Properties

Label 3825.2.a.k.1.1
Level $3825$
Weight $2$
Character 3825.1
Self dual yes
Analytic conductor $30.543$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3825,2,Mod(1,3825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3825.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3825 = 3^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.5427787731\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 425)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 3825.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{4} -1.00000 q^{7} -3.00000 q^{8} +4.00000 q^{11} +1.00000 q^{13} -1.00000 q^{14} -1.00000 q^{16} +1.00000 q^{17} -6.00000 q^{19} +4.00000 q^{22} +1.00000 q^{26} +1.00000 q^{28} -7.00000 q^{31} +5.00000 q^{32} +1.00000 q^{34} +4.00000 q^{37} -6.00000 q^{38} +2.00000 q^{41} -4.00000 q^{43} -4.00000 q^{44} -6.00000 q^{47} -6.00000 q^{49} -1.00000 q^{52} +11.0000 q^{53} +3.00000 q^{56} -8.00000 q^{59} +10.0000 q^{61} -7.00000 q^{62} +7.00000 q^{64} -8.00000 q^{67} -1.00000 q^{68} -7.00000 q^{71} -4.00000 q^{73} +4.00000 q^{74} +6.00000 q^{76} -4.00000 q^{77} -11.0000 q^{79} +2.00000 q^{82} -8.00000 q^{83} -4.00000 q^{86} -12.0000 q^{88} +6.00000 q^{89} -1.00000 q^{91} -6.00000 q^{94} +16.0000 q^{97} -6.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) −3.00000 −1.06066
\(9\) 0 0
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −7.00000 −1.25724 −0.628619 0.777714i \(-0.716379\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 5.00000 0.883883
\(33\) 0 0
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) 0 0
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) −6.00000 −0.973329
\(39\) 0 0
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) −4.00000 −0.603023
\(45\) 0 0
\(46\) 0 0
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) −1.00000 −0.138675
\(53\) 11.0000 1.51097 0.755483 0.655168i \(-0.227402\pi\)
0.755483 + 0.655168i \(0.227402\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 3.00000 0.400892
\(57\) 0 0
\(58\) 0 0
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) −7.00000 −0.889001
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) −1.00000 −0.121268
\(69\) 0 0
\(70\) 0 0
\(71\) −7.00000 −0.830747 −0.415374 0.909651i \(-0.636349\pi\)
−0.415374 + 0.909651i \(0.636349\pi\)
\(72\) 0 0
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 4.00000 0.464991
\(75\) 0 0
\(76\) 6.00000 0.688247
\(77\) −4.00000 −0.455842
\(78\) 0 0
\(79\) −11.0000 −1.23760 −0.618798 0.785550i \(-0.712380\pi\)
−0.618798 + 0.785550i \(0.712380\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 2.00000 0.220863
\(83\) −8.00000 −0.878114 −0.439057 0.898459i \(-0.644687\pi\)
−0.439057 + 0.898459i \(0.644687\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) −12.0000 −1.27920
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) 0 0
\(93\) 0 0
\(94\) −6.00000 −0.618853
\(95\) 0 0
\(96\) 0 0
\(97\) 16.0000 1.62455 0.812277 0.583272i \(-0.198228\pi\)
0.812277 + 0.583272i \(0.198228\pi\)
\(98\) −6.00000 −0.606092
\(99\) 0 0
\(100\) 0 0
\(101\) −15.0000 −1.49256 −0.746278 0.665635i \(-0.768161\pi\)
−0.746278 + 0.665635i \(0.768161\pi\)
\(102\) 0 0
\(103\) −6.00000 −0.591198 −0.295599 0.955312i \(-0.595519\pi\)
−0.295599 + 0.955312i \(0.595519\pi\)
\(104\) −3.00000 −0.294174
\(105\) 0 0
\(106\) 11.0000 1.06841
\(107\) −19.0000 −1.83680 −0.918400 0.395654i \(-0.870518\pi\)
−0.918400 + 0.395654i \(0.870518\pi\)
\(108\) 0 0
\(109\) −4.00000 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.00000 0.0944911
\(113\) −12.0000 −1.12887 −0.564433 0.825479i \(-0.690905\pi\)
−0.564433 + 0.825479i \(0.690905\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −8.00000 −0.736460
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 10.0000 0.905357
