Properties

Label 529.1.d.a.359.1
Level $529$
Weight $1$
Character 529.359
Analytic conductor $0.264$
Analytic rank $0$
Dimension $10$
Projective image $D_{3}$
CM discriminant -23
Inner twists $20$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,1,Mod(28,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.28");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 529.d (of order \(22\), degree \(10\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.264005391683\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.23.1
Artin image: $S_3\times C_{11}$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{33} - \cdots)\)

Embedding invariants

Embedding label 359.1
Root \(0.142315 + 0.989821i\) of defining polynomial
Character \(\chi\) \(=\) 529.359
Dual form 529.1.d.a.28.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.959493 - 0.281733i) q^{2} +(0.654861 + 0.755750i) q^{3} +(0.841254 + 0.540641i) q^{6} +(-0.654861 + 0.755750i) q^{8} +(-0.415415 - 0.909632i) q^{13} +(-0.415415 + 0.909632i) q^{16} -1.00000 q^{24} +(-0.959493 + 0.281733i) q^{25} +(-0.654861 - 0.755750i) q^{26} +(0.841254 - 0.540641i) q^{27} +(-0.841254 - 0.540641i) q^{29} +(0.654861 - 0.755750i) q^{31} +(0.415415 - 0.909632i) q^{39} +(0.142315 + 0.989821i) q^{41} -1.00000 q^{47} +(-0.959493 + 0.281733i) q^{48} +(-0.654861 - 0.755750i) q^{49} +(-0.841254 + 0.540641i) q^{50} +(0.654861 - 0.755750i) q^{54} +(-0.959493 - 0.281733i) q^{58} +(0.830830 + 1.81926i) q^{59} +(0.415415 - 0.909632i) q^{62} +(-0.142315 - 0.989821i) q^{64} +(0.959493 - 0.281733i) q^{71} +(-0.841254 + 0.540641i) q^{73} +(-0.841254 - 0.540641i) q^{75} +(0.142315 - 0.989821i) q^{78} +(0.959493 + 0.281733i) q^{81} +(0.415415 + 0.909632i) q^{82} +(-0.142315 - 0.989821i) q^{87} +1.00000 q^{93} +(-0.959493 + 0.281733i) q^{94} +(-0.841254 - 0.540641i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + q^{2} + q^{3} - q^{6} - q^{8} + q^{13} + q^{16} - 10 q^{24} - q^{25} - q^{26} - q^{27} + q^{29} + q^{31} - q^{39} + q^{41} - 10 q^{47} - q^{48} - q^{49} + q^{50} + q^{54} - q^{58}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/529\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(e\left(\frac{21}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.959493 0.281733i 0.959493 0.281733i 0.235759 0.971812i \(-0.424242\pi\)
0.723734 + 0.690079i \(0.242424\pi\)
\(3\) 0.654861 + 0.755750i 0.654861 + 0.755750i 0.981929 0.189251i \(-0.0606061\pi\)
−0.327068 + 0.945001i \(0.606061\pi\)
\(4\) 0 0
\(5\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(6\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(7\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(8\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(12\) 0 0
\(13\) −0.415415 0.909632i −0.415415 0.909632i −0.995472 0.0950560i \(-0.969697\pi\)
0.580057 0.814576i \(-0.303030\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.415415 + 0.909632i −0.415415 + 0.909632i
\(17\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(18\) 0 0
\(19\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0
\(24\) −1.00000 −1.00000
\(25\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(26\) −0.654861 0.755750i −0.654861 0.755750i
\(27\) 0.841254 0.540641i 0.841254 0.540641i
\(28\) 0 0
\(29\) −0.841254 0.540641i −0.841254 0.540641i 0.0475819 0.998867i \(-0.484848\pi\)
−0.888835 + 0.458227i \(0.848485\pi\)
\(30\) 0 0
\(31\) 0.654861 0.755750i 0.654861 0.755750i −0.327068 0.945001i \(-0.606061\pi\)
0.981929 + 0.189251i \(0.0606061\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(38\) 0 0
\(39\) 0.415415 0.909632i 0.415415 0.909632i
\(40\) 0 0
\(41\) 0.142315 + 0.989821i 0.142315 + 0.989821i 0.928368 + 0.371662i \(0.121212\pi\)
−0.786053 + 0.618159i \(0.787879\pi\)
\(42\) 0 0
\(43\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(49\) −0.654861 0.755750i −0.654861 0.755750i
\(50\) −0.841254 + 0.540641i −0.841254 + 0.540641i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(54\) 0.654861 0.755750i 0.654861 0.755750i
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −0.959493 0.281733i −0.959493 0.281733i
