0.464860 + 0.885384i \(0.653895\pi\)
\(114\) 2.37359 0.222307
\(115\) 1.42012 0.132427
\(116\) −8.99355 −0.835030
\(117\) −4.49854 −0.415890
\(118\) 1.27210 0.117106
\(119\) 0 0
\(120\) −5.54442 −0.506134
\(121\) 16.5714 1.50649
\(122\) −6.97469 −0.631459
\(123\) −6.09517 −0.549583
\(124\) 0.312083 0.0280258
\(125\) −10.5033 −0.939445
\(126\) −0.661473 −0.0589287
\(127\) −14.8193 −1.31500 −0.657499 0.753456i \(-0.728386\pi\)
−0.657499 + 0.753456i \(0.728386\pi\)
\(128\) 11.0544 0.977077
\(129\) −9.93667 −0.874875
\(130\) 7.00130 0.614054
\(131\) −9.13853 −0.798437 −0.399219 0.916856i \(-0.630719\pi\)
−0.399219 + 0.916856i \(0.630719\pi\)
\(132\) 8.20421 0.714085
\(133\) 3.58834 0.311149
\(134\) 4.94291 0.427003
\(135\) −2.35286 −0.202502
\(136\) 0 0
\(137\) −7.53516 −0.643772 −0.321886 0.946778i \(-0.604317\pi\)
−0.321886 + 0.946778i \(0.604317\pi\)
\(138\) 0.399248 0.0339863
\(139\) −0.515904 −0.0437584 −0.0218792 0.999761i \(-0.506965\pi\)
−0.0218792 + 0.999761i \(0.506965\pi\)
\(140\) −3.67623 −0.310698
\(141\) 6.16149 0.518891
\(142\) 1.02147 0.0857200
\(143\) −23.6211 −1.97530
\(144\) 1.56617 0.130514
\(145\) 13.5431 1.12470
\(146\) −6.54197 −0.541417
\(147\) −1.00000 −0.0824786
\(148\) −11.9637 −0.983406
\(149\) −2.24948 −0.184284 −0.0921422 0.995746i \(-0.529371\pi\)
−0.0921422 + 0.995746i \(0.529371\pi\)
\(150\) 0.354501 0.0289449
\(151\) −10.1044 −0.822286 −0.411143 0.911571i \(-0.634870\pi\)
−0.411143 + 0.911571i \(0.634870\pi\)
\(152\) 8.45580 0.685856
\(153\) 0 0
\(154\) −3.47329 −0.279886
\(155\) −0.469956 −0.0377478
\(156\) −7.02876 −0.562751
\(157\) 23.6643 1.88862 0.944310 0.329058i \(-0.106731\pi\)
0.944310 + 0.329058i \(0.106731\pi\)
\(158\) −6.92631 −0.551028
\(159\) 9.47974 0.751792
\(160\) −13.5264 −1.06935
\(161\) 0.603575 0.0475684
\(162\) −0.661473 −0.0519702
\(163\) −23.9501 −1.87592 −0.937960 0.346743i \(-0.887288\pi\)
−0.937960 + 0.346743i \(0.887288\pi\)
\(164\) −9.52342 −0.743654
\(165\) −12.3545 −0.961795
\(166\) 5.35326 0.415493
\(167\) 25.1742 1.94803 0.974017 0.226474i \(-0.0727197\pi\)
0.974017 + 0.226474i \(0.0727197\pi\)
\(168\) −2.35647 −0.181805
\(169\) 7.23686 0.556681
\(170\) 0 0
\(171\) 3.58834 0.274407
\(172\) −15.5256 −1.18381
\(173\) 11.1650 0.848857 0.424428 0.905462i \(-0.360475\pi\)
0.424428 + 0.905462i \(0.360475\pi\)
\(174\) 3.80746 0.288643
\(175\) 0.535927 0.0405123
\(176\) 8.22373 0.619887
\(177\) 1.92313 0.144551
\(178\) −8.13869 −0.610020
\(179\) −2.39571 −0.179064 −0.0895320 0.995984i \(-0.528537\pi\)
−0.0895320 + 0.995984i \(0.528537\pi\)
\(180\) −3.67623 −0.274010
\(181\) −19.6381 −1.45969 −0.729845 0.683613i \(-0.760408\pi\)
−0.729845 + 0.683613i \(0.760408\pi\)
\(182\) 2.97566 0.220571
\(183\) −10.5442 −0.779449
\(184\) 1.42230 0.104854
\(185\) 18.0157 1.32454
\(186\) −0.132122 −0.00968763
\(187\) 0 0
\(188\) 9.62704 0.702124
\(189\) −1.00000 −0.0727393
\(190\) −5.58471 −0.405158
\(191\) −5.22705 −0.378216 −0.189108 0.981956i \(-0.560560\pi\)
−0.189108 + 0.981956i \(0.560560\pi\)
\(192\) −0.670404 −0.0483823
\(193\) −21.6970 −1.56178 −0.780891 0.624667i \(-0.785235\pi\)
−0.780891 + 0.624667i \(0.785235\pi\)
\(194\) 5.46277 0.392204
\(195\) 10.5844 0.757965
\(196\) −1.56245 −0.111604
\(197\) −6.69620 −0.477085 −0.238542 0.971132i \(-0.576670\pi\)
−0.238542 + 0.971132i \(0.576670\pi\)
\(198\) −3.47329 −0.246836
\(199\) 6.71661 0.476128 0.238064 0.971250i \(-0.423487\pi\)
0.238064 + 0.971250i \(0.423487\pi\)
\(200\) 1.26289 0.0893000
\(201\) 7.47259 0.527076
\(202\) −8.17663 −0.575306
\(203\) 5.75604 0.403995
\(204\) 0 0
\(205\) 14.3410 1.00162
\(206\) −2.30289 −0.160450
\(207\) 0.603575 0.0419514
\(208\) −7.04548 −0.488516
\(209\) 18.8418 1.30332
\(210\) 1.55635 0.107398
\(211\) 13.1733 0.906889 0.453444 0.891285i \(-0.350195\pi\)
0.453444 + 0.891285i \(0.350195\pi\)
\(212\) 14.8117 1.01727
\(213\) 1.54424 0.105809
\(214\) −3.07370 −0.210114
\(215\) 23.3795 1.59447
\(216\) −2.35647 −0.160337
\(217\) −0.199739 −0.0135591
\(218\) 9.21627 0.624204
\(219\) −9.89000 −0.668305
\(220\) −19.3033 −1.30143
\(221\) 0 0
\(222\) 5.06487 0.339932
\(223\) 12.0749 0.808596 0.404298 0.914627i \(-0.367516\pi\)
0.404298 + 0.914627i \(0.367516\pi\)