\(123\) 0 0
\(124\) 7.00000 0.628619
\(125\) 0 0
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) −3.00000 −0.265165
\(129\) 0 0
\(130\) 0 0
\(131\) 15.0000 1.31056 0.655278 0.755388i \(-0.272551\pi\)
0.655278 + 0.755388i \(0.272551\pi\)
\(132\) 0 0
\(133\) 6.00000 0.520266
\(134\) −8.00000 −0.691095
\(135\) 0 0
\(136\) −3.00000 −0.257248
\(137\) −11.0000 −0.939793 −0.469897 0.882721i \(-0.655709\pi\)
−0.469897 + 0.882721i \(0.655709\pi\)
\(138\) 0 0
\(139\) −13.0000 −1.10265 −0.551323 0.834292i \(-0.685877\pi\)
−0.551323 + 0.834292i \(0.685877\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −7.00000 −0.587427
\(143\) 4.00000 0.334497
\(144\) 0 0
\(145\) 0 0
\(146\) −4.00000 −0.331042
\(147\) 0 0
\(148\) −4.00000 −0.328798
\(149\) −21.0000 −1.72039 −0.860194 0.509968i \(-0.829657\pi\)
−0.860194 + 0.509968i \(0.829657\pi\)
\(150\) 0 0
\(151\) −18.0000 −1.46482 −0.732410 0.680864i \(-0.761604\pi\)
−0.732410 + 0.680864i \(0.761604\pi\)
\(152\) 18.0000 1.45999
\(153\) 0 0
\(154\) −4.00000 −0.322329
\(155\) 0 0
\(156\) 0 0
\(157\) −21.0000 −1.67598 −0.837991 0.545684i \(-0.816270\pi\)
−0.837991 + 0.545684i \(0.816270\pi\)
\(158\) −11.0000 −0.875113
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 11.0000 0.861586 0.430793 0.902451i \(-0.358234\pi\)
0.430793 + 0.902451i \(0.358234\pi\)
\(164\) −2.00000 −0.156174
\(165\) 0 0
\(166\) −8.00000 −0.620920
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 4.00000 0.304997
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −4.00000 −0.301511
\(177\) 0 0
\(178\) 6.00000 0.449719
\(179\) −6.00000 −0.448461 −0.224231 0.974536i \(-0.571987\pi\)
−0.224231 + 0.974536i \(0.571987\pi\)
\(180\) 0 0
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) −1.00000 −0.0741249
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 4.00000 0.292509
\(188\) 6.00000 0.437595
\(189\) 0 0
\(190\) 0 0
\(191\) 10.0000 0.723575 0.361787 0.932261i \(-0.382167\pi\)
0.361787 + 0.932261i \(0.382167\pi\)
\(192\) 0 0
\(193\) −24.0000 −1.72756 −0.863779 0.503871i \(-0.831909\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(194\) 16.0000 1.14873
\(195\) 0 0
\(196\) 6.00000 0.428571
\(197\) 14.0000 0.997459 0.498729 0.866758i \(-0.333800\pi\)
0.498729 + 0.866758i \(0.333800\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −15.0000 −1.05540
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −6.00000 −0.418040
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) −24.0000 −1.66011
\(210\) 0 0
\(211\) −25.0000 −1.72107 −0.860535 0.509390i \(-0.829871\pi\)
−0.860535 + 0.509390i \(0.829871\pi\)
\(212\) −11.0000 −0.755483
\(213\) 0 0
\(214\) −19.0000 −1.29881
\(215\) 0 0
\(216\) 0 0
\(217\) 7.00000 0.475191
\(218\) −4.00000 −0.270914
\(219\) 0 0
\(220\) 0 0
\(221\) 1.00000 0.0672673
\(222\) 0 0
\(223\) 2.00000 0.133930 0.0669650 0.997755i \(-0.478668\pi\)
0.0669650 + 0.997755i \(0.478668\pi\)
\(224\) −5.00000 −0.334077
\(225\) 0 0
\(226\) −12.0000 −0.798228
\(227\) 25.0000 1.65931 0.829654 0.558278i \(-0.188538\pi\)
0.829654 + 0.558278i \(0.188538\pi\)
\(228\) 0 0
\(229\) 1.00000 0.0660819 0.0330409 0.999454i \(-0.489481\pi\)
0.0330409 + 0.999454i \(0.489481\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −8.00000 −0.524097 −0.262049 0.965055i \(-0.584398\pi\)
−0.262049 + 0.965055i \(0.584398\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 8.00000 0.520756
\(237\) 0 0
\(238\) −1.00000 −0.0648204
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 5.00000 0.321412
\(243\) 0 0
\(244\) −10.0000 −0.640184
\(245\) 0 0
\(246\) 0 0
\(247\) −6.00000 −0.381771
\(248\) 21.0000 1.33350
\(249\) 0 0
\(250\) 0 0
\(251\) 8.00000 0.504956 0.252478 0.967603i \(-0.418755\pi\)