\(59\) 0.830830 + 1.81926i 0.830830 + 1.81926i 0.415415 + 0.909632i \(0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(60\) 0 0
\(61\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(62\) 0.415415 0.909632i 0.415415 0.909632i
\(63\) 0 0
\(64\) −0.142315 0.989821i −0.142315 0.989821i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.959493 0.281733i 0.959493 0.281733i 0.235759 0.971812i \(-0.424242\pi\)
0.723734 + 0.690079i \(0.242424\pi\)
\(72\) 0 0
\(73\) −0.841254 + 0.540641i −0.841254 + 0.540641i −0.888835 0.458227i \(-0.848485\pi\)
0.0475819 + 0.998867i \(0.484848\pi\)
\(74\) 0 0
\(75\) −0.841254 0.540641i −0.841254 0.540641i
\(76\) 0 0
\(77\) 0 0
\(78\) 0.142315 0.989821i 0.142315 0.989821i
\(79\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(80\) 0 0
\(81\) 0.959493 + 0.281733i 0.959493 + 0.281733i
\(82\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(83\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −0.142315 0.989821i −0.142315 0.989821i
\(88\) 0 0
\(89\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.00000 1.00000
\(94\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(98\) −0.841254 0.540641i −0.841254 0.540641i
\(99\) 0 0
\(100\) 0 0
\(101\) −0.284630 + 1.97964i −0.284630 + 1.97964i −0.142315 + 0.989821i \(0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(102\) 0 0
\(103\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(104\) 0.959493 + 0.281733i 0.959493 + 0.281733i
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(108\) 0 0
\(109\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 1.30972 + 1.51150i 1.30972 + 1.51150i
\(119\) 0 0
\(120\) 0 0
\(121\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(122\) 0 0
\(123\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0.959493 + 0.281733i 0.959493 + 0.281733i 0.723734 0.690079i \(-0.242424\pi\)
0.235759 + 0.971812i \(0.424242\pi\)
\(128\) −0.415415 0.909632i −0.415415 0.909632i
\(129\) 0 0
\(130\) 0 0
\(131\) −0.415415 + 0.909632i −0.415415 + 0.909632i 0.580057 + 0.814576i \(0.303030\pi\)
−0.995472 + 0.0950560i \(0.969697\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(140\) 0 0
\(141\) −0.654861 0.755750i −0.654861 0.755750i
\(142\) 0.841254 0.540641i 0.841254 0.540641i
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(147\) 0.142315 0.989821i 0.142315 0.989821i
\(148\) 0 0
\(149\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(150\) −0.959493 0.281733i −0.959493 0.281733i
\(151\) −0.415415 0.909632i −0.415415 0.909632i −0.995472 0.0950560i \(-0.969697\pi\)
0.580057 0.814576i \(-0.303030\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 1.00000 1.00000
\(163\) 0.959493 0.281733i 0.959493 0.281733i 0.235759 0.971812i \(-0.424242\pi\)
0.723734 + 0.690079i \(0.242424\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.68251 + 1.08128i 1.68251 + 1.08128i 0.841254 + 0.540641i \(0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.91899 0.563465i −1.91899 0.563465i −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 0.281733i \(-0.909091\pi\)
\(174\) −0.415415 0.909632i −0.415415 0.909632i
\(175\) 0 0
\(176\) 0 0
\(177\) −0.830830 + 1.81926i −0.830830 + 1.81926i
\(178\) 0 0
\(179\) 0.142315 + 0.989821i 0.142315 + 0.989821i 0.928368 + 0.371662i \(0.121212\pi\)
−0.786053 + 0.618159i \(0.787879\pi\)
\(180\) 0 0
\(181\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0.959493 0.281733i 0.959493 0.281733i
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(192\) 0.654861 0.755750i 0.654861 0.755750i
\(193\) 0.142315 0.989821i 0.142315 0.989821i −0.786053 0.618159i \(-0.787879\pi\)
0.928368 0.371662i \(-0.121212\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −0.415415 0.909632i −0.415415 0.909632i −0.995472 0.0950560i \(-0.969697\pi\)
0.580057 0.814576i \(-0.303030\pi\)
\(198\) 0 0
\(199\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(200\) 0.415415 0.909632i 0.415415 0.909632i
\(201\) 0 0
\(202\) 0.284630 + 1.97964i 0.284630 + 1.97964i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 1.00000 1.00000
\(209\) 0 0
\(210\) 0 0
