Properties

Label 529.1.d.a.359.1
Level 529529
Weight 11
Character 529.359
Analytic conductor 0.2640.264
Analytic rank 00
Dimension 1010
Projective image D3D_{3}
CM discriminant -23
Inner twists 2020

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,1,Mod(28,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.28");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 529=232 529 = 23^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 529.d (of order 2222, degree 1010, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.2640053916830.264005391683
Analytic rank: 00
Dimension: 1010
Coefficient field: Q(ζ22)\Q(\zeta_{22})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x10x9+x8x7+x6x5+x4x3+x2x+1 x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 23)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.23.1
Artin image: S3×C11S_3\times C_{11}
Artin field: Galois closure of Q[x]/(x33)\mathbb{Q}[x]/(x^{33} - \cdots)

Embedding invariants

Embedding label 359.1
Root 0.142315+0.989821i0.142315 + 0.989821i of defining polynomial
Character χ\chi == 529.359
Dual form 529.1.d.a.28.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.9594930.281733i)q2+(0.654861+0.755750i)q3+(0.841254+0.540641i)q6+(0.654861+0.755750i)q8+(0.4154150.909632i)q13+(0.415415+0.909632i)q161.00000q24+(0.959493+0.281733i)q25+(0.6548610.755750i)q26+(0.8412540.540641i)q27+(0.8412540.540641i)q29+(0.6548610.755750i)q31+(0.4154150.909632i)q39+(0.142315+0.989821i)q411.00000q47+(0.959493+0.281733i)q48+(0.6548610.755750i)q49+(0.841254+0.540641i)q50+(0.6548610.755750i)q54+(0.9594930.281733i)q58+(0.830830+1.81926i)q59+(0.4154150.909632i)q62+(0.1423150.989821i)q64+(0.9594930.281733i)q71+(0.841254+0.540641i)q73+(0.8412540.540641i)q75+(0.1423150.989821i)q78+(0.959493+0.281733i)q81+(0.415415+0.909632i)q82+(0.1423150.989821i)q87+1.00000q93+(0.959493+0.281733i)q94+(0.8412540.540641i)q98+O(q100)q+(0.959493 - 0.281733i) q^{2} +(0.654861 + 0.755750i) q^{3} +(0.841254 + 0.540641i) q^{6} +(-0.654861 + 0.755750i) q^{8} +(-0.415415 - 0.909632i) q^{13} +(-0.415415 + 0.909632i) q^{16} -1.00000 q^{24} +(-0.959493 + 0.281733i) q^{25} +(-0.654861 - 0.755750i) q^{26} +(0.841254 - 0.540641i) q^{27} +(-0.841254 - 0.540641i) q^{29} +(0.654861 - 0.755750i) q^{31} +(0.415415 - 0.909632i) q^{39} +(0.142315 + 0.989821i) q^{41} -1.00000 q^{47} +(-0.959493 + 0.281733i) q^{48} +(-0.654861 - 0.755750i) q^{49} +(-0.841254 + 0.540641i) q^{50} +(0.654861 - 0.755750i) q^{54} +(-0.959493 - 0.281733i) q^{58} +(0.830830 + 1.81926i) q^{59} +(0.415415 - 0.909632i) q^{62} +(-0.142315 - 0.989821i) q^{64} +(0.959493 - 0.281733i) q^{71} +(-0.841254 + 0.540641i) q^{73} +(-0.841254 - 0.540641i) q^{75} +(0.142315 - 0.989821i) q^{78} +(0.959493 + 0.281733i) q^{81} +(0.415415 + 0.909632i) q^{82} +(-0.142315 - 0.989821i) q^{87} +1.00000 q^{93} +(-0.959493 + 0.281733i) q^{94} +(-0.841254 - 0.540641i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q+q2+q3q6q8+q13+q1610q24q25q26q27+q29+q31q39+q4110q47q48q49+q50+q54q58++q98+O(q100) 10 q + q^{2} + q^{3} - q^{6} - q^{8} + q^{13} + q^{16} - 10 q^{24} - q^{25} - q^{26} - q^{27} + q^{29} + q^{31} - q^{39} + q^{41} - 10 q^{47} - q^{48} - q^{49} + q^{50} + q^{54} - q^{58}+ \cdots + q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/529Z)×\left(\mathbb{Z}/529\mathbb{Z}\right)^\times.

