Properties

Label 368.2.m.b.225.1
Level $368$
Weight $2$
Character 368.225
Analytic conductor $2.938$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [368,2,Mod(49,368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(368, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 0, 16]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("368.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 368.m (of order \(11\), degree \(10\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.93849479438\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 46)
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 225.1
Root \(0.654861 + 0.755750i\) of defining polynomial
Character \(\chi\) \(=\) 368.225
Dual form 368.2.m.b.193.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.712591 + 0.822373i) q^{3} +(0.174863 - 1.21620i) q^{5} +(-0.260554 - 0.570534i) q^{7} +(0.258432 + 1.79743i) q^{9} +(5.65177 - 1.65951i) q^{11} +(-0.977031 + 2.13940i) q^{13} +(0.875565 + 1.01046i) q^{15} +(4.49223 - 2.88698i) q^{17} +(0.227916 + 0.146473i) q^{19} +(0.654861 + 0.192284i) q^{21} +(2.50079 + 4.09219i) q^{23} +(3.34890 + 0.983325i) q^{25} +(-4.40856 - 2.83321i) q^{27} +(-1.66810 + 1.07202i) q^{29} +(4.32439 + 4.99061i) q^{31} +(-2.66266 + 5.83041i) q^{33} +(-0.739446 + 0.217121i) q^{35} +(-1.43317 - 9.96790i) q^{37} +(-1.06316 - 2.32800i) q^{39} +(-1.53880 + 10.7026i) q^{41} +(3.01056 - 3.47437i) q^{43} +2.23123 q^{45} -6.97259 q^{47} +(4.32640 - 4.99294i) q^{49} +(-0.826944 + 5.75152i) q^{51} +(-1.09543 - 2.39865i) q^{53} +(-1.03001 - 7.16387i) q^{55} +(-0.282866 + 0.0830570i) q^{57} +(-0.685131 + 1.50023i) q^{59} +(-5.98206 - 6.90366i) q^{61} +(0.958162 - 0.615773i) q^{63} +(2.43109 + 1.56237i) q^{65} +(-5.94311 - 1.74505i) q^{67} +(-5.14735 - 0.859474i) q^{69} +(-8.69524 - 2.55315i) q^{71} +(-4.99580 - 3.21061i) q^{73} +(-3.19505 + 2.05334i) q^{75} +(-2.41940 - 2.79213i) q^{77} +(2.49546 - 5.46429i) q^{79} +(0.244379 - 0.0717563i) q^{81} +(-0.277948 - 1.93317i) q^{83} +(-2.72562 - 5.96828i) q^{85} +(0.307069 - 2.13571i) q^{87} +(-3.00611 + 3.46923i) q^{89} +1.47517 q^{91} -7.18567 q^{93} +(0.217995 - 0.251579i) q^{95} +(-1.44938 + 10.0807i) q^{97} +(4.44345 + 9.72980i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 4 q^{3} - 6 q^{5} - 3 q^{7} + 9 q^{9} + 12 q^{11} - 14 q^{13} + 13 q^{15} + 15 q^{17} - 2 q^{19} + q^{21} + q^{23} + 13 q^{25} - 26 q^{27} - 8 q^{29} + 21 q^{31} - 15 q^{33} - 7 q^{35} + 28 q^{37}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/368\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(97\) \(277\)
\(\chi(n)\) \(1\) \(e\left(\frac{6}{11}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.712591 + 0.822373i −0.411414 + 0.474797i −0.923202 0.384314i \(-0.874438\pi\)
0.511788 + 0.859112i \(0.328983\pi\)
\(4\) 0 0
\(5\) 0.174863 1.21620i 0.0782012 0.543902i −0.912629 0.408789i \(-0.865951\pi\)
0.990830 0.135113i \(-0.0431397\pi\)
\(6\) 0 0
\(7\) −0.260554 0.570534i −0.0984803 0.215642i 0.853979 0.520307i \(-0.174183\pi\)
−0.952459 + 0.304666i \(0.901455\pi\)
\(8\) 0 0
\(9\) 0.258432 + 1.79743i 0.0861440 + 0.599144i
\(10\) 0 0
\(11\) 5.65177 1.65951i 1.70407 0.500361i 0.722486 0.691385i \(-0.242999\pi\)
0.981585 + 0.191025i \(0.0611810\pi\)
\(12\) 0 0
\(13\) −0.977031 + 2.13940i −0.270980 + 0.593362i −0.995380 0.0960174i \(-0.969390\pi\)
0.724400 + 0.689380i \(0.242117\pi\)
\(14\) 0 0
\(15\) 0.875565 + 1.01046i 0.226070 + 0.260899i
\(16\) 0 0
\(17\) 4.49223 2.88698i 1.08953 0.700195i 0.132787 0.991145i \(-0.457607\pi\)
0.956739 + 0.290949i \(0.0939710\pi\)
\(18\) 0 0
\(19\) 0.227916 + 0.146473i 0.0522876 + 0.0336032i 0.566523 0.824046i \(-0.308288\pi\)
−0.514236 + 0.857649i \(0.671924\pi\)
\(20\) 0 0
\(21\) 0.654861 + 0.192284i 0.142902 + 0.0419599i
\(22\) 0 0
\(23\) 2.50079 + 4.09219i 0.521451 + 0.853281i
\(24\) 0 0
\(25\) 3.34890 + 0.983325i 0.669779 + 0.196665i
\(26\) 0 0
\(27\) −4.40856 2.83321i −0.848428 0.545252i
\(28\) 0 0
\(29\) −1.66810 + 1.07202i −0.309758 + 0.199070i −0.686279 0.727339i \(-0.740757\pi\)
0.376520 + 0.926408i \(0.377121\pi\)
\(30\) 0 0
\(31\) 4.32439 + 4.99061i 0.776683 + 0.896340i 0.996865 0.0791185i \(-0.0252105\pi\)
−0.220182 + 0.975459i \(0.570665\pi\)
\(32\) 0 0
\(33\) −2.66266 + 5.83041i −0.463510 + 1.01494i
\(34\) 0 0
\(35\) −0.739446 + 0.217121i −0.124989 + 0.0367001i
\(36\) 0 0
\(37\) −1.43317 9.96790i −0.235611 1.63871i −0.673145 0.739510i \(-0.735057\pi\)
0.437534 0.899202i \(-0.355852\pi\)
\(38\) 0 0
\(39\) −1.06316 2.32800i −0.170242 0.372778i
\(40\) 0 0
\(41\) −1.53880 + 10.7026i −0.240320 + 1.67146i 0.410219 + 0.911987i \(0.365452\pi\)
−0.650539 + 0.759473i \(0.725457\pi\)
\(42\) 0 0
\(43\) 3.01056 3.47437i 0.459106 0.529836i −0.478244 0.878227i \(-0.658726\pi\)
0.937349 + 0.348391i \(0.113272\pi\)
\(44\) 0 0
\(45\) 2.23123 0.332612
\(46\) 0 0
\(47\) −6.97259 −1.01706 −0.508528 0.861045i \(-0.669810\pi\)
−0.508528 + 0.861045i \(0.669810\pi\)
\(48\) 0 0
\(49\) 4.32640 4.99294i 0.618058 0.713277i
\(50\) 0 0
\(51\) −0.826944 + 5.75152i −0.115795 + 0.805374i
\(52\) 0 0
\(53\) −1.09543 2.39865i −0.150468 0.329480i 0.819356 0.573285i \(-0.194331\pi\)
−0.969824 + 0.243806i \(0.921604\pi\)
\(54\) 0 0
\(55\) −1.03001 7.16387i −0.138886 0.965976i
\(56\) 0 0
\(57\) −0.282866 + 0.0830570i −0.0374666 + 0.0110012i
\(58\) 0 0
\(59\) −0.685131 + 1.50023i −0.0891965 + 0.195313i −0.948973 0.315358i \(-0.897876\pi\)
0.859776 + 0.510671i \(0.170603\pi\)
\(60\) 0 0
\(61\) −5.98206 6.90366i −0.765924 0.883923i 0.230086 0.973170i \(-0.426099\pi\)
−0.996010 + 0.0892472i \(0.971554\pi\)
\(62\) 0 0
\(63\) 0.958162 0.615773i 0.120717 0.0775801i