\(211\) 1.68251 1.08128i 1.68251 1.08128i 0.841254 0.540641i \(-0.181818\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(212\) 0 0
\(213\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(214\) 0 0
\(215\) 0 0
\(216\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(217\) 0 0
\(218\) 0 0
\(219\) −0.959493 0.281733i −0.959493 0.281733i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0.830830 1.81926i 0.830830 1.81926i 0.415415 0.909632i \(-0.363636\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.959493 0.281733i 0.959493 0.281733i
\(233\) 0.654861 + 0.755750i 0.654861 + 0.755750i 0.981929 0.189251i \(-0.0606061\pi\)
−0.327068 + 0.945001i \(0.606061\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.142315 0.989821i 0.142315 0.989821i −0.786053 0.618159i \(-0.787879\pi\)
0.928368 0.371662i \(-0.121212\pi\)
\(240\) 0 0
\(241\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(242\) 0.959493 + 0.281733i 0.959493 + 0.281733i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) −0.415415 + 0.909632i −0.415415 + 0.909632i
\(247\) 0 0
\(248\) 0.142315 + 0.989821i 0.142315 + 0.989821i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 1.00000 1.00000
\(255\) 0 0
\(256\) 0 0
\(257\) −0.841254 + 0.540641i −0.841254 + 0.540641i −0.888835 0.458227i \(-0.848485\pi\)
0.0475819 + 0.998867i \(0.484848\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(263\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.415415 + 0.909632i −0.415415 + 0.909632i 0.580057 + 0.814576i \(0.303030\pi\)
−0.995472 + 0.0950560i \(0.969697\pi\)
\(270\) 0 0
\(271\) −0.284630 1.97964i −0.284630 1.97964i −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(282\) −0.841254 0.540641i −0.841254 0.540641i
\(283\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(294\) −0.142315 0.989821i −0.142315 0.989821i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −0.654861 0.755750i −0.654861 0.755750i
\(303\) −1.68251 + 1.08128i −1.68251 + 1.08128i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −1.30972 + 1.51150i −1.30972 + 1.51150i −0.654861 + 0.755750i \(0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0.959493 + 0.281733i 0.959493 + 0.281733i 0.723734 0.690079i \(-0.242424\pi\)
0.235759 + 0.971812i \(0.424242\pi\)
\(312\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(313\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.284630 1.97964i −0.284630 1.97964i −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0.654861 + 0.755750i 0.654861 + 0.755750i
\(326\) 0.841254 0.540641i 0.841254 0.540641i
\(327\) 0 0
\(328\) −0.841254 0.540641i −0.841254 0.540641i
\(329\) 0 0
\(330\) 0 0
\(331\) 0.142315 0.989821i 0.142315 0.989821i −0.786053 0.618159i \(-0.787879\pi\)
0.928368 0.371662i \(-0.121212\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 1.91899 + 0.563465i 1.91899 + 0.563465i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −2.00000 −2.00000
\(347\) −1.91899 + 0.563465i −1.91899 + 0.563465i −0.959493 + 0.281733i \(0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(348\) 0 0
\(349\) −0.841254 + 0.540641i −0.841254 + 0.540641i −0.888835 0.458227i \(-0.848485\pi\)
0.0475819 + 0.998867i \(0.484848\pi\)
\(350\) 0 0
\(351\) −0.841254 0.540641i −0.841254 0.540641i
\(352\) 0 0
\(353\) 0.654861 0.755750i 0.654861 0.755750i −0.327068 0.945001i \(-0.606061\pi\)
0.981929 + 0.189251i \(0.0606061\pi\)
\(354\) −0.284630 + 1.97964i −0.284630 + 1.97964i
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(359\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(360\) 0 0
\(361\) 0.415415 0.909632i 0.415415 0.909632i
\(362\) 0 0
\(363\) 0.142315 + 0.989821i 0.142315 + 0.989821i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0.654861 0.755750i 0.654861 0.755750i
\(377\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(378\) 0 0
\(379\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(380\) 0 0
\(381\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(382\) 0 0
\(383\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(384\) 0.415415 0.909632i 0.415415 0.909632i