nn 55
χ(n)\chi(n) e(2122)e\left(\frac{21}{22}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.959493 0.281733i 0.959493 0.281733i 0.235759 0.971812i 0.424242π-0.424242\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
33 0.654861 + 0.755750i 0.654861 + 0.755750i 0.981929 0.189251i 0.0606061π-0.0606061\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
44 0 0
55 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
66 0.841254 + 0.540641i 0.841254 + 0.540641i
77 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
88 −0.654861 + 0.755750i −0.654861 + 0.755750i
99 0 0
1010 0 0
1111 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
1212 0 0
1313 −0.415415 0.909632i −0.415415 0.909632i −0.995472 0.0950560i 0.969697π-0.969697\pi
0.580057 0.814576i 0.303030π-0.303030\pi
1414 0 0
1515 0 0
1616 −0.415415 + 0.909632i −0.415415 + 0.909632i
1717 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
1818 0 0
1919 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0
2424 −1.00000 −1.00000
2525 −0.959493 + 0.281733i −0.959493 + 0.281733i
2626 −0.654861 0.755750i −0.654861 0.755750i
2727 0.841254 0.540641i 0.841254 0.540641i
2828 0 0
2929 −0.841254 0.540641i −0.841254 0.540641i 0.0475819 0.998867i 0.484848π-0.484848\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
3030 0 0
3131 0.654861 0.755750i 0.654861 0.755750i −0.327068 0.945001i 0.606061π-0.606061\pi
0.981929 + 0.189251i 0.0606061π0.0606061\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
3838 0 0
3939 0.415415 0.909632i 0.415415 0.909632i
4040 0 0
4141 0.142315 + 0.989821i 0.142315 + 0.989821i 0.928368 + 0.371662i 0.121212π0.121212\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
4242 0 0
4343 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
4444 0 0
4545 0 0
4646 0 0
4747 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4848 −0.959493 + 0.281733i −0.959493 + 0.281733i
4949 −0.654861 0.755750i −0.654861 0.755750i
5050 −0.841254 + 0.540641i −0.841254 + 0.540641i
5151 0 0
5252 0 0
5353 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
5454 0.654861 0.755750i 0.654861 0.755750i
5555 0 0
5656 0 0
5757 0 0
5858 −0.959493 0.281733i −0.959493 0.281733i
5959 0.830830 + 1.81926i 0.830830 + 1.81926i 0.415415 + 0.909632i 0.363636π0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
6060 0 0
6161 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
6262 0.415415 0.909632i 0.415415 0.909632i
6363 0 0
6464 −0.142315 0.989821i −0.142315 0.989821i
6565 0 0
6666 0 0
6767 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
6868 0 0
6969 0 0
7070 0 0
7171 0.959493 0.281733i 0.959493 0.281733i 0.235759 0.971812i 0.424242π-0.424242\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
7272 0 0
7373 −0.841254 + 0.540641i −0.841254 + 0.540641i −0.888835 0.458227i 0.848485π-0.848485\pi
0.0475819 + 0.998867i 0.484848π0.484848\pi
7474 0 0
7575 −0.841254 0.540641i −0.841254 0.540641i
7676 0 0
7777 0 0
7878 0.142315 0.989821i 0.142315 0.989821i
7979 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
8080 0 0
8181 0.959493 + 0.281733i 0.959493 + 0.281733i
8282 0.415415 + 0.909632i 0.415415 + 0.909632i
8383 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
8484 0 0
8585 0 0
8686 0 0
8787 −0.142315 0.989821i −0.142315 0.989821i
8888 0 0
8989 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
9090 0 0
9191 0 0
9292 0 0
9393 1.00000 1.00000
9494 −0.959493 + 0.281733i −0.959493 + 0.281733i
9595 0 0
9696 0 0
9797 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
9898 −0.841254 0.540641i −0.841254 0.540641i
9999 0 0
100100 0 0
101101 −0.284630 + 1.97964i −0.284630 + 1.97964i −0.142315 + 0.989821i 0.545455π0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
102102 0 0
103103 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
104104 0.959493 + 0.281733i 0.959493 + 0.281733i
105105 0 0
106106 0 0
107107 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
108108 0 0
109109 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
110110 0 0
111111 0 0
112112 0 0
113113 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 1.30972 + 1.51150i 1.30972 + 1.51150i
119119 0 0
120120 0 0
121121 0.841254 + 0.540641i 0.841254 + 0.540641i
122122 0 0
123123 −0.654861 + 0.755750i −0.654861 + 0.755750i
