Properties

Label 38.6.a.d
Level $38$
Weight $6$
Character orbit 38.a
Self dual yes
Analytic conductor $6.095$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [38,6,Mod(1,38)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(38, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("38.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 38 = 2 \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 38.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.09458515289\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 454x + 3760 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} + (\beta_1 + 4) q^{3} + 16 q^{4} + (\beta_{2} - \beta_1 + 27) q^{5} + (4 \beta_1 + 16) q^{6} + ( - 5 \beta_{2} - 4 \beta_1 + 79) q^{7} + 64 q^{8} + (2 \beta_{2} - 3 \beta_1 + 79) q^{9} + (4 \beta_{2} - 4 \beta_1 + 108) q^{10}+ \cdots + (429 \beta_{2} - 2063 \beta_1 + 53317) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 12 q^{2} + 13 q^{3} + 48 q^{4} + 81 q^{5} + 52 q^{6} + 228 q^{7} + 192 q^{8} + 236 q^{9} + 324 q^{10} + 363 q^{11} + 208 q^{12} + 501 q^{13} + 912 q^{14} - 670 q^{15} + 768 q^{16} - 1206 q^{17} + 944 q^{18}+ \cdots + 158317 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 454x + 3760 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} + 11\nu - 306 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} - 11\beta _1 + 306 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−24.1916
10.7990
14.3926
4.00000 −20.1916 16.0000 57.7548 −80.7665 142.950 64.0000 164.701 231.019
1.2 4.00000 14.7990 16.0000 −19.0956 59.1959 212.287 64.0000 −23.9901 −76.3823
1.3 4.00000 18.3926 16.0000 42.3408 73.5705 −127.237 64.0000 95.2889 169.363
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 38.6.a.d 3
3.b odd 2 1 342.6.a.l 3
4.b odd 2 1 304.6.a.h 3
5.b even 2 1 950.6.a.f 3
19.b odd 2 1 722.6.a.d 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.6.a.d 3 1.a even 1 1 trivial
304.6.a.h 3 4.b odd 2 1
342.6.a.l 3 3.b odd 2 1
722.6.a.d 3 19.b odd 2 1
950.6.a.f 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 13T_{3}^{2} - 398T_{3} + 5496 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(38))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 13 T^{2} + \cdots + 5496 \) Copy content Toggle raw display
$5$ \( T^{3} - 81 T^{2} + \cdots + 46696 \) Copy content Toggle raw display
$7$ \( T^{3} - 228 T^{2} + \cdots + 3861216 \) Copy content Toggle raw display
$11$ \( T^{3} - 363 T^{2} + \cdots + 162880120 \) Copy content Toggle raw display
$13$ \( T^{3} - 501 T^{2} + \cdots + 93082696 \) Copy content Toggle raw display
$17$ \( T^{3} + 1206 T^{2} + \cdots - 963841518 \) Copy content Toggle raw display
$19$ \( (T + 361)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 18644491520 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 14808989500 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 164301107200 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 19509523912 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 164480699264 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 2228453451472 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 1331645125760 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 5330002936312 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 56358292470552 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 3097994159068 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 6192188856432 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 33641692455520 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 23123416049802 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 2286937169920 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 183940117843104 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 63263160328320 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 11475767642528 \) Copy content Toggle raw display
show more
show less