Properties

Label 8464.2.a.bx.1.4
Level $8464$
Weight $2$
Character 8464.1
Self dual yes
Analytic conductor $67.585$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8464,2,Mod(1,8464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8464, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8464.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8464 = 2^{4} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8464.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.5853802708\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 46)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.91899\) of defining polynomial
Character \(\chi\) \(=\) 8464.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.08816 q^{3} -1.22871 q^{5} -0.627214 q^{7} -1.81592 q^{9} -5.89037 q^{11} -2.35194 q^{13} -1.33703 q^{15} +5.33992 q^{17} +0.270925 q^{19} -0.682507 q^{21} -3.49028 q^{25} -5.24047 q^{27} -1.98287 q^{29} -6.60353 q^{31} -6.40964 q^{33} +0.770663 q^{35} +10.0704 q^{37} -2.55928 q^{39} +10.8126 q^{41} -4.59725 q^{43} +2.23123 q^{45} -6.97259 q^{47} -6.60660 q^{49} +5.81067 q^{51} -2.63694 q^{53} +7.23754 q^{55} +0.294808 q^{57} -1.64927 q^{59} +9.13485 q^{61} +1.13897 q^{63} +2.88984 q^{65} +6.19401 q^{67} +9.06233 q^{71} -5.93852 q^{73} -3.79797 q^{75} +3.69452 q^{77} +6.00714 q^{79} -0.254696 q^{81} +1.95305 q^{83} -6.56120 q^{85} -2.15768 q^{87} +4.59045 q^{89} +1.47517 q^{91} -7.18567 q^{93} -0.332887 q^{95} +10.1844 q^{97} +10.6964 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{3} + 8 q^{5} - 7 q^{7} - q^{9} - 5 q^{11} - 7 q^{13} + q^{15} + 13 q^{17} - 12 q^{19} + 6 q^{21} + q^{25} + 20 q^{27} - 4 q^{29} - 6 q^{31} + 9 q^{33} - 9 q^{35} + 14 q^{37} + 6 q^{39} + q^{41}+ \cdots + 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.08816 0.628247 0.314124 0.949382i \(-0.398289\pi\)
0.314124 + 0.949382i \(0.398289\pi\)
\(4\) 0 0
\(5\) −1.22871 −0.549495 −0.274747 0.961516i \(-0.588594\pi\)
−0.274747 + 0.961516i \(0.588594\pi\)
\(6\) 0 0
\(7\) −0.627214 −0.237065 −0.118532 0.992950i \(-0.537819\pi\)
−0.118532 + 0.992950i \(0.537819\pi\)
\(8\) 0 0
\(9\) −1.81592 −0.605306
\(10\) 0 0
\(11\) −5.89037 −1.77601 −0.888006 0.459831i \(-0.847910\pi\)
−0.888006 + 0.459831i \(0.847910\pi\)
\(12\) 0 0
\(13\) −2.35194 −0.652310 −0.326155 0.945316i \(-0.605753\pi\)
−0.326155 + 0.945316i \(0.605753\pi\)
\(14\) 0 0
\(15\) −1.33703 −0.345218
\(16\) 0 0
\(17\) 5.33992 1.29512 0.647561 0.762014i \(-0.275789\pi\)
0.647561 + 0.762014i \(0.275789\pi\)
\(18\) 0 0
\(19\) 0.270925 0.0621544 0.0310772 0.999517i \(-0.490106\pi\)
0.0310772 + 0.999517i \(0.490106\pi\)
\(20\) 0 0
\(21\) −0.682507 −0.148935
\(22\) 0 0
\(23\) 0 0
\(24\) 0 0
\(25\) −3.49028 −0.698056
\(26\) 0 0
\(27\) −5.24047 −1.00853
\(28\) 0 0
\(29\) −1.98287 −0.368211 −0.184105 0.982907i \(-0.558939\pi\)
−0.184105 + 0.982907i \(0.558939\pi\)
\(30\) 0 0
\(31\) −6.60353 −1.18603 −0.593014 0.805192i \(-0.702062\pi\)
−0.593014 + 0.805192i \(0.702062\pi\)
\(32\) 0 0
\(33\) −6.40964 −1.11577
\(34\) 0 0
\(35\) 0.770663 0.130266
\(36\) 0 0
\(37\) 10.0704 1.65556 0.827782 0.561050i \(-0.189602\pi\)
0.827782 + 0.561050i \(0.189602\pi\)
\(38\) 0 0
\(39\) −2.55928 −0.409812
\(40\) 0 0
\(41\) 10.8126 1.68865 0.844324 0.535833i \(-0.180002\pi\)
0.844324 + 0.535833i \(0.180002\pi\)
\(42\) 0 0
\(43\) −4.59725 −0.701074 −0.350537 0.936549i \(-0.614001\pi\)
−0.350537 + 0.936549i \(0.614001\pi\)
\(44\) 0 0
\(45\) 2.23123 0.332612
\(46\) 0 0
\(47\) −6.97259 −1.01706 −0.508528 0.861045i \(-0.669810\pi\)
−0.508528 + 0.861045i \(0.669810\pi\)
\(48\) 0 0
\(49\) −6.60660 −0.943800
\(50\) 0 0
\(51\) 5.81067 0.813656
\(52\) 0 0
\(53\) −2.63694 −0.362212 −0.181106 0.983464i \(-0.557968\pi\)
−0.181106 + 0.983464i \(0.557968\pi\)
\(54\) 0 0
\(55\) 7.23754 0.975909
\(56\) 0 0
\(57\) 0.294808 0.0390483
\(58\) 0 0
\(59\) −1.64927 −0.214717 −0.107358 0.994220i \(-0.534239\pi\)
−0.107358 + 0.994220i \(0.534239\pi\)
\(60\) 0 0
\(61\) 9.13485 1.16960 0.584799 0.811178i \(-0.301173\pi\)
0.584799 + 0.811178i \(0.301173\pi\)
\(62\) 0 0
\(63\) 1.13897 0.143497
\(64\) 0 0
\(65\) 2.88984 0.358441
\(66\) 0 0
\(67\) 6.19401 0.756718 0.378359 0.925659i \(-0.376488\pi\)
