Properties

Label 3887.1.c.a.3886.1
Level $3887$
Weight $1$
Character 3887.3886
Analytic conductor $1.940$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -23
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3887,1,Mod(3886,3887)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3887, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3887.3886");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3887 = 13^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3887.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.93986570410\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.23.1
Artin image: $C_4\times S_3$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

Embedding invariants

Embedding label 3886.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3887.3886
Dual form 3887.1.c.a.3886.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{3} +1.00000i q^{6} -1.00000i q^{8} -1.00000 q^{16} -1.00000 q^{23} +1.00000i q^{24} -1.00000 q^{25} +1.00000 q^{27} -1.00000 q^{29} -1.00000i q^{31} -1.00000i q^{41} +1.00000i q^{46} +1.00000i q^{47} +1.00000 q^{48} -1.00000 q^{49} +1.00000i q^{50} -1.00000i q^{54} +1.00000i q^{58} -2.00000i q^{59} -1.00000 q^{62} -1.00000 q^{64} +1.00000 q^{69} -1.00000i q^{71} +1.00000i q^{73} +1.00000 q^{75} -1.00000 q^{81} -1.00000 q^{82} +1.00000 q^{87} +1.00000i q^{93} +1.00000 q^{94} +1.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{16} - 2 q^{23} - 2 q^{25} + 2 q^{27} - 2 q^{29} + 2 q^{48} - 2 q^{49} - 2 q^{62} - 2 q^{64} + 2 q^{69} + 2 q^{75} - 2 q^{81} - 2 q^{82} + 2 q^{87} + 2 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3887\mathbb{Z}\right)^\times\).

\(n\) \(2029\) \(3382\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(3\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 1.00000i 1.00000i
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) − 1.00000i − 1.00000i
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) −1.00000 −1.00000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.00000 −1.00000
\(24\) 1.00000i 1.00000i
\(25\) −1.00000 −1.00000
\(26\) 0 0
\(27\) 1.00000 1.00000
\(28\) 0 0
\(29\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) 0 0
\(31\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 1.00000i 1.00000i
\(47\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) 1.00000 1.00000
\(49\) −1.00000 −1.00000
\(50\) 1.00000i 1.00000i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) − 1.00000i − 1.00000i
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 1.00000i 1.00000i
\(59\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −1.00000 −1.00000
\(63\) 0 0
\(64\) −1.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 1.00000 1.00000
\(70\) 0 0
\(71\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(72\) 0 0
\(73\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(74\) 0 0
\(75\) 1.00000 1.00000
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) −1.00000 −1.00000
\(82\) −1.00000 −1.00000
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.00000 1.00000
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.00000i 1.00000i
\(94\) 1.00000 1.00000
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 1.00000i 1.00000i
\(99\) 0 0
\(100\) 0 0
\(101\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −2.00000 −2.00000
\(119\) 0 0
\(120\) 0 0
\(121\) −1.00000 −1.00000
\(122\) 0 0
\(123\) 1.00000i 1.00000i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(128\) 1.00000i 1.00000i
\(129\) 0 0
\(130\) 0 0
\(131\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) − 1.00000i − 1.00000i
\(139\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(140\) 0 0
\(141\) − 1.00000i − 1.00000i
\(142\) −1.00000 −1.00000
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 1.00000 1.00000
\(147\) 1.00000 1.00000
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) − 1.00000i − 1.00000i