\(64\) 0 0
\(65\) 2.43109 + 1.56237i 0.301540 + 0.193788i
\(66\) 0 0
\(67\) −5.94311 1.74505i −0.726066 0.213192i −0.102245 0.994759i \(-0.532602\pi\)
−0.623821 + 0.781567i \(0.714421\pi\)
\(68\) 0 0
\(69\) −5.14735 0.859474i −0.619668 0.103469i
\(70\) 0 0
\(71\) −8.69524 2.55315i −1.03194 0.303003i −0.278438 0.960454i \(-0.589817\pi\)
−0.753497 + 0.657451i \(0.771635\pi\)
\(72\) 0 0
\(73\) −4.99580 3.21061i −0.584714 0.375773i 0.214586 0.976705i \(-0.431160\pi\)
−0.799300 + 0.600932i \(0.794796\pi\)
\(74\) 0 0
\(75\) −3.19505 + 2.05334i −0.368933 + 0.237099i
\(76\) 0 0
\(77\) −2.41940 2.79213i −0.275716 0.318193i
\(78\) 0 0
\(79\) 2.49546 5.46429i 0.280761 0.614780i −0.715740 0.698367i \(-0.753910\pi\)
0.996501 + 0.0835867i \(0.0266376\pi\)
\(80\) 0 0
\(81\) 0.244379 0.0717563i 0.0271533 0.00797292i
\(82\) 0 0
\(83\) −0.277948 1.93317i −0.0305087 0.212193i 0.968865 0.247591i \(-0.0796390\pi\)
−0.999373 + 0.0353985i \(0.988730\pi\)
\(84\) 0 0
\(85\) −2.72562 5.96828i −0.295635 0.647351i
\(86\) 0 0
\(87\) 0.307069 2.13571i 0.0329213 0.228973i
\(88\) 0 0
\(89\) −3.00611 + 3.46923i −0.318647 + 0.367738i −0.892365 0.451315i \(-0.850955\pi\)
0.573718 + 0.819053i \(0.305501\pi\)
\(90\) 0 0
\(91\) 1.47517 0.154640
\(92\) 0 0
\(93\) −7.18567 −0.745119
\(94\) 0 0
\(95\) 0.217995 0.251579i 0.0223658 0.0258115i
\(96\) 0 0
\(97\) −1.44938 + 10.0807i −0.147163 + 1.02354i 0.773672 + 0.633586i \(0.218418\pi\)
−0.920835 + 0.389953i \(0.872491\pi\)
\(98\) 0 0
\(99\) 4.44345 + 9.72980i 0.446584 + 0.977882i
\(100\) 0 0
\(101\) 2.02588 + 14.0903i 0.201583 + 1.40204i 0.799589 + 0.600548i \(0.205051\pi\)
−0.598006 + 0.801492i \(0.704040\pi\)
\(102\) 0 0
\(103\) −0.723186 + 0.212347i −0.0712576 + 0.0209231i −0.317167 0.948370i \(-0.602732\pi\)
0.245909 + 0.969293i \(0.420913\pi\)
\(104\) 0 0
\(105\) 0.348368 0.762819i 0.0339972 0.0744435i
\(106\) 0 0
\(107\) 0.388356 + 0.448187i 0.0375438 + 0.0433279i 0.774211 0.632928i \(-0.218147\pi\)
−0.736667 + 0.676256i \(0.763602\pi\)
\(108\) 0 0
\(109\) −5.77288 + 3.71001i −0.552942 + 0.355354i −0.787082 0.616849i \(-0.788409\pi\)
0.234140 + 0.972203i \(0.424773\pi\)
\(110\) 0 0
\(111\) 9.21860 + 5.92443i 0.874990 + 0.562322i
\(112\) 0 0
\(113\) 1.19580 + 0.351119i 0.112491 + 0.0330305i 0.337494 0.941328i \(-0.390421\pi\)
−0.225002 + 0.974358i \(0.572239\pi\)
\(114\) 0 0
\(115\) 5.41423 2.32589i 0.504879 0.216890i
\(116\) 0 0
\(117\) −4.09792 1.20326i −0.378853 0.111241i
\(118\) 0 0
\(119\) −2.81759 1.81076i −0.258288 0.165992i
\(120\) 0 0
\(121\) 19.9347 12.8113i 1.81225 1.16466i
\(122\) 0 0
\(123\) −7.70497 8.89201i −0.694734 0.801766i
\(124\) 0 0
\(125\) 4.33364 9.48934i 0.387612 0.848753i
\(126\) 0 0
\(127\) −6.89460 + 2.02444i −0.611796 + 0.179640i −0.572929 0.819605i \(-0.694193\pi\)
−0.0388671 + 0.999244i \(0.512375\pi\)
\(128\) 0 0
\(129\) 0.711933 + 4.95160i 0.0626822 + 0.435964i
\(130\) 0 0
\(131\) 0.273443 + 0.598756i 0.0238908 + 0.0523136i 0.921201 0.389086i \(-0.127209\pi\)
−0.897310 + 0.441400i \(0.854482\pi\)
\(132\) 0 0
\(133\) 0.0241832 0.168198i 0.00209695 0.0145846i
\(134\) 0 0
\(135\) −4.21665 + 4.86627i −0.362911 + 0.418822i
\(136\) 0 0
\(137\) −12.5241 −1.07001 −0.535003 0.844850i \(-0.679689\pi\)
−0.535003 + 0.844850i \(0.679689\pi\)
\(138\) 0 0
\(139\) −17.0602 −1.44703 −0.723515 0.690309i \(-0.757475\pi\)
−0.723515 + 0.690309i \(0.757475\pi\)
\(140\) 0 0
\(141\) 4.96860 5.73407i 0.418432 0.482896i
\(142\) 0 0
\(143\) −1.97160 + 13.7128i −0.164873 + 1.14672i
\(144\) 0 0
\(145\) 1.01211 + 2.21620i 0.0840508 + 0.184046i
\(146\) 0 0
\(147\) 1.02310 + 7.11584i 0.0843841 + 0.586905i
\(148\) 0 0
\(149\) 17.6680 5.18781i 1.44742 0.425002i 0.538734 0.842476i \(-0.318903\pi\)
0.908689 + 0.417474i \(0.137085\pi\)
\(150\) 0 0
\(151\) 4.77740 10.4611i 0.388780 0.851309i −0.609506 0.792781i \(-0.708632\pi\)
0.998286 0.0585274i \(-0.0186405\pi\)
\(152\) 0 0
\(153\) 6.35009 + 7.32839i 0.513374 + 0.592465i
\(154\) 0 0
\(155\) 6.82576 4.38665i 0.548259 0.352344i
\(156\) 0 0
\(157\) 2.71568 + 1.74526i 0.216735 + 0.139287i 0.644504 0.764601i \(-0.277064\pi\)
−0.427769 + 0.903888i \(0.640700\pi\)
\(158\) 0 0
\(159\) 2.75317 + 0.808405i 0.218341 + 0.0641107i
\(160\) 0 0
\(161\) 1.68314 2.49303i 0.132650 0.196478i
\(162\) 0 0
\(163\) 10.6155 + 3.11700i 0.831473 + 0.244143i 0.669650 0.742677i \(-0.266444\pi\)
0.161824 + 0.986820i \(0.448262\pi\)
\(164\) 0 0
\(165\) 6.62535 + 4.25785i 0.515783 + 0.331474i
\(166\) 0 0
\(167\) 18.4501 11.8572i 1.42771 0.917536i 0.427807 0.903870i \(-0.359286\pi\)
0.999907 0.0136652i \(-0.00434990\pi\)
\(168\) 0 0
\(169\) 4.89075 + 5.64423i 0.376212 + 0.434171i
\(170\) 0 0
\(171\) −0.204374 + 0.447517i −0.0156289 + 0.0342225i
\(172\) 0 0
\(173\) −10.6459 + 3.12591i −0.809391 + 0.237659i −0.660142 0.751141i \(-0.729504\pi\)
−0.149249 + 0.988800i \(0.547686\pi\)
\(174\) 0 0
\(175\) −0.311549 2.16687i −0.0235509 0.163800i
\(176\) 0 0
\(177\) −0.745530 1.63248i −0.0560374 0.122705i
\(178\) 0 0
\(179\) −2.49587 + 17.3592i −0.186550 + 1.29749i 0.654307 + 0.756229i \(0.272961\pi\)
−0.840857 + 0.541257i \(0.817949\pi\)
\(180\) 0 0
\(181\) −13.3631 + 15.4218i −0.993269 + 1.14629i −0.00402916 + 0.999992i \(0.501283\pi\)
−0.989240 + 0.146302i \(0.953263\pi\)
\(182\) 0 0
\(183\) 9.94014 0.734797
\(184\) 0 0
\(185\) −12.3736 −0.909723
\(186\) 0 0
\(187\) 20.5981 23.7714i 1.50628 1.73834i
\(188\) 0 0
\(189\) −0.467774 + 3.25344i −0.0340256 + 0.236653i
\(190\) 0 0
\(191\) 3.93085 + 8.60736i 0.284426 + 0.622807i 0.996882 0.0789105i \(-0.0251441\pi\)
−0.712455 + 0.701718i \(0.752417\pi\)
\(192\) 0 0