\(224\) −5.74891 −0.384115
\(225\) 0.535927 0.0357285
\(226\) 6.53737 0.434859
\(227\) 9.96214 0.661211 0.330605 0.943769i \(-0.392747\pi\)
0.330605 + 0.943769i \(0.392747\pi\)
\(228\) 5.60662 0.371307
\(229\) 0.341524 0.0225685 0.0112843 0.999936i \(-0.496408\pi\)
0.0112843 + 0.999936i \(0.496408\pi\)
\(230\) −0.939374 −0.0619405
\(231\) −5.25085 −0.345480
\(232\) 13.5639 0.890515
\(233\) −15.8961 −1.04139 −0.520693 0.853744i \(-0.674326\pi\)
−0.520693 + 0.853744i \(0.674326\pi\)
\(234\) 2.97566 0.194525
\(235\) −14.4971 −0.945686
\(236\) 3.00480 0.195596
\(237\) −10.4711 −0.680168
\(238\) 0 0
\(239\) −1.16131 −0.0751187 −0.0375594 0.999294i \(-0.511958\pi\)
−0.0375594 + 0.999294i \(0.511958\pi\)
\(240\) −3.68497 −0.237864
\(241\) 9.12543 0.587821 0.293910 0.955833i \(-0.405043\pi\)
0.293910 + 0.955833i \(0.405043\pi\)
\(242\) −10.9615 −0.704634
\(243\) −1.00000 −0.0641500
\(244\) −16.4748 −1.05469
\(245\) 2.35286 0.150318
\(246\) 4.03178 0.257057
\(247\) −16.1423 −1.02711
\(248\) −0.470677 −0.0298880
\(249\) 8.09294 0.512869
\(250\) 6.94766 0.439408
\(251\) 2.02464 0.127794 0.0638970 0.997956i \(-0.479647\pi\)
0.0638970 + 0.997956i \(0.479647\pi\)
\(252\) −1.56245 −0.0984254
\(253\) 3.16928 0.199251
\(254\) 9.80254 0.615066
\(255\) 0 0
\(256\) −8.65297 −0.540811
\(257\) −19.5756 −1.22109 −0.610545 0.791982i \(-0.709049\pi\)
−0.610545 + 0.791982i \(0.709049\pi\)
\(258\) 6.57283 0.409207
\(259\) 7.65696 0.475780
\(260\) 16.5377 1.02562
\(261\) 5.75604 0.356290
\(262\) 6.04489 0.373454
\(263\) −23.4356 −1.44510 −0.722550 0.691319i \(-0.757030\pi\)
−0.722550 + 0.691319i \(0.757030\pi\)
\(264\) −12.3734 −0.761533
\(265\) −22.3044 −1.37015
\(266\) −2.37359 −0.145534
\(267\) −12.3039 −0.752986
\(268\) 11.6756 0.713200
\(269\) 8.00374 0.487997 0.243998 0.969776i \(-0.421541\pi\)
0.243998 + 0.969776i \(0.421541\pi\)
\(270\) 1.55635 0.0947164
\(271\) 24.5987 1.49427 0.747133 0.664675i \(-0.231430\pi\)
0.747133 + 0.664675i \(0.231430\pi\)
\(272\) 0 0
\(273\) 4.49854 0.272264
\(274\) 4.98430 0.301112
\(275\) 2.81407 0.169695
\(276\) 0.943058 0.0567654
\(277\) 26.7647 1.60814 0.804069 0.594536i \(-0.202664\pi\)
0.804069 + 0.594536i \(0.202664\pi\)
\(278\) 0.341257 0.0204672
\(279\) −0.199739 −0.0119580
\(280\) 5.54442 0.331343
\(281\) 24.2978 1.44948 0.724742 0.689020i \(-0.241959\pi\)
0.724742 + 0.689020i \(0.241959\pi\)
\(282\) −4.07566 −0.242702
\(283\) −9.16677 −0.544908 −0.272454 0.962169i \(-0.587835\pi\)
−0.272454 + 0.962169i \(0.587835\pi\)
\(284\) 2.41280 0.143173
\(285\) −8.44285 −0.500111
\(286\) 15.6247 0.923910
\(287\) 6.09517 0.359786
\(288\) −5.74891 −0.338758
\(289\) 0 0
\(290\) −8.95841 −0.526056
\(291\) 8.25850 0.484122
\(292\) −15.4527 −0.904300
\(293\) −2.19698 −0.128349 −0.0641746 0.997939i \(-0.520441\pi\)
−0.0641746 + 0.997939i \(0.520441\pi\)
\(294\) 0.661473 0.0385779
\(295\) −4.52485 −0.263447
\(296\) 18.0434 1.04875
\(297\) −5.25085 −0.304685
\(298\) 1.48797 0.0861956
\(299\) −2.71521 −0.157024
\(300\) 0.837361 0.0483451
\(301\) 9.93667 0.572740
\(302\) 6.68379 0.384609
\(303\) −12.3613 −0.710136
\(304\) 5.61996 0.322327
\(305\) 24.8090 1.42056
\(306\) 0 0
\(307\) 21.0887 1.20360 0.601798 0.798648i \(-0.294451\pi\)
0.601798 + 0.798648i \(0.294451\pi\)
\(308\) −8.20421 −0.467478
\(309\) −3.48146 −0.198053
\(310\) 0.310863 0.0176558
\(311\) 11.2787 0.639556 0.319778 0.947492i \(-0.396392\pi\)
0.319778 + 0.947492i \(0.396392\pi\)
\(312\) 10.6007 0.600144
\(313\) 19.9287 1.12644 0.563218 0.826308i \(-0.309563\pi\)
0.563218 + 0.826308i \(0.309563\pi\)
\(314\) −15.6533 −0.883367
\(315\) 2.35286 0.132568
\(316\) −16.3605 −0.920352
\(317\) −30.5111 −1.71367 −0.856837 0.515588i \(-0.827574\pi\)
−0.856837 + 0.515588i \(0.827574\pi\)
\(318\) −6.27059 −0.351637
\(319\) 30.2241 1.69222
\(320\) 1.57736 0.0881774
\(321\) −4.64675 −0.259356
\(322\) −0.399248 −0.0222492
\(323\) 0 0
\(324\) −1.56245 −0.0868030
\(325\) −2.41089 −0.133732
\(326\) 15.8424 0.877427
\(327\) 13.9330 0.770494
\(328\) 14.3630 0.793067
\(329\) −6.16149 −0.339694
\(330\) 8.17215 0.449862
\(331\) 24.7998 1.36312 0.681560 0.731763i \(-0.261302\pi\)
0.681560 + 0.731763i \(0.261302\pi\)