124124 0 0
125125 0 0
126126 0 0
127127 0.959493 + 0.281733i 0.959493 + 0.281733i 0.723734 0.690079i 0.242424π-0.242424\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
128128 −0.415415 0.909632i −0.415415 0.909632i
129129 0 0
130130 0 0
131131 −0.415415 + 0.909632i −0.415415 + 0.909632i 0.580057 + 0.814576i 0.303030π0.303030\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 0 0 1.00000 00
−1.00000 π\pi
138138 0 0
139139 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
140140 0 0
141141 −0.654861 0.755750i −0.654861 0.755750i
142142 0.841254 0.540641i 0.841254 0.540641i
143143 0 0
144144 0 0
145145 0 0
146146 −0.654861 + 0.755750i −0.654861 + 0.755750i
147147 0.142315 0.989821i 0.142315 0.989821i
148148 0 0
149149 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
150150 −0.959493 0.281733i −0.959493 0.281733i
151151 −0.415415 0.909632i −0.415415 0.909632i −0.995472 0.0950560i 0.969697π-0.969697\pi
0.580057 0.814576i 0.303030π-0.303030\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 1.00000 1.00000
163163 0.959493 0.281733i 0.959493 0.281733i 0.235759 0.971812i 0.424242π-0.424242\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
164164 0 0
165165 0 0
166166 0 0
167167 1.68251 + 1.08128i 1.68251 + 1.08128i 0.841254 + 0.540641i 0.181818π0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
168168 0 0
169169 0 0
170170 0 0
171171 0 0
172172 0 0
173173 −1.91899 0.563465i −1.91899 0.563465i −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 0.281733i 0.909091π-0.909091\pi
174174 −0.415415 0.909632i −0.415415 0.909632i
175175 0 0
176176 0 0
177177 −0.830830 + 1.81926i −0.830830 + 1.81926i
178178 0 0
179179 0.142315 + 0.989821i 0.142315 + 0.989821i 0.928368 + 0.371662i 0.121212π0.121212\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
180180 0 0
181181 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0.959493 0.281733i 0.959493 0.281733i
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
192192 0.654861 0.755750i 0.654861 0.755750i
193193 0.142315 0.989821i 0.142315 0.989821i −0.786053 0.618159i 0.787879π-0.787879\pi
0.928368 0.371662i 0.121212π-0.121212\pi
194194 0 0
195195 0 0
196196 0 0
197197 −0.415415 0.909632i −0.415415 0.909632i −0.995472 0.0950560i 0.969697π-0.969697\pi
0.580057 0.814576i 0.303030π-0.303030\pi
198198 0 0
199199 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
200200 0.415415 0.909632i 0.415415 0.909632i
201201 0 0
202202 0.284630 + 1.97964i 0.284630 + 1.97964i
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 1.00000 1.00000
209209 0 0
210210 0 0
211211 1.68251 1.08128i 1.68251 1.08128i 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 0.540641i 0.181818π-0.181818\pi
212212 0 0
213213 0.841254 + 0.540641i 0.841254 + 0.540641i
214214 0 0
215215 0 0
216216 −0.142315 + 0.989821i −0.142315 + 0.989821i
217217 0 0
218218 0 0
219219 −0.959493 0.281733i −0.959493 0.281733i
220220 0 0
221221 0 0
222222 0 0
223223 0.830830 1.81926i 0.830830 1.81926i 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 0.909632i 0.363636π-0.363636\pi
224224 0 0
225225 0 0
226226 0 0
227227 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 0 0
232232 0.959493 0.281733i 0.959493 0.281733i
233233 0.654861 + 0.755750i 0.654861 + 0.755750i 0.981929 0.189251i 0.0606061π-0.0606061\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0.142315 0.989821i 0.142315 0.989821i −0.786053 0.618159i 0.787879π-0.787879\pi
0.928368 0.371662i 0.121212π-0.121212\pi
240240 0 0
241241 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
242242 0.959493 + 0.281733i 0.959493 + 0.281733i
243243 0 0
244244 0 0
245245 0 0
246246 −0.415415 + 0.909632i −0.415415 + 0.909632i
247247 0 0
248248 0.142315 + 0.989821i 0.142315 + 0.989821i
249249 0 0
250250 0 0
251251 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
252252 0 0
253253 0 0
254254 1.00000 1.00000
255255 0 0
256256 0 0
257257 −0.841254 + 0.540641i −0.841254 + 0.540641i −0.888835 0.458227i 0.848485π-0.848485\pi
0.0475819 + 0.998867i 0.484848π0.484848\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 −0.142315 + 0.989821i −0.142315 + 0.989821i
263263 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 −0.415415 + 0.909632i −0.415415 + 0.909632i 0.580057 + 0.814576i 0.303030π0.303030\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