\(193\) −3.63769 25.3007i −0.261847 1.82118i −0.518955 0.854801i \(-0.673679\pi\)
0.257108 0.966383i \(-0.417230\pi\)
\(194\) 0 0
\(195\) −3.01722 + 0.885937i −0.216068 + 0.0634432i
\(196\) 0 0
\(197\) 2.18904 4.79334i 0.155963 0.341511i −0.815480 0.578786i \(-0.803527\pi\)
0.971443 + 0.237274i \(0.0762540\pi\)
\(198\) 0 0
\(199\) −16.3820 18.9058i −1.16129 1.34020i −0.930108 0.367285i \(-0.880287\pi\)
−0.231178 0.972911i \(-0.574258\pi\)
\(200\) 0 0
\(201\) 5.67009 3.64394i 0.399937 0.257024i
\(202\) 0 0
\(203\) 1.04626 + 0.672388i 0.0734328 + 0.0471924i
\(204\) 0 0
\(205\) 12.7474 + 3.74297i 0.890317 + 0.261421i
\(206\) 0 0
\(207\) −6.70916 + 5.55256i −0.466319 + 0.385929i
\(208\) 0 0
\(209\) 1.53120 + 0.449602i 0.105915 + 0.0310996i
\(210\) 0 0
\(211\) 7.45882 + 4.79349i 0.513487 + 0.329998i 0.771591 0.636119i \(-0.219461\pi\)
−0.258104 + 0.966117i \(0.583098\pi\)
\(212\) 0 0
\(213\) 8.29579 5.33138i 0.568418 0.365300i
\(214\) 0 0
\(215\) −3.69909 4.26898i −0.252276 0.291142i
\(216\) 0 0
\(217\) 1.72058 3.76754i 0.116800 0.255757i
\(218\) 0 0
\(219\) 6.20028 1.82057i 0.418976 0.123022i
\(220\) 0 0
\(221\) 1.78736 + 12.4313i 0.120231 + 0.836222i
\(222\) 0 0
\(223\) 7.05499 + 15.4483i 0.472437 + 1.03449i 0.984474 + 0.175530i \(0.0561638\pi\)
−0.512037 + 0.858963i \(0.671109\pi\)
\(224\) 0 0
\(225\) −0.901999 + 6.27354i −0.0601333 + 0.418236i
\(226\) 0 0
\(227\) −11.7844 + 13.5999i −0.782155 + 0.902655i −0.997263 0.0739349i \(-0.976444\pi\)
0.215108 + 0.976590i \(0.430990\pi\)
\(228\) 0 0
\(229\) 7.49653 0.495385 0.247692 0.968839i \(-0.420328\pi\)
0.247692 + 0.968839i \(0.420328\pi\)
\(230\) 0 0
\(231\) 4.02022 0.264511
\(232\) 0 0
\(233\) −3.61684 + 4.17406i −0.236947 + 0.273452i −0.861753 0.507329i \(-0.830633\pi\)
0.624805 + 0.780781i \(0.285178\pi\)
\(234\) 0 0
\(235\) −1.21925 + 8.48007i −0.0795351 + 0.553179i
\(236\) 0 0
\(237\) 2.71545 + 5.94600i 0.176387 + 0.386234i
\(238\) 0 0
\(239\) 0.742743 + 5.16589i 0.0480440 + 0.334153i 0.999641 + 0.0268040i \(0.00853299\pi\)
−0.951597 + 0.307350i \(0.900558\pi\)
\(240\) 0 0
\(241\) 1.49095 0.437783i 0.0960407 0.0282001i −0.233359 0.972391i \(-0.574972\pi\)
0.329400 + 0.944191i \(0.393154\pi\)
\(242\) 0 0
\(243\) 6.41578 14.0486i 0.411572 0.901217i
\(244\) 0 0
\(245\) −5.31589 6.13486i −0.339619 0.391942i
\(246\) 0 0
\(247\) −0.536045 + 0.344495i −0.0341077 + 0.0219197i
\(248\) 0 0
\(249\) 1.78785 + 1.14898i 0.113300 + 0.0728137i
\(250\) 0 0
\(251\) −8.56499 2.51491i −0.540617 0.158740i 1.28787e−5 1.00000i \(-0.499996\pi\)
−0.540630 + 0.841260i \(0.681814\pi\)
\(252\) 0 0
\(253\) 20.9249 + 18.9780i 1.31554 + 1.19314i
\(254\) 0 0
\(255\) 6.85041 + 2.01146i 0.428989 + 0.125963i
\(256\) 0 0
\(257\) −3.06431 1.96932i −0.191147 0.122843i 0.441567 0.897228i \(-0.354423\pi\)
−0.632714 + 0.774386i \(0.718059\pi\)
\(258\) 0 0
\(259\) −5.31361 + 3.41485i −0.330172 + 0.212188i
\(260\) 0 0
\(261\) −2.35798 2.72125i −0.145955 0.168441i
\(262\) 0 0
\(263\) −6.70351 + 14.6786i −0.413356 + 0.905124i 0.582384 + 0.812914i \(0.302120\pi\)
−0.995740 + 0.0922095i \(0.970607\pi\)
\(264\) 0 0
\(265\) −3.10879 + 0.912822i −0.190971 + 0.0560742i
\(266\) 0 0
\(267\) −0.710880 4.94428i −0.0435052 0.302585i
\(268\) 0 0
\(269\) −1.86684 4.08782i −0.113823 0.249239i 0.844143 0.536117i \(-0.180110\pi\)
−0.957967 + 0.286879i \(0.907382\pi\)
\(270\) 0 0
\(271\) −0.498456 + 3.46684i −0.0302791 + 0.210595i −0.999344 0.0362095i \(-0.988472\pi\)
0.969065 + 0.246805i \(0.0793807\pi\)
\(272\) 0 0
\(273\) −1.05119 + 1.21314i −0.0636210 + 0.0734226i
\(274\) 0 0
\(275\) 20.5590 1.23976
\(276\) 0 0
\(277\) −12.0692 −0.725166 −0.362583 0.931951i \(-0.618105\pi\)
−0.362583 + 0.931951i \(0.618105\pi\)
\(278\) 0 0
\(279\) −7.85273 + 9.06254i −0.470131 + 0.542560i
\(280\) 0 0
\(281\) 0.891748 6.20224i 0.0531972 0.369995i −0.945781 0.324804i \(-0.894702\pi\)
0.998978 0.0451902i \(-0.0143894\pi\)
\(282\) 0 0
\(283\) −13.1398 28.7722i −0.781080 1.71033i −0.700581 0.713573i \(-0.747076\pi\)
−0.0804995 0.996755i \(-0.525652\pi\)
\(284\) 0 0
\(285\) 0.0515511 + 0.358546i 0.00305362 + 0.0212384i
\(286\) 0 0
\(287\) 6.50712 1.91066i 0.384103 0.112783i
\(288\) 0 0
\(289\) 4.78341 10.4742i 0.281377 0.616130i
\(290\) 0 0
\(291\) −7.25727 8.37534i −0.425429 0.490971i
\(292\) 0 0
\(293\) 5.70182 3.66434i 0.333104 0.214073i −0.363387 0.931638i \(-0.618380\pi\)
0.696491 + 0.717565i \(0.254744\pi\)
\(294\) 0 0
\(295\) 1.70477 + 1.09559i 0.0992558 + 0.0637878i
\(296\) 0 0
\(297\) −29.6179 8.69660i −1.71860 0.504628i
\(298\) 0 0
\(299\) −11.1982 + 1.35199i −0.647608 + 0.0781877i
\(300\) 0 0
\(301\) −2.76666 0.812365i −0.159468 0.0468239i
\(302\) 0 0
\(303\) −13.0311 8.37460i −0.748619 0.481108i
\(304\) 0 0
\(305\) −9.44228 + 6.06819i −0.540663 + 0.347463i
\(306\) 0 0
\(307\) −3.97728 4.59002i −0.226995 0.261966i 0.630815 0.775933i \(-0.282721\pi\)
−0.857810 + 0.513967i \(0.828175\pi\)
\(308\) 0 0
\(309\) 0.340707 0.746045i 0.0193822 0.0424410i
\(310\) 0 0
\(311\) 9.81498 2.88194i 0.556556 0.163420i 0.00865482 0.999963i \(-0.497245\pi\)
0.547901 + 0.836543i \(0.315427\pi\)
\(312\) 0 0
\(313\) −0.572129 3.97924i −0.0323386 0.224920i 0.967243 0.253853i \(-0.0816981\pi\)
−0.999581 + 0.0289333i \(0.990789\pi\)
\(314\) 0 0
\(315\) −0.581357 1.27299i −0.0327557 0.0717251i
\(316\) 0 0
\(317\) −0.710583 + 4.94221i −0.0399103 + 0.277582i −0.999998 0.00211768i \(-0.999326\pi\)
0.960087 + 0.279700i \(0.0902350\pi\)
\(318\) 0 0
\(319\) −7.64868 + 8.82705i −0.428244 + 0.494220i
\(320\) 0 0
\(321\) −0.645316 −0.0360180
\(322\) 0 0
\(323\) 1.44672 0.0804974
\(324\) 0 0
\(325\) −5.37570 + 6.20389i −0.298190 + 0.344130i
\(326\) 0 0