\(332\) 12.6448 0.693976
\(333\) 7.65696 0.419599
\(334\) −16.6520 −0.911158
\(335\) −17.5819 −0.960603
\(336\) −1.56617 −0.0854416
\(337\) 8.73557 0.475857 0.237928 0.971283i \(-0.423532\pi\)
0.237928 + 0.971283i \(0.423532\pi\)
\(338\) −4.78698 −0.260378
\(339\) 9.88305 0.536774
\(340\) 0 0
\(341\) −1.04880 −0.0567956
\(342\) −2.37359 −0.128349
\(343\) 1.00000 0.0539949
\(344\) 23.4154 1.26247
\(345\) −1.42012 −0.0764570
\(346\) −7.38532 −0.397037
\(347\) 7.99169 0.429016 0.214508 0.976722i \(-0.431185\pi\)
0.214508 + 0.976722i \(0.431185\pi\)
\(348\) 8.99355 0.482105
\(349\) −20.2193 −1.08232 −0.541158 0.840921i \(-0.682014\pi\)
−0.541158 + 0.840921i \(0.682014\pi\)
\(350\) −0.354501 −0.0189489
\(351\) 4.49854 0.240114
\(352\) −30.1867 −1.60895
\(353\) −0.363744 −0.0193601 −0.00968007 0.999953i \(-0.503081\pi\)
−0.00968007 + 0.999953i \(0.503081\pi\)
\(354\) −1.27210 −0.0676113
\(355\) −3.63337 −0.192839
\(356\) −19.2243 −1.01888
\(357\) 0 0
\(358\) 1.58470 0.0837539
\(359\) 26.3254 1.38940 0.694701 0.719299i \(-0.255537\pi\)
0.694701 + 0.719299i \(0.255537\pi\)
\(360\) 5.54442 0.292217
\(361\) −6.12380 −0.322305
\(362\) 12.9901 0.682743
\(363\) −16.5714 −0.869773
\(364\) 7.02876 0.368407
\(365\) 23.2697 1.21799
\(366\) 6.97469 0.364573
\(367\) 9.89556 0.516544 0.258272 0.966072i \(-0.416847\pi\)
0.258272 + 0.966072i \(0.416847\pi\)
\(368\) 0.945302 0.0492773
\(369\) 6.09517 0.317302
\(370\) −11.9169 −0.619530
\(371\) −9.47974 −0.492163
\(372\) −0.312083 −0.0161807
\(373\) 12.9157 0.668751 0.334376 0.942440i \(-0.391475\pi\)
0.334376 + 0.942440i \(0.391475\pi\)
\(374\) 0 0
\(375\) 10.5033 0.542389
\(376\) −14.5193 −0.748778
\(377\) −25.8938 −1.33360
\(378\) 0.661473 0.0340225
\(379\) −15.9141 −0.817452 −0.408726 0.912657i \(-0.634027\pi\)
−0.408726 + 0.912657i \(0.634027\pi\)
\(380\) −13.1916 −0.676713
\(381\) 14.8193 0.759214
\(382\) 3.45755 0.176904
\(383\) 19.1824 0.980176 0.490088 0.871673i \(-0.336965\pi\)
0.490088 + 0.871673i \(0.336965\pi\)
\(384\) −11.0544 −0.564116
\(385\) 12.3545 0.629643
\(386\) 14.3520 0.730495
\(387\) 9.93667 0.505109
\(388\) 12.9035 0.655077
\(389\) 24.5986 1.24720 0.623598 0.781745i \(-0.285670\pi\)
0.623598 + 0.781745i \(0.285670\pi\)
\(390\) −7.00130 −0.354524
\(391\) 0 0
\(392\) 2.35647 0.119019
\(393\) 9.13853 0.460978
\(394\) 4.42936 0.223148
\(395\) 24.6369 1.23962
\(396\) −8.20421 −0.412277
\(397\) −22.3328 −1.12085 −0.560425 0.828205i \(-0.689362\pi\)
−0.560425 + 0.828205i \(0.689362\pi\)
\(398\) −4.44285 −0.222700
\(399\) −3.58834 −0.179642
\(400\) 0.839353 0.0419676
\(401\) 25.8421 1.29049 0.645247 0.763974i \(-0.276754\pi\)
0.645247 + 0.763974i \(0.276754\pi\)
\(402\) −4.94291 −0.246530
\(403\) 0.898533 0.0447591
\(404\) −19.3139 −0.960902
\(405\) 2.35286 0.116914
\(406\) −3.80746 −0.188961
\(407\) 40.2055 1.99291
\(408\) 0 0
\(409\) 15.7611 0.779339 0.389669 0.920955i \(-0.372589\pi\)
0.389669 + 0.920955i \(0.372589\pi\)
\(410\) −9.48620 −0.468490
\(411\) 7.53516 0.371682
\(412\) −5.43962 −0.267991
\(413\) −1.92313 −0.0946311
\(414\) −0.399248 −0.0196220
\(415\) −19.0415 −0.934711
\(416\) 25.8617 1.26797
\(417\) 0.515904 0.0252640
\(418\) −12.4634 −0.609603
\(419\) 13.4203 0.655624 0.327812 0.944743i \(-0.393689\pi\)
0.327812 + 0.944743i \(0.393689\pi\)
\(420\) 3.67623 0.179382
\(421\) 10.2759 0.500818 0.250409 0.968140i \(-0.419435\pi\)
0.250409 + 0.968140i \(0.419435\pi\)
\(422\) −8.71379 −0.424181
\(423\) −6.16149 −0.299582
\(424\) −22.3387 −1.08486
\(425\) 0 0
\(426\) −1.02147 −0.0494904
\(427\) 10.5442 0.510269
\(428\) −7.26034 −0.350942
\(429\) 23.6211 1.14044
\(430\) −15.4649 −0.745785
\(431\) 28.8097 1.38771 0.693856 0.720114i \(-0.255910\pi\)
0.693856 + 0.720114i \(0.255910\pi\)
\(432\) −1.56617 −0.0753524
\(433\) −25.4783 −1.22441 −0.612205 0.790699i \(-0.709717\pi\)
−0.612205 + 0.790699i \(0.709717\pi\)
\(434\) 0.132122 0.00634204
\(435\) −13.5431 −0.649344
\(436\) 21.7696 1.04257
\(437\) 2.16583 0.103606
\(438\) 6.54197 0.312587
\(439\) −33.8768 −1.61685 −0.808425 0.588599i \(-0.799680\pi\)
−0.808425 + 0.588599i \(0.799680\pi\)
\(440\) 29.1129 1.38790
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −10.6561 −0.506289 −0.253144 0.967429i \(-0.581465\pi\)