0.378359 + 0.925659i \(0.376488\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.06233 1.07550 0.537750 0.843104i \(-0.319274\pi\)
0.537750 + 0.843104i \(0.319274\pi\)
\(72\) 0 0
\(73\) −5.93852 −0.695051 −0.347525 0.937671i \(-0.612978\pi\)
−0.347525 + 0.937671i \(0.612978\pi\)
\(74\) 0 0
\(75\) −3.79797 −0.438551
\(76\) 0 0
\(77\) 3.69452 0.421030
\(78\) 0 0
\(79\) 6.00714 0.675856 0.337928 0.941172i \(-0.390274\pi\)
0.337928 + 0.941172i \(0.390274\pi\)
\(80\) 0 0
\(81\) −0.254696 −0.0282996
\(82\) 0 0
\(83\) 1.95305 0.214375 0.107187 0.994239i \(-0.465816\pi\)
0.107187 + 0.994239i \(0.465816\pi\)
\(84\) 0 0
\(85\) −6.56120 −0.711662
\(86\) 0 0
\(87\) −2.15768 −0.231327
\(88\) 0 0
\(89\) 4.59045 0.486587 0.243293 0.969953i \(-0.421772\pi\)
0.243293 + 0.969953i \(0.421772\pi\)
\(90\) 0 0
\(91\) 1.47517 0.154640
\(92\) 0 0
\(93\) −7.18567 −0.745119
\(94\) 0 0
\(95\) −0.332887 −0.0341535
\(96\) 0 0
\(97\) 10.1844 1.03406 0.517032 0.855966i \(-0.327037\pi\)
0.517032 + 0.855966i \(0.327037\pi\)
\(98\) 0 0
\(99\) 10.6964 1.07503
\(100\) 0 0
\(101\) −14.2352 −1.41646 −0.708229 0.705983i \(-0.750505\pi\)
−0.708229 + 0.705983i \(0.750505\pi\)
\(102\) 0 0
\(103\) 0.753717 0.0742659 0.0371330 0.999310i \(-0.488177\pi\)
0.0371330 + 0.999310i \(0.488177\pi\)
\(104\) 0 0
\(105\) 0.838601 0.0818391
\(106\) 0 0
\(107\) −0.593036 −0.0573310 −0.0286655 0.999589i \(-0.509126\pi\)
−0.0286655 + 0.999589i \(0.509126\pi\)
\(108\) 0 0
\(109\) −6.86224 −0.657283 −0.328642 0.944455i \(-0.606591\pi\)
−0.328642 + 0.944455i \(0.606591\pi\)
\(110\) 0 0
\(111\) 10.9582 1.04010
\(112\) 0 0
\(113\) −1.24628 −0.117240 −0.0586202 0.998280i \(-0.518670\pi\)
−0.0586202 + 0.998280i \(0.518670\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4.27092 0.394847
\(118\) 0 0
\(119\) −3.34928 −0.307028
\(120\) 0 0
\(121\) 23.6964 2.15422
\(122\) 0 0
\(123\) 11.7658 1.06089
\(124\) 0 0
\(125\) 10.4321 0.933072
\(126\) 0 0
\(127\) 7.18567 0.637625 0.318812 0.947818i \(-0.396716\pi\)
0.318812 + 0.947818i \(0.396716\pi\)
\(128\) 0 0
\(129\) −5.00252 −0.440448
\(130\) 0 0
\(131\) 0.658240 0.0575107 0.0287553 0.999586i \(-0.490846\pi\)
0.0287553 + 0.999586i \(0.490846\pi\)
\(132\) 0 0
\(133\) −0.169928 −0.0147346
\(134\) 0 0
\(135\) 6.43900 0.554181
\(136\) 0 0
\(137\) −12.5241 −1.07001 −0.535003 0.844850i \(-0.679689\pi\)
−0.535003 + 0.844850i \(0.679689\pi\)
\(138\) 0 0
\(139\) −17.0602 −1.44703 −0.723515 0.690309i \(-0.757475\pi\)
−0.723515 + 0.690309i \(0.757475\pi\)
\(140\) 0 0
\(141\) −7.58726 −0.638963
\(142\) 0 0
\(143\) 13.8538 1.15851
\(144\) 0 0
\(145\) 2.43637 0.202330
\(146\) 0 0
\(147\) −7.18901 −0.592940
\(148\) 0 0
\(149\) −18.4139 −1.50853 −0.754264 0.656571i \(-0.772006\pi\)
−0.754264 + 0.656571i \(0.772006\pi\)
\(150\) 0 0
\(151\) 11.5003 0.935883 0.467941 0.883760i \(-0.344996\pi\)
0.467941 + 0.883760i \(0.344996\pi\)
\(152\) 0 0
\(153\) −9.69685 −0.783944
\(154\) 0 0
\(155\) 8.11380 0.651716
\(156\) 0 0
\(157\) 3.22814 0.257633 0.128817 0.991668i \(-0.458882\pi\)
0.128817 + 0.991668i \(0.458882\pi\)
\(158\) 0 0
\(159\) −2.86940 −0.227559
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −11.0637 −0.866576 −0.433288 0.901256i \(-0.642647\pi\)
−0.433288 + 0.901256i \(0.642647\pi\)
\(164\) 0 0
\(165\) 7.87557 0.613112
\(166\) 0 0
\(167\) 21.9317 1.69713 0.848563 0.529094i \(-0.177468\pi\)
0.848563 + 0.529094i \(0.177468\pi\)
\(168\) 0 0
\(169\) −7.46838 −0.574491
\(170\) 0 0
\(171\) −0.491976 −0.0376224
\(172\) 0 0
\(173\) 11.0953 0.843561 0.421780 0.906698i \(-0.361405\pi\)
0.421780 + 0.906698i \(0.361405\pi\)
\(174\) 0 0
\(175\) 2.18915 0.165484
\(176\) 0 0
\(177\) −1.79466 −0.134895
\(178\) 0 0
\(179\) 17.5377 1.31083 0.655414 0.755270i \(-0.272494\pi\)
0.655414 + 0.755270i \(0.272494\pi\)
\(180\) 0 0
\(181\) 20.4060 1.51676 0.758382 0.651810i \(-0.225990\pi\)
0.758382 + 0.651810i \(0.225990\pi\)
\(182\) 0 0
\(183\) 9.94014 0.734797
\(184\) 0 0
\(185\) −12.3736 −0.909723
\(186\) 0 0
\(187\) −31.4541 −2.30015
\(188\) 0 0
\(189\) 3.28690 0.239087
\(190\) 0 0
\(191\) 9.46247 0.684680 0.342340 0.939576i \(-0.388781\pi\)
0.342340 + 0.939576i \(0.388781\pi\)
\(192\) 0 0
\(193\) 25.5609 1.83991 0.919956 0.392022i \(-0.128224\pi\)
0.919956 + 0.392022i \(0.128224\pi\)
\(194\) 0 0