\(327\) 1.06269 7.39118i 0.0587670 0.408733i
\(328\) 0 0
\(329\) 1.81674 + 3.97810i 0.100160 + 0.219320i
\(330\) 0 0
\(331\) 0.698720 + 4.85970i 0.0384051 + 0.267113i 0.999972 0.00745672i \(-0.00237357\pi\)
−0.961567 + 0.274570i \(0.911464\pi\)
\(332\) 0 0
\(333\) 17.5463 5.15205i 0.961529 0.282330i
\(334\) 0 0
\(335\) −3.16157 + 6.92286i −0.172735 + 0.378237i
\(336\) 0 0
\(337\) −19.4055 22.3951i −1.05708 1.21994i −0.974742 0.223334i \(-0.928306\pi\)
−0.0823405 0.996604i \(-0.526239\pi\)
\(338\) 0 0
\(339\) −1.14087 + 0.733190i −0.0619634 + 0.0398214i
\(340\) 0 0
\(341\) 32.7224 + 21.0294i 1.77202 + 1.13881i
\(342\) 0 0
\(343\) −8.18856 2.40438i −0.442141 0.129824i
\(344\) 0 0
\(345\) −1.94538 + 6.10992i −0.104736 + 0.328947i
\(346\) 0 0
\(347\) −12.3371 3.62249i −0.662288 0.194465i −0.0667221 0.997772i \(-0.521254\pi\)
−0.595566 + 0.803306i \(0.703072\pi\)
\(348\) 0 0
\(349\) −19.8005 12.7250i −1.05990 0.681156i −0.110070 0.993924i \(-0.535107\pi\)
−0.949830 + 0.312768i \(0.898744\pi\)
\(350\) 0 0
\(351\) 10.3687 6.66354i 0.553439 0.355673i
\(352\) 0 0
\(353\) −5.44378 6.28246i −0.289743 0.334382i 0.592153 0.805826i \(-0.298278\pi\)
−0.881896 + 0.471444i \(0.843733\pi\)
\(354\) 0 0
\(355\) −4.62563 + 10.1287i −0.245503 + 0.537576i
\(356\) 0 0
\(357\) 3.49691 1.02678i 0.185076 0.0543432i
\(358\) 0 0
\(359\) −2.75167 19.1383i −0.145228 1.01008i −0.923896 0.382645i \(-0.875013\pi\)
0.778668 0.627436i \(-0.215896\pi\)
\(360\) 0 0
\(361\) −7.86239 17.2162i −0.413810 0.906118i
\(362\) 0 0
\(363\) −3.66965 + 25.5230i −0.192606 + 1.33961i
\(364\) 0 0
\(365\) −4.77832 + 5.51448i −0.250109 + 0.288641i
\(366\) 0 0
\(367\) −30.4419 −1.58906 −0.794528 0.607228i \(-0.792282\pi\)
−0.794528 + 0.607228i \(0.792282\pi\)
\(368\) 0 0
\(369\) −19.6348 −1.02215
\(370\) 0 0
\(371\) −1.08309 + 1.24996i −0.0562314 + 0.0648945i
\(372\) 0 0
\(373\) −2.74614 + 19.0998i −0.142190 + 0.988951i 0.786367 + 0.617760i \(0.211960\pi\)
−0.928557 + 0.371191i \(0.878949\pi\)
\(374\) 0 0
\(375\) 4.71567 + 10.3259i 0.243516 + 0.533226i
\(376\) 0 0
\(377\) −0.663699 4.61613i −0.0341823 0.237743i
\(378\) 0 0
\(379\) 31.0238 9.10940i 1.59358 0.467918i 0.639832 0.768515i \(-0.279004\pi\)
0.953751 + 0.300596i \(0.0971857\pi\)
\(380\) 0 0
\(381\) 3.24818 7.11253i 0.166409 0.364386i
\(382\) 0 0
\(383\) −4.70842 5.43380i −0.240589 0.277654i 0.622595 0.782544i \(-0.286078\pi\)
−0.863184 + 0.504890i \(0.831533\pi\)
\(384\) 0 0
\(385\) −3.81886 + 2.45423i −0.194627 + 0.125079i
\(386\) 0 0
\(387\) 7.02297 + 4.51339i 0.356998 + 0.229428i
\(388\) 0 0
\(389\) −25.2205 7.40541i −1.27873 0.375469i −0.429296 0.903164i \(-0.641238\pi\)
−0.849434 + 0.527695i \(0.823056\pi\)
\(390\) 0 0
\(391\) 23.0482 + 11.1633i 1.16560 + 0.564554i
\(392\) 0 0
\(393\) −0.687254 0.201796i −0.0346674 0.0101793i
\(394\) 0 0
\(395\) −6.20931 3.99048i −0.312424 0.200783i
\(396\) 0 0
\(397\) −7.79986 + 5.01267i −0.391464 + 0.251579i −0.721536 0.692377i \(-0.756563\pi\)
0.330072 + 0.943956i \(0.392927\pi\)
\(398\) 0 0
\(399\) 0.121089 + 0.139744i 0.00606203 + 0.00699595i
\(400\) 0 0
\(401\) −11.6450 + 25.4989i −0.581522 + 1.27336i 0.358910 + 0.933372i \(0.383149\pi\)
−0.940432 + 0.339983i \(0.889579\pi\)
\(402\) 0 0
\(403\) −14.9020 + 4.37561i −0.742320 + 0.217965i
\(404\) 0 0
\(405\) −0.0445371 0.309762i −0.00221306 0.0153922i
\(406\) 0 0
\(407\) −24.6417 53.9579i −1.22145 2.67459i
\(408\) 0 0
\(409\) −0.00630601 + 0.0438593i −0.000311812 + 0.00216870i −0.989977 0.141230i \(-0.954894\pi\)
0.989665 + 0.143399i \(0.0458033\pi\)
\(410\) 0 0
\(411\) 8.92455 10.2995i 0.440216 0.508036i
\(412\) 0 0
\(413\) 1.03445 0.0509017
\(414\) 0 0
\(415\) −2.39972 −0.117798
\(416\) 0 0
\(417\) 12.1570 14.0299i 0.595329 0.687046i
\(418\) 0 0
\(419\) 1.75577 12.2117i 0.0857752 0.596579i −0.900918 0.433989i \(-0.857106\pi\)
0.986694 0.162591i \(-0.0519851\pi\)
\(420\) 0 0
\(421\) 1.15963 + 2.53923i 0.0565167 + 0.123754i 0.935783 0.352576i \(-0.114694\pi\)
−0.879267 + 0.476330i \(0.841967\pi\)
\(422\) 0 0
\(423\) −1.80194 12.5328i −0.0876133 0.609364i
\(424\) 0 0
\(425\) 17.8829 5.25088i 0.867446 0.254705i
\(426\) 0 0
\(427\) −2.38012 + 5.21175i −0.115182 + 0.252214i
\(428\) 0 0
\(429\) −9.87207 11.3930i −0.476628 0.550058i
\(430\) 0 0
\(431\) −2.94160 + 1.89045i −0.141692 + 0.0910597i −0.609566 0.792735i \(-0.708656\pi\)
0.467874 + 0.883795i \(0.345020\pi\)
\(432\) 0 0
\(433\) −7.93237 5.09782i −0.381205 0.244986i 0.335979 0.941870i \(-0.390933\pi\)
−0.717184 + 0.696884i \(0.754569\pi\)
\(434\) 0 0
\(435\) −2.54376 0.746916i −0.121964 0.0358119i
\(436\) 0 0
\(437\) −0.0294243 + 1.29898i −0.00140756 + 0.0621384i
\(438\) 0 0
\(439\) 21.6681 + 6.36232i 1.03416 + 0.303657i 0.754402 0.656413i \(-0.227927\pi\)
0.279759 + 0.960070i \(0.409745\pi\)
\(440\) 0 0
\(441\) 10.0926 + 6.48609i 0.480598 + 0.308861i
\(442\) 0 0
\(443\) 5.11530 3.28740i 0.243035 0.156189i −0.413453 0.910525i \(-0.635677\pi\)
0.656488 + 0.754336i \(0.272041\pi\)
\(444\) 0 0
\(445\) 3.69362 + 4.26267i 0.175095 + 0.202070i
\(446\) 0 0
\(447\) −8.32377 + 18.2265i −0.393701 + 0.862084i
\(448\) 0 0
\(449\) 11.5754 3.39884i 0.546276 0.160401i 0.00306173 0.999995i \(-0.499025\pi\)
0.543214 + 0.839594i \(0.317207\pi\)
\(450\) 0 0
\(451\) 9.06408 + 63.0421i 0.426811 + 2.96853i
\(452\) 0 0
\(453\) 5.19856 + 11.3833i 0.244250 + 0.534832i
\(454\) 0 0
\(455\) 0.257953 1.79410i 0.0120930 0.0841088i
\(456\) 0 0
\(457\) 13.2021 15.2360i 0.617566 0.712709i −0.357677 0.933845i \(-0.616431\pi\)
0.975243 + 0.221136i \(0.0709765\pi\)
\(458\) 0 0
\(459\) −27.9837 −1.30617
\(460\) 0 0
\(461\) 34.1368 1.58991 0.794954 0.606670i \(-0.207495\pi\)