−0.253144 + 0.967429i \(0.581465\pi\)
\(444\) 11.9637 0.567770
\(445\) 28.9493 1.37233
\(446\) −7.98722 −0.378206
\(447\) 2.24948 0.106397
\(448\) 0.670404 0.0316736
\(449\) −41.1981 −1.94426 −0.972130 0.234444i \(-0.924673\pi\)
−0.972130 + 0.234444i \(0.924673\pi\)
\(450\) −0.354501 −0.0167113
\(451\) 32.0048 1.50705
\(452\) 15.4418 0.726322
\(453\) 10.1044 0.474747
\(454\) −6.58968 −0.309269
\(455\) −10.5844 −0.496205
\(456\) −8.45580 −0.395979
\(457\) 42.1677 1.97252 0.986260 0.165202i \(-0.0528275\pi\)
0.986260 + 0.165202i \(0.0528275\pi\)
\(458\) −0.225909 −0.0105560
\(459\) 0 0
\(460\) −2.21888 −0.103456
\(461\) 8.08845 0.376717 0.188358 0.982100i \(-0.439683\pi\)
0.188358 + 0.982100i \(0.439683\pi\)
\(462\) 3.47329 0.161592
\(463\) −31.1333 −1.44688 −0.723442 0.690385i \(-0.757441\pi\)
−0.723442 + 0.690385i \(0.757441\pi\)
\(464\) 9.01495 0.418508
\(465\) 0.469956 0.0217937
\(466\) 10.5148 0.487089
\(467\) 7.39951 0.342408 0.171204 0.985236i \(-0.445234\pi\)
0.171204 + 0.985236i \(0.445234\pi\)
\(468\) 7.02876 0.324905
\(469\) −7.47259 −0.345052
\(470\) 9.58943 0.442327
\(471\) −23.6643 −1.09040
\(472\) −4.53179 −0.208593
\(473\) 52.1759 2.39905
\(474\) 6.92631 0.318136
\(475\) 1.92309 0.0882374
\(476\) 0 0
\(477\) −9.47974 −0.434047
\(478\) 0.768173 0.0351354
\(479\) 27.1142 1.23888 0.619439 0.785045i \(-0.287360\pi\)
0.619439 + 0.785045i \(0.287360\pi\)
\(480\) 13.5264 0.617391
\(481\) −34.4451 −1.57056
\(482\) −6.03622 −0.274942
\(483\) −0.603575 −0.0274636
\(484\) −25.8921 −1.17691
\(485\) −19.4310 −0.882318
\(486\) 0.661473 0.0300050
\(487\) 31.4999 1.42740 0.713699 0.700452i \(-0.247018\pi\)
0.713699 + 0.700452i \(0.247018\pi\)
\(488\) 24.8470 1.12477
\(489\) 23.9501 1.08306
\(490\) −1.55635 −0.0703087
\(491\) −3.17369 −0.143227 −0.0716133 0.997432i \(-0.522815\pi\)
−0.0716133 + 0.997432i \(0.522815\pi\)
\(492\) 9.52342 0.429349
\(493\) 0 0
\(494\) 10.6777 0.480412
\(495\) 12.3545 0.555293
\(496\) −0.312825 −0.0140463
\(497\) −1.54424 −0.0692686
\(498\) −5.35326 −0.239885
\(499\) −10.0220 −0.448648 −0.224324 0.974515i \(-0.572017\pi\)
−0.224324 + 0.974515i \(0.572017\pi\)
\(500\) 16.4110 0.733920
\(501\) −25.1742 −1.12470
\(502\) −1.33924 −0.0597734
\(503\) 32.6493 1.45576 0.727881 0.685703i \(-0.240505\pi\)
0.727881 + 0.685703i \(0.240505\pi\)
\(504\) 2.35647 0.104965
\(505\) 29.0842 1.29423
\(506\) −2.09639 −0.0931960
\(507\) −7.23686 −0.321400
\(508\) 23.1544 1.02731
\(509\) −6.78115 −0.300569 −0.150285 0.988643i \(-0.548019\pi\)
−0.150285 + 0.988643i \(0.548019\pi\)
\(510\) 0 0
\(511\) 9.89000 0.437508
\(512\) −16.3850 −0.724123
\(513\) −3.58834 −0.158429
\(514\) 12.9487 0.571142
\(515\) 8.19137 0.360955
\(516\) 15.5256 0.683476
\(517\) −32.3530 −1.42289
\(518\) −5.06487 −0.222538
\(519\) −11.1650 −0.490088
\(520\) −24.9418 −1.09377
\(521\) 13.5823 0.595052 0.297526 0.954714i \(-0.403839\pi\)
0.297526 + 0.954714i \(0.403839\pi\)
\(522\) −3.80746 −0.166648
\(523\) 43.7951 1.91502 0.957512 0.288392i \(-0.0931207\pi\)
0.957512 + 0.288392i \(0.0931207\pi\)
\(524\) 14.2785 0.623761
\(525\) −0.535927 −0.0233898
\(526\) 15.5020 0.675919
\(527\) 0 0
\(528\) −8.22373 −0.357892
\(529\) −22.6357 −0.984161
\(530\) 14.7538 0.640863
\(531\) −1.92313 −0.0834568
\(532\) −5.60662 −0.243078
\(533\) −27.4193 −1.18766
\(534\) 8.13869 0.352195
\(535\) 10.9331 0.472681
\(536\) −17.6089 −0.760589
\(537\) 2.39571 0.103383
\(538\) −5.29425 −0.228251
\(539\) 5.25085 0.226170
\(540\) 3.67623 0.158200
\(541\) −1.88211 −0.0809180 −0.0404590 0.999181i \(-0.512882\pi\)
−0.0404590 + 0.999181i \(0.512882\pi\)
\(542\) −16.2714 −0.698915
\(543\) 19.6381 0.842752
\(544\) 0 0
\(545\) −32.7822 −1.40424
\(546\) −2.97566 −0.127347
\(547\) −18.0180 −0.770394 −0.385197 0.922834i \(-0.625866\pi\)
−0.385197 + 0.922834i \(0.625866\pi\)
\(548\) 11.7733 0.502932
\(549\) 10.5442 0.450015
\(550\) −1.86143 −0.0793716
\(551\) 20.6546 0.879918
\(552\) −1.42230 −0.0605373
\(553\) 10.4711 0.445275
\(554\) −17.7041 −0.752177
\(555\) −18.0157 −0.764725
\(556\) 0.806077 0.0341853
\(557\) 19.5144 0.826851 0.413426 0.910538i \(-0.364332\pi\)
0.413426 + 0.910538i \(0.364332\pi\)
