Properties

Label 38.6.a.d
Level 3838
Weight 66
Character orbit 38.a
Self dual yes
Analytic conductor 6.0956.095
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [38,6,Mod(1,38)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(38, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("38.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 38=219 38 = 2 \cdot 19
Weight: k k == 6 6
Character orbit: [χ][\chi] == 38.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 6.094585152896.09458515289
Analytic rank: 00
Dimension: 33
Coefficient field: Q[x]/(x3)\mathbb{Q}[x]/(x^{3} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x2454x+3760 x^{3} - x^{2} - 454x + 3760 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+4q2+(β1+4)q3+16q4+(β2β1+27)q5+(4β1+16)q6+(5β24β1+79)q7+64q8+(2β23β1+79)q9+(4β24β1+108)q10++(429β22063β1+53317)q99+O(q100) q + 4 q^{2} + (\beta_1 + 4) q^{3} + 16 q^{4} + (\beta_{2} - \beta_1 + 27) q^{5} + (4 \beta_1 + 16) q^{6} + ( - 5 \beta_{2} - 4 \beta_1 + 79) q^{7} + 64 q^{8} + (2 \beta_{2} - 3 \beta_1 + 79) q^{9} + (4 \beta_{2} - 4 \beta_1 + 108) q^{10}+ \cdots + (429 \beta_{2} - 2063 \beta_1 + 53317) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+12q2+13q3+48q4+81q5+52q6+228q7+192q8+236q9+324q10+363q11+208q12+501q13+912q14670q15+768q161206q17+944q18++158317q99+O(q100) 3 q + 12 q^{2} + 13 q^{3} + 48 q^{4} + 81 q^{5} + 52 q^{6} + 228 q^{7} + 192 q^{8} + 236 q^{9} + 324 q^{10} + 363 q^{11} + 208 q^{12} + 501 q^{13} + 912 q^{14} - 670 q^{15} + 768 q^{16} - 1206 q^{17} + 944 q^{18}+ \cdots + 158317 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x3x2454x+3760 x^{3} - x^{2} - 454x + 3760 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2+11ν306)/2 ( \nu^{2} + 11\nu - 306 ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β211β1+306 2\beta_{2} - 11\beta _1 + 306 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−24.1916
10.7990
14.3926
4.00000 −20.1916 16.0000 57.7548 −80.7665 142.950 64.0000 164.701 231.019
1.2 4.00000 14.7990 16.0000 −19.0956 59.1959 212.287 64.0000 −23.9901 −76.3823
1.3 4.00000 18.3926 16.0000 42.3408 73.5705 −127.237 64.0000 95.2889 169.363
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
1919 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 38.6.a.d 3
3.b odd 2 1 342.6.a.l 3
4.b odd 2 1 304.6.a.h 3
5.b even 2 1 950.6.a.f 3
19.b odd 2 1 722.6.a.d 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.6.a.d 3 1.a even 1 1 trivial
304.6.a.h 3 4.b odd 2 1
342.6.a.l 3 3.b odd 2 1
722.6.a.d 3 19.b odd 2 1
950.6.a.f 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3313T32398T3+5496 T_{3}^{3} - 13T_{3}^{2} - 398T_{3} + 5496 acting on S6new(Γ0(38))S_{6}^{\mathrm{new}}(\Gamma_0(38)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4)3 (T - 4)^{3} Copy content Toggle raw display
33 T313T2++5496 T^{3} - 13 T^{2} + \cdots + 5496 Copy content Toggle raw display
55 T381T2++46696 T^{3} - 81 T^{2} + \cdots + 46696 Copy content Toggle raw display
77 T3228T2++3861216 T^{3} - 228 T^{2} + \cdots + 3861216 Copy content Toggle raw display
1111 T3363T2++162880120 T^{3} - 363 T^{2} + \cdots + 162880120 Copy content Toggle raw display
1313 T3501T2++93082696 T^{3} - 501 T^{2} + \cdots + 93082696 Copy content Toggle raw display
1717 T3+1206T2+963841518 T^{3} + 1206 T^{2} + \cdots - 963841518 Copy content Toggle raw display
1919 (T+361)3 (T + 361)^{3} Copy content Toggle raw display
2323 T3+18644491520 T^{3} + \cdots - 18644491520 Copy content Toggle raw display
2929 T3+14808989500 T^{3} + \cdots - 14808989500 Copy content Toggle raw display
3131 T3+164301107200 T^{3} + \cdots - 164301107200 Copy content Toggle raw display
3737 T3+19509523912 T^{3} + \cdots - 19509523912 Copy content Toggle raw display
4141 T3++164480699264 T^{3} + \cdots + 164480699264 Copy content Toggle raw display
4343 T3+2228453451472 T^{3} + \cdots - 2228453451472 Copy content Toggle raw display
4747 T3+1331645125760 T^{3} + \cdots - 1331645125760 Copy content Toggle raw display
5353 T3++5330002936312 T^{3} + \cdots + 5330002936312 Copy content Toggle raw display
5959 T3++56358292470552 T^{3} + \cdots + 56358292470552 Copy content Toggle raw display
6161 T3++3097994159068 T^{3} + \cdots + 3097994159068 Copy content Toggle raw display
6767 T3+6192188856432 T^{3} + \cdots - 6192188856432 Copy content Toggle raw display
7171 T3++33641692455520 T^{3} + \cdots + 33641692455520 Copy content Toggle raw display
7373 T3+23123416049802 T^{3} + \cdots - 23123416049802 Copy content Toggle raw display
7979 T3++2286937169920 T^{3} + \cdots + 2286937169920 Copy content Toggle raw display
8383 T3++183940117843104 T^{3} + \cdots + 183940117843104 Copy content Toggle raw display
8989 T3+63263160328320 T^{3} + \cdots - 63263160328320 Copy content Toggle raw display
9797 T3++11475767642528 T^{3} + \cdots + 11475767642528 Copy content Toggle raw display
show more
show less