\(195\) 3.14460 0.225190
\(196\) 0 0
\(197\) 5.26954 0.375439 0.187719 0.982223i \(-0.439890\pi\)
0.187719 + 0.982223i \(0.439890\pi\)
\(198\) 0 0
\(199\) 25.0160 1.77333 0.886667 0.462409i \(-0.153015\pi\)
0.886667 + 0.462409i \(0.153015\pi\)
\(200\) 0 0
\(201\) 6.74004 0.475406
\(202\) 0 0
\(203\) 1.24369 0.0872898
\(204\) 0 0
\(205\) −13.2856 −0.927903
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.59585 −0.110387
\(210\) 0 0
\(211\) 8.86632 0.610383 0.305191 0.952291i \(-0.401280\pi\)
0.305191 + 0.952291i \(0.401280\pi\)
\(212\) 0 0
\(213\) 9.86123 0.675680
\(214\) 0 0
\(215\) 5.64867 0.385236
\(216\) 0 0
\(217\) 4.14183 0.281166
\(218\) 0 0
\(219\) −6.46203 −0.436664
\(220\) 0 0
\(221\) −12.5592 −0.844821
\(222\) 0 0
\(223\) 16.9830 1.13727 0.568633 0.822592i \(-0.307473\pi\)
0.568633 + 0.822592i \(0.307473\pi\)
\(224\) 0 0
\(225\) 6.33805 0.422537
\(226\) 0 0
\(227\) 17.9952 1.19438 0.597192 0.802098i \(-0.296283\pi\)
0.597192 + 0.802098i \(0.296283\pi\)
\(228\) 0 0
\(229\) 7.49653 0.495385 0.247692 0.968839i \(-0.420328\pi\)
0.247692 + 0.968839i \(0.420328\pi\)
\(230\) 0 0
\(231\) 4.02022 0.264511
\(232\) 0 0
\(233\) 5.52307 0.361829 0.180914 0.983499i \(-0.442094\pi\)
0.180914 + 0.983499i \(0.442094\pi\)
\(234\) 0 0
\(235\) 8.56727 0.558867
\(236\) 0 0
\(237\) 6.53671 0.424605
\(238\) 0 0
\(239\) −5.21901 −0.337590 −0.168795 0.985651i \(-0.553988\pi\)
−0.168795 + 0.985651i \(0.553988\pi\)
\(240\) 0 0
\(241\) −1.55390 −0.100095 −0.0500476 0.998747i \(-0.515937\pi\)
−0.0500476 + 0.998747i \(0.515937\pi\)
\(242\) 0 0
\(243\) 15.4443 0.990749
\(244\) 0 0
\(245\) 8.11758 0.518613
\(246\) 0 0
\(247\) −0.637198 −0.0405439
\(248\) 0 0
\(249\) 2.12522 0.134680
\(250\) 0 0
\(251\) 8.92657 0.563440 0.281720 0.959497i \(-0.409095\pi\)
0.281720 + 0.959497i \(0.409095\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −7.13961 −0.447100
\(256\) 0 0
\(257\) −3.64256 −0.227216 −0.113608 0.993526i \(-0.536241\pi\)
−0.113608 + 0.993526i \(0.536241\pi\)
\(258\) 0 0
\(259\) −6.31630 −0.392476
\(260\) 0 0
\(261\) 3.60074 0.222880
\(262\) 0 0
\(263\) −16.1369 −0.995044 −0.497522 0.867451i \(-0.665757\pi\)
−0.497522 + 0.867451i \(0.665757\pi\)
\(264\) 0 0
\(265\) 3.24003 0.199034
\(266\) 0 0
\(267\) 4.99513 0.305697
\(268\) 0 0
\(269\) −4.49392 −0.273999 −0.137000 0.990571i \(-0.543746\pi\)
−0.137000 + 0.990571i \(0.543746\pi\)
\(270\) 0 0
\(271\) 3.50249 0.212761 0.106381 0.994325i \(-0.466074\pi\)
0.106381 + 0.994325i \(0.466074\pi\)
\(272\) 0 0
\(273\) 1.60521 0.0971520
\(274\) 0 0
\(275\) 20.5590 1.23976
\(276\) 0 0
\(277\) −12.0692 −0.725166 −0.362583 0.931951i \(-0.618105\pi\)
−0.362583 + 0.931951i \(0.618105\pi\)
\(278\) 0 0
\(279\) 11.9915 0.717909
\(280\) 0 0
\(281\) −6.26602 −0.373799 −0.186900 0.982379i \(-0.559844\pi\)
−0.186900 + 0.982379i \(0.559844\pi\)
\(282\) 0 0
\(283\) −31.6306 −1.88024 −0.940121 0.340842i \(-0.889288\pi\)
−0.940121 + 0.340842i \(0.889288\pi\)
\(284\) 0 0
\(285\) −0.362233 −0.0214568
\(286\) 0 0
\(287\) −6.78183 −0.400319
\(288\) 0 0
\(289\) 11.5148 0.677339
\(290\) 0 0
\(291\) 11.0822 0.649648
\(292\) 0 0
\(293\) 6.77777 0.395961 0.197981 0.980206i \(-0.436562\pi\)
0.197981 + 0.980206i \(0.436562\pi\)
\(294\) 0 0
\(295\) 2.02647 0.117986
\(296\) 0 0
\(297\) 30.8683 1.79116
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 2.88346 0.166200
\(302\) 0 0
\(303\) −15.4901 −0.889885
\(304\) 0 0
\(305\) −11.2241 −0.642688
\(306\) 0 0
\(307\) 6.07347 0.346631 0.173316 0.984866i \(-0.444552\pi\)
0.173316 + 0.984866i \(0.444552\pi\)
\(308\) 0 0
\(309\) 0.820161 0.0466574
\(310\) 0 0
\(311\) −10.2293 −0.580052 −0.290026 0.957019i \(-0.593664\pi\)
−0.290026 + 0.957019i \(0.593664\pi\)
\(312\) 0 0
\(313\) 4.02016 0.227233 0.113616 0.993525i \(-0.463756\pi\)
0.113616 + 0.993525i \(0.463756\pi\)
\(314\) 0 0
\(315\) −1.39946 −0.0788506
\(316\) 0 0
\(317\) 4.99304 0.280437 0.140218 0.990121i \(-0.455220\pi\)
0.140218 + 0.990121i \(0.455220\pi\)
\(318\) 0 0
\(319\) 11.6799 0.653947
\(320\) 0 0
\(321\) −0.645316 −0.0360180
\(322\) 0 0
\(323\) 1.44672 0.0804974
\(324\) 0 0
\(325\) 8.20892 0.455349
\(326\) 0 0
\(327\) −7.46719 −0.412936
\(328\) 0 0
\(329\) 4.37331 0.241108
\(330\) 0 0
\(331\) −4.90967 −0.269860 −0.134930 0.990855i \(-0.543081\pi\)