0.252478 + 0.967603i \(0.418755\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 16.0000 1.00393
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 19.0000 1.18519 0.592594 0.805502i \(-0.298104\pi\)
0.592594 + 0.805502i \(0.298104\pi\)
\(258\) 0 0
\(259\) −4.00000 −0.248548
\(260\) 0 0
\(261\) 0 0
\(262\) 15.0000 0.926703
\(263\) 16.0000 0.986602 0.493301 0.869859i \(-0.335790\pi\)
0.493301 + 0.869859i \(0.335790\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 6.00000 0.367884
\(267\) 0 0
\(268\) 8.00000 0.488678
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 0 0
\(274\) −11.0000 −0.664534
\(275\) 0 0
\(276\) 0 0
\(277\) 30.0000 1.80253 0.901263 0.433273i \(-0.142641\pi\)
0.901263 + 0.433273i \(0.142641\pi\)
\(278\) −13.0000 −0.779688
\(279\) 0 0
\(280\) 0 0
\(281\) −9.00000 −0.536895 −0.268447 0.963294i \(-0.586511\pi\)
−0.268447 + 0.963294i \(0.586511\pi\)
\(282\) 0 0
\(283\) 24.0000 1.42665 0.713326 0.700832i \(-0.247188\pi\)
0.713326 + 0.700832i \(0.247188\pi\)
\(284\) 7.00000 0.415374
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) −2.00000 −0.118056
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 4.00000 0.234082
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −12.0000 −0.697486
\(297\) 0 0
\(298\) −21.0000 −1.21650
\(299\) 0 0
\(300\) 0 0
\(301\) 4.00000 0.230556
\(302\) −18.0000 −1.03578
\(303\) 0 0
\(304\) 6.00000 0.344124
\(305\) 0 0
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 4.00000 0.227921
\(309\) 0 0
\(310\) 0 0
\(311\) 27.0000 1.53103 0.765515 0.643418i \(-0.222484\pi\)
0.765515 + 0.643418i \(0.222484\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) −21.0000 −1.18510
\(315\) 0 0
\(316\) 11.0000 0.618798
\(317\) −14.0000 −0.786318 −0.393159 0.919470i \(-0.628618\pi\)
−0.393159 + 0.919470i \(0.628618\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −6.00000 −0.333849
\(324\) 0 0
\(325\) 0 0
\(326\) 11.0000 0.609234
\(327\) 0 0
\(328\) −6.00000 −0.331295
\(329\) 6.00000 0.330791
\(330\) 0 0
\(331\) −14.0000 −0.769510 −0.384755 0.923019i \(-0.625714\pi\)
−0.384755 + 0.923019i \(0.625714\pi\)
\(332\) 8.00000 0.439057
\(333\) 0 0
\(334\) 8.00000 0.437741
\(335\) 0 0
\(336\) 0 0
\(337\) 24.0000 1.30736 0.653682 0.756770i \(-0.273224\pi\)
0.653682 + 0.756770i \(0.273224\pi\)
\(338\) −12.0000 −0.652714
\(339\) 0 0
\(340\) 0 0
\(341\) −28.0000 −1.51629
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 12.0000 0.646997
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) 7.00000 0.375780 0.187890 0.982190i \(-0.439835\pi\)
0.187890 + 0.982190i \(0.439835\pi\)
\(348\) 0 0
\(349\) 19.0000 1.01705 0.508523 0.861048i \(-0.330192\pi\)
0.508523 + 0.861048i \(0.330192\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 20.0000 1.06600
\(353\) 19.0000 1.01127 0.505634 0.862748i \(-0.331259\pi\)
0.505634 + 0.862748i \(0.331259\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) −6.00000 −0.317110
\(359\) 10.0000 0.527780 0.263890 0.964553i \(-0.414994\pi\)
0.263890 + 0.964553i \(0.414994\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) −22.0000 −1.15629
\(363\) 0 0
\(364\) 1.00000 0.0524142
\(365\) 0 0
\(366\) 0 0
\(367\) −23.0000 −1.20059 −0.600295 0.799779i \(-0.704950\pi\)
−0.600295 + 0.799779i \(0.704950\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −11.0000 −0.571092
\(372\) 0 0
\(373\) −19.0000 −0.983783 −0.491891 0.870657i \(-0.663694\pi\)
−0.491891 + 0.870657i \(0.663694\pi\)
\(374\) 4.00000 0.206835
\(375\) 0 0
\(376\) 18.0000 0.928279
\(377\) 0 0
\(378\) 0 0
\(379\) 25.0000 1.28416 0.642082 0.766636i \(-0.278071\pi\)
0.642082 + 0.766636i \(0.278071\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 10.0000 0.511645
\(383\) 6.00000 0.306586 0.153293 0.988181i \(-0.451012\pi\)