\(385\) 0 0
\(386\) −0.142315 0.989821i −0.142315 0.989821i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.00000 1.00000
\(393\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(394\) −0.654861 0.755750i −0.654861 0.755750i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.841254 0.540641i −0.841254 0.540641i 0.0475819 0.998867i \(-0.484848\pi\)
−0.888835 + 0.458227i \(0.848485\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.142315 0.989821i 0.142315 0.989821i
\(401\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(402\) 0 0
\(403\) −0.959493 0.281733i −0.959493 0.281733i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0.142315 + 0.989821i 0.142315 + 0.989821i 0.928368 + 0.371662i \(0.121212\pi\)
−0.786053 + 0.618159i \(0.787879\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.654861 0.755750i −0.654861 0.755750i
\(418\) 0 0
\(419\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(420\) 0 0
\(421\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(422\) 1.30972 1.51150i 1.30972 1.51150i
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0.959493 + 0.281733i 0.959493 + 0.281733i
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(432\) 0.142315 + 0.989821i 0.142315 + 0.989821i
\(433\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −1.00000 −1.00000
\(439\) 0.959493 0.281733i 0.959493 0.281733i 0.235759 0.971812i \(-0.424242\pi\)
0.723734 + 0.690079i \(0.242424\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.841254 0.540641i −0.841254 0.540641i 0.0475819 0.998867i \(-0.484848\pi\)
−0.888835 + 0.458227i \(0.848485\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0.284630 1.97964i 0.284630 1.97964i
\(447\) 0 0
\(448\) 0 0
\(449\) −1.91899 0.563465i −1.91899 0.563465i −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 0.281733i \(-0.909091\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0.415415 0.909632i 0.415415 0.909632i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(462\) 0 0
\(463\) −1.30972 1.51150i −1.30972 1.51150i −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(464\) 0.841254 0.540641i 0.841254 0.540641i
\(465\) 0 0
\(466\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(467\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −1.91899 0.563465i −1.91899 0.563465i
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −0.142315 0.989821i −0.142315 0.989821i
\(479\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −0.841254 + 0.540641i −0.841254 + 0.540641i −0.888835 0.458227i \(-0.848485\pi\)
0.0475819 + 0.998867i \(0.484848\pi\)
\(488\) 0 0
\(489\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(490\) 0 0
\(491\) 0.654861 0.755750i 0.654861 0.755750i −0.327068 0.945001i \(-0.606061\pi\)
0.981929 + 0.189251i \(0.0606061\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(497\) 0 0
\(498\) 0 0
\(499\) −0.415415 + 0.909632i −0.415415 + 0.909632i 0.580057 + 0.814576i \(0.303030\pi\)
−0.995472 + 0.0950560i \(0.969697\pi\)
\(500\) 0 0
\(501\) 0.284630 + 1.97964i 0.284630 + 1.97964i
\(502\) 0 0
\(503\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.654861 + 0.755750i 0.654861 + 0.755750i 0.981929 0.189251i \(-0.0606061\pi\)
−0.327068 + 0.945001i \(0.606061\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(513\) 0 0
\(514\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −0.830830 1.81926i −0.830830 1.81926i
\(520\) 0 0
\(521\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(522\) 0 0
\(523\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.841254 0.540641i 0.841254 0.540641i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(538\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(539\) 0 0
\(540\) 0 0
\(541\) 0.959493 + 0.281733i 0.959493 + 0.281733i 0.723734 0.690079i \(-0.242424\pi\)
0.235759 + 0.971812i \(0.424242\pi\)
\(542\) −0.830830 1.81926i −0.830830 1.81926i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0.142315 + 0.989821i 0.142315 + 0.989821i 0.928368 + 0.371662i \(0.121212\pi\)
−0.786053 + 0.618159i \(0.787879\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) −0.415415 + 0.909632i −0.415415 + 0.909632i