−0.134930 + 0.990855i \(0.543081\pi\)
\(332\) 0 0
\(333\) −18.2870 −1.00212
\(334\) 0 0
\(335\) −7.61062 −0.415813
\(336\) 0 0
\(337\) 29.6329 1.61421 0.807105 0.590408i \(-0.201033\pi\)
0.807105 + 0.590408i \(0.201033\pi\)
\(338\) 0 0
\(339\) −1.35615 −0.0736560
\(340\) 0 0
\(341\) 38.8972 2.10640
\(342\) 0 0
\(343\) 8.53426 0.460807
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.8579 0.690248 0.345124 0.938557i \(-0.387837\pi\)
0.345124 + 0.938557i \(0.387837\pi\)
\(348\) 0 0
\(349\) −23.5370 −1.25990 −0.629952 0.776634i \(-0.716926\pi\)
−0.629952 + 0.776634i \(0.716926\pi\)
\(350\) 0 0
\(351\) 12.3253 0.657874
\(352\) 0 0
\(353\) 8.31289 0.442450 0.221225 0.975223i \(-0.428994\pi\)
0.221225 + 0.975223i \(0.428994\pi\)
\(354\) 0 0
\(355\) −11.1349 −0.590982
\(356\) 0 0
\(357\) −3.64453 −0.192889
\(358\) 0 0
\(359\) 19.3351 1.02047 0.510234 0.860036i \(-0.329559\pi\)
0.510234 + 0.860036i \(0.329559\pi\)
\(360\) 0 0
\(361\) −18.9266 −0.996137
\(362\) 0 0
\(363\) 25.7854 1.35338
\(364\) 0 0
\(365\) 7.29670 0.381927
\(366\) 0 0
\(367\) −30.4419 −1.58906 −0.794528 0.607228i \(-0.792282\pi\)
−0.794528 + 0.607228i \(0.792282\pi\)
\(368\) 0 0
\(369\) −19.6348 −1.02215
\(370\) 0 0
\(371\) 1.65393 0.0858677
\(372\) 0 0
\(373\) 19.2962 0.999120 0.499560 0.866279i \(-0.333495\pi\)
0.499560 + 0.866279i \(0.333495\pi\)
\(374\) 0 0
\(375\) 11.3517 0.586200
\(376\) 0 0
\(377\) 4.66360 0.240188
\(378\) 0 0
\(379\) −32.3335 −1.66086 −0.830430 0.557123i \(-0.811905\pi\)
−0.830430 + 0.557123i \(0.811905\pi\)
\(380\) 0 0
\(381\) 7.81912 0.400586
\(382\) 0 0
\(383\) 7.18995 0.367389 0.183695 0.982983i \(-0.441194\pi\)
0.183695 + 0.982983i \(0.441194\pi\)
\(384\) 0 0
\(385\) −4.53949 −0.231354
\(386\) 0 0
\(387\) 8.34822 0.424364
\(388\) 0 0
\(389\) 26.2852 1.33271 0.666357 0.745633i \(-0.267853\pi\)
0.666357 + 0.745633i \(0.267853\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0.716268 0.0361309
\(394\) 0 0
\(395\) −7.38102 −0.371379
\(396\) 0 0
\(397\) −9.27172 −0.465334 −0.232667 0.972556i \(-0.574745\pi\)
−0.232667 + 0.972556i \(0.574745\pi\)
\(398\) 0 0
\(399\) −0.184908 −0.00925697
\(400\) 0 0
\(401\) −28.0321 −1.39986 −0.699929 0.714213i \(-0.746785\pi\)
−0.699929 + 0.714213i \(0.746785\pi\)
\(402\) 0 0
\(403\) 15.5311 0.773659
\(404\) 0 0
\(405\) 0.312947 0.0155505
\(406\) 0 0
\(407\) −59.3184 −2.94030
\(408\) 0 0
\(409\) 0.0443103 0.00219100 0.00109550 0.999999i \(-0.499651\pi\)
0.00109550 + 0.999999i \(0.499651\pi\)
\(410\) 0 0
\(411\) −13.6282 −0.672228
\(412\) 0 0
\(413\) 1.03445 0.0509017
\(414\) 0 0
\(415\) −2.39972 −0.117798
\(416\) 0 0
\(417\) −18.5642 −0.909093
\(418\) 0 0
\(419\) −12.3373 −0.602714 −0.301357 0.953511i \(-0.597440\pi\)
−0.301357 + 0.953511i \(0.597440\pi\)
\(420\) 0 0
\(421\) 2.79149 0.136049 0.0680244 0.997684i \(-0.478330\pi\)
0.0680244 + 0.997684i \(0.478330\pi\)
\(422\) 0 0
\(423\) 12.6616 0.615630
\(424\) 0 0
\(425\) −18.6378 −0.904067
\(426\) 0 0
\(427\) −5.72951 −0.277270
\(428\) 0 0
\(429\) 15.0751 0.727832
\(430\) 0 0
\(431\) −3.49668 −0.168429 −0.0842146 0.996448i \(-0.526838\pi\)
−0.0842146 + 0.996448i \(0.526838\pi\)
\(432\) 0 0
\(433\) −9.42923 −0.453140 −0.226570 0.973995i \(-0.572751\pi\)
−0.226570 + 0.973995i \(0.572751\pi\)
\(434\) 0 0
\(435\) 2.65115 0.127113
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −22.5828 −1.07782 −0.538910 0.842363i \(-0.681164\pi\)
−0.538910 + 0.842363i \(0.681164\pi\)
\(440\) 0 0
\(441\) 11.9970 0.571288
\(442\) 0 0
\(443\) 6.08056 0.288896 0.144448 0.989512i \(-0.453859\pi\)
0.144448 + 0.989512i \(0.453859\pi\)
\(444\) 0 0
\(445\) −5.64032 −0.267377
\(446\) 0 0
\(447\) −20.0372 −0.947729
\(448\) 0 0
\(449\) −12.0641 −0.569338 −0.284669 0.958626i \(-0.591884\pi\)
−0.284669 + 0.958626i \(0.591884\pi\)
\(450\) 0 0
\(451\) −63.6903 −2.99906
\(452\) 0 0
\(453\) 12.5141 0.587965
\(454\) 0 0
\(455\) −1.81255 −0.0849737
\(456\) 0 0
\(457\) −20.1601 −0.943050 −0.471525 0.881853i \(-0.656296\pi\)
−0.471525 + 0.881853i \(0.656296\pi\)
\(458\) 0 0
\(459\) −27.9837 −1.30617
\(460\) 0 0
\(461\) 34.1368 1.58991 0.794954 0.606670i \(-0.207495\pi\)
0.794954 + 0.606670i \(0.207495\pi\)
\(462\) 0 0