0.153293 + 0.988181i \(0.451012\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −24.0000 −1.22157
\(387\) 0 0
\(388\) −16.0000 −0.812277
\(389\) 34.0000 1.72387 0.861934 0.507020i \(-0.169253\pi\)
0.861934 + 0.507020i \(0.169253\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 18.0000 0.909137
\(393\) 0 0
\(394\) 14.0000 0.705310
\(395\) 0 0
\(396\) 0 0
\(397\) −4.00000 −0.200754 −0.100377 0.994949i \(-0.532005\pi\)
−0.100377 + 0.994949i \(0.532005\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 0 0
\(403\) −7.00000 −0.348695
\(404\) 15.0000 0.746278
\(405\) 0 0
\(406\) 0 0
\(407\) 16.0000 0.793091
\(408\) 0 0
\(409\) 19.0000 0.939490 0.469745 0.882802i \(-0.344346\pi\)
0.469745 + 0.882802i \(0.344346\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 6.00000 0.295599
\(413\) 8.00000 0.393654
\(414\) 0 0
\(415\) 0 0
\(416\) 5.00000 0.245145
\(417\) 0 0
\(418\) −24.0000 −1.17388
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) −25.0000 −1.21843 −0.609213 0.793007i \(-0.708514\pi\)
−0.609213 + 0.793007i \(0.708514\pi\)
\(422\) −25.0000 −1.21698
\(423\) 0 0
\(424\) −33.0000 −1.60262
\(425\) 0 0
\(426\) 0 0
\(427\) −10.0000 −0.483934
\(428\) 19.0000 0.918400
\(429\) 0 0
\(430\) 0 0
\(431\) −31.0000 −1.49322 −0.746609 0.665263i \(-0.768319\pi\)
−0.746609 + 0.665263i \(0.768319\pi\)
\(432\) 0 0
\(433\) 34.0000 1.63394 0.816968 0.576683i \(-0.195653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 7.00000 0.336011
\(435\) 0 0
\(436\) 4.00000 0.191565
\(437\) 0 0
\(438\) 0 0
\(439\) −33.0000 −1.57500 −0.787502 0.616312i \(-0.788626\pi\)
−0.787502 + 0.616312i \(0.788626\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 1.00000 0.0475651
\(443\) 6.00000 0.285069 0.142534 0.989790i \(-0.454475\pi\)
0.142534 + 0.989790i \(0.454475\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 2.00000 0.0947027
\(447\) 0 0
\(448\) −7.00000 −0.330719
\(449\) −36.0000 −1.69895 −0.849473 0.527633i \(-0.823080\pi\)
−0.849473 + 0.527633i \(0.823080\pi\)
\(450\) 0 0
\(451\) 8.00000 0.376705
\(452\) 12.0000 0.564433
\(453\) 0 0
\(454\) 25.0000 1.17331
\(455\) 0 0
\(456\) 0 0
\(457\) −3.00000 −0.140334 −0.0701670 0.997535i \(-0.522353\pi\)
−0.0701670 + 0.997535i \(0.522353\pi\)
\(458\) 1.00000 0.0467269
\(459\) 0 0
\(460\) 0 0
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 0 0
\(463\) −12.0000 −0.557687 −0.278844 0.960337i \(-0.589951\pi\)
−0.278844 + 0.960337i \(0.589951\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −8.00000 −0.370593
\(467\) 22.0000 1.01804 0.509019 0.860755i \(-0.330008\pi\)
0.509019 + 0.860755i \(0.330008\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) 0 0
\(472\) 24.0000 1.10469
\(473\) −16.0000 −0.735681
\(474\) 0 0
\(475\) 0 0
\(476\) 1.00000 0.0458349
\(477\) 0 0
\(478\) 8.00000 0.365911
\(479\) 12.0000 0.548294 0.274147 0.961688i \(-0.411605\pi\)
0.274147 + 0.961688i \(0.411605\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) 18.0000 0.819878
\(483\) 0 0
\(484\) −5.00000 −0.227273
\(485\) 0 0
\(486\) 0 0
\(487\) −4.00000 −0.181257 −0.0906287 0.995885i \(-0.528888\pi\)
−0.0906287 + 0.995885i \(0.528888\pi\)
\(488\) −30.0000 −1.35804
\(489\) 0 0
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −6.00000 −0.269953
\(495\) 0 0
\(496\) 7.00000 0.314309
\(497\) 7.00000 0.313993
\(498\) 0 0
\(499\) 13.0000 0.581960 0.290980 0.956729i \(-0.406019\pi\)
0.290980 + 0.956729i \(0.406019\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 8.00000 0.357057
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −16.0000 −0.709885
\(509\) −5.00000 −0.221621 −0.110811 0.993842i \(-0.535345\pi\)
−0.110811 + 0.993842i \(0.535345\pi\)
\(510\) 0 0
\(511\) 4.00000 0.176950
\(512\) −11.0000 −0.486136
\(513\) 0 0