270270 0 0
271271 −0.284630 1.97964i −0.284630 1.97964i −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 0.989821i 0.545455π-0.545455\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
278278 −0.959493 + 0.281733i −0.959493 + 0.281733i
279279 0 0
280280 0 0
281281 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
282282 −0.841254 0.540641i −0.841254 0.540641i
283283 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 0.415415 + 0.909632i 0.415415 + 0.909632i
290290 0 0
291291 0 0
292292 0 0
293293 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
294294 −0.142315 0.989821i −0.142315 0.989821i
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 −0.654861 0.755750i −0.654861 0.755750i
303303 −1.68251 + 1.08128i −1.68251 + 1.08128i
304304 0 0
305305 0 0
306306 0 0
307307 −1.30972 + 1.51150i −1.30972 + 1.51150i −0.654861 + 0.755750i 0.727273π0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
308308 0 0
309309 0 0
310310 0 0
311311 0.959493 + 0.281733i 0.959493 + 0.281733i 0.723734 0.690079i 0.242424π-0.242424\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
312312 0.415415 + 0.909632i 0.415415 + 0.909632i
313313 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
314314 0 0
315315 0 0
316316 0 0
317317 −0.284630 1.97964i −0.284630 1.97964i −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 0.989821i 0.545455π-0.545455\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0.654861 + 0.755750i 0.654861 + 0.755750i
326326 0.841254 0.540641i 0.841254 0.540641i
327327 0 0
328328 −0.841254 0.540641i −0.841254 0.540641i
329329 0 0
330330 0 0
331331 0.142315 0.989821i 0.142315 0.989821i −0.786053 0.618159i 0.787879π-0.787879\pi
0.928368 0.371662i 0.121212π-0.121212\pi
332332 0 0
333333 0 0
334334 1.91899 + 0.563465i 1.91899 + 0.563465i
335335 0 0
336336 0 0
337337 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 −2.00000 −2.00000
347347 −1.91899 + 0.563465i −1.91899 + 0.563465i −0.959493 + 0.281733i 0.909091π0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
348348 0 0
349349 −0.841254 + 0.540641i −0.841254 + 0.540641i −0.888835 0.458227i 0.848485π-0.848485\pi
0.0475819 + 0.998867i 0.484848π0.484848\pi
350350 0 0
351351 −0.841254 0.540641i −0.841254 0.540641i
352352 0 0
353353 0.654861 0.755750i 0.654861 0.755750i −0.327068 0.945001i 0.606061π-0.606061\pi
0.981929 + 0.189251i 0.0606061π0.0606061\pi
354354 −0.284630 + 1.97964i −0.284630 + 1.97964i
355355 0 0
356356 0 0
357357 0 0
358358 0.415415 + 0.909632i 0.415415 + 0.909632i
359359 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
360360 0 0
361361 0.415415 0.909632i 0.415415 0.909632i
362362 0 0
363363 0.142315 + 0.989821i 0.142315 + 0.989821i
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
374374 0 0
375375 0 0
376376 0.654861 0.755750i 0.654861 0.755750i
377377 −0.142315 + 0.989821i −0.142315 + 0.989821i
378378 0 0
379379 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
380380 0 0
381381 0.415415 + 0.909632i 0.415415 + 0.909632i
382382 0 0
383383 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
384384 0.415415 0.909632i 0.415415 0.909632i
385385 0 0
386386 −0.142315 0.989821i −0.142315 0.989821i
387387 0 0
388388 0 0
389389 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
390390 0 0
391391 0 0
392392 1.00000 1.00000
393393 −0.959493 + 0.281733i −0.959493 + 0.281733i
394394 −0.654861 0.755750i −0.654861 0.755750i
395395 0 0
396396 0 0
397397 −0.841254 0.540641i −0.841254 0.540641i 0.0475819 0.998867i 0.484848π-0.484848\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
398398 0 0
399399 0 0
400400 0.142315 0.989821i 0.142315 0.989821i
401401 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
402402 0 0
403403 −0.959493 0.281733i −0.959493 0.281733i
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 0.142315 + 0.989821i 0.142315 + 0.989821i 0.928368 + 0.371662i 0.121212π0.121212\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 −0.654861 0.755750i −0.654861 0.755750i
418418 0 0
419419 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
420420 0 0
421421 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
422422 1.30972 1.51150i 1.30972 1.51150i
423423 0 0
424424 0 0