\(569\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(570\) 0 0
\(571\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0.959493 0.281733i 0.959493 0.281733i 0.235759 0.971812i \(-0.424242\pi\)
0.723734 + 0.690079i \(0.242424\pi\)
\(578\) 0.654861 + 0.755750i 0.654861 + 0.755750i
\(579\) 0.841254 0.540641i 0.841254 0.540641i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0.142315 0.989821i 0.142315 0.989821i
\(585\) 0 0
\(586\) 0 0
\(587\) 0.959493 + 0.281733i 0.959493 + 0.281733i 0.723734 0.690079i \(-0.242424\pi\)
0.235759 + 0.971812i \(0.424242\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0.415415 0.909632i 0.415415 0.909632i
\(592\) 0 0
\(593\) −0.284630 1.97964i −0.284630 1.97964i −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(600\) 0.959493 0.281733i 0.959493 0.281733i
\(601\) 0.654861 + 0.755750i 0.654861 + 0.755750i 0.981929 0.189251i \(-0.0606061\pi\)
−0.327068 + 0.945001i \(0.606061\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) −1.30972 + 1.51150i −1.30972 + 1.51150i
\(607\) −0.284630 + 1.97964i −0.284630 + 1.97964i −0.142315 + 0.989821i \(0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(612\) 0 0
\(613\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(614\) −0.830830 + 1.81926i −0.830830 + 1.81926i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(618\) 0 0
\(619\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 1.00000 1.00000
\(623\) 0 0
\(624\) 0.654861 + 0.755750i 0.654861 + 0.755750i
\(625\) 0.841254 0.540641i 0.841254 0.540641i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(632\) 0 0
\(633\) 1.91899 + 0.563465i 1.91899 + 0.563465i
\(634\) −0.830830 1.81926i −0.830830 1.81926i
\(635\) 0 0
\(636\) 0 0
\(637\) −0.415415 + 0.909632i −0.415415 + 0.909632i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0.654861 + 0.755750i 0.654861 + 0.755750i 0.981929 0.189251i \(-0.0606061\pi\)
−0.327068 + 0.945001i \(0.606061\pi\)
\(648\) −0.841254 + 0.540641i −0.841254 + 0.540641i
\(649\) 0 0
\(650\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(651\) 0 0
\(652\) 0 0
\(653\) 0.142315 0.989821i 0.142315 0.989821i −0.786053 0.618159i \(-0.787879\pi\)
0.928368 0.371662i \(-0.121212\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −0.959493 0.281733i −0.959493 0.281733i
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(660\) 0 0
\(661\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(662\) −0.142315 0.989821i −0.142315 0.989821i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 1.91899 0.563465i 1.91899 0.563465i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.841254 0.540641i −0.841254 0.540641i 0.0475819 0.998867i \(-0.484848\pi\)
−0.888835 + 0.458227i \(0.848485\pi\)
\(674\) 0 0
\(675\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(676\) 0 0
\(677\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −0.415415 + 0.909632i −0.415415 + 0.909632i 0.580057 + 0.814576i \(0.303030\pi\)
−0.995472 + 0.0950560i \(0.969697\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(692\) 0 0
\(693\) 0 0
\(694\) −1.68251 + 1.08128i −1.68251 + 1.08128i
\(695\) 0 0
\(696\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(697\) 0 0
\(698\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(699\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(700\) 0 0
\(701\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(702\) −0.959493 0.281733i −0.959493 0.281733i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0.415415 0.909632i 0.415415 0.909632i
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0.841254 0.540641i 0.841254 0.540641i
\(718\) 0 0
\(719\) 1.68251 + 1.08128i 1.68251 + 1.08128i 0.841254 + 0.540641i \(0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.142315 0.989821i 0.142315 0.989821i
\(723\) 0 0
\(724\) 0 0
\(725\) 0.959493 + 0.281733i 0.959493 + 0.281733i
\(726\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(727\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(728\) 0 0