\(514\) 19.0000 0.838054
\(515\) 0 0
\(516\) 0 0
\(517\) −24.0000 −1.05552
\(518\) −4.00000 −0.175750
\(519\) 0 0
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) −15.0000 −0.655278
\(525\) 0 0
\(526\) 16.0000 0.697633
\(527\) −7.00000 −0.304925
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) −6.00000 −0.260133
\(533\) 2.00000 0.0866296
\(534\) 0 0
\(535\) 0 0
\(536\) 24.0000 1.03664
\(537\) 0 0
\(538\) −10.0000 −0.431131
\(539\) −24.0000 −1.03375
\(540\) 0 0
\(541\) −8.00000 −0.343947 −0.171973 0.985102i \(-0.555014\pi\)
−0.171973 + 0.985102i \(0.555014\pi\)
\(542\) 2.00000 0.0859074
\(543\) 0 0
\(544\) 5.00000 0.214373
\(545\) 0 0
\(546\) 0 0
\(547\) −5.00000 −0.213785 −0.106892 0.994271i \(-0.534090\pi\)
−0.106892 + 0.994271i \(0.534090\pi\)
\(548\) 11.0000 0.469897
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 11.0000 0.467768
\(554\) 30.0000 1.27458
\(555\) 0 0
\(556\) 13.0000 0.551323
\(557\) −37.0000 −1.56774 −0.783870 0.620925i \(-0.786757\pi\)
−0.783870 + 0.620925i \(0.786757\pi\)
\(558\) 0 0
\(559\) −4.00000 −0.169182
\(560\) 0 0
\(561\) 0 0
\(562\) −9.00000 −0.379642
\(563\) −26.0000 −1.09577 −0.547885 0.836554i \(-0.684567\pi\)
−0.547885 + 0.836554i \(0.684567\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 24.0000 1.00880
\(567\) 0 0
\(568\) 21.0000 0.881140
\(569\) 14.0000 0.586911 0.293455 0.955973i \(-0.405195\pi\)
0.293455 + 0.955973i \(0.405195\pi\)
\(570\) 0 0
\(571\) −3.00000 −0.125546 −0.0627730 0.998028i \(-0.519994\pi\)
−0.0627730 + 0.998028i \(0.519994\pi\)
\(572\) −4.00000 −0.167248
\(573\) 0 0
\(574\) −2.00000 −0.0834784
\(575\) 0 0
\(576\) 0 0
\(577\) −30.0000 −1.24892 −0.624458 0.781058i \(-0.714680\pi\)
−0.624458 + 0.781058i \(0.714680\pi\)
\(578\) 1.00000 0.0415945
\(579\) 0 0
\(580\) 0 0
\(581\) 8.00000 0.331896
\(582\) 0 0
\(583\) 44.0000 1.82229
\(584\) 12.0000 0.496564
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 42.0000 1.73058
\(590\) 0 0
\(591\) 0 0
\(592\) −4.00000 −0.164399
\(593\) 9.00000 0.369586 0.184793 0.982777i \(-0.440839\pi\)
0.184793 + 0.982777i \(0.440839\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 21.0000 0.860194
\(597\) 0 0
\(598\) 0 0
\(599\) 44.0000 1.79779 0.898896 0.438163i \(-0.144371\pi\)
0.898896 + 0.438163i \(0.144371\pi\)
\(600\) 0 0
\(601\) −8.00000 −0.326327 −0.163163 0.986599i \(-0.552170\pi\)
−0.163163 + 0.986599i \(0.552170\pi\)
\(602\) 4.00000 0.163028
\(603\) 0 0
\(604\) 18.0000 0.732410
\(605\) 0 0
\(606\) 0 0
\(607\) 27.0000 1.09590 0.547948 0.836512i \(-0.315409\pi\)
0.547948 + 0.836512i \(0.315409\pi\)
\(608\) −30.0000 −1.21666
\(609\) 0 0
\(610\) 0 0
\(611\) −6.00000 −0.242734
\(612\) 0 0
\(613\) 47.0000 1.89831 0.949156 0.314806i \(-0.101939\pi\)
0.949156 + 0.314806i \(0.101939\pi\)
\(614\) −20.0000 −0.807134
\(615\) 0 0
\(616\) 12.0000 0.483494
\(617\) 36.0000 1.44931 0.724653 0.689114i \(-0.242000\pi\)
0.724653 + 0.689114i \(0.242000\pi\)
\(618\) 0 0
\(619\) 4.00000 0.160774 0.0803868 0.996764i \(-0.474384\pi\)
0.0803868 + 0.996764i \(0.474384\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 27.0000 1.08260
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) 0 0
\(626\) 10.0000 0.399680
\(627\) 0 0
\(628\) 21.0000 0.837991
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) −28.0000 −1.11466 −0.557331 0.830290i \(-0.688175\pi\)
−0.557331 + 0.830290i \(0.688175\pi\)
\(632\) 33.0000 1.31267
\(633\) 0 0
\(634\) −14.0000 −0.556011
\(635\) 0 0
\(636\) 0 0
\(637\) −6.00000 −0.237729
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.0000 0.473972 0.236986 0.971513i \(-0.423841\pi\)
0.236986 + 0.971513i \(0.423841\pi\)
\(642\) 0 0
\(643\) −1.00000 −0.0394362 −0.0197181 0.999806i \(-0.506277\pi\)