\(151\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 1.00000i 1.00000i
\(163\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(174\) − 1.00000i − 1.00000i
\(175\) 0 0
\(176\) 0 0
\(177\) 2.00000i 2.00000i
\(178\) 0 0
\(179\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1.00000i 1.00000i
\(185\) 0 0
\(186\) 1.00000 1.00000
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 1.00000 1.00000
\(193\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 1.00000i 1.00000i
\(201\) 0 0
\(202\) 2.00000i 2.00000i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(212\) 0 0
\(213\) 1.00000i 1.00000i
\(214\) 0 0
\(215\) 0 0
\(216\) − 1.00000i − 1.00000i
\(217\) 0 0
\(218\) 0 0
\(219\) − 1.00000i − 1.00000i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1.00000i 1.00000i
\(233\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 1.00000i 1.00000i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 1.00000 1.00000
\(247\) 0 0
\(248\) −1.00000 −1.00000
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) − 1.00000i − 1.00000i
\(255\) 0 0
\(256\) 0 0
\(257\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 1.00000i 1.00000i
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(270\) 0 0
\(271\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(278\) 1.00000i 1.00000i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) −1.00000 −1.00000
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) − 1.00000i − 1.00000i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 1.00000 1.00000
\(303\) 2.00000 2.00000
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 1.00000 1.00000
\(327\) 0 0
\(328\) −1.00000 −1.00000
\(329\) 0 0
\(330\) 0 0
\(331\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −2.00000 −2.00000
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 2.00000i 2.00000i
\(347\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(348\) 0 0
\(349\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(354\) 2.00000 2.00000
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) − 1.00000i − 1.00000i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −1.00000 −1.00000
\(362\) 0 0
\(363\) 1.00000 1.00000
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 1.00000 1.00000
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.00000 1.00000
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) −1.00000 −1.00000
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) − 1.00000i − 1.00000i
\(385\) 0 0
\(386\) 1.00000 1.00000
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.00000i 1.00000i
\(393\) 1.00000 1.00000
\(394\) −1.00000 −1.00000
\(395\) 0 0
\(396\) 0 0
\(397\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 1.00000 1.00000
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.00000 1.00000
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) − 2.00000i − 2.00000i
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 1.00000 1.00000
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) −1.00000 −1.00000
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −1.00000 −1.00000
\(439\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 2.00000 2.00000
\(447\) 0 0
\(448\) 0 0
\(449\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) − 1.00000i − 1.00000i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(462\) 0 0
\(463\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(464\) 1.00000 1.00000
\(465\) 0 0
\(466\) − 1.00000i − 1.00000i
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −2.00000 −2.00000
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −1.00000 −1.00000
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(488\) 0 0
\(489\) − 1.00000i − 1.00000i
\(490\) 0 0
\(491\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 1.00000i 1.00000i
\(497\) 0 0
\(498\) 0 0
\(499\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(500\) 0 0
\(501\) 2.00000i 2.00000i