\(558\) 0.132122 0.00559316
\(559\) −44.7005 −1.89063
\(560\) 3.68497 0.155719
\(561\) 0 0
\(562\) −16.0723 −0.677970
\(563\) −32.4814 −1.36893 −0.684465 0.729046i \(-0.739964\pi\)
−0.684465 + 0.729046i \(0.739964\pi\)
\(564\) −9.62704 −0.405372
\(565\) −23.2534 −0.978278
\(566\) 6.06357 0.254871
\(567\) 1.00000 0.0419961
\(568\) −3.63894 −0.152687
\(569\) −32.6889 −1.37039 −0.685194 0.728361i \(-0.740283\pi\)
−0.685194 + 0.728361i \(0.740283\pi\)
\(570\) 5.58471 0.233918
\(571\) −19.6459 −0.822157 −0.411079 0.911600i \(-0.634848\pi\)
−0.411079 + 0.911600i \(0.634848\pi\)
\(572\) 36.9070 1.54316
\(573\) 5.22705 0.218363
\(574\) −4.03178 −0.168283
\(575\) 0.323472 0.0134897
\(576\) 0.670404 0.0279335
\(577\) −22.6080 −0.941182 −0.470591 0.882351i \(-0.655959\pi\)
−0.470591 + 0.882351i \(0.655959\pi\)
\(578\) 0 0
\(579\) 21.6970 0.901696
\(580\) −21.1605 −0.878643
\(581\) −8.09294 −0.335752
\(582\) −5.46277 −0.226439
\(583\) −49.7767 −2.06154
\(584\) 23.3055 0.964387
\(585\) −10.5844 −0.437612
\(586\) 1.45324 0.0600330
\(587\) 1.89079 0.0780414 0.0390207 0.999238i \(-0.487576\pi\)
0.0390207 + 0.999238i \(0.487576\pi\)
\(588\) 1.56245 0.0644345
\(589\) −0.716731 −0.0295324
\(590\) 2.99306 0.123222
\(591\) 6.69620 0.275445
\(592\) 11.9921 0.492873
\(593\) 33.0067 1.35542 0.677711 0.735329i \(-0.262972\pi\)
0.677711 + 0.735329i \(0.262972\pi\)
\(594\) 3.47329 0.142511
\(595\) 0 0
\(596\) 3.51470 0.143968
\(597\) −6.71661 −0.274892
\(598\) 1.79603 0.0734453
\(599\) 12.9658 0.529767 0.264884 0.964280i \(-0.414666\pi\)
0.264884 + 0.964280i \(0.414666\pi\)
\(600\) −1.26289 −0.0515574
\(601\) 34.7211 1.41630 0.708152 0.706060i \(-0.249529\pi\)
0.708152 + 0.706060i \(0.249529\pi\)
\(602\) −6.57283 −0.267889
\(603\) −7.47259 −0.304307
\(604\) 15.7877 0.642392
\(605\) 38.9901 1.58517
\(606\) 8.17663 0.332153
\(607\) −20.3530 −0.826104 −0.413052 0.910708i \(-0.635537\pi\)
−0.413052 + 0.910708i \(0.635537\pi\)
\(608\) −20.6291 −0.836619
\(609\) −5.75604 −0.233247
\(610\) −16.4104 −0.664439
\(611\) 27.7177 1.12134
\(612\) 0 0
\(613\) 34.0233 1.37419 0.687095 0.726568i \(-0.258886\pi\)
0.687095 + 0.726568i \(0.258886\pi\)
\(614\) −13.9496 −0.562960
\(615\) −14.3410 −0.578287
\(616\) 12.3734 0.498540
\(617\) 29.5230 1.18855 0.594276 0.804261i \(-0.297439\pi\)
0.594276 + 0.804261i \(0.297439\pi\)
\(618\) 2.30289 0.0926358
\(619\) −6.20342 −0.249337 −0.124668 0.992198i \(-0.539787\pi\)
−0.124668 + 0.992198i \(0.539787\pi\)
\(620\) 0.734285 0.0294896
\(621\) −0.603575 −0.0242206
\(622\) −7.46055 −0.299141
\(623\) 12.3039 0.492945
\(624\) 7.04548 0.282045
\(625\) −27.3924 −1.09570
\(626\) −13.1823 −0.526870
\(627\) −18.8418 −0.752471
\(628\) −36.9744 −1.47544
\(629\) 0 0
\(630\) −1.55635 −0.0620064
\(631\) 5.22637 0.208059 0.104029 0.994574i \(-0.466826\pi\)
0.104029 + 0.994574i \(0.466826\pi\)
\(632\) 24.6747 0.981506
\(633\) −13.1733 −0.523592
\(634\) 20.1822 0.801539
\(635\) −34.8676 −1.38368
\(636\) −14.8117 −0.587320
\(637\) −4.49854 −0.178239
\(638\) −19.9924 −0.791507
\(639\) −1.54424 −0.0610891
\(640\) 26.0093 1.02811
\(641\) 22.9866 0.907917 0.453958 0.891023i \(-0.350011\pi\)
0.453958 + 0.891023i \(0.350011\pi\)
\(642\) 3.07370 0.121309
\(643\) −3.61099 −0.142404 −0.0712018 0.997462i \(-0.522683\pi\)
−0.0712018 + 0.997462i \(0.522683\pi\)
\(644\) −0.943058 −0.0371617
\(645\) −23.3795 −0.920568
\(646\) 0 0
\(647\) 7.56712 0.297494 0.148747 0.988875i \(-0.452476\pi\)
0.148747 + 0.988875i \(0.452476\pi\)
\(648\) 2.35647 0.0925707
\(649\) −10.0981 −0.396384
\(650\) 1.59474 0.0625507
\(651\) 0.199739 0.00782838
\(652\) 37.4210 1.46552
\(653\) 16.6225 0.650487 0.325243 0.945630i \(-0.394554\pi\)
0.325243 + 0.945630i \(0.394554\pi\)
\(654\) −9.21627 −0.360384
\(655\) −21.5016 −0.840139
\(656\) 9.54607 0.372711
\(657\) 9.89000 0.385846
\(658\) 4.07566 0.158886
\(659\) 20.8412 0.811859 0.405929 0.913904i \(-0.366948\pi\)
0.405929 + 0.913904i \(0.366948\pi\)
\(660\) 19.3033 0.751380
\(661\) −8.01914 −0.311908 −0.155954 0.987764i \(-0.549845\pi\)
−0.155954 + 0.987764i \(0.549845\pi\)
\(662\) −16.4044 −0.637574
\(663\) 0 0
\(664\) −19.0707 −0.740088
\(665\) 8.44285 0.327400