\(463\) −11.6716 −0.542424 −0.271212 0.962520i \(-0.587425\pi\)
−0.271212 + 0.962520i \(0.587425\pi\)
\(464\) 0 0
\(465\) 8.82908 0.409439
\(466\) 0 0
\(467\) −4.74513 −0.219579 −0.109789 0.993955i \(-0.535018\pi\)
−0.109789 + 0.993955i \(0.535018\pi\)
\(468\) 0 0
\(469\) −3.88497 −0.179391
\(470\) 0 0
\(471\) 3.51272 0.161857
\(472\) 0 0
\(473\) 27.0795 1.24512
\(474\) 0 0
\(475\) −0.945602 −0.0433872
\(476\) 0 0
\(477\) 4.78847 0.219249
\(478\) 0 0
\(479\) 29.7540 1.35950 0.679748 0.733445i \(-0.262089\pi\)
0.679748 + 0.733445i \(0.262089\pi\)
\(480\) 0 0
\(481\) −23.6850 −1.07994
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12.5136 −0.568213
\(486\) 0 0
\(487\) 8.71408 0.394873 0.197436 0.980316i \(-0.436738\pi\)
0.197436 + 0.980316i \(0.436738\pi\)
\(488\) 0 0
\(489\) −12.0390 −0.544424
\(490\) 0 0
\(491\) −15.0620 −0.679738 −0.339869 0.940473i \(-0.610383\pi\)
−0.339869 + 0.940473i \(0.610383\pi\)
\(492\) 0 0
\(493\) −10.5884 −0.476877
\(494\) 0 0
\(495\) −13.1428 −0.590723
\(496\) 0 0
\(497\) −5.68402 −0.254963
\(498\) 0 0
\(499\) −31.5993 −1.41458 −0.707290 0.706923i \(-0.750083\pi\)
−0.707290 + 0.706923i \(0.750083\pi\)
\(500\) 0 0
\(501\) 23.8651 1.06621
\(502\) 0 0
\(503\) 33.4242 1.49031 0.745157 0.666890i \(-0.232375\pi\)
0.745157 + 0.666890i \(0.232375\pi\)
\(504\) 0 0
\(505\) 17.4909 0.778336
\(506\) 0 0
\(507\) −8.12677 −0.360922
\(508\) 0 0
\(509\) −17.9178 −0.794191 −0.397096 0.917777i \(-0.629982\pi\)
−0.397096 + 0.917777i \(0.629982\pi\)
\(510\) 0 0
\(511\) 3.72472 0.164772
\(512\) 0 0
\(513\) −1.41977 −0.0626844
\(514\) 0 0
\(515\) −0.926098 −0.0408087
\(516\) 0 0
\(517\) 41.0711 1.80631
\(518\) 0 0
\(519\) 12.0734 0.529965
\(520\) 0 0
\(521\) 8.20662 0.359538 0.179769 0.983709i \(-0.442465\pi\)
0.179769 + 0.983709i \(0.442465\pi\)
\(522\) 0 0
\(523\) 6.49965 0.284210 0.142105 0.989852i \(-0.454613\pi\)
0.142105 + 0.989852i \(0.454613\pi\)
\(524\) 0 0
\(525\) 2.38214 0.103965
\(526\) 0 0
\(527\) −35.2623 −1.53605
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) 2.99494 0.129969
\(532\) 0 0
\(533\) −25.4306 −1.10152
\(534\) 0 0
\(535\) 0.728668 0.0315031
\(536\) 0 0
\(537\) 19.0837 0.823524
\(538\) 0 0
\(539\) 38.9153 1.67620
\(540\) 0 0
\(541\) −26.3569 −1.13317 −0.566585 0.824003i \(-0.691736\pi\)
−0.566585 + 0.824003i \(0.691736\pi\)
\(542\) 0 0
\(543\) 22.2049 0.952903
\(544\) 0 0
\(545\) 8.43168 0.361174
\(546\) 0 0
\(547\) 20.2475 0.865721 0.432861 0.901461i \(-0.357504\pi\)
0.432861 + 0.901461i \(0.357504\pi\)
\(548\) 0 0
\(549\) −16.5881 −0.707964
\(550\) 0 0
\(551\) −0.537209 −0.0228859
\(552\) 0 0
\(553\) −3.76777 −0.160222
\(554\) 0 0
\(555\) −13.4644 −0.571531
\(556\) 0 0
\(557\) 8.15671 0.345611 0.172806 0.984956i \(-0.444717\pi\)
0.172806 + 0.984956i \(0.444717\pi\)
\(558\) 0 0
\(559\) 10.8124 0.457318
\(560\) 0 0
\(561\) −34.2270 −1.44506
\(562\) 0 0
\(563\) −31.4513 −1.32551 −0.662757 0.748835i \(-0.730614\pi\)
−0.662757 + 0.748835i \(0.730614\pi\)
\(564\) 0 0
\(565\) 1.53132 0.0644230
\(566\) 0 0
\(567\) 0.159749 0.00670884
\(568\) 0 0
\(569\) −26.6983 −1.11925 −0.559625 0.828746i \(-0.689055\pi\)
−0.559625 + 0.828746i \(0.689055\pi\)
\(570\) 0 0
\(571\) 28.8560 1.20759 0.603793 0.797141i \(-0.293655\pi\)
0.603793 + 0.797141i \(0.293655\pi\)
\(572\) 0 0
\(573\) 10.2966 0.430148
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −28.0824 −1.16909 −0.584544 0.811362i \(-0.698726\pi\)
−0.584544 + 0.811362i \(0.698726\pi\)
\(578\) 0 0
\(579\) 27.8142 1.15592
\(580\) 0 0
\(581\) −1.22498 −0.0508207
\(582\) 0 0
\(583\) 15.5326 0.643293
\(584\) 0 0
\(585\) −5.24772 −0.216966
\(586\) 0 0
\(587\) 28.0401 1.15734 0.578669 0.815563i \(-0.303572\pi\)
0.578669 + 0.815563i \(0.303572\pi\)
\(588\) 0 0
\(589\) −1.78906 −0.0737168
\(590\) 0 0
\(591\) 5.73408 0.235868
\(592\) 0 0
\(593\) −7.57300 −0.310986 −0.155493 0.987837i \(-0.549697\pi\)
−0.155493 + 0.987837i \(0.549697\pi\)
\(594\) 0 0
\(595\) 4.11528 0.168710
\(596\) 0 0
\(597\) 27.2213 1.11409
\(598\) 0 0
\(599\) 12.5238 0.511708 0.255854 0.966715i \(-0.417643\pi\)
0.255854 + 0.966715i \(0.417643\pi\)
\(600\) 0 0
\(601\) −18.2262 −0.743463 −0.371732 0.928340i \(-0.621236\pi\)
−0.371732 + 0.928340i \(0.621236\pi\)
\(602\) 0 0
\(603\) −11.2478 −0.458046
\(604\) 0 0