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 1.00000i
\(513\) 0 0
\(514\) − 1.00000i − 1.00000i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 2.00000 2.00000
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −1.00000 −1.00000
\(538\) 1.00000i 1.00000i
\(539\) 0 0
\(540\) 0 0
\(541\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(542\) −2.00000 −2.00000
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) − 1.00000i − 1.00000i
\(553\) 0 0
\(554\) − 1.00000i − 1.00000i
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) −1.00000 −1.00000
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.00000 1.00000
\(576\) 0 0
\(577\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(578\) − 1.00000i − 1.00000i
\(579\) − 1.00000i − 1.00000i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 1.00000 1.00000
\(585\) 0 0
\(586\) 0 0
\(587\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 1.00000i 1.00000i
\(592\) 0 0
\(593\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(600\) − 1.00000i − 1.00000i
\(601\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) − 2.00000i − 2.00000i
\(607\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) −2.00000 −2.00000
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) −1.00000 −1.00000
\(622\) − 1.00000i − 1.00000i
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) −2.00000 −2.00000
\(634\) 2.00000 2.00000
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(648\) 1.00000i 1.00000i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.00000i 1.00000i
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) −1.00000 −1.00000
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.00000 1.00000
\(668\) 0 0
\(669\) − 2.00000i − 2.00000i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(674\) 0 0
\(675\) −1.00000 −1.00000
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) − 2.00000i − 2.00000i
\(695\) 0 0
\(696\) − 1.00000i − 1.00000i
\(697\) 0 0
\(698\) 1.00000 1.00000
\(699\) −1.00000 −1.00000
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −1.00000 −1.00000
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.00000i 1.00000i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.00000i 1.00000i
\(718\) 0 0
\(719\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.00000i 1.00000i
\(723\) 0 0
\(724\) 0 0
\(725\) 1.00000 1.00000
\(726\) − 1.00000i − 1.00000i
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 1.00000 1.00000
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) − 1.00000i − 1.00000i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(762\) 1.00000i 1.00000i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) −1.00000 −1.00000
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 1.00000i 1.00000i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −1.00000 −1.00000
\(784\) 1.00000 1.00000
\(785\) 0 0
\(786\) − 1.00000i − 1.00000i
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 1.00000 1.00000
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.00000 1.00000
\(808\) 2.00000i 2.00000i
\(809\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(810\) 0 0
\(811\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(812\) 0 0
\(813\) 2.00000i 2.00000i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −1.00000 −1.00000
\(819\) 0 0
\(820\) 0 0
\(821\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) −1.00000 −1.00000
\(832\) 0 0
\(833\) 0 0
\(834\) − 1.00000i − 1.00000i
\(835\) 0 0
\(836\) 0 0
\(837\) − 1.00000i − 1.00000i
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(858\) 0 0
\(859\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1.00000 −1.00000
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) − 1.00000i − 1.00000i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 1.00000i 1.00000i
\(887\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −2.00000 −2.00000