\(666\) −5.06487 −0.196260
\(667\) 3.47420 0.134522
\(668\) −39.3335 −1.52186
\(669\) −12.0749 −0.466843
\(670\) 11.6300 0.449305
\(671\) 55.3659 2.13738
\(672\) 5.74891 0.221769
\(673\) 2.90453 0.111962 0.0559808 0.998432i \(-0.482171\pi\)
0.0559808 + 0.998432i \(0.482171\pi\)
\(674\) −5.77834 −0.222573
\(675\) −0.535927 −0.0206278
\(676\) −11.3073 −0.434894
\(677\) −15.1204 −0.581124 −0.290562 0.956856i \(-0.593842\pi\)
−0.290562 + 0.956856i \(0.593842\pi\)
\(678\) −6.53737 −0.251066
\(679\) −8.25850 −0.316932
\(680\) 0 0
\(681\) −9.96214 −0.381750
\(682\) 0.693751 0.0265651
\(683\) −20.5579 −0.786625 −0.393313 0.919405i \(-0.628671\pi\)
−0.393313 + 0.919405i \(0.628671\pi\)
\(684\) −5.60662 −0.214374
\(685\) −17.7291 −0.677395
\(686\) −0.661473 −0.0252551
\(687\) −0.341524 −0.0130300
\(688\) 15.5625 0.593315
\(689\) 42.6450 1.62464
\(690\) 0.939374 0.0357613
\(691\) −14.9243 −0.567748 −0.283874 0.958862i \(-0.591620\pi\)
−0.283874 + 0.958862i \(0.591620\pi\)
\(692\) −17.4447 −0.663150
\(693\) 5.25085 0.199463
\(694\) −5.28628 −0.200665
\(695\) −1.21385 −0.0460439
\(696\) −13.5639 −0.514139
\(697\) 0 0
\(698\) 13.3745 0.506234
\(699\) 15.8961 0.601245
\(700\) −0.837361 −0.0316493
\(701\) −42.2529 −1.59587 −0.797936 0.602743i \(-0.794075\pi\)
−0.797936 + 0.602743i \(0.794075\pi\)
\(702\) −2.97566 −0.112309
\(703\) 27.4758 1.03627
\(704\) 3.52019 0.132672
\(705\) 14.4971 0.545992
\(706\) 0.240607 0.00905535
\(707\) 12.3613 0.464893
\(708\) −3.00480 −0.112927
\(709\) −41.7973 −1.56973 −0.784865 0.619667i \(-0.787268\pi\)
−0.784865 + 0.619667i \(0.787268\pi\)
\(710\) 2.40337 0.0901970
\(711\) 10.4711 0.392695
\(712\) 28.9937 1.08658
\(713\) −0.120557 −0.00451491
\(714\) 0 0
\(715\) −55.5771 −2.07847
\(716\) 3.74319 0.139890
\(717\) 1.16131 0.0433698
\(718\) −17.4135 −0.649867
\(719\) 26.1251 0.974303 0.487152 0.873317i \(-0.338036\pi\)
0.487152 + 0.873317i \(0.338036\pi\)
\(720\) 3.68497 0.137331
\(721\) 3.48146 0.129656
\(722\) 4.05073 0.150752
\(723\) −9.12543 −0.339379
\(724\) 30.6836 1.14035
\(725\) 3.08482 0.114567
\(726\) 10.9615 0.406820
\(727\) 18.5323 0.687325 0.343663 0.939093i \(-0.388332\pi\)
0.343663 + 0.939093i \(0.388332\pi\)
\(728\) −10.6007 −0.392886
\(729\) 1.00000 0.0370370
\(730\) −15.3923 −0.569695
\(731\) 0 0
\(732\) 16.4748 0.608927
\(733\) −42.9060 −1.58477 −0.792385 0.610021i \(-0.791161\pi\)
−0.792385 + 0.610021i \(0.791161\pi\)
\(734\) −6.54564 −0.241604
\(735\) −2.35286 −0.0867864
\(736\) −3.46990 −0.127902
\(737\) −39.2374 −1.44533
\(738\) −4.03178 −0.148412
\(739\) 19.1622 0.704893 0.352446 0.935832i \(-0.385350\pi\)
0.352446 + 0.935832i \(0.385350\pi\)
\(740\) −28.1487 −1.03477
\(741\) 16.1423 0.593002
\(742\) 6.27059 0.230200
\(743\) 28.6338 1.05047 0.525236 0.850956i \(-0.323977\pi\)
0.525236 + 0.850956i \(0.323977\pi\)
\(744\) 0.470677 0.0172559
\(745\) −5.29269 −0.193909
\(746\) −8.54340 −0.312796
\(747\) −8.09294 −0.296105
\(748\) 0 0
\(749\) 4.64675 0.169789
\(750\) −6.94766 −0.253693
\(751\) −9.25310 −0.337650 −0.168825 0.985646i \(-0.553997\pi\)
−0.168825 + 0.985646i \(0.553997\pi\)
\(752\) −9.64994 −0.351897
\(753\) −2.02464 −0.0737820
\(754\) 17.1280 0.623766
\(755\) −23.7742 −0.865233
\(756\) 1.56245 0.0568259
\(757\) 30.7343 1.11706 0.558529 0.829485i \(-0.311366\pi\)
0.558529 + 0.829485i \(0.311366\pi\)
\(758\) 10.5267 0.382348
\(759\) −3.16928 −0.115038
\(760\) 19.8953 0.721678
\(761\) −2.54666 −0.0923164 −0.0461582 0.998934i \(-0.514698\pi\)
−0.0461582 + 0.998934i \(0.514698\pi\)
\(762\) −9.80254 −0.355109
\(763\) −13.9330 −0.504407
\(764\) 8.16703 0.295473
\(765\) 0 0
\(766\) −12.6886 −0.458459
\(767\) 8.65128 0.312380
\(768\) 8.65297 0.312237
\(769\) −8.31448 −0.299828 −0.149914 0.988699i \(-0.547900\pi\)
−0.149914 + 0.988699i \(0.547900\pi\)
\(770\) −8.17215 −0.294504
\(771\) 19.5756 0.704996
\(772\) 33.9005 1.22011
\(773\) −37.8279 −1.36058 −0.680288 0.732945i \(-0.738145\pi\)
−0.680288 + 0.732945i \(0.738145\pi\)
\(774\) −6.57283 −0.236256
\(775\) −0.107045 −0.00384518
\(776\) −19.4609 −0.698604
\(777\) −7.65696 −0.274692
\(778\) −16.2713 −0.583353
\(779\) 21.8715 0.783629
\(780\) −16.5377 −0.592143
\(781\) −8.10856 −0.290147