425425 0 0
426426 0.959493 + 0.281733i 0.959493 + 0.281733i
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
432432 0.142315 + 0.989821i 0.142315 + 0.989821i
433433 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 −1.00000 −1.00000
439439 0.959493 0.281733i 0.959493 0.281733i 0.235759 0.971812i 0.424242π-0.424242\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
440440 0 0
441441 0 0
442442 0 0
443443 −0.841254 0.540641i −0.841254 0.540641i 0.0475819 0.998867i 0.484848π-0.484848\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
444444 0 0
445445 0 0
446446 0.284630 1.97964i 0.284630 1.97964i
447447 0 0
448448 0 0
449449 −1.91899 0.563465i −1.91899 0.563465i −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 0.281733i 0.909091π-0.909091\pi
450450 0 0
451451 0 0
452452 0 0
453453 0.415415 0.909632i 0.415415 0.909632i
454454 0 0
455455 0 0
456456 0 0
457457 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
458458 0 0
459459 0 0
460460 0 0
461461 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
462462 0 0
463463 −1.30972 1.51150i −1.30972 1.51150i −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 0.755750i 0.727273π-0.727273\pi
464464 0.841254 0.540641i 0.841254 0.540641i
465465 0 0
466466 0.841254 + 0.540641i 0.841254 + 0.540641i
467467 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 −1.91899 0.563465i −1.91899 0.563465i
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 −0.142315 0.989821i −0.142315 0.989821i
479479 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 −0.841254 + 0.540641i −0.841254 + 0.540641i −0.888835 0.458227i 0.848485π-0.848485\pi
0.0475819 + 0.998867i 0.484848π0.484848\pi
488488 0 0
489489 0.841254 + 0.540641i 0.841254 + 0.540641i
490490 0 0
491491 0.654861 0.755750i 0.654861 0.755750i −0.327068 0.945001i 0.606061π-0.606061\pi
0.981929 + 0.189251i 0.0606061π0.0606061\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0.415415 + 0.909632i 0.415415 + 0.909632i
497497 0 0
498498 0 0
499499 −0.415415 + 0.909632i −0.415415 + 0.909632i 0.580057 + 0.814576i 0.303030π0.303030\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
500500 0 0
501501 0.284630 + 1.97964i 0.284630 + 1.97964i
502502 0 0
503503 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 0.654861 + 0.755750i 0.654861 + 0.755750i 0.981929 0.189251i 0.0606061π-0.0606061\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
510510 0 0
511511 0 0
512512 0.841254 + 0.540641i 0.841254 + 0.540641i
513513 0 0
514514 −0.654861 + 0.755750i −0.654861 + 0.755750i
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 −0.830830 1.81926i −0.830830 1.81926i
520520 0 0
521521 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
522522 0 0
523523 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 0 0
530530 0 0
531531 0 0
532532 0 0
533533 0.841254 0.540641i 0.841254 0.540641i
534534 0 0
535535 0 0
536536 0 0
537537 −0.654861 + 0.755750i −0.654861 + 0.755750i
538538 −0.142315 + 0.989821i −0.142315 + 0.989821i
539539 0 0
540540 0 0
541541 0.959493 + 0.281733i 0.959493 + 0.281733i 0.723734 0.690079i 0.242424π-0.242424\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
542542 −0.830830 1.81926i −0.830830 1.81926i
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0.142315 + 0.989821i 0.142315 + 0.989821i 0.928368 + 0.371662i 0.121212π0.121212\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 −0.959493 + 0.281733i −0.959493 + 0.281733i
555555 0 0
556556 0 0
557557 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 −0.415415 + 0.909632i −0.415415 + 0.909632i
569569 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
570570 0 0
571571 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 0.959493 0.281733i 0.959493 0.281733i 0.235759 0.971812i 0.424242π-0.424242\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
578578 0.654861 + 0.755750i 0.654861 + 0.755750i
579579 0.841254 0.540641i 0.841254 0.540641i
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0.142315 0.989821i 0.142315 0.989821i
585585 0 0
586586 0 0
587587 0.959493 + 0.281733i 0.959493 + 0.281733i 0.723734 0.690079i 0.242424π-0.242424\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
588588 0 0
589589 0 0
590590 0 0
591591 0.415415 0.909632i 0.415415 0.909632i
592592 0 0