−0.0197181 + 0.999806i \(0.506277\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −6.00000 −0.236067
\(647\) 4.00000 0.157256 0.0786281 0.996904i \(-0.474946\pi\)
0.0786281 + 0.996904i \(0.474946\pi\)
\(648\) 0 0
\(649\) −32.0000 −1.25611
\(650\) 0 0
\(651\) 0 0
\(652\) −11.0000 −0.430793
\(653\) 4.00000 0.156532 0.0782660 0.996933i \(-0.475062\pi\)
0.0782660 + 0.996933i \(0.475062\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −2.00000 −0.0780869
\(657\) 0 0
\(658\) 6.00000 0.233904
\(659\) 2.00000 0.0779089 0.0389545 0.999241i \(-0.487597\pi\)
0.0389545 + 0.999241i \(0.487597\pi\)
\(660\) 0 0
\(661\) −5.00000 −0.194477 −0.0972387 0.995261i \(-0.531001\pi\)
−0.0972387 + 0.995261i \(0.531001\pi\)
\(662\) −14.0000 −0.544125
\(663\) 0 0
\(664\) 24.0000 0.931381
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −8.00000 −0.309529
\(669\) 0 0
\(670\) 0 0
\(671\) 40.0000 1.54418
\(672\) 0 0
\(673\) 38.0000 1.46479 0.732396 0.680879i \(-0.238402\pi\)
0.732396 + 0.680879i \(0.238402\pi\)
\(674\) 24.0000 0.924445
\(675\) 0 0
\(676\) 12.0000 0.461538
\(677\) −36.0000 −1.38359 −0.691796 0.722093i \(-0.743180\pi\)
−0.691796 + 0.722093i \(0.743180\pi\)
\(678\) 0 0
\(679\) −16.0000 −0.614024
\(680\) 0 0
\(681\) 0 0
\(682\) −28.0000 −1.07218
\(683\) 9.00000 0.344375 0.172188 0.985064i \(-0.444916\pi\)
0.172188 + 0.985064i \(0.444916\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 13.0000 0.496342
\(687\) 0 0
\(688\) 4.00000 0.152499
\(689\) 11.0000 0.419067
\(690\) 0 0
\(691\) 35.0000 1.33146 0.665731 0.746191i \(-0.268120\pi\)
0.665731 + 0.746191i \(0.268120\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) 7.00000 0.265716
\(695\) 0 0
\(696\) 0 0
\(697\) 2.00000 0.0757554
\(698\) 19.0000 0.719161
\(699\) 0 0
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 0 0
\(703\) −24.0000 −0.905177
\(704\) 28.0000 1.05529
\(705\) 0 0
\(706\) 19.0000 0.715074
\(707\) 15.0000 0.564133
\(708\) 0 0
\(709\) −6.00000 −0.225335 −0.112667 0.993633i \(-0.535939\pi\)
−0.112667 + 0.993633i \(0.535939\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −18.0000 −0.674579
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 6.00000 0.224231
\(717\) 0 0
\(718\) 10.0000 0.373197
\(719\) −17.0000 −0.633993 −0.316997 0.948427i \(-0.602674\pi\)
−0.316997 + 0.948427i \(0.602674\pi\)
\(720\) 0 0
\(721\) 6.00000 0.223452
\(722\) 17.0000 0.632674
\(723\) 0 0
\(724\) 22.0000 0.817624
\(725\) 0 0
\(726\) 0 0
\(727\) −18.0000 −0.667583 −0.333792 0.942647i \(-0.608328\pi\)
−0.333792 + 0.942647i \(0.608328\pi\)
\(728\) 3.00000 0.111187
\(729\) 0 0
\(730\) 0 0
\(731\) −4.00000 −0.147945
\(732\) 0 0
\(733\) 5.00000 0.184679 0.0923396 0.995728i \(-0.470565\pi\)
0.0923396 + 0.995728i \(0.470565\pi\)
\(734\) −23.0000 −0.848945
\(735\) 0 0
\(736\) 0 0
\(737\) −32.0000 −1.17874
\(738\) 0 0
\(739\) −2.00000 −0.0735712 −0.0367856 0.999323i \(-0.511712\pi\)
−0.0367856 + 0.999323i \(0.511712\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −11.0000 −0.403823
\(743\) 21.0000 0.770415 0.385208 0.922830i \(-0.374130\pi\)
0.385208 + 0.922830i \(0.374130\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −19.0000 −0.695639
\(747\) 0 0
\(748\) −4.00000 −0.146254
\(749\) 19.0000 0.694245
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 6.00000 0.218797
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −38.0000 −1.38113 −0.690567 0.723269i \(-0.742639\pi\)
−0.690567 + 0.723269i \(0.742639\pi\)
\(758\) 25.0000 0.908041
\(759\) 0 0
\(760\) 0 0
\(761\) 39.0000 1.41375 0.706874 0.707339i \(-0.250105\pi\)
0.706874 + 0.707339i \(0.250105\pi\)
\(762\) 0 0
\(763\) 4.00000 0.144810
\(764\) −10.0000 −0.361787
\(765\) 0 0
\(766\) 6.00000 0.216789
\(767\) −8.00000 −0.288863
\(768\) 0 0
\(769\) 33.0000 1.19001 0.595005 0.803722i \(-0.297150\pi\)