0.794954 + 0.606670i \(0.207495\pi\)
\(462\) 0 0
\(463\) 7.64326 8.82079i 0.355212 0.409937i −0.549818 0.835285i \(-0.685303\pi\)
0.905030 + 0.425348i \(0.139848\pi\)
\(464\) 0 0
\(465\) −1.25651 + 8.73921i −0.0582692 + 0.405271i
\(466\) 0 0
\(467\) −1.97120 4.31632i −0.0912162 0.199736i 0.858525 0.512772i \(-0.171381\pi\)
−0.949741 + 0.313036i \(0.898654\pi\)
\(468\) 0 0
\(469\) 0.552889 + 3.84543i 0.0255300 + 0.177565i
\(470\) 0 0
\(471\) −3.37043 + 0.989647i −0.155301 + 0.0456005i
\(472\) 0 0
\(473\) 11.2492 24.6324i 0.517240 1.13260i
\(474\) 0 0
\(475\) 0.619238 + 0.714638i 0.0284126 + 0.0327899i
\(476\) 0 0
\(477\) 4.02832 2.58884i 0.184444 0.118535i
\(478\) 0 0
\(479\) 25.0307 + 16.0862i 1.14368 + 0.734999i 0.968371 0.249514i \(-0.0802708\pi\)
0.175310 + 0.984513i \(0.443907\pi\)
\(480\) 0 0
\(481\) 22.7256 + 6.67283i 1.03620 + 0.304255i
\(482\) 0 0
\(483\) 0.850805 + 3.16068i 0.0387130 + 0.143816i
\(484\) 0 0
\(485\) 12.0067 + 3.52549i 0.545196 + 0.160084i
\(486\) 0 0
\(487\) 7.33075 + 4.71119i 0.332188 + 0.213484i 0.696093 0.717952i \(-0.254920\pi\)
−0.363905 + 0.931436i \(0.618557\pi\)
\(488\) 0 0
\(489\) −10.1279 + 6.50879i −0.457998 + 0.294338i
\(490\) 0 0
\(491\) 9.86350 + 11.3831i 0.445134 + 0.513712i 0.933329 0.359023i \(-0.116890\pi\)
−0.488195 + 0.872735i \(0.662345\pi\)
\(492\) 0 0
\(493\) −4.39858 + 9.63154i −0.198102 + 0.433783i
\(494\) 0 0
\(495\) 12.6104 3.70275i 0.566795 0.166426i
\(496\) 0 0
\(497\) 0.808921 + 5.62617i 0.0362851 + 0.252368i
\(498\) 0 0
\(499\) −13.1268 28.7438i −0.587638 1.28675i −0.936859 0.349707i \(-0.886281\pi\)
0.349221 0.937040i \(-0.386446\pi\)
\(500\) 0 0
\(501\) −3.39636 + 23.6222i −0.151738 + 1.05536i
\(502\) 0 0
\(503\) −21.8882 + 25.2604i −0.975947 + 1.12630i 0.0160278 + 0.999872i \(0.494898\pi\)
−0.991975 + 0.126432i \(0.959647\pi\)
\(504\) 0 0
\(505\) 17.4909 0.778336
\(506\) 0 0
\(507\) −8.12677 −0.360922
\(508\) 0 0
\(509\) 11.7336 13.5414i 0.520085 0.600210i −0.433567 0.901121i \(-0.642745\pi\)
0.953652 + 0.300911i \(0.0972908\pi\)
\(510\) 0 0
\(511\) −0.530084 + 3.68681i −0.0234495 + 0.163095i
\(512\) 0 0
\(513\) −0.589794 1.29147i −0.0260401 0.0570198i
\(514\) 0 0
\(515\) 0.131797 + 0.916671i 0.00580769 + 0.0403934i
\(516\) 0 0
\(517\) −39.4074 + 11.5711i −1.73314 + 0.508895i
\(518\) 0 0
\(519\) 5.01548 10.9824i 0.220155 0.482073i
\(520\) 0 0
\(521\) −5.37419 6.20215i −0.235448 0.271721i 0.625714 0.780053i \(-0.284808\pi\)
−0.861161 + 0.508332i \(0.830262\pi\)
\(522\) 0 0
\(523\) 5.46786 3.51398i 0.239093 0.153656i −0.415608 0.909544i \(-0.636431\pi\)
0.654701 + 0.755888i \(0.272795\pi\)
\(524\) 0 0
\(525\) 2.00398 + 1.28788i 0.0874610 + 0.0562078i
\(526\) 0 0
\(527\) 33.8339 + 9.93454i 1.47383 + 0.432755i
\(528\) 0 0
\(529\) −10.4921 + 20.4674i −0.456178 + 0.889889i
\(530\) 0 0
\(531\) −2.87362 0.843771i −0.124704 0.0366165i
\(532\) 0 0
\(533\) −21.3936 13.7488i −0.926660 0.595528i
\(534\) 0 0
\(535\) 0.612995 0.393948i 0.0265021 0.0170318i
\(536\) 0 0
\(537\) −12.4972 14.4225i −0.539294 0.622378i
\(538\) 0 0
\(539\) 16.1660 35.3986i 0.696319 1.52473i
\(540\) 0 0
\(541\) 25.2892 7.42559i 1.08727 0.319251i 0.311486 0.950251i \(-0.399173\pi\)
0.775783 + 0.631000i \(0.217355\pi\)
\(542\) 0 0
\(543\) −3.16008 21.9789i −0.135612 0.943203i
\(544\) 0 0
\(545\) 3.50265 + 7.66973i 0.150037 + 0.328535i
\(546\) 0 0
\(547\) −2.88152 + 20.0414i −0.123205 + 0.856910i 0.830683 + 0.556746i \(0.187950\pi\)
−0.953888 + 0.300164i \(0.902959\pi\)
\(548\) 0 0
\(549\) 10.8629 12.5365i 0.463618 0.535044i
\(550\) 0 0
\(551\) −0.537209 −0.0228859
\(552\) 0 0
\(553\) −3.76777 −0.160222
\(554\) 0 0
\(555\) 8.81729 10.1757i 0.374273 0.431934i
\(556\) 0 0
\(557\) −1.16082 + 8.07369i −0.0491856 + 0.342093i 0.950338 + 0.311220i \(0.100738\pi\)
−0.999523 + 0.0308728i \(0.990171\pi\)
\(558\) 0 0
\(559\) 4.49165 + 9.83535i 0.189977 + 0.415991i
\(560\) 0 0
\(561\) 4.87101 + 33.8786i 0.205654 + 1.43036i
\(562\) 0 0
\(563\) 30.1773 8.86085i 1.27182 0.373440i 0.424940 0.905222i \(-0.360295\pi\)
0.846882 + 0.531781i \(0.178477\pi\)
\(564\) 0 0
\(565\) 0.636132 1.39294i 0.0267623 0.0586012i
\(566\) 0 0
\(567\) −0.104614 0.120730i −0.00439336 0.00507020i
\(568\) 0 0
\(569\) −22.4600 + 14.4342i −0.941573 + 0.605112i −0.918840 0.394629i \(-0.870873\pi\)
−0.0227328 + 0.999742i \(0.507237\pi\)
\(570\) 0 0
\(571\) 24.2752 + 15.6007i 1.01589 + 0.652870i 0.938910 0.344163i \(-0.111837\pi\)
0.0769759 + 0.997033i \(0.475474\pi\)
\(572\) 0 0
\(573\) −9.87955 2.90090i −0.412724 0.121187i
\(574\) 0 0
\(575\) 4.35094 + 16.1634i 0.181447 + 0.674061i
\(576\) 0 0
\(577\) 26.9449 + 7.91174i 1.12173 + 0.329370i 0.789453 0.613811i \(-0.210364\pi\)
0.332278 + 0.943181i \(0.392183\pi\)
\(578\) 0 0
\(579\) 23.3988 + 15.0375i 0.972421 + 0.624937i
\(580\) 0 0
\(581\) −1.03052 + 0.662274i −0.0427531 + 0.0274758i
\(582\) 0 0
\(583\) −10.1717 11.7387i −0.421267 0.486168i
\(584\) 0 0
\(585\) −2.17998 + 4.77349i −0.0901311 + 0.197360i
\(586\) 0 0
\(587\) −26.9043 + 7.89980i −1.11046 + 0.326060i −0.784999 0.619497i \(-0.787337\pi\)
−0.325458 + 0.945556i \(0.605519\pi\)
\(588\) 0 0
\(589\) 0.254609 + 1.77085i 0.0104910 + 0.0729665i
\(590\) 0 0
\(591\) 2.38202 + 5.21590i 0.0979833 + 0.214553i
\(592\) 0 0
\(593\) 1.07775 7.49592i 0.0442579 0.307821i −0.955653 0.294494i \(-0.904849\pi\)
0.999911 0.0133265i \(-0.00424207\pi\)
\(594\) 0 0
\(595\) −2.69494 + 3.11012i −0.110482 + 0.127503i
\(596\) 0 0
\(597\) 27.2213 1.11409
\(598\) 0 0
\(599\) 12.5238 0.511708 0.255854 0.966715i \(-0.417643\pi\)
0.255854 + 0.966715i \(0.417643\pi\)
\(600\) 0 0