593593 −0.284630 1.97964i −0.284630 1.97964i −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 0.989821i 0.545455π-0.545455\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 2.00000 2.00000 1.00000 00
1.00000 00
600600 0.959493 0.281733i 0.959493 0.281733i
601601 0.654861 + 0.755750i 0.654861 + 0.755750i 0.981929 0.189251i 0.0606061π-0.0606061\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 −1.30972 + 1.51150i −1.30972 + 1.51150i
607607 −0.284630 + 1.97964i −0.284630 + 1.97964i −0.142315 + 0.989821i 0.545455π0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
608608 0 0
609609 0 0
610610 0 0
611611 0.415415 + 0.909632i 0.415415 + 0.909632i
612612 0 0
613613 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
614614 −0.830830 + 1.81926i −0.830830 + 1.81926i
615615 0 0
616616 0 0
617617 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
618618 0 0
619619 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
620620 0 0
621621 0 0
622622 1.00000 1.00000
623623 0 0
624624 0.654861 + 0.755750i 0.654861 + 0.755750i
625625 0.841254 0.540641i 0.841254 0.540641i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
632632 0 0
633633 1.91899 + 0.563465i 1.91899 + 0.563465i
634634 −0.830830 1.81926i −0.830830 1.81926i
635635 0 0
636636 0 0
637637 −0.415415 + 0.909632i −0.415415 + 0.909632i
638638 0 0
639639 0 0
640640 0 0
641641 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 0.654861 + 0.755750i 0.654861 + 0.755750i 0.981929 0.189251i 0.0606061π-0.0606061\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
648648 −0.841254 + 0.540641i −0.841254 + 0.540641i
649649 0 0
650650 0.841254 + 0.540641i 0.841254 + 0.540641i
651651 0 0
652652 0 0
653653 0.142315 0.989821i 0.142315 0.989821i −0.786053 0.618159i 0.787879π-0.787879\pi
0.928368 0.371662i 0.121212π-0.121212\pi
654654 0 0
655655 0 0
656656 −0.959493 0.281733i −0.959493 0.281733i
657657 0 0
658658 0 0
659659 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
660660 0 0
661661 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
662662 −0.142315 0.989821i −0.142315 0.989821i
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 1.91899 0.563465i 1.91899 0.563465i
670670 0 0
671671 0 0
672672 0 0
673673 −0.841254 0.540641i −0.841254 0.540641i 0.0475819 0.998867i 0.484848π-0.484848\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
674674 0 0
675675 −0.654861 + 0.755750i −0.654861 + 0.755750i
676676 0 0
677677 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 −0.415415 + 0.909632i −0.415415 + 0.909632i 0.580057 + 0.814576i 0.303030π0.303030\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 2.00000 2.00000 1.00000 00
1.00000 00
692692 0 0
693693 0 0
694694 −1.68251 + 1.08128i −1.68251 + 1.08128i
695695 0 0
696696 0.841254 + 0.540641i 0.841254 + 0.540641i
697697 0 0
698698 −0.654861 + 0.755750i −0.654861 + 0.755750i
699699 −0.142315 + 0.989821i −0.142315 + 0.989821i
700700 0 0
701701 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
702702 −0.959493 0.281733i −0.959493 0.281733i
703703 0 0
704704 0 0
705705 0 0
706706 0.415415 0.909632i 0.415415 0.909632i
707707 0 0
708708 0 0
709709 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0.841254 0.540641i 0.841254 0.540641i
718718 0 0
719719 1.68251 + 1.08128i 1.68251 + 1.08128i 0.841254 + 0.540641i 0.181818π0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
720720 0 0
721721 0 0
722722 0.142315 0.989821i 0.142315 0.989821i
723723 0 0
724724 0 0
725725 0.959493 + 0.281733i 0.959493 + 0.281733i
726726 0.415415 + 0.909632i 0.415415 + 0.909632i
727727 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
728728 0 0
729729 0.415415 0.909632i 0.415415 0.909632i
730730 0 0
731731 0 0
732732 0 0
733733 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0.654861 + 0.755750i 0.654861 + 0.755750i 0.981929 0.189251i 0.0606061π-0.0606061\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
744744 −0.654861 + 0.755750i −0.654861 + 0.755750i
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
752752 0.415415 0.909632i 0.415415 0.909632i
753753 0 0
754754 0.142315 + 0.989821i 0.142315 + 0.989821i
755755 0 0
756756 0 0
757757 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
758758 0 0
759759 0 0
760760 0 0