\(782\) 0 0
\(783\) −5.75604 −0.205704
\(784\) 1.56617 0.0559347
\(785\) 55.6788 1.98726
\(786\) −6.04489 −0.215614
\(787\) 45.1711 1.61018 0.805088 0.593155i \(-0.202118\pi\)
0.805088 + 0.593155i \(0.202118\pi\)
\(788\) 10.4625 0.372712
\(789\) 23.4356 0.834329
\(790\) −16.2966 −0.579808
\(791\) −9.88305 −0.351401
\(792\) 12.3734 0.439671
\(793\) −47.4335 −1.68441
\(794\) 14.7725 0.524257
\(795\) 22.3044 0.791057
\(796\) −10.4944 −0.371964
\(797\) −6.59399 −0.233571 −0.116786 0.993157i \(-0.537259\pi\)
−0.116786 + 0.993157i \(0.537259\pi\)
\(798\) 2.37359 0.0840242
\(799\) 0 0
\(800\) −3.08099 −0.108930
\(801\) 12.3039 0.434737
\(802\) −17.0939 −0.603605
\(803\) 51.9309 1.83260
\(804\) −11.6756 −0.411766
\(805\) 1.42012 0.0500528
\(806\) −0.594355 −0.0209352
\(807\) −8.00374 −0.281745
\(808\) 29.1289 1.02475
\(809\) 40.7345 1.43215 0.716075 0.698024i \(-0.245937\pi\)
0.716075 + 0.698024i \(0.245937\pi\)
\(810\) −1.55635 −0.0546845
\(811\) −17.5707 −0.616991 −0.308496 0.951226i \(-0.599825\pi\)
−0.308496 + 0.951226i \(0.599825\pi\)
\(812\) −8.99355 −0.315612
\(813\) −24.5987 −0.862714
\(814\) −26.5949 −0.932149
\(815\) −56.3512 −1.97390
\(816\) 0 0
\(817\) 35.6562 1.24745
\(818\) −10.4256 −0.364521
\(819\) −4.49854 −0.157192
\(820\) −22.4072 −0.782494
\(821\) 3.39184 0.118376 0.0591880 0.998247i \(-0.481149\pi\)
0.0591880 + 0.998247i \(0.481149\pi\)
\(822\) −4.98430 −0.173847
\(823\) 25.3479 0.883574 0.441787 0.897120i \(-0.354345\pi\)
0.441787 + 0.897120i \(0.354345\pi\)
\(824\) 8.20394 0.285798
\(825\) −2.81407 −0.0979733
\(826\) 1.27210 0.0442620
\(827\) 8.39886 0.292057 0.146029 0.989280i \(-0.453351\pi\)
0.146029 + 0.989280i \(0.453351\pi\)
\(828\) −0.943058 −0.0327735
\(829\) −0.720245 −0.0250151 −0.0125076 0.999922i \(-0.503981\pi\)
−0.0125076 + 0.999922i \(0.503981\pi\)
\(830\) 12.5954 0.437194
\(831\) −26.7647 −0.928458
\(832\) −3.01584 −0.104555
\(833\) 0 0
\(834\) −0.341257 −0.0118168
\(835\) 59.2311 2.04978
\(836\) −29.4395 −1.01819
\(837\) 0.199739 0.00690398
\(838\) −8.87716 −0.306656
\(839\) −44.7395 −1.54458 −0.772289 0.635271i \(-0.780888\pi\)
−0.772289 + 0.635271i \(0.780888\pi\)
\(840\) −5.54442 −0.191301
\(841\) 4.13202 0.142484
\(842\) −6.79724 −0.234248
\(843\) −24.2978 −0.836860
\(844\) −20.5827 −0.708486
\(845\) 17.0273 0.585756
\(846\) 4.07566 0.140124
\(847\) 16.5714 0.569400
\(848\) −14.8469 −0.509844
\(849\) 9.16677 0.314603
\(850\) 0 0
\(851\) 4.62155 0.158425
\(852\) −2.41280 −0.0826612
\(853\) 6.86208 0.234953 0.117477 0.993076i \(-0.462519\pi\)
0.117477 + 0.993076i \(0.462519\pi\)
\(854\) −6.97469 −0.238669
\(855\) 8.44285 0.288739
\(856\) 10.9499 0.374260
\(857\) −20.6553 −0.705573 −0.352787 0.935704i \(-0.614766\pi\)
−0.352787 + 0.935704i \(0.614766\pi\)
\(858\) −15.6247 −0.533420
\(859\) 5.76996 0.196868 0.0984342 0.995144i \(-0.468617\pi\)
0.0984342 + 0.995144i \(0.468617\pi\)
\(860\) −36.5294 −1.24564
\(861\) −6.09517 −0.207723
\(862\) −19.0568 −0.649077
\(863\) −45.6981 −1.55558 −0.777790 0.628524i \(-0.783659\pi\)
−0.777790 + 0.628524i \(0.783659\pi\)
\(864\) 5.74891 0.195582
\(865\) 26.2696 0.893191
\(866\) 16.8532 0.572696
\(867\) 0 0
\(868\) 0.312083 0.0105928
\(869\) 54.9819 1.86513
\(870\) 8.95841 0.303719
\(871\) 33.6158 1.13903
\(872\) −32.8325 −1.11185
\(873\) −8.25850 −0.279508
\(874\) −1.43264 −0.0484598
\(875\) −10.5033 −0.355077
\(876\) 15.4527 0.522098
\(877\) −5.89643 −0.199108 −0.0995541 0.995032i \(-0.531742\pi\)
−0.0995541 + 0.995032i \(0.531742\pi\)
\(878\) 22.4086 0.756252
\(879\) 2.19698 0.0741024
\(880\) 19.3492 0.652263
\(881\) −28.3117 −0.953846 −0.476923 0.878945i \(-0.658248\pi\)
−0.476923 + 0.878945i \(0.658248\pi\)
\(882\) −0.661473 −0.0222729
\(883\) −39.7453 −1.33754 −0.668768 0.743471i \(-0.733178\pi\)
−0.668768 + 0.743471i \(0.733178\pi\)
\(884\) 0 0
\(885\) 4.52485 0.152101
\(886\) 7.04875 0.236807
\(887\) 12.7691 0.428746 0.214373 0.976752i \(-0.431229\pi\)
0.214373 + 0.976752i \(0.431229\pi\)
\(888\) −18.0434 −0.605496
\(889\) −14.8193 −0.497022
\(890\) −19.1491 −0.641881
\(891\) 5.25085 0.175910
\(892\) −18.8665 −0.631697
\(893\) −22.1095 −0.739867
\(894\) −1.48797 −0.0497651
\(895\) −5.63677 −0.188416