\(601\) 11.9356 13.7745i 0.486865 0.561872i −0.458160 0.888870i \(-0.651491\pi\)
0.945025 + 0.326997i \(0.106037\pi\)
\(602\) 0 0
\(603\) 1.60073 11.1333i 0.0651867 0.453384i
\(604\) 0 0
\(605\) −12.0952 26.4848i −0.491740 1.07676i
\(606\) 0 0
\(607\) −1.26113 8.77135i −0.0511877 0.356018i −0.999277 0.0380146i \(-0.987897\pi\)
0.948089 0.318004i \(-0.103012\pi\)
\(608\) 0 0
\(609\) −1.29851 + 0.381276i −0.0526181 + 0.0154501i
\(610\) 0 0
\(611\) 6.81243 14.9171i 0.275602 0.603483i
\(612\) 0 0
\(613\) 13.9575 + 16.1078i 0.563736 + 0.650586i 0.964028 0.265802i \(-0.0856366\pi\)
−0.400292 + 0.916388i \(0.631091\pi\)
\(614\) 0 0
\(615\) −12.1618 + 7.81591i −0.490411 + 0.315168i
\(616\) 0 0
\(617\) 30.0653 + 19.3218i 1.21038 + 0.777866i 0.980723 0.195404i \(-0.0626020\pi\)
0.229661 + 0.973271i \(0.426238\pi\)
\(618\) 0 0
\(619\) −7.07491 2.07738i −0.284365 0.0834970i 0.136440 0.990648i \(-0.456434\pi\)
−0.420804 + 0.907151i \(0.638252\pi\)
\(620\) 0 0
\(621\) 0.569152 25.1260i 0.0228393 1.00827i
\(622\) 0 0
\(623\) 2.76257 + 0.811163i 0.110680 + 0.0324986i
\(624\) 0 0
\(625\) 3.89789 + 2.50502i 0.155916 + 0.100201i
\(626\) 0 0
\(627\) −1.46086 + 0.938838i −0.0583411 + 0.0374936i
\(628\) 0 0
\(629\) −35.2152 40.6406i −1.40412 1.62044i
\(630\) 0 0
\(631\) 7.98638 17.4877i 0.317933 0.696176i −0.681429 0.731884i \(-0.738641\pi\)
0.999362 + 0.0357081i \(0.0113687\pi\)
\(632\) 0 0
\(633\) −9.25713 + 2.71814i −0.367938 + 0.108036i
\(634\) 0 0
\(635\) 1.25651 + 8.73921i 0.0498630 + 0.346805i
\(636\) 0 0
\(637\) 6.45485 + 14.1342i 0.255751 + 0.560016i
\(638\) 0 0
\(639\) 2.34199 16.2889i 0.0926479 0.644380i
\(640\) 0 0
\(641\) −10.1695 + 11.7363i −0.401673 + 0.463555i −0.920167 0.391526i \(-0.871947\pi\)
0.518494 + 0.855081i \(0.326493\pi\)
\(642\) 0 0
\(643\) −12.8573 −0.507043 −0.253522 0.967330i \(-0.581589\pi\)
−0.253522 + 0.967330i \(0.581589\pi\)
\(644\) 0 0
\(645\) 6.14664 0.242024
\(646\) 0 0
\(647\) −23.0648 + 26.6182i −0.906771 + 1.04647i 0.0919425 + 0.995764i \(0.470692\pi\)
−0.998714 + 0.0507053i \(0.983853\pi\)
\(648\) 0 0
\(649\) −1.38256 + 9.61592i −0.0542703 + 0.377458i
\(650\) 0 0
\(651\) 1.87226 + 4.09967i 0.0733795 + 0.160679i
\(652\) 0 0
\(653\) −4.09454 28.4782i −0.160232 1.11444i −0.898196 0.439596i \(-0.855122\pi\)
0.737964 0.674840i \(-0.235787\pi\)
\(654\) 0 0
\(655\) 0.776023 0.227861i 0.0303217 0.00890326i
\(656\) 0 0
\(657\) 4.47978 9.80934i 0.174773 0.382699i
\(658\) 0 0
\(659\) 1.97220 + 2.27605i 0.0768262 + 0.0886621i 0.792861 0.609402i \(-0.208590\pi\)
−0.716035 + 0.698064i \(0.754045\pi\)
\(660\) 0 0
\(661\) 8.06392 5.18236i 0.313650 0.201571i −0.374339 0.927292i \(-0.622130\pi\)
0.687989 + 0.725721i \(0.258494\pi\)
\(662\) 0 0
\(663\) −11.4969 7.38858i −0.446501 0.286949i
\(664\) 0 0
\(665\) −0.200334 0.0588234i −0.00776862 0.00228107i
\(666\) 0 0
\(667\) −8.55850 4.14528i −0.331386 0.160506i
\(668\) 0 0
\(669\) −17.7316 5.20646i −0.685542 0.201293i
\(670\) 0 0
\(671\) −45.2659 29.0906i −1.74747 1.12303i
\(672\) 0 0
\(673\) 13.4283 8.62986i 0.517624 0.332657i −0.255607 0.966781i \(-0.582275\pi\)
0.773231 + 0.634124i \(0.218639\pi\)
\(674\) 0 0
\(675\) −11.9779 13.8232i −0.461028 0.532055i
\(676\) 0 0
\(677\) 10.8453 23.7479i 0.416819 0.912706i −0.578466 0.815707i \(-0.696348\pi\)
0.995284 0.0969993i \(-0.0309244\pi\)
\(678\) 0 0
\(679\) 6.12902 1.79964i 0.235210 0.0690640i
\(680\) 0 0
\(681\) −2.78675 19.3823i −0.106789 0.742731i
\(682\) 0 0
\(683\) 17.1908 + 37.6427i 0.657789 + 1.44036i 0.884568 + 0.466411i \(0.154453\pi\)
−0.226779 + 0.973946i \(0.572819\pi\)
\(684\) 0 0
\(685\) −2.19000 + 15.2318i −0.0836758 + 0.581978i
\(686\) 0 0
\(687\) −5.34196 + 6.16495i −0.203808 + 0.235207i
\(688\) 0 0
\(689\) 6.20193 0.236275
\(690\) 0 0
\(691\) −40.6203 −1.54527 −0.772635 0.634850i \(-0.781062\pi\)
−0.772635 + 0.634850i \(0.781062\pi\)
\(692\) 0 0
\(693\) 4.39343 5.07028i 0.166892 0.192604i
\(694\) 0 0
\(695\) −2.98321 + 20.7487i −0.113160 + 0.787042i
\(696\) 0 0
\(697\) 23.9855 + 52.5209i 0.908515 + 1.98937i
\(698\) 0 0
\(699\) −0.855307 5.94879i −0.0323507 0.225004i
\(700\) 0 0
\(701\) −1.52463 + 0.447673i −0.0575846 + 0.0169084i −0.310398 0.950607i \(-0.600462\pi\)
0.252813 + 0.967515i \(0.418644\pi\)
\(702\) 0 0
\(703\) 1.13338 2.48177i 0.0427464 0.0936016i
\(704\) 0 0
\(705\) −6.10496 7.04550i −0.229926 0.265349i
\(706\) 0 0
\(707\) 7.51116 4.82713i 0.282486 0.181543i
\(708\) 0 0
\(709\) −3.64246 2.34087i −0.136796 0.0879131i 0.470453 0.882425i \(-0.344090\pi\)
−0.607249 + 0.794512i \(0.707727\pi\)
\(710\) 0 0
\(711\) 10.4666 + 3.07327i 0.392528 + 0.115257i
\(712\) 0 0
\(713\) −9.60815 + 30.1767i −0.359828 + 1.13013i
\(714\) 0 0
\(715\) 16.3327 + 4.79572i 0.610809 + 0.179350i
\(716\) 0 0
\(717\) −4.77756 3.07035i −0.178421 0.114664i
\(718\) 0 0
\(719\) 21.8293 14.0289i 0.814096 0.523188i −0.0660915 0.997814i \(-0.521053\pi\)
0.880188 + 0.474626i \(0.157417\pi\)
\(720\) 0 0
\(721\) 0.309580 + 0.357275i 0.0115294 + 0.0133056i
\(722\) 0 0
\(723\) −0.702417 + 1.53808i −0.0261232 + 0.0572018i
\(724\) 0 0
\(725\) −6.64044 + 1.94981i −0.246620 + 0.0724141i
\(726\) 0 0
\(727\) 2.47161 + 17.1904i 0.0916670 + 0.637558i 0.982918 + 0.184047i \(0.0589198\pi\)
−0.891251 + 0.453511i \(0.850171\pi\)
\(728\) 0 0
\(729\) 7.29878 + 15.9821i 0.270325 + 0.591929i
\(730\) 0 0
\(731\) 3.49368 24.2991i 0.129218 0.898734i
\(732\) 0 0
\(733\) −30.9021 + 35.6630i −1.14140 + 1.31724i −0.200055 + 0.979785i \(0.564112\pi\)
−0.941341 + 0.337457i \(0.890433\pi\)
\(734\) 0 0
\(735\) 8.83319 0.325817
\(736\) 0 0
\(737\) −36.4850 −1.34394
\(738\) 0 0
\(739\) 9.88757 11.4109i 0.363720 0.419755i −0.544163 0.838980i \(-0.683153\pi\)