761761 0.959493 0.281733i 0.959493 0.281733i 0.235759 0.971812i 0.424242π-0.424242\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
762762 0.654861 + 0.755750i 0.654861 + 0.755750i
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 1.30972 1.51150i 1.30972 1.51150i
768768 0 0
769769 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
770770 0 0
771771 −0.959493 0.281733i −0.959493 0.281733i
772772 0 0
773773 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
774774 0 0
775775 −0.415415 + 0.909632i −0.415415 + 0.909632i
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 −1.00000 −1.00000
784784 0.959493 0.281733i 0.959493 0.281733i
785785 0 0
786786 −0.841254 + 0.540641i −0.841254 + 0.540641i
787787 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 −0.959493 0.281733i −0.959493 0.281733i
795795 0 0
796796 0 0
797797 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 −1.00000 −1.00000
807807 −0.959493 + 0.281733i −0.959493 + 0.281733i
808808 −1.30972 1.51150i −1.30972 1.51150i
809809 1.68251 1.08128i 1.68251 1.08128i 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 0.540641i 0.181818π-0.181818\pi
810810 0 0
811811 −0.841254 0.540641i −0.841254 0.540641i 0.0475819 0.998867i 0.484848π-0.484848\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
812812 0 0
813813 1.30972 1.51150i 1.30972 1.51150i
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0.415415 + 0.909632i 0.415415 + 0.909632i
819819 0 0
820820 0 0
821821 0.830830 1.81926i 0.830830 1.81926i 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 0.909632i 0.363636π-0.363636\pi
822822 0 0
823823 0.142315 + 0.989821i 0.142315 + 0.989821i 0.928368 + 0.371662i 0.121212π0.121212\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 2.00000 2.00000 1.00000 00
1.00000 00
830830 0 0
831831 −0.654861 0.755750i −0.654861 0.755750i
832832 −0.841254 + 0.540641i −0.841254 + 0.540641i
833833 0 0
834834 −0.841254 0.540641i −0.841254 0.540641i
835835 0 0
836836 0 0
837837 0.142315 0.989821i 0.142315 0.989821i
838838 0 0
839839 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
840840 0 0
841841 0 0
842842 0 0
843843 0 0
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 −1.91899 + 0.563465i −1.91899 + 0.563465i −0.959493 + 0.281733i 0.909091π0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
854854 0 0
855855 0 0
856856 0 0
857857 −0.841254 0.540641i −0.841254 0.540641i 0.0475819 0.998867i 0.484848π-0.484848\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
858858 0 0
859859 0.654861 0.755750i 0.654861 0.755750i −0.327068 0.945001i 0.606061π-0.606061\pi
0.981929 + 0.189251i 0.0606061π0.0606061\pi
860860 0 0
861861 0 0
862862 0 0
863863 0.959493 + 0.281733i 0.959493 + 0.281733i 0.723734 0.690079i 0.242424π-0.242424\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
864864 0 0
865865 0 0
866866 0 0
867867 −0.415415 + 0.909632i −0.415415 + 0.909632i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 −1.30972 1.51150i −1.30972 1.51150i −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 0.755750i 0.727273π-0.727273\pi
878878 0.841254 0.540641i 0.841254 0.540641i
879879 0 0
880880 0 0
881881 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
882882 0 0
883883 −0.284630 + 1.97964i −0.284630 + 1.97964i −0.142315 + 0.989821i 0.545455π0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
884884 0 0
885885 0 0
886886 −0.959493 0.281733i −0.959493 0.281733i
887887 −0.415415 0.909632i −0.415415 0.909632i −0.995472 0.0950560i 0.969697π-0.969697\pi
0.580057 0.814576i 0.303030π-0.303030\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 −2.00000 −2.00000
899899 −0.959493 + 0.281733i −0.959493 + 0.281733i
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0.142315 0.989821i 0.142315 0.989821i
907907 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 −2.00000 −2.00000
922922 −0.959493 + 0.281733i −0.959493 + 0.281733i
923923 −0.654861 0.755750i −0.654861 0.755750i
924924 0 0
925925 0 0
926926 −1.68251 1.08128i −1.68251 1.08128i
927927 0 0
928928 0 0
929929 0.142315 0.989821i 0.142315 0.989821i −0.786053 0.618159i 0.787879π-0.787879\pi
0.928368 0.371662i 0.121212π-0.121212\pi
930930 0 0
931931 0 0
932932 0 0
933933 0.415415 + 0.909632i 0.415415 + 0.909632i
934934 0 0
935935 0 0
936936 0 0