\(729\) 0.415415 0.909632i 0.415415 0.909632i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0.654861 + 0.755750i 0.654861 + 0.755750i 0.981929 0.189251i \(-0.0606061\pi\)
−0.327068 + 0.945001i \(0.606061\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(744\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(752\) 0.415415 0.909632i 0.415415 0.909632i
\(753\) 0 0
\(754\) 0.142315 + 0.989821i 0.142315 + 0.989821i
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.959493 0.281733i 0.959493 0.281733i 0.235759 0.971812i \(-0.424242\pi\)
0.723734 + 0.690079i \(0.242424\pi\)
\(762\) 0.654861 + 0.755750i 0.654861 + 0.755750i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.30972 1.51150i 1.30972 1.51150i
\(768\) 0 0
\(769\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(770\) 0 0
\(771\) −0.959493 0.281733i −0.959493 0.281733i
\(772\) 0 0
\(773\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(774\) 0 0
\(775\) −0.415415 + 0.909632i −0.415415 + 0.909632i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −1.00000 −1.00000
\(784\) 0.959493 0.281733i 0.959493 0.281733i
\(785\) 0 0
\(786\) −0.841254 + 0.540641i −0.841254 + 0.540641i
\(787\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −0.959493 0.281733i −0.959493 0.281733i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) −1.00000 −1.00000
\(807\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(808\) −1.30972 1.51150i −1.30972 1.51150i
\(809\) 1.68251 1.08128i 1.68251 1.08128i 0.841254 0.540641i \(-0.181818\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(810\) 0 0
\(811\) −0.841254 0.540641i −0.841254 0.540641i 0.0475819 0.998867i \(-0.484848\pi\)
−0.888835 + 0.458227i \(0.848485\pi\)
\(812\) 0 0
\(813\) 1.30972 1.51150i 1.30972 1.51150i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(819\) 0 0
\(820\) 0 0
\(821\) 0.830830 1.81926i 0.830830 1.81926i 0.415415 0.909632i \(-0.363636\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(822\) 0 0
\(823\) 0.142315 + 0.989821i 0.142315 + 0.989821i 0.928368 + 0.371662i \(0.121212\pi\)
−0.786053 + 0.618159i \(0.787879\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(830\) 0 0
\(831\) −0.654861 0.755750i −0.654861 0.755750i
\(832\) −0.841254 + 0.540641i −0.841254 + 0.540641i
\(833\) 0 0
\(834\) −0.841254 0.540641i −0.841254 0.540641i
\(835\) 0 0
\(836\) 0 0
\(837\) 0.142315 0.989821i 0.142315 0.989821i
\(838\) 0 0
\(839\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −1.91899 + 0.563465i −1.91899 + 0.563465i −0.959493 + 0.281733i \(0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −0.841254 0.540641i −0.841254 0.540641i 0.0475819 0.998867i \(-0.484848\pi\)
−0.888835 + 0.458227i \(0.848485\pi\)
\(858\) 0 0
\(859\) 0.654861 0.755750i 0.654861 0.755750i −0.327068 0.945001i \(-0.606061\pi\)
0.981929 + 0.189251i \(0.0606061\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.959493 + 0.281733i 0.959493 + 0.281733i 0.723734 0.690079i \(-0.242424\pi\)
0.235759 + 0.971812i \(0.424242\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −0.415415 + 0.909632i −0.415415 + 0.909632i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.30972 1.51150i −1.30972 1.51150i −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(878\) 0.841254 0.540641i 0.841254 0.540641i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(882\) 0 0
\(883\) −0.284630 + 1.97964i −0.284630 + 1.97964i −0.142315 + 0.989821i \(0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −0.959493 0.281733i −0.959493 0.281733i
\(887\) −0.415415 0.909632i −0.415415 0.909632i −0.995472 0.0950560i \(-0.969697\pi\)
0.580057 0.814576i \(-0.303030\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −2.00000 −2.00000
\(899\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0.142315 0.989821i 0.142315 0.989821i
\(907\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) −2.00000 −2.00000
\(922\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(923\) −0.654861 0.755750i −0.654861 0.755750i
\(924\) 0 0
\(925\) 0 0
\(926\) −1.68251 1.08128i −1.68251 1.08128i
\(927\) 0 0
\(928\) 0 0
\(929\) 0.142315 0.989821i 0.142315 0.989821i −0.786053 0.618159i \(-0.787879\pi\)