0.907883 + 0.419224i \(0.137698\pi\)
\(740\) 0 0
\(741\) 0.0986769 0.686313i 0.00362499 0.0252123i
\(742\) 0 0
\(743\) 4.94255 + 10.8227i 0.181324 + 0.397045i 0.978367 0.206878i \(-0.0663304\pi\)
−0.797042 + 0.603924i \(0.793603\pi\)
\(744\) 0 0
\(745\) −3.21992 22.3950i −0.117969 0.820491i
\(746\) 0 0
\(747\) 3.40291 0.999185i 0.124506 0.0365583i
\(748\) 0 0
\(749\) 0.154518 0.338348i 0.00564597 0.0123630i
\(750\) 0 0
\(751\) 5.20597 + 6.00801i 0.189969 + 0.219235i 0.842742 0.538318i \(-0.180940\pi\)
−0.652773 + 0.757553i \(0.726395\pi\)
\(752\) 0 0
\(753\) 8.17152 5.25152i 0.297787 0.191376i
\(754\) 0 0
\(755\) −11.8874 7.63954i −0.432625 0.278031i
\(756\) 0 0
\(757\) −21.3067 6.25622i −0.774406 0.227386i −0.129430 0.991589i \(-0.541315\pi\)
−0.644977 + 0.764202i \(0.723133\pi\)
\(758\) 0 0
\(759\) −30.5179 + 3.68452i −1.10773 + 0.133740i
\(760\) 0 0
\(761\) −3.25541 0.955875i −0.118009 0.0346504i 0.222195 0.975002i \(-0.428678\pi\)
−0.340204 + 0.940352i \(0.610496\pi\)
\(762\) 0 0
\(763\) 3.62084 + 2.32697i 0.131083 + 0.0842420i
\(764\) 0 0
\(765\) 10.0232 6.44152i 0.362389 0.232894i
\(766\) 0 0
\(767\) −2.54019 2.93154i −0.0917210 0.105852i
\(768\) 0 0
\(769\) 1.72530 3.77789i 0.0622160 0.136234i −0.875970 0.482366i \(-0.839778\pi\)
0.938186 + 0.346132i \(0.112505\pi\)
\(770\) 0 0
\(771\) 3.80311 1.11670i 0.136966 0.0402168i
\(772\) 0 0
\(773\) 4.01918 + 27.9540i 0.144560 + 1.00544i 0.924935 + 0.380125i \(0.124119\pi\)
−0.780375 + 0.625311i \(0.784972\pi\)
\(774\) 0 0
\(775\) 9.57454 + 20.9653i 0.343928 + 0.753097i
\(776\) 0 0
\(777\) 0.978147 6.80316i 0.0350908 0.244062i
\(778\) 0 0
\(779\) −1.91835 + 2.21390i −0.0687321 + 0.0793211i
\(780\) 0 0
\(781\) −53.3804 −1.91010
\(782\) 0 0
\(783\) 10.3912 0.371351
\(784\) 0 0
\(785\) 2.59746 2.99763i 0.0927075 0.106990i
\(786\) 0 0
\(787\) 3.11544 21.6684i 0.111053 0.772393i −0.855845 0.517232i \(-0.826962\pi\)
0.966899 0.255161i \(-0.0821285\pi\)
\(788\) 0 0
\(789\) −7.29446 15.9726i −0.259690 0.568641i
\(790\) 0 0
\(791\) −0.111246 0.773730i −0.00395544 0.0275107i
\(792\) 0 0
\(793\) 20.6143 6.05291i 0.732036 0.214945i
\(794\) 0 0
\(795\) 1.46461 3.20705i 0.0519444 0.113742i
\(796\) 0 0
\(797\) 7.02444 + 8.10663i 0.248818 + 0.287152i 0.866395 0.499359i \(-0.166431\pi\)
−0.617577 + 0.786510i \(0.711886\pi\)
\(798\) 0 0
\(799\) −31.3225 + 20.1297i −1.10811 + 0.712139i
\(800\) 0 0
\(801\) −7.01258 4.50671i −0.247777 0.159237i
\(802\) 0 0
\(803\) −33.5631 9.85502i −1.18442 0.347776i
\(804\) 0 0
\(805\) −2.73770 2.48298i −0.0964912 0.0875136i
\(806\) 0 0
\(807\) 4.69201 + 1.37770i 0.165166 + 0.0484972i
\(808\) 0 0
\(809\) 28.3453 + 18.2164i 0.996568 + 0.640456i 0.933883 0.357578i \(-0.116397\pi\)
0.0626850 + 0.998033i \(0.480034\pi\)
\(810\) 0 0
\(811\) −29.2735 + 18.8129i −1.02793 + 0.660611i −0.941973 0.335688i \(-0.891031\pi\)
−0.0859572 + 0.996299i \(0.527395\pi\)
\(812\) 0 0
\(813\) −2.49584 2.88035i −0.0875330 0.101018i
\(814\) 0 0
\(815\) 5.64717 12.3656i 0.197812 0.433147i
\(816\) 0 0
\(817\) 1.19506 0.350900i 0.0418097 0.0122764i
\(818\) 0 0
\(819\) 0.381231 + 2.65152i 0.0133213 + 0.0926516i
\(820\) 0 0
\(821\) −9.90154 21.6813i −0.345566 0.756684i −1.00000 0.000564668i \(-0.999820\pi\)
0.654434 0.756119i \(-0.272907\pi\)
\(822\) 0 0
\(823\) −3.38486 + 23.5422i −0.117989 + 0.820630i 0.841776 + 0.539826i \(0.181510\pi\)
−0.959765 + 0.280804i \(0.909399\pi\)
\(824\) 0 0
\(825\) −14.6502 + 16.9072i −0.510053 + 0.588633i
\(826\) 0 0
\(827\) −30.8236 −1.07184 −0.535921 0.844268i \(-0.680035\pi\)
−0.535921 + 0.844268i \(0.680035\pi\)
\(828\) 0 0
\(829\) −30.9416 −1.07465 −0.537324 0.843376i \(-0.680565\pi\)
−0.537324 + 0.843376i \(0.680565\pi\)
\(830\) 0 0
\(831\) 8.60038 9.92537i 0.298344 0.344307i
\(832\) 0 0
\(833\) 5.02069 34.9197i 0.173957 1.20989i
\(834\) 0 0
\(835\) −11.1945 24.5124i −0.387400 0.848288i
\(836\) 0 0
\(837\) −4.92489 34.2533i −0.170229 1.18397i
\(838\) 0 0
\(839\) −37.7321 + 11.0791i −1.30266 + 0.382494i −0.858204 0.513308i \(-0.828420\pi\)
−0.444452 + 0.895803i \(0.646602\pi\)
\(840\) 0 0
\(841\) −10.4137 + 22.8028i −0.359093 + 0.786305i
\(842\) 0 0
\(843\) 4.46511 + 5.15301i 0.153786 + 0.177479i
\(844\) 0 0
\(845\) 7.71973 4.96117i 0.265567 0.170669i
\(846\) 0 0
\(847\) −12.5033 8.03540i −0.429620 0.276100i
\(848\) 0 0
\(849\) 33.0248 + 9.69695i 1.13341 + 0.332798i
\(850\) 0 0
\(851\) 37.2065 30.7924i 1.27542 1.05555i
\(852\) 0 0
\(853\) 5.57235 + 1.63619i 0.190794 + 0.0560220i 0.375733 0.926728i \(-0.377391\pi\)
−0.184940 + 0.982750i \(0.559209\pi\)
\(854\) 0 0
\(855\) 0.508534 + 0.326815i 0.0173915 + 0.0111768i
\(856\) 0 0
\(857\) −17.8082 + 11.4446i −0.608316 + 0.390941i −0.808225 0.588873i \(-0.799572\pi\)
0.199909 + 0.979814i \(0.435935\pi\)
\(858\) 0 0
\(859\) 1.76327 + 2.03492i 0.0601620 + 0.0694306i 0.785033 0.619454i \(-0.212646\pi\)
−0.724871 + 0.688885i \(0.758101\pi\)
\(860\) 0 0
\(861\) −3.06564 + 6.71280i −0.104477 + 0.228772i
\(862\) 0 0
\(863\) 19.3770 5.68960i 0.659601 0.193676i 0.0652336 0.997870i \(-0.479221\pi\)
0.594367 + 0.804194i \(0.297403\pi\)
\(864\) 0 0
\(865\) 1.94016 + 13.4941i 0.0659675 + 0.458814i
\(866\) 0 0
\(867\) 5.20509 + 11.3976i 0.176774 + 0.387082i
\(868\) 0 0
\(869\) 5.03571 35.0241i 0.170825 1.18811i
\(870\) 0 0
\(871\) 9.53996 11.0097i 0.323249 0.373049i
\(872\) 0 0
\(873\) −18.4939 −0.625925
\(874\) 0 0
\(875\) −6.54314 −0.221199
\(876\) 0 0
\(877\) −13.7744 + 15.8966i −0.465130 + 0.536789i −0.939051 0.343779i \(-0.888293\pi\)
0.473921 + 0.880568i \(0.342838\pi\)
\(878\) 0 0
\(879\) −1.04961 + 7.30020i −0.0354025 + 0.246229i
\(880\) 0 0