\(899\) 1.00000i 1.00000i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) −1.00000 −1.00000
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 2.00000i 2.00000i
\(922\) −1.00000 −1.00000
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −2.00000 −2.00000
\(927\) 0 0
\(928\) 0 0
\(929\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −1.00000 −1.00000
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 1.00000i 1.00000i
\(944\) 2.00000i 2.00000i
\(945\) 0 0
\(946\) 0 0
\(947\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) − 2.00000i − 2.00000i
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0 0
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 1.00000i − 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(968\) 1.00000i 1.00000i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −1.00000 −1.00000
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) −1.00000 −1.00000
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) − 1.00000i − 1.00000i
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 1.00000 1.00000
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(992\) 0 0
\(993\) 1.00000i 1.00000i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(998\) −1.00000 −1.00000
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3887.1.c.a.3886.1 2
13.2 odd 12 3887.1.h.c.22.1 2
13.3 even 3 3887.1.j.e.2851.2 4
13.4 even 6 3887.1.j.e.3403.2 4
13.5 odd 4 23.1.b.a.22.1 1
13.6 odd 12 3887.1.h.c.3357.1 2
13.7 odd 12 3887.1.h.a.3357.1 2
13.8 odd 4 3887.1.d.b.2874.1 1
13.9 even 3 3887.1.j.e.3403.1 4
13.10 even 6 3887.1.j.e.2851.1 4
13.11 odd 12 3887.1.h.a.22.1 2
13.12 even 2 inner 3887.1.c.a.3886.2 2
23.22 odd 2 CM 3887.1.c.a.3886.1 2
39.5 even 4 207.1.d.a.91.1 1
52.31 even 4 368.1.f.a.321.1 1
65.18 even 4 575.1.c.a.574.2 2
65.44 odd 4 575.1.d.a.551.1 1
65.57 even 4 575.1.c.a.574.1 2
91.5 even 12 1127.1.f.a.459.1 2
91.18 odd 12 1127.1.f.b.275.1 2
91.31 even 12 1127.1.f.a.275.1 2
91.44 odd 12 1127.1.f.b.459.1 2
91.83 even 4 1127.1.d.b.344.1 1
104.5 odd 4 1472.1.f.b.321.1 1
104.83 even 4 1472.1.f.a.321.1 1
117.5 even 12 1863.1.f.a.298.1 2
117.31 odd 12 1863.1.f.b.298.1 2
117.70 odd 12 1863.1.f.b.919.1 2
117.83 even 12 1863.1.f.a.919.1 2
143.5 odd 20 2783.1.f.c.850.1 4
143.18 even 20 2783.1.f.a.390.1 4
143.31 odd 20 2783.1.f.c.2138.1 4
143.57 even 20 2783.1.f.a.2138.1 4
143.70 odd 20 2783.1.f.c.390.1 4
143.83 even 20 2783.1.f.a.850.1 4
143.96 even 20 2783.1.f.a.735.1 4
143.109 even 4 2783.1.d.b.1816.1 1
143.135 odd 20 2783.1.f.c.735.1 4
156.83 odd 4 3312.1.c.a.2161.1 1
299.5 even 44 529.1.d.a.274.1 10
299.18 odd 44 529.1.d.a.274.1 10
299.22 odd 6 3887.1.j.e.3403.1 4
299.31 odd 44 529.1.d.a.28.1 10
299.44 even 44 529.1.d.a.42.1 10
299.45 even 12 3887.1.h.c.3357.1 2
299.57 even 44 529.1.d.a.63.1 10
299.68 odd 6 3887.1.j.e.2851.2 4
299.83 even 44 529.1.d.a.195.1 10
299.96 odd 44 529.1.d.a.352.1 10
299.109 even 44 529.1.d.a.263.1 10
299.114 odd 6 3887.1.j.e.2851.1 4
299.122 even 44 529.1.d.a.411.1 10
299.135 even 44 529.1.d.a.359.1 10
299.137 even 12 3887.1.h.a.3357.1 2
299.148 even 44 529.1.d.a.130.1 10
299.160 odd 6 3887.1.j.e.3403.2 4
299.174 odd 44 529.1.d.a.130.1 10
299.187 odd 44 529.1.d.a.359.1 10
299.200 odd 44 529.1.d.a.411.1 10
299.206 even 12 3887.1.h.a.22.1 2
299.213 odd 44 529.1.d.a.263.1 10
299.226 even 44 529.1.d.a.352.1 10
299.229 even 4 3887.1.d.b.2874.1 1
299.239 odd 44 529.1.d.a.195.1 10
299.252 even 4 23.1.b.a.22.1 1
299.265 odd 44 529.1.d.a.63.1 10
299.275 even 12 3887.1.h.c.22.1 2
299.278 odd 44 529.1.d.a.42.1 10
299.291 even 44 529.1.d.a.28.1 10
299.298 odd 2 inner 3887.1.c.a.3886.2 2
897.551 odd 4 207.1.d.a.91.1 1
1196.551 odd 4 368.1.f.a.321.1 1
1495.252 odd 4 575.1.c.a.574.1 2
1495.1149 even 4 575.1.d.a.551.1 1
1495.1448 odd 4 575.1.c.a.574.2 2
2093.551 odd 12 1127.1.f.a.459.1 2
2093.850 odd 12 1127.1.f.a.275.1 2
2093.1448 odd 4 1127.1.d.b.344.1 1
2093.1747 even 12 1127.1.f.b.275.1 2
2093.2046 even 12 1127.1.f.b.459.1 2