0.595005 + 0.803722i \(0.297150\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 24.0000 0.863779
\(773\) 45.0000 1.61854 0.809269 0.587439i \(-0.199864\pi\)
0.809269 + 0.587439i \(0.199864\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −48.0000 −1.72310
\(777\) 0 0
\(778\) 34.0000 1.21896
\(779\) −12.0000 −0.429945
\(780\) 0 0
\(781\) −28.0000 −1.00192
\(782\) 0 0
\(783\) 0 0
\(784\) 6.00000 0.214286
\(785\) 0 0
\(786\) 0 0
\(787\) −15.0000 −0.534692 −0.267346 0.963601i \(-0.586147\pi\)
−0.267346 + 0.963601i \(0.586147\pi\)
\(788\) −14.0000 −0.498729
\(789\) 0 0
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) 10.0000 0.355110
\(794\) −4.00000 −0.141955
\(795\) 0 0
\(796\) 0 0
\(797\) −17.0000 −0.602171 −0.301085 0.953597i \(-0.597349\pi\)
−0.301085 + 0.953597i \(0.597349\pi\)
\(798\) 0 0
\(799\) −6.00000 −0.212265
\(800\) 0 0
\(801\) 0 0
\(802\) −6.00000 −0.211867
\(803\) −16.0000 −0.564628
\(804\) 0 0
\(805\) 0 0
\(806\) −7.00000 −0.246564
\(807\) 0 0
\(808\) 45.0000 1.58309
\(809\) 22.0000 0.773479 0.386739 0.922189i \(-0.373601\pi\)
0.386739 + 0.922189i \(0.373601\pi\)
\(810\) 0 0
\(811\) 7.00000 0.245803 0.122902 0.992419i \(-0.460780\pi\)
0.122902 + 0.992419i \(0.460780\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 16.0000 0.560800
\(815\) 0 0
\(816\) 0 0
\(817\) 24.0000 0.839654
\(818\) 19.0000 0.664319
\(819\) 0 0
\(820\) 0 0
\(821\) 10.0000 0.349002 0.174501 0.984657i \(-0.444169\pi\)
0.174501 + 0.984657i \(0.444169\pi\)
\(822\) 0 0
\(823\) −53.0000 −1.84746 −0.923732 0.383040i \(-0.874877\pi\)
−0.923732 + 0.383040i \(0.874877\pi\)
\(824\) 18.0000 0.627060
\(825\) 0 0
\(826\) 8.00000 0.278356
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) 25.0000 0.868286 0.434143 0.900844i \(-0.357051\pi\)
0.434143 + 0.900844i \(0.357051\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 7.00000 0.242681
\(833\) −6.00000 −0.207888
\(834\) 0 0
\(835\) 0 0
\(836\) 24.0000 0.830057
\(837\) 0 0
\(838\) −12.0000 −0.414533
\(839\) −23.0000 −0.794048 −0.397024 0.917808i \(-0.629957\pi\)
−0.397024 + 0.917808i \(0.629957\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) −25.0000 −0.861557
\(843\) 0 0
\(844\) 25.0000 0.860535
\(845\) 0 0
\(846\) 0 0
\(847\) −5.00000 −0.171802
\(848\) −11.0000 −0.377742
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 14.0000 0.479351 0.239675 0.970853i \(-0.422959\pi\)
0.239675 + 0.970853i \(0.422959\pi\)
\(854\) −10.0000 −0.342193
\(855\) 0 0
\(856\) 57.0000 1.94822
\(857\) −20.0000 −0.683187 −0.341593 0.939848i \(-0.610967\pi\)
−0.341593 + 0.939848i \(0.610967\pi\)
\(858\) 0 0
\(859\) 18.0000 0.614152 0.307076 0.951685i \(-0.400649\pi\)
0.307076 + 0.951685i \(0.400649\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −31.0000 −1.05586
\(863\) 56.0000 1.90626 0.953131 0.302558i \(-0.0978405\pi\)
0.953131 + 0.302558i \(0.0978405\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 34.0000 1.15537
\(867\) 0 0
\(868\) −7.00000 −0.237595
\(869\) −44.0000 −1.49260
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 12.0000 0.406371
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −16.0000 −0.540282 −0.270141 0.962821i \(-0.587070\pi\)
−0.270141 + 0.962821i \(0.587070\pi\)
\(878\) −33.0000 −1.11370
\(879\) 0 0
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 0 0
\(883\) 2.00000 0.0673054 0.0336527 0.999434i \(-0.489286\pi\)
0.0336527 + 0.999434i \(0.489286\pi\)
\(884\) −1.00000 −0.0336336
\(885\) 0 0
\(886\) 6.00000 0.201574
\(887\) −43.0000 −1.44380 −0.721899 0.691998i \(-0.756731\pi\)
−0.721899 + 0.691998i \(0.756731\pi\)
\(888\) 0 0
\(889\) −16.0000 −0.536623
\(890\) 0 0
\(891\) 0 0
\(892\) −2.00000 −0.0669650
\(893\) 36.0000 1.20469
\(894\) 0 0