\(881\) −10.2339 22.4090i −0.344787 0.754979i 0.655212 0.755445i \(-0.272579\pi\)
−1.00000 0.000465480i \(0.999852\pi\)
\(882\) 0 0
\(883\) −0.165923 1.15402i −0.00558376 0.0388359i 0.986839 0.161705i \(-0.0516994\pi\)
−0.992423 + 0.122870i \(0.960790\pi\)
\(884\) 0 0
\(885\) −2.11579 + 0.621253i −0.0711216 + 0.0208832i
\(886\) 0 0
\(887\) 4.22870 9.25957i 0.141986 0.310906i −0.825257 0.564757i \(-0.808970\pi\)
0.967243 + 0.253851i \(0.0816973\pi\)
\(888\) 0 0
\(889\) 2.95143 + 3.40613i 0.0989877 + 0.114238i
\(890\) 0 0
\(891\) 1.26210 0.811100i 0.0422818 0.0271729i
\(892\) 0 0
\(893\) −1.58917 1.02130i −0.0531794 0.0341763i
\(894\) 0 0
\(895\) 20.6758 + 6.07097i 0.691116 + 0.202930i
\(896\) 0 0
\(897\) 6.86788 10.1725i 0.229312 0.339650i
\(898\) 0 0
\(899\) −12.5636 3.68900i −0.419018 0.123035i
\(900\) 0 0
\(901\) −11.8457 7.61280i −0.394639 0.253619i
\(902\) 0 0
\(903\) 2.63956 1.69634i 0.0878392 0.0564508i
\(904\) 0 0
\(905\) 16.4193 + 18.9489i 0.545796 + 0.629882i
\(906\) 0 0
\(907\) −8.16401 + 17.8767i −0.271082 + 0.593586i −0.995392 0.0958881i \(-0.969431\pi\)
0.724311 + 0.689474i \(0.242158\pi\)
\(908\) 0 0
\(909\) −24.8029 + 7.28278i −0.822659 + 0.241555i
\(910\) 0 0
\(911\) −6.81180 47.3771i −0.225685 1.56967i −0.715983 0.698118i \(-0.754021\pi\)
0.490298 0.871555i \(-0.336888\pi\)
\(912\) 0 0
\(913\) −4.77901 10.4646i −0.158162 0.346326i
\(914\) 0 0
\(915\) 1.73817 12.0892i 0.0574620 0.399657i
\(916\) 0 0
\(917\) 0.270364 0.312017i 0.00892821 0.0103037i
\(918\) 0 0
\(919\) 35.7413 1.17900 0.589499 0.807769i \(-0.299325\pi\)
0.589499 + 0.807769i \(0.299325\pi\)
\(920\) 0 0
\(921\) 6.60888 0.217770
\(922\) 0 0
\(923\) 13.9577 16.1081i 0.459424 0.530204i
\(924\) 0 0
\(925\) 5.00215 34.7907i 0.164470 1.14391i
\(926\) 0 0
\(927\) −0.568573 1.24500i −0.0186744 0.0408912i
\(928\) 0 0
\(929\) 3.26383 + 22.7004i 0.107083 + 0.744777i 0.970642 + 0.240529i \(0.0773210\pi\)
−0.863559 + 0.504247i \(0.831770\pi\)
\(930\) 0 0
\(931\) 1.71739 0.504270i 0.0562851 0.0165268i
\(932\) 0 0
\(933\) −4.62403 + 10.1252i −0.151384 + 0.331485i
\(934\) 0 0
\(935\) −25.3090 29.2081i −0.827692 0.955208i
\(936\) 0 0
\(937\) −16.5521 + 10.6374i −0.540735 + 0.347509i −0.782326 0.622869i \(-0.785967\pi\)
0.241591 + 0.970378i \(0.422331\pi\)
\(938\) 0 0
\(939\) 3.68012 + 2.36507i 0.120096 + 0.0771811i
\(940\) 0 0
\(941\) 50.1716 + 14.7317i 1.63555 + 0.480240i 0.965136 0.261748i \(-0.0842989\pi\)
0.670413 + 0.741989i \(0.266117\pi\)
\(942\) 0 0
\(943\) −47.6452 + 20.4678i −1.55154 + 0.666524i
\(944\) 0 0
\(945\) 3.87504 + 1.13781i 0.126055 + 0.0370131i
\(946\) 0 0
\(947\) 22.1851 + 14.2575i 0.720917 + 0.463305i 0.848956 0.528464i \(-0.177232\pi\)
−0.128038 + 0.991769i \(0.540868\pi\)
\(948\) 0 0
\(949\) 11.7498 7.55115i 0.381415 0.245121i
\(950\) 0 0
\(951\) −3.55799 4.10614i −0.115376 0.133151i
\(952\) 0 0
\(953\) 17.2026 37.6685i 0.557247 1.22020i −0.396067 0.918222i \(-0.629625\pi\)
0.953314 0.301980i \(-0.0976474\pi\)
\(954\) 0 0
\(955\) 11.1556 3.27559i 0.360988 0.105996i
\(956\) 0 0
\(957\) −1.80875 12.5801i −0.0584686 0.406658i
\(958\) 0 0
\(959\) 3.26321 + 7.14543i 0.105374 + 0.230738i
\(960\) 0 0
\(961\) −1.79410 + 12.4782i −0.0578742 + 0.402524i
\(962\) 0 0
\(963\) −0.705223 + 0.813870i −0.0227255 + 0.0262266i
\(964\) 0 0
\(965\) −31.4068 −1.01102
\(966\) 0 0
\(967\) 24.8632 0.799546 0.399773 0.916614i \(-0.369089\pi\)
0.399773 + 0.916614i \(0.369089\pi\)
\(968\) 0 0
\(969\) −1.03092 + 1.18974i −0.0331178 + 0.0382200i
\(970\) 0 0
\(971\) −7.51378 + 52.2595i −0.241129 + 1.67709i 0.405355 + 0.914159i \(0.367148\pi\)
−0.646484 + 0.762928i \(0.723761\pi\)
\(972\) 0 0
\(973\) 4.44512 + 9.73345i 0.142504 + 0.312040i
\(974\) 0 0
\(975\) −1.27124 8.84166i −0.0407122 0.283160i
\(976\) 0 0
\(977\) 12.6033 3.70065i 0.403214 0.118394i −0.0738363 0.997270i \(-0.523524\pi\)
0.477050 + 0.878876i \(0.341706\pi\)
\(978\) 0 0
\(979\) −11.2326 + 24.5959i −0.358995 + 0.786090i
\(980\) 0 0
\(981\) −8.16039 9.41759i −0.260541 0.300680i
\(982\) 0 0
\(983\) 45.2576 29.0853i 1.44349 0.927677i 0.443995 0.896029i \(-0.353561\pi\)
0.999499 0.0316476i \(-0.0100754\pi\)
\(984\) 0 0
\(985\) −5.44688 3.50050i −0.173552 0.111535i
\(986\) 0 0
\(987\) −4.56608 1.34072i −0.145340 0.0426756i
\(988\) 0 0
\(989\) 21.7466 + 3.63111i 0.691500 + 0.115463i
\(990\) 0 0
\(991\) −41.8902 12.3001i −1.33069 0.390725i −0.462348 0.886698i \(-0.652993\pi\)
−0.868337 + 0.495974i \(0.834811\pi\)
\(992\) 0 0
\(993\) −4.49439 2.88837i −0.142625 0.0916596i
\(994\) 0 0
\(995\) −25.8579 + 16.6178i −0.819749 + 0.526821i
\(996\) 0 0
\(997\) 34.9557 + 40.3411i 1.10706 + 1.27761i 0.957365 + 0.288882i \(0.0932836\pi\)
0.149695 + 0.988732i \(0.452171\pi\)
\(998\) 0 0
\(999\) −21.9230 + 48.0046i −0.693612 + 1.51880i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 368.2.m.b.225.1 10
4.3 odd 2 46.2.c.a.41.1 yes 10
12.11 even 2 414.2.i.f.271.1 10
23.3 even 11 8464.2.a.bx.1.4 5
23.9 even 11 inner 368.2.m.b.193.1 10
23.20 odd 22 8464.2.a.bw.1.4 5
92.3 odd 22 1058.2.a.m.1.2 5
92.43 even 22 1058.2.a.l.1.2 5
92.55 odd 22 46.2.c.a.9.1 10
276.95 even 22 9522.2.a.bp.1.5 5
276.227 odd 22 9522.2.a.bu.1.1 5
276.239 even 22 414.2.i.f.55.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
46.2.c.a.9.1 10 92.55 odd 22
46.2.c.a.41.1 yes 10 4.3 odd 2
368.2.m.b.193.1 10 23.9 even 11 inner
368.2.m.b.225.1 10 1.1 even 1 trivial
414.2.i.f.55.1 10 276.239 even 22
414.2.i.f.271.1 10 12.11 even 2
1058.2.a.l.1.2 5 92.43 even 22
1058.2.a.m.1.2 5 92.3 odd 22
8464.2.a.bw.1.4 5 23.20 odd 22
8464.2.a.bx.1.4 5 23.3 even 11
9522.2.a.bp.1.5 5 276.95 even 22
9522.2.a.bu.1.1 5 276.227 odd 22