0.928368 0.371662i \(-0.121212\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −2.00000 −2.00000
\(945\) 0 0
\(946\) 0 0
\(947\) −0.841254 + 0.540641i −0.841254 + 0.540641i −0.888835 0.458227i \(-0.848485\pi\)
0.0475819 + 0.998867i \(0.484848\pi\)
\(948\) 0 0
\(949\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(950\) 0 0
\(951\) 1.30972 1.51150i 1.30972 1.51150i
\(952\) 0 0
\(953\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0 0
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(968\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(975\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(976\) 0 0
\(977\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(978\) 0.959493 + 0.281733i 0.959493 + 0.281733i
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0.415415 0.909632i 0.415415 0.909632i
\(983\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(984\) −0.142315 0.989821i −0.142315 0.989821i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −1.91899 + 0.563465i −1.91899 + 0.563465i −0.959493 + 0.281733i \(0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(992\) 0 0
\(993\) 0.841254 0.540641i 0.841254 0.540641i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1.30972 + 1.51150i −1.30972 + 1.51150i −0.654861 + 0.755750i \(0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(998\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.1.d.a.359.1 10
23.2 even 11 inner 529.1.d.a.263.1 10
23.3 even 11 inner 529.1.d.a.195.1 10
23.4 even 11 inner 529.1.d.a.63.1 10
23.5 odd 22 inner 529.1.d.a.28.1 10
23.6 even 11 inner 529.1.d.a.274.1 10
23.7 odd 22 inner 529.1.d.a.42.1 10
23.8 even 11 23.1.b.a.22.1 1
23.9 even 11 inner 529.1.d.a.352.1 10
23.10 odd 22 inner 529.1.d.a.411.1 10
23.11 odd 22 inner 529.1.d.a.130.1 10
23.12 even 11 inner 529.1.d.a.130.1 10
23.13 even 11 inner 529.1.d.a.411.1 10
23.14 odd 22 inner 529.1.d.a.352.1 10
23.15 odd 22 23.1.b.a.22.1 1
23.16 even 11 inner 529.1.d.a.42.1 10
23.17 odd 22 inner 529.1.d.a.274.1 10
23.18 even 11 inner 529.1.d.a.28.1 10
23.19 odd 22 inner 529.1.d.a.63.1 10
23.20 odd 22 inner 529.1.d.a.195.1 10
23.21 odd 22 inner 529.1.d.a.263.1 10
23.22 odd 2 CM 529.1.d.a.359.1 10
69.8 odd 22 207.1.d.a.91.1 1
69.38 even 22 207.1.d.a.91.1 1
92.15 even 22 368.1.f.a.321.1 1
92.31 odd 22 368.1.f.a.321.1 1
115.8 odd 44 575.1.c.a.574.2 2
115.38 even 44 575.1.c.a.574.2 2
115.54 even 22 575.1.d.a.551.1 1
115.77 odd 44 575.1.c.a.574.1 2
115.84 odd 22 575.1.d.a.551.1 1
115.107 even 44 575.1.c.a.574.1 2
161.31 odd 66 1127.1.f.a.275.1 2
161.38 even 66 1127.1.f.a.275.1 2
161.54 odd 66 1127.1.f.a.459.1 2
161.61 even 66 1127.1.f.a.459.1 2
161.100 even 33 1127.1.f.b.459.1 2
161.107 odd 66 1127.1.f.b.459.1 2
161.123 even 33 1127.1.f.b.275.1 2
161.130 odd 66 1127.1.f.b.275.1 2
161.146 odd 22 1127.1.d.b.344.1 1
161.153 even 22 1127.1.d.b.344.1 1
184.61 odd 22 1472.1.f.b.321.1 1
184.77 even 22 1472.1.f.b.321.1 1
184.107 even 22 1472.1.f.a.321.1 1
184.123 odd 22 1472.1.f.a.321.1 1
207.31 even 33 1863.1.f.b.298.1 2
207.38 even 66 1863.1.f.a.919.1 2
207.61 odd 66 1863.1.f.b.919.1 2
207.77 odd 66 1863.1.f.a.298.1 2
207.130 odd 66 1863.1.f.b.298.1 2
207.146 odd 66 1863.1.f.a.919.1 2
207.169 even 33 1863.1.f.b.919.1 2
207.176 even 66 1863.1.f.a.298.1 2
253.8 odd 110 2783.1.f.a.735.1 4
253.15 odd 110 2783.1.f.c.390.1 4
253.31 even 55 2783.1.f.c.2138.1 4
253.38 odd 110 2783.1.f.c.850.1 4
253.54 odd 22 2783.1.d.b.1816.1 1
253.61 even 110 2783.1.f.a.850.1 4
253.84 even 110 2783.1.f.a.390.1 4
253.107 even 110 2783.1.f.a.735.1 4
253.123 odd 110 2783.1.f.a.2138.1 4
253.130 odd 110 2783.1.f.c.2138.1 4
253.146 even 55 2783.1.f.c.735.1 4
253.153 even 22 2783.1.d.b.1816.1 1
253.169 even 55 2783.1.f.c.390.1 4
253.192 even 55 2783.1.f.c.850.1 4
253.215 odd 110 2783.1.f.a.850.1 4
253.222 even 110 2783.1.f.a.2138.1 4
253.238 odd 110 2783.1.f.a.390.1 4
253.245 odd 110 2783.1.f.c.735.1 4
276.107 odd 22 3312.1.c.a.2161.1 1
276.215 even 22 3312.1.c.a.2161.1 1
299.8 odd 44 3887.1.c.a.3886.1 2
299.15 even 132 3887.1.j.e.2851.1 4
299.31 odd 44 3887.1.c.a.3886.2 2