2392.1149 even 4 1472.1.f.b.321.1 1
2392.1747 odd 4 1472.1.f.a.321.1 1
2691.551 odd 12 1863.1.f.a.919.1 2
2691.850 even 12 1863.1.f.b.298.1 2
2691.2345 odd 12 1863.1.f.a.298.1 2
2691.2644 even 12 1863.1.f.b.919.1 2
3289.252 odd 4 2783.1.d.b.1816.1 1
3289.850 even 20 2783.1.f.c.735.1 4
3289.1149 even 20 2783.1.f.c.850.1 4
3289.1448 odd 20 2783.1.f.a.390.1 4
3289.1747 even 20 2783.1.f.c.2138.1 4
3289.2345 odd 20 2783.1.f.a.2138.1 4
3289.2644 even 20 2783.1.f.c.390.1 4
3289.2943 odd 20 2783.1.f.a.850.1 4
3289.3242 odd 20 2783.1.f.a.735.1 4
3588.551 even 4 3312.1.c.a.2161.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.1.b.a.22.1 1 13.5 odd 4
23.1.b.a.22.1 1 299.252 even 4
207.1.d.a.91.1 1 39.5 even 4
207.1.d.a.91.1 1 897.551 odd 4
368.1.f.a.321.1 1 52.31 even 4
368.1.f.a.321.1 1 1196.551 odd 4
529.1.d.a.28.1 10 299.31 odd 44
529.1.d.a.28.1 10 299.291 even 44
529.1.d.a.42.1 10 299.44 even 44
529.1.d.a.42.1 10 299.278 odd 44
529.1.d.a.63.1 10 299.57 even 44
529.1.d.a.63.1 10 299.265 odd 44
529.1.d.a.130.1 10 299.148 even 44
529.1.d.a.130.1 10 299.174 odd 44
529.1.d.a.195.1 10 299.83 even 44
529.1.d.a.195.1 10 299.239 odd 44
529.1.d.a.263.1 10 299.109 even 44
529.1.d.a.263.1 10 299.213 odd 44
529.1.d.a.274.1 10 299.5 even 44
529.1.d.a.274.1 10 299.18 odd 44
529.1.d.a.352.1 10 299.96 odd 44
529.1.d.a.352.1 10 299.226 even 44
529.1.d.a.359.1 10 299.135 even 44
529.1.d.a.359.1 10 299.187 odd 44
529.1.d.a.411.1 10 299.122 even 44
529.1.d.a.411.1 10 299.200 odd 44
575.1.c.a.574.1 2 65.57 even 4
575.1.c.a.574.1 2 1495.252 odd 4
575.1.c.a.574.2 2 65.18 even 4
575.1.c.a.574.2 2 1495.1448 odd 4
575.1.d.a.551.1 1 65.44 odd 4
575.1.d.a.551.1 1 1495.1149 even 4
1127.1.d.b.344.1 1 91.83 even 4
1127.1.d.b.344.1 1 2093.1448 odd 4
1127.1.f.a.275.1 2 91.31 even 12
1127.1.f.a.275.1 2 2093.850 odd 12
1127.1.f.a.459.1 2 91.5 even 12
1127.1.f.a.459.1 2 2093.551 odd 12
1127.1.f.b.275.1 2 91.18 odd 12
1127.1.f.b.275.1 2 2093.1747 even 12
1127.1.f.b.459.1 2 91.44 odd 12
1127.1.f.b.459.1 2 2093.2046 even 12
1472.1.f.a.321.1 1 104.83 even 4
1472.1.f.a.321.1 1 2392.1747 odd 4
1472.1.f.b.321.1 1 104.5 odd 4
1472.1.f.b.321.1 1 2392.1149 even 4
1863.1.f.a.298.1 2 117.5 even 12
1863.1.f.a.298.1 2 2691.2345 odd 12
1863.1.f.a.919.1 2 117.83 even 12
1863.1.f.a.919.1 2 2691.551 odd 12
1863.1.f.b.298.1 2 117.31 odd 12
1863.1.f.b.298.1 2 2691.850 even 12
1863.1.f.b.919.1 2 117.70 odd 12
1863.1.f.b.919.1 2 2691.2644 even 12
2783.1.d.b.1816.1 1 143.109 even 4
2783.1.d.b.1816.1 1 3289.252 odd 4
2783.1.f.a.390.1 4 143.18 even 20
2783.1.f.a.390.1 4 3289.1448 odd 20
2783.1.f.a.735.1 4 143.96 even 20
2783.1.f.a.735.1 4 3289.3242 odd 20
2783.1.f.a.850.1 4 143.83 even 20
2783.1.f.a.850.1 4 3289.2943 odd 20
2783.1.f.a.2138.1 4 143.57 even 20
2783.1.f.a.2138.1 4 3289.2345 odd 20
2783.1.f.c.390.1 4 143.70 odd 20
2783.1.f.c.390.1 4 3289.2644 even 20
2783.1.f.c.735.1 4 143.135 odd 20
2783.1.f.c.735.1 4 3289.850 even 20
2783.1.f.c.850.1 4 143.5 odd 20
2783.1.f.c.850.1 4 3289.1149 even 20
2783.1.f.c.2138.1 4 143.31 odd 20
2783.1.f.c.2138.1 4 3289.1747 even 20
3312.1.c.a.2161.1 1 156.83 odd 4
3312.1.c.a.2161.1 1 3588.551 even 4
3887.1.c.a.3886.1 2 1.1 even 1 trivial
3887.1.c.a.3886.1 2 23.22 odd 2 CM
3887.1.c.a.3886.2 2 13.12 even 2 inner
3887.1.c.a.3886.2 2 299.298 odd 2 inner
3887.1.d.b.2874.1 1 13.8 odd 4
3887.1.d.b.2874.1 1 299.229 even 4
3887.1.h.a.22.1 2 13.11 odd 12
3887.1.h.a.22.1 2 299.206 even 12
3887.1.h.a.3357.1 2 13.7 odd 12
3887.1.h.a.3357.1 2 299.137 even 12
3887.1.h.c.22.1 2 13.2 odd 12
3887.1.h.c.22.1 2 299.275 even 12
3887.1.h.c.3357.1 2 13.6 odd 12
3887.1.h.c.3357.1 2 299.45 even 12
3887.1.j.e.2851.1 4 13.10 even 6
3887.1.j.e.2851.1 4 299.114 odd 6
3887.1.j.e.2851.2 4 13.3 even 3
3887.1.j.e.2851.2 4 299.68 odd 6
3887.1.j.e.3403.1 4 13.9 even 3
3887.1.j.e.3403.1 4 299.22 odd 6
3887.1.j.e.3403.2 4 13.4 even 6
3887.1.j.e.3403.2 4 299.160 odd 6