\(605\) −29.1160 −1.18373
\(606\) 0 0
\(607\) 8.86155 0.359679 0.179840 0.983696i \(-0.442442\pi\)
0.179840 + 0.983696i \(0.442442\pi\)
\(608\) 0 0
\(609\) 1.35333 0.0548395
\(610\) 0 0
\(611\) 16.3991 0.663437
\(612\) 0 0
\(613\) −21.3136 −0.860849 −0.430425 0.902627i \(-0.641636\pi\)
−0.430425 + 0.902627i \(0.641636\pi\)
\(614\) 0 0
\(615\) −14.4568 −0.582953
\(616\) 0 0
\(617\) 35.7387 1.43879 0.719393 0.694603i \(-0.244420\pi\)
0.719393 + 0.694603i \(0.244420\pi\)
\(618\) 0 0
\(619\) 7.37359 0.296370 0.148185 0.988960i \(-0.452657\pi\)
0.148185 + 0.988960i \(0.452657\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.87920 −0.115353
\(624\) 0 0
\(625\) 4.63343 0.185337
\(626\) 0 0
\(627\) −1.73653 −0.0693503
\(628\) 0 0
\(629\) 53.7752 2.14416
\(630\) 0 0
\(631\) 19.2251 0.765338 0.382669 0.923886i \(-0.375005\pi\)
0.382669 + 0.923886i \(0.375005\pi\)
\(632\) 0 0
\(633\) 9.64794 0.383471
\(634\) 0 0
\(635\) −8.82908 −0.350371
\(636\) 0 0
\(637\) 15.5383 0.615651
\(638\) 0 0
\(639\) −16.4564 −0.651006
\(640\) 0 0
\(641\) 15.5293 0.613371 0.306686 0.951811i \(-0.400780\pi\)
0.306686 + 0.951811i \(0.400780\pi\)
\(642\) 0 0
\(643\) −12.8573 −0.507043 −0.253522 0.967330i \(-0.581589\pi\)
−0.253522 + 0.967330i \(0.581589\pi\)
\(644\) 0 0
\(645\) 6.14664 0.242024
\(646\) 0 0
\(647\) 35.2209 1.38468 0.692339 0.721572i \(-0.256580\pi\)
0.692339 + 0.721572i \(0.256580\pi\)
\(648\) 0 0
\(649\) 9.71480 0.381339
\(650\) 0 0
\(651\) 4.50695 0.176641
\(652\) 0 0
\(653\) 28.7710 1.12590 0.562948 0.826492i \(-0.309667\pi\)
0.562948 + 0.826492i \(0.309667\pi\)
\(654\) 0 0
\(655\) −0.808784 −0.0316018
\(656\) 0 0
\(657\) 10.7839 0.420718
\(658\) 0 0
\(659\) −3.01164 −0.117317 −0.0586584 0.998278i \(-0.518682\pi\)
−0.0586584 + 0.998278i \(0.518682\pi\)
\(660\) 0 0
\(661\) 9.58560 0.372837 0.186418 0.982470i \(-0.440312\pi\)
0.186418 + 0.982470i \(0.440312\pi\)
\(662\) 0 0
\(663\) −13.6663 −0.530756
\(664\) 0 0
\(665\) 0.208792 0.00809659
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 18.4801 0.714484
\(670\) 0 0
\(671\) −53.8076 −2.07722
\(672\) 0 0
\(673\) 15.9623 0.615301 0.307650 0.951499i \(-0.400457\pi\)
0.307650 + 0.951499i \(0.400457\pi\)
\(674\) 0 0
\(675\) 18.2907 0.704009
\(676\) 0 0
\(677\) 26.1072 1.00338 0.501690 0.865048i \(-0.332712\pi\)
0.501690 + 0.865048i \(0.332712\pi\)
\(678\) 0 0
\(679\) −6.38777 −0.245140
\(680\) 0 0
\(681\) 19.5816 0.750368
\(682\) 0 0
\(683\) 41.3823 1.58345 0.791726 0.610877i \(-0.209183\pi\)
0.791726 + 0.610877i \(0.209183\pi\)
\(684\) 0 0
\(685\) 15.3884 0.587962
\(686\) 0 0
\(687\) 8.15739 0.311224
\(688\) 0 0
\(689\) 6.20193 0.236275
\(690\) 0 0
\(691\) −40.6203 −1.54527 −0.772635 0.634850i \(-0.781062\pi\)
−0.772635 + 0.634850i \(0.781062\pi\)
\(692\) 0 0
\(693\) −6.70895 −0.254852
\(694\) 0 0
\(695\) 20.9620 0.795135
\(696\) 0 0
\(697\) 57.7386 2.18700
\(698\) 0 0
\(699\) 6.00997 0.227318
\(700\) 0 0
\(701\) 1.58900 0.0600157 0.0300078 0.999550i \(-0.490447\pi\)
0.0300078 + 0.999550i \(0.490447\pi\)
\(702\) 0 0
\(703\) 2.72832 0.102900
\(704\) 0 0
\(705\) 9.32253 0.351107
\(706\) 0 0
\(707\) 8.92853 0.335792
\(708\) 0 0
\(709\) −4.32980 −0.162609 −0.0813046 0.996689i \(-0.525909\pi\)
−0.0813046 + 0.996689i \(0.525909\pi\)
\(710\) 0 0
\(711\) −10.9085 −0.409100
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −17.0222 −0.636596
\(716\) 0 0
\(717\) −5.67910 −0.212090
\(718\) 0 0
\(719\) 25.9486 0.967718 0.483859 0.875146i \(-0.339235\pi\)
0.483859 + 0.875146i \(0.339235\pi\)
\(720\) 0 0
\(721\) −0.472742 −0.0176058
\(722\) 0 0
\(723\) −1.69088 −0.0628845
\(724\) 0 0
\(725\) 6.92078 0.257031
\(726\) 0 0
\(727\) −17.3672 −0.644114 −0.322057 0.946720i \(-0.604374\pi\)
−0.322057 + 0.946720i \(0.604374\pi\)
\(728\) 0 0
\(729\) 17.5698 0.650735
\(730\) 0 0
\(731\) −24.5489 −0.907976
\(732\) 0 0
\(733\) 47.1889 1.74296 0.871480 0.490431i \(-0.163161\pi\)
0.871480 + 0.490431i \(0.163161\pi\)
\(734\) 0 0
\(735\) 8.83319 0.325817
\(736\) 0 0
\(737\) −36.4850 −1.34394
\(738\) 0 0
\(739\) −15.0987 −0.555416 −0.277708 0.960666i \(-0.589575\pi\)
−0.277708 + 0.960666i \(0.589575\pi\)
\(740\) 0 0
\(741\) −0.693371 −0.0254716
\(742\) 0 0
\(743\) 11.8979 0.436490 0.218245 0.975894i \(-0.429967\pi\)