299.38 odd 22 3887.1.d.b.2874.1 1
299.54 odd 132 3887.1.j.e.2851.1 4
299.61 odd 66 3887.1.h.c.3357.1 2
299.77 even 22 3887.1.d.b.2874.1 1
299.84 even 132 3887.1.j.e.3403.2 4
299.100 even 33 3887.1.h.c.3357.1 2
299.107 odd 66 3887.1.h.c.22.1 2
299.123 odd 132 3887.1.j.e.3403.2 4
299.146 even 33 3887.1.h.c.22.1 2
299.153 odd 66 3887.1.h.a.22.1 2
299.176 even 132 3887.1.j.e.3403.1 4
299.192 even 66 3887.1.h.a.22.1 2
299.199 odd 66 3887.1.h.a.3357.1 2
299.215 odd 132 3887.1.j.e.3403.1 4
299.238 even 66 3887.1.h.a.3357.1 2
299.245 even 132 3887.1.j.e.2851.2 4
299.268 even 44 3887.1.c.a.3886.1 2
299.284 odd 132 3887.1.j.e.2851.2 4
299.291 even 44 3887.1.c.a.3886.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.1.b.a.22.1 1 23.8 even 11
23.1.b.a.22.1 1 23.15 odd 22
207.1.d.a.91.1 1 69.8 odd 22
207.1.d.a.91.1 1 69.38 even 22
368.1.f.a.321.1 1 92.15 even 22
368.1.f.a.321.1 1 92.31 odd 22
529.1.d.a.28.1 10 23.5 odd 22 inner
529.1.d.a.28.1 10 23.18 even 11 inner
529.1.d.a.42.1 10 23.7 odd 22 inner
529.1.d.a.42.1 10 23.16 even 11 inner
529.1.d.a.63.1 10 23.4 even 11 inner
529.1.d.a.63.1 10 23.19 odd 22 inner
529.1.d.a.130.1 10 23.11 odd 22 inner
529.1.d.a.130.1 10 23.12 even 11 inner
529.1.d.a.195.1 10 23.3 even 11 inner
529.1.d.a.195.1 10 23.20 odd 22 inner
529.1.d.a.263.1 10 23.2 even 11 inner
529.1.d.a.263.1 10 23.21 odd 22 inner
529.1.d.a.274.1 10 23.6 even 11 inner
529.1.d.a.274.1 10 23.17 odd 22 inner
529.1.d.a.352.1 10 23.9 even 11 inner
529.1.d.a.352.1 10 23.14 odd 22 inner
529.1.d.a.359.1 10 1.1 even 1 trivial
529.1.d.a.359.1 10 23.22 odd 2 CM
529.1.d.a.411.1 10 23.10 odd 22 inner
529.1.d.a.411.1 10 23.13 even 11 inner
575.1.c.a.574.1 2 115.77 odd 44
575.1.c.a.574.1 2 115.107 even 44
575.1.c.a.574.2 2 115.8 odd 44
575.1.c.a.574.2 2 115.38 even 44
575.1.d.a.551.1 1 115.54 even 22
575.1.d.a.551.1 1 115.84 odd 22
1127.1.d.b.344.1 1 161.146 odd 22
1127.1.d.b.344.1 1 161.153 even 22
1127.1.f.a.275.1 2 161.31 odd 66
1127.1.f.a.275.1 2 161.38 even 66
1127.1.f.a.459.1 2 161.54 odd 66
1127.1.f.a.459.1 2 161.61 even 66
1127.1.f.b.275.1 2 161.123 even 33
1127.1.f.b.275.1 2 161.130 odd 66
1127.1.f.b.459.1 2 161.100 even 33
1127.1.f.b.459.1 2 161.107 odd 66
1472.1.f.a.321.1 1 184.107 even 22
1472.1.f.a.321.1 1 184.123 odd 22
1472.1.f.b.321.1 1 184.61 odd 22
1472.1.f.b.321.1 1 184.77 even 22
1863.1.f.a.298.1 2 207.77 odd 66
1863.1.f.a.298.1 2 207.176 even 66
1863.1.f.a.919.1 2 207.38 even 66
1863.1.f.a.919.1 2 207.146 odd 66
1863.1.f.b.298.1 2 207.31 even 33
1863.1.f.b.298.1 2 207.130 odd 66
1863.1.f.b.919.1 2 207.61 odd 66
1863.1.f.b.919.1 2 207.169 even 33
2783.1.d.b.1816.1 1 253.54 odd 22
2783.1.d.b.1816.1 1 253.153 even 22
2783.1.f.a.390.1 4 253.84 even 110
2783.1.f.a.390.1 4 253.238 odd 110
2783.1.f.a.735.1 4 253.8 odd 110
2783.1.f.a.735.1 4 253.107 even 110
2783.1.f.a.850.1 4 253.61 even 110
2783.1.f.a.850.1 4 253.215 odd 110
2783.1.f.a.2138.1 4 253.123 odd 110
2783.1.f.a.2138.1 4 253.222 even 110
2783.1.f.c.390.1 4 253.15 odd 110
2783.1.f.c.390.1 4 253.169 even 55
2783.1.f.c.735.1 4 253.146 even 55
2783.1.f.c.735.1 4 253.245 odd 110
2783.1.f.c.850.1 4 253.38 odd 110
2783.1.f.c.850.1 4 253.192 even 55
2783.1.f.c.2138.1 4 253.31 even 55
2783.1.f.c.2138.1 4 253.130 odd 110
3312.1.c.a.2161.1 1 276.107 odd 22
3312.1.c.a.2161.1 1 276.215 even 22
3887.1.c.a.3886.1 2 299.8 odd 44
3887.1.c.a.3886.1 2 299.268 even 44
3887.1.c.a.3886.2 2 299.31 odd 44
3887.1.c.a.3886.2 2 299.291 even 44
3887.1.d.b.2874.1 1 299.38 odd 22
3887.1.d.b.2874.1 1 299.77 even 22
3887.1.h.a.22.1 2 299.153 odd 66
3887.1.h.a.22.1 2 299.192 even 66
3887.1.h.a.3357.1 2 299.199 odd 66
3887.1.h.a.3357.1 2 299.238 even 66
3887.1.h.c.22.1 2 299.107 odd 66
3887.1.h.c.22.1 2 299.146 even 33
3887.1.h.c.3357.1 2 299.61 odd 66
3887.1.h.c.3357.1 2 299.100 even 33
3887.1.j.e.2851.1 4 299.15 even 132
3887.1.j.e.2851.1 4 299.54 odd 132
3887.1.j.e.2851.2 4 299.245 even 132
3887.1.j.e.2851.2 4 299.284 odd 132
3887.1.j.e.3403.1 4 299.176 even 132
3887.1.j.e.3403.1 4 299.215 odd 132
3887.1.j.e.3403.2 4 299.84 even 132
3887.1.j.e.3403.2 4 299.123 odd 132