\(896\) 11.0544 0.369300
\(897\) 2.71521 0.0906581
\(898\) 27.2514 0.909392
\(899\) −1.14970 −0.0383448
\(900\) −0.837361 −0.0279120
\(901\) 0 0
\(902\) −21.1703 −0.704893
\(903\) −9.93667 −0.330672
\(904\) −23.2891 −0.774583
\(905\) −46.2056 −1.53593
\(906\) −6.68379 −0.222054
\(907\) 12.4016 0.411787 0.205894 0.978574i \(-0.433990\pi\)
0.205894 + 0.978574i \(0.433990\pi\)
\(908\) −15.5654 −0.516556
\(909\) 12.3613 0.409997
\(910\) 7.00130 0.232091
\(911\) 5.75035 0.190517 0.0952587 0.995453i \(-0.469632\pi\)
0.0952587 + 0.995453i \(0.469632\pi\)
\(912\) −5.61996 −0.186095
\(913\) −42.4948 −1.40637
\(914\) −27.8927 −0.922610
\(915\) −24.8090 −0.820159
\(916\) −0.533616 −0.0176312
\(917\) −9.13853 −0.301781
\(918\) 0 0
\(919\) −42.2895 −1.39500 −0.697500 0.716585i \(-0.745704\pi\)
−0.697500 + 0.716585i \(0.745704\pi\)
\(920\) 3.34648 0.110330
\(921\) −21.0887 −0.694897
\(922\) −5.35029 −0.176202
\(923\) 6.94682 0.228657
\(924\) 8.20421 0.269899
\(925\) 4.10357 0.134925
\(926\) 20.5938 0.676754
\(927\) 3.48146 0.114346
\(928\) −33.0910 −1.08626
\(929\) 11.7820 0.386556 0.193278 0.981144i \(-0.438088\pi\)
0.193278 + 0.981144i \(0.438088\pi\)
\(930\) −0.310863 −0.0101936
\(931\) 3.58834 0.117603
\(932\) 24.8369 0.813559
\(933\) −11.2787 −0.369248
\(934\) −4.89457 −0.160155
\(935\) 0 0
\(936\) −10.6007 −0.346493
\(937\) 39.3993 1.28712 0.643560 0.765396i \(-0.277457\pi\)
0.643560 + 0.765396i \(0.277457\pi\)
\(938\) 4.94291 0.161392
\(939\) −19.9287 −0.650348
\(940\) 22.6510 0.738795
\(941\) −1.70550 −0.0555977 −0.0277989 0.999614i \(-0.508850\pi\)
−0.0277989 + 0.999614i \(0.508850\pi\)
\(942\) 15.6533 0.510012
\(943\) 3.67889 0.119801
\(944\) −3.01195 −0.0980307
\(945\) −2.35286 −0.0765384
\(946\) −34.5129 −1.12211
\(947\) 38.3272 1.24547 0.622733 0.782434i \(-0.286022\pi\)
0.622733 + 0.782434i \(0.286022\pi\)
\(948\) 16.3605 0.531366
\(949\) −44.4906 −1.44423
\(950\) −1.27207 −0.0412714
\(951\) 30.5111 0.989390
\(952\) 0 0
\(953\) −43.5262 −1.40995 −0.704975 0.709232i \(-0.749042\pi\)
−0.704975 + 0.709232i \(0.749042\pi\)
\(954\) 6.27059 0.203018
\(955\) −12.2985 −0.397970
\(956\) 1.81449 0.0586848
\(957\) −30.2241 −0.977006
\(958\) −17.9353 −0.579463
\(959\) −7.53516 −0.243323
\(960\) −1.57736 −0.0509092
\(961\) −30.9601 −0.998713
\(962\) 22.7845 0.734602
\(963\) 4.64675 0.149739
\(964\) −14.2581 −0.459222
\(965\) −51.0498 −1.64335
\(966\) 0.399248 0.0128456
\(967\) 9.46568 0.304396 0.152198 0.988350i \(-0.451365\pi\)
0.152198 + 0.988350i \(0.451365\pi\)
\(968\) 39.0499 1.25511
\(969\) 0 0
\(970\) 12.8531 0.412688
\(971\) −1.89708 −0.0608801 −0.0304400 0.999537i \(-0.509691\pi\)
−0.0304400 + 0.999537i \(0.509691\pi\)
\(972\) 1.56245 0.0501157
\(973\) −0.515904 −0.0165391
\(974\) −20.8363 −0.667639
\(975\) 2.41089 0.0772102
\(976\) 16.5140 0.528600
\(977\) 13.9325 0.445739 0.222869 0.974848i \(-0.428458\pi\)
0.222869 + 0.974848i \(0.428458\pi\)
\(978\) −15.8424 −0.506583
\(979\) 64.6059 2.06481
\(980\) −3.67623 −0.117433
\(981\) −13.9330 −0.444845
\(982\) 2.09931 0.0669917
\(983\) −25.4582 −0.811991 −0.405995 0.913875i \(-0.633075\pi\)
−0.405995 + 0.913875i \(0.633075\pi\)
\(984\) −14.3630 −0.457877
\(985\) −15.7552 −0.502002
\(986\) 0 0
\(987\) 6.16149 0.196122
\(988\) 25.2216 0.802406
\(989\) 5.99752 0.190710
\(990\) −8.17215 −0.259728
\(991\) −30.2935 −0.962305 −0.481152 0.876637i \(-0.659782\pi\)
−0.481152 + 0.876637i \(0.659782\pi\)
\(992\) 1.14828 0.0364579
\(993\) −24.7998 −0.786997
\(994\) 1.02147 0.0323991
\(995\) 15.8032 0.500995
\(996\) −12.6448 −0.400667
\(997\) 29.7213 0.941282 0.470641 0.882325i \(-0.344023\pi\)
0.470641 + 0.882325i \(0.344023\pi\)
\(998\) 6.62931 0.209847
\(999\) −7.65696 −0.242256
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6069.2.a.bd.1.4 10
17.2 even 8 357.2.k.b.106.4 yes 20
17.9 even 8 357.2.k.b.64.7 20
17.16 even 2 6069.2.a.be.1.4 10
51.2 odd 8 1071.2.n.b.820.7 20
51.26 odd 8 1071.2.n.b.64.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.k.b.64.7 20 17.9 even 8
357.2.k.b.106.4 yes 20 17.2 even 8
1071.2.n.b.64.4 20 51.26 odd 8
1071.2.n.b.820.7 20 51.2 odd 8
6069.2.a.bd.1.4 10 1.1 even 1 trivial
6069.2.a.be.1.4 10 17.16 even 2