0.218245 + 0.975894i \(0.429967\pi\)
\(744\) 0 0
\(745\) 22.6253 0.828928
\(746\) 0 0
\(747\) −3.54657 −0.129762
\(748\) 0 0
\(749\) 0.371961 0.0135912
\(750\) 0 0
\(751\) −7.94974 −0.290090 −0.145045 0.989425i \(-0.546333\pi\)
−0.145045 + 0.989425i \(0.546333\pi\)
\(752\) 0 0
\(753\) 9.71351 0.353980
\(754\) 0 0
\(755\) −14.1305 −0.514262
\(756\) 0 0
\(757\) 22.2062 0.807100 0.403550 0.914958i \(-0.367776\pi\)
0.403550 + 0.914958i \(0.367776\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3.39284 0.122991 0.0614953 0.998107i \(-0.480413\pi\)
0.0614953 + 0.998107i \(0.480413\pi\)
\(762\) 0 0
\(763\) 4.30410 0.155819
\(764\) 0 0
\(765\) 11.9146 0.430773
\(766\) 0 0
\(767\) 3.87898 0.140062
\(768\) 0 0
\(769\) 4.15320 0.149768 0.0748842 0.997192i \(-0.476141\pi\)
0.0748842 + 0.997192i \(0.476141\pi\)
\(770\) 0 0
\(771\) −3.96367 −0.142748
\(772\) 0 0
\(773\) −28.2415 −1.01578 −0.507888 0.861423i \(-0.669574\pi\)
−0.507888 + 0.861423i \(0.669574\pi\)
\(774\) 0 0
\(775\) 23.0481 0.827914
\(776\) 0 0
\(777\) −6.87312 −0.246572
\(778\) 0 0
\(779\) 2.92941 0.104957
\(780\) 0 0
\(781\) −53.3804 −1.91010
\(782\) 0 0
\(783\) 10.3912 0.371351
\(784\) 0 0
\(785\) −3.96644 −0.141568
\(786\) 0 0
\(787\) −21.8912 −0.780336 −0.390168 0.920744i \(-0.627583\pi\)
−0.390168 + 0.920744i \(0.627583\pi\)
\(788\) 0 0
\(789\) −17.5595 −0.625133
\(790\) 0 0
\(791\) 0.781687 0.0277936
\(792\) 0 0
\(793\) −21.4846 −0.762941
\(794\) 0 0
\(795\) 3.52566 0.125042
\(796\) 0 0
\(797\) −10.7266 −0.379956 −0.189978 0.981788i \(-0.560842\pi\)
−0.189978 + 0.981788i \(0.560842\pi\)
\(798\) 0 0
\(799\) −37.2331 −1.31721
\(800\) 0 0
\(801\) −8.33588 −0.294534
\(802\) 0 0
\(803\) 34.9801 1.23442
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −4.89009 −0.172139
\(808\) 0 0
\(809\) 33.6941 1.18462 0.592312 0.805709i \(-0.298215\pi\)
0.592312 + 0.805709i \(0.298215\pi\)
\(810\) 0 0
\(811\) −34.7974 −1.22190 −0.610952 0.791668i \(-0.709213\pi\)
−0.610952 + 0.791668i \(0.709213\pi\)
\(812\) 0 0
\(813\) 3.81125 0.133667
\(814\) 0 0
\(815\) 13.5940 0.476179
\(816\) 0 0
\(817\) −1.24551 −0.0435748
\(818\) 0 0
\(819\) −2.67879 −0.0936043
\(820\) 0 0
\(821\) −23.8353 −0.831857 −0.415929 0.909397i \(-0.636543\pi\)
−0.415929 + 0.909397i \(0.636543\pi\)
\(822\) 0 0
\(823\) 23.7843 0.829069 0.414534 0.910034i \(-0.363944\pi\)
0.414534 + 0.910034i \(0.363944\pi\)
\(824\) 0 0
\(825\) 22.3714 0.778873
\(826\) 0 0
\(827\) −30.8236 −1.07184 −0.535921 0.844268i \(-0.680035\pi\)
−0.535921 + 0.844268i \(0.680035\pi\)
\(828\) 0 0
\(829\) −30.9416 −1.07465 −0.537324 0.843376i \(-0.680565\pi\)
−0.537324 + 0.843376i \(0.680565\pi\)
\(830\) 0 0
\(831\) −13.1331 −0.455584
\(832\) 0 0
\(833\) −35.2787 −1.22234
\(834\) 0 0
\(835\) −26.9476 −0.932562
\(836\) 0 0
\(837\) 34.6056 1.19614
\(838\) 0 0
\(839\) 39.3250 1.35765 0.678825 0.734300i \(-0.262489\pi\)
0.678825 + 0.734300i \(0.262489\pi\)
\(840\) 0 0
\(841\) −25.0682 −0.864421
\(842\) 0 0
\(843\) −6.81841 −0.234838
\(844\) 0 0
\(845\) 9.17646 0.315680
\(846\) 0 0
\(847\) −14.8627 −0.510690
\(848\) 0 0
\(849\) −34.4190 −1.18126
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −5.80760 −0.198848 −0.0994242 0.995045i \(-0.531700\pi\)
−0.0994242 + 0.995045i \(0.531700\pi\)
\(854\) 0 0
\(855\) 0.604495 0.0206733
\(856\) 0 0
\(857\) −21.1686 −0.723107 −0.361553 0.932351i \(-0.617753\pi\)
−0.361553 + 0.932351i \(0.617753\pi\)
\(858\) 0 0
\(859\) −2.69259 −0.0918698 −0.0459349 0.998944i \(-0.514627\pi\)
−0.0459349 + 0.998944i \(0.514627\pi\)
\(860\) 0 0
\(861\) −7.37969 −0.251499
\(862\) 0 0
\(863\) −20.1950 −0.687447 −0.343724 0.939071i \(-0.611688\pi\)
−0.343724 + 0.939071i \(0.611688\pi\)
\(864\) 0 0
\(865\) −13.6329 −0.463532
\(866\) 0 0
\(867\) 12.5299 0.425537
\(868\) 0 0
\(869\) −35.3843 −1.20033
\(870\) 0 0
\(871\) −14.5679 −0.493615
\(872\) 0 0
\(873\) −18.4939 −0.625925
\(874\) 0 0
\(875\) −6.54314 −0.221199
\(876\) 0 0
\(877\) 21.0342 0.710273 0.355137 0.934814i \(-0.384434\pi\)
0.355137 + 0.934814i \(0.384434\pi\)
\(878\) 0 0
\(879\) 7.37527 0.248762
\(880\) 0 0
\(881\) −24.6353 −0.829983 −0.414992 0.909825i \(-0.636215\pi\)
−0.414992 + 0.909825i \(0.636215\pi\)
\(882\) 0 0
\(883\) 1.16589 0.0392352 0.0196176 0.999808i \(-0.493755\pi\)