\(895\) 0 0
\(896\) 3.00000 0.100223
\(897\) 0 0
\(898\) −36.0000 −1.20134
\(899\) 0 0
\(900\) 0 0
\(901\) 11.0000 0.366463
\(902\) 8.00000 0.266371
\(903\) 0 0
\(904\) 36.0000 1.19734
\(905\) 0 0
\(906\) 0 0
\(907\) 36.0000 1.19536 0.597680 0.801735i \(-0.296089\pi\)
0.597680 + 0.801735i \(0.296089\pi\)
\(908\) −25.0000 −0.829654
\(909\) 0 0
\(910\) 0 0
\(911\) −1.00000 −0.0331315 −0.0165657 0.999863i \(-0.505273\pi\)
−0.0165657 + 0.999863i \(0.505273\pi\)
\(912\) 0 0
\(913\) −32.0000 −1.05905
\(914\) −3.00000 −0.0992312
\(915\) 0 0
\(916\) −1.00000 −0.0330409
\(917\) −15.0000 −0.495344
\(918\) 0 0
\(919\) −44.0000 −1.45143 −0.725713 0.687998i \(-0.758490\pi\)
−0.725713 + 0.687998i \(0.758490\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 14.0000 0.461065
\(923\) −7.00000 −0.230408
\(924\) 0 0
\(925\) 0 0
\(926\) −12.0000 −0.394344
\(927\) 0 0
\(928\) 0 0
\(929\) 56.0000 1.83730 0.918650 0.395072i \(-0.129280\pi\)
0.918650 + 0.395072i \(0.129280\pi\)
\(930\) 0 0
\(931\) 36.0000 1.17985
\(932\) 8.00000 0.262049
\(933\) 0 0
\(934\) 22.0000 0.719862
\(935\) 0 0
\(936\) 0 0
\(937\) −25.0000 −0.816714 −0.408357 0.912822i \(-0.633898\pi\)
−0.408357 + 0.912822i \(0.633898\pi\)
\(938\) 8.00000 0.261209
\(939\) 0 0
\(940\) 0 0
\(941\) −34.0000 −1.10837 −0.554184 0.832394i \(-0.686970\pi\)
−0.554184 + 0.832394i \(0.686970\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 8.00000 0.260378
\(945\) 0 0
\(946\) −16.0000 −0.520205
\(947\) −4.00000 −0.129983 −0.0649913 0.997886i \(-0.520702\pi\)
−0.0649913 + 0.997886i \(0.520702\pi\)
\(948\) 0 0
\(949\) −4.00000 −0.129845
\(950\) 0 0
\(951\) 0 0
\(952\) 3.00000 0.0972306
\(953\) 9.00000 0.291539 0.145769 0.989319i \(-0.453434\pi\)
0.145769 + 0.989319i \(0.453434\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −8.00000 −0.258738
\(957\) 0 0
\(958\) 12.0000 0.387702
\(959\) 11.0000 0.355209
\(960\) 0 0
\(961\) 18.0000 0.580645
\(962\) 4.00000 0.128965
\(963\) 0 0
\(964\) −18.0000 −0.579741
\(965\) 0 0
\(966\) 0 0
\(967\) 4.00000 0.128631 0.0643157 0.997930i \(-0.479514\pi\)
0.0643157 + 0.997930i \(0.479514\pi\)
\(968\) −15.0000 −0.482118
\(969\) 0 0
\(970\) 0 0
\(971\) 32.0000 1.02693 0.513464 0.858111i \(-0.328362\pi\)
0.513464 + 0.858111i \(0.328362\pi\)
\(972\) 0 0
\(973\) 13.0000 0.416761
\(974\) −4.00000 −0.128168
\(975\) 0 0
\(976\) −10.0000 −0.320092
\(977\) 13.0000 0.415907 0.207953 0.978139i \(-0.433320\pi\)
0.207953 + 0.978139i \(0.433320\pi\)
\(978\) 0 0
\(979\) 24.0000 0.767043
\(980\) 0 0
\(981\) 0 0
\(982\) −20.0000 −0.638226
\(983\) −21.0000 −0.669796 −0.334898 0.942254i \(-0.608702\pi\)
−0.334898 + 0.942254i \(0.608702\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 6.00000 0.190885
\(989\) 0 0
\(990\) 0 0
\(991\) 5.00000 0.158830 0.0794151 0.996842i \(-0.474695\pi\)
0.0794151 + 0.996842i \(0.474695\pi\)
\(992\) −35.0000 −1.11125
\(993\) 0 0
\(994\) 7.00000 0.222027
\(995\) 0 0
\(996\) 0 0
\(997\) −4.00000 −0.126681 −0.0633406 0.997992i \(-0.520175\pi\)
−0.0633406 + 0.997992i \(0.520175\pi\)
\(998\) 13.0000 0.411508
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3825.2.a.k.1.1 1
3.2 odd 2 425.2.a.b.1.1 1
5.4 even 2 3825.2.a.f.1.1 1
12.11 even 2 6800.2.a.i.1.1 1
15.2 even 4 425.2.b.a.324.1 2
15.8 even 4 425.2.b.a.324.2 2
15.14 odd 2 425.2.a.c.1.1 yes 1
51.50 odd 2 7225.2.a.b.1.1 1
60.59 even 2 6800.2.a.q.1.1 1
255.254 odd 2 7225.2.a.h.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.a.b.1.1 1 3.2 odd 2
425.2.a.c.1.1 yes 1 15.14 odd 2
425.2.b.a.324.1 2 15.2 even 4
425.2.b.a.324.2 2 15.8 even 4
3825.2.a.f.1.1 1 5.4 even 2
3825.2.a.k.1.1 1 1.1 even 1 trivial
6800.2.a.i.1.1 1 12.11 even 2
6800.2.a.q.1.1 1 60.59 even 2
7225.2.a.b.1.1 1 51.50 odd 2
7225.2.a.h.1.1 1 255.254 odd 2