0.0196176 + 0.999808i \(0.493755\pi\)
\(884\) 0 0
\(885\) 2.20512 0.0741241
\(886\) 0 0
\(887\) 10.1795 0.341793 0.170897 0.985289i \(-0.445334\pi\)
0.170897 + 0.985289i \(0.445334\pi\)
\(888\) 0 0
\(889\) −4.50695 −0.151158
\(890\) 0 0
\(891\) 1.50026 0.0502605
\(892\) 0 0
\(893\) −1.88905 −0.0632145
\(894\) 0 0
\(895\) −21.5487 −0.720293
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 13.0940 0.436708
\(900\) 0 0
\(901\) −14.0811 −0.469108
\(902\) 0 0
\(903\) 3.13765 0.104415
\(904\) 0 0
\(905\) −25.0730 −0.833454
\(906\) 0 0
\(907\) −19.6527 −0.652556 −0.326278 0.945274i \(-0.605795\pi\)
−0.326278 + 0.945274i \(0.605795\pi\)
\(908\) 0 0
\(909\) 25.8500 0.857389
\(910\) 0 0
\(911\) 47.8643 1.58581 0.792907 0.609343i \(-0.208567\pi\)
0.792907 + 0.609343i \(0.208567\pi\)
\(912\) 0 0
\(913\) −11.5042 −0.380732
\(914\) 0 0
\(915\) −12.2135 −0.403767
\(916\) 0 0
\(917\) −0.412858 −0.0136338
\(918\) 0 0
\(919\) 35.7413 1.17900 0.589499 0.807769i \(-0.299325\pi\)
0.589499 + 0.807769i \(0.299325\pi\)
\(920\) 0 0
\(921\) 6.60888 0.217770
\(922\) 0 0
\(923\) −21.3140 −0.701560
\(924\) 0 0
\(925\) −35.1485 −1.15568
\(926\) 0 0
\(927\) −1.36869 −0.0449536
\(928\) 0 0
\(929\) −22.9339 −0.752435 −0.376218 0.926531i \(-0.622776\pi\)
−0.376218 + 0.926531i \(0.622776\pi\)
\(930\) 0 0
\(931\) −1.78989 −0.0586613
\(932\) 0 0
\(933\) −11.1311 −0.364416
\(934\) 0 0
\(935\) 38.6479 1.26392
\(936\) 0 0
\(937\) −19.6756 −0.642773 −0.321386 0.946948i \(-0.604149\pi\)
−0.321386 + 0.946948i \(0.604149\pi\)
\(938\) 0 0
\(939\) 4.37456 0.142758
\(940\) 0 0
\(941\) −52.2897 −1.70460 −0.852299 0.523056i \(-0.824792\pi\)
−0.852299 + 0.523056i \(0.824792\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −4.03863 −0.131377
\(946\) 0 0
\(947\) 26.3714 0.856956 0.428478 0.903552i \(-0.359050\pi\)
0.428478 + 0.903552i \(0.359050\pi\)
\(948\) 0 0
\(949\) 13.9670 0.453389
\(950\) 0 0
\(951\) 5.43320 0.176184
\(952\) 0 0
\(953\) 41.4107 1.34142 0.670711 0.741718i \(-0.265989\pi\)
0.670711 + 0.741718i \(0.265989\pi\)
\(954\) 0 0
\(955\) −11.6266 −0.376228
\(956\) 0 0
\(957\) 12.7095 0.410840
\(958\) 0 0
\(959\) 7.85529 0.253661
\(960\) 0 0
\(961\) 12.6066 0.406663
\(962\) 0 0
\(963\) 1.07690 0.0347028
\(964\) 0 0
\(965\) −31.4068 −1.01102
\(966\) 0 0
\(967\) 24.8632 0.799546 0.399773 0.916614i \(-0.369089\pi\)
0.399773 + 0.916614i \(0.369089\pi\)
\(968\) 0 0
\(969\) 1.57425 0.0505723
\(970\) 0 0
\(971\) 52.7969 1.69433 0.847166 0.531328i \(-0.178307\pi\)
0.847166 + 0.531328i \(0.178307\pi\)
\(972\) 0 0
\(973\) 10.7004 0.343040
\(974\) 0 0
\(975\) 8.93258 0.286072
\(976\) 0 0
\(977\) −13.1353 −0.420236 −0.210118 0.977676i \(-0.567385\pi\)
−0.210118 + 0.977676i \(0.567385\pi\)
\(978\) 0 0
\(979\) −27.0394 −0.864184
\(980\) 0 0
\(981\) 12.4613 0.397857
\(982\) 0 0
\(983\) 53.7978 1.71588 0.857942 0.513746i \(-0.171743\pi\)
0.857942 + 0.513746i \(0.171743\pi\)
\(984\) 0 0
\(985\) −6.47472 −0.206302
\(986\) 0 0
\(987\) 4.75884 0.151476
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 43.6587 1.38686 0.693432 0.720522i \(-0.256098\pi\)
0.693432 + 0.720522i \(0.256098\pi\)
\(992\) 0 0
\(993\) −5.34249 −0.169539
\(994\) 0 0
\(995\) −30.7373 −0.974438
\(996\) 0 0
\(997\) −53.3789 −1.69053 −0.845263 0.534350i \(-0.820556\pi\)
−0.845263 + 0.534350i \(0.820556\pi\)
\(998\) 0 0
\(999\) −52.7736 −1.66968
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8464.2.a.bx.1.4 5
4.3 odd 2 1058.2.a.m.1.2 5
12.11 even 2 9522.2.a.bp.1.5 5
23.3 even 11 368.2.m.b.193.1 10
23.8 even 11 368.2.m.b.225.1 10
23.22 odd 2 8464.2.a.bw.1.4 5
92.3 odd 22 46.2.c.a.9.1 10
92.31 odd 22 46.2.c.a.41.1 yes 10
92.91 even 2 1058.2.a.l.1.2 5
276.95 even 22 414.2.i.f.55.1 10
276.215 even 22 414.2.i.f.271.1 10
276.275 odd 2 9522.2.a.bu.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
46.2.c.a.9.1 10 92.3 odd 22
46.2.c.a.41.1 yes 10 92.31 odd 22
368.2.m.b.193.1 10 23.3 even 11
368.2.m.b.225.1 10 23.8 even 11
414.2.i.f.55.1 10 276.95 even 22
414.2.i.f.271.1 10 276.215 even 22
1058.2.a.l.1.2 5 92.91 even 2
1058.2.a.m.1.2 5 4.3 odd 2
8464.2.a.bw.1.4 5 23.22 odd 2
8464.2.a.bx.1.4 5 1.1 even 1 trivial
9522.2.a.bp.1.5 5 12.11 even 2
9522.2.a.bu.1.1 5 276.275 odd 2