937937 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
942942 0 0
943943 0 0
944944 −2.00000 −2.00000
945945 0 0
946946 0 0
947947 −0.841254 + 0.540641i −0.841254 + 0.540641i −0.888835 0.458227i 0.848485π-0.848485\pi
0.0475819 + 0.998867i 0.484848π0.484848\pi
948948 0 0
949949 0.841254 + 0.540641i 0.841254 + 0.540641i
950950 0 0
951951 1.30972 1.51150i 1.30972 1.51150i
952952 0 0
953953 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0 0
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
968968 −0.959493 + 0.281733i −0.959493 + 0.281733i
969969 0 0
970970 0 0
971971 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
972972 0 0
973973 0 0
974974 −0.654861 + 0.755750i −0.654861 + 0.755750i
975975 −0.142315 + 0.989821i −0.142315 + 0.989821i
976976 0 0
977977 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
978978 0.959493 + 0.281733i 0.959493 + 0.281733i
979979 0 0
980980 0 0
981981 0 0
982982 0.415415 0.909632i 0.415415 0.909632i
983983 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
984984 −0.142315 0.989821i −0.142315 0.989821i
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 −1.91899 + 0.563465i −1.91899 + 0.563465i −0.959493 + 0.281733i 0.909091π0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
992992 0 0
993993 0.841254 0.540641i 0.841254 0.540641i
994994 0 0
995995 0 0
996996 0 0
997997 −1.30972 + 1.51150i −1.30972 + 1.51150i −0.654861 + 0.755750i 0.727273π0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
998998 −0.142315 + 0.989821i −0.142315 + 0.989821i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.1.d.a.359.1 10
23.2 even 11 inner 529.1.d.a.263.1 10
23.3 even 11 inner 529.1.d.a.195.1 10
23.4 even 11 inner 529.1.d.a.63.1 10
23.5 odd 22 inner 529.1.d.a.28.1 10
23.6 even 11 inner 529.1.d.a.274.1 10
23.7 odd 22 inner 529.1.d.a.42.1 10
23.8 even 11 23.1.b.a.22.1 1
23.9 even 11 inner 529.1.d.a.352.1 10
23.10 odd 22 inner 529.1.d.a.411.1 10
23.11 odd 22 inner 529.1.d.a.130.1 10
23.12 even 11 inner 529.1.d.a.130.1 10
23.13 even 11 inner 529.1.d.a.411.1 10
23.14 odd 22 inner 529.1.d.a.352.1 10
23.15 odd 22 23.1.b.a.22.1 1
23.16 even 11 inner 529.1.d.a.42.1 10
23.17 odd 22 inner 529.1.d.a.274.1 10
23.18 even 11 inner 529.1.d.a.28.1 10
23.19 odd 22 inner 529.1.d.a.63.1 10
23.20 odd 22 inner 529.1.d.a.195.1 10
23.21 odd 22 inner 529.1.d.a.263.1 10
23.22 odd 2 CM 529.1.d.a.359.1 10
69.8 odd 22 207.1.d.a.91.1 1
69.38 even 22 207.1.d.a.91.1 1
92.15 even 22 368.1.f.a.321.1 1
92.31 odd 22 368.1.f.a.321.1 1
115.8 odd 44 575.1.c.a.574.2 2
115.38 even 44 575.1.c.a.574.2 2
115.54 even 22 575.1.d.a.551.1 1
115.77 odd 44 575.1.c.a.574.1 2
115.84 odd 22 575.1.d.a.551.1 1
115.107 even 44 575.1.c.a.574.1 2
161.31 odd 66 1127.1.f.a.275.1 2
161.38 even 66 1127.1.f.a.275.1 2
161.54 odd 66 1127.1.f.a.459.1 2
161.61 even 66 1127.1.f.a.459.1 2
161.100 even 33 1127.1.f.b.459.1 2
161.107 odd 66 1127.1.f.b.459.1 2
161.123 even 33 1127.1.f.b.275.1 2
161.130 odd 66 1127.1.f.b.275.1 2
161.146 odd 22 1127.1.d.b.344.1 1
161.153 even 22 1127.1.d.b.344.1 1
184.61 odd 22 1472.1.f.b.321.1 1
184.77 even 22 1472.1.f.b.321.1 1
184.107 even 22 1472.1.f.a.321.1 1
184.123 odd 22 1472.1.f.a.321.1 1
207.31 even 33 1863.1.f.b.298.1 2
207.38 even 66 1863.1.f.a.919.1 2
207.61 odd 66 1863.1.f.b.919.1 2
207.77 odd 66 1863.1.f.a.298.1 2
207.130 odd 66 1863.1.f.b.298.1 2
207.146 odd 66 1863.1.f.a.919.1 2
207.169 even 33 1863.1.f.b.919.1 2
207.176 even 66 1863.1.f.a.298.1 2
253.8 odd 110 2783.1.f.a.735.1 4
253.15 odd 110 2783.1.f.c.390.1 4
253.31 even 55 2783.1.f.c.2138.1 4
253.38 odd 110 2783.1.f.c.850.1 4
253.54 odd 22 2783.1.d.b.1816.1 1
253.61 even 110 2783.1.f.a.850.1 4
253.84 even 110 2783.1.f.a.390.1 4
253.107 even 110 2783.1.f.a.735.1 4
253.123 odd 110 2783.1.f.a.2138.1 4
253.130 odd 110 2783.1.f.c.2138.1 4
253.146 even 55 2783.1.f.c.735.1 4
253.153 even 22 2783.1.d.b.1816.1 1
253.169 even 55 2783.1.f.c.390.1 4
253.192 even 55 2783.1.f.c.850.1 4
253.215 odd 110 2783.1.f.a.850.1 4
253.222 even 110 2783.1.f.a.2138.1 4
253.238 odd 110 2783.1.f.a.390.1 4
253.245 odd 110 2783.1.f.c.735.1 4
276.107 odd 22 3312.1.c.a.2161.1 1
276.215 even 22 3312.1.c.a.2161.1 1
299.8 odd 44 3887.1.c.a.3886.1 2
299.15 even 132 3887.1.j.e.2851.1 4
299.31 odd 44 3887.1.c.a.3886.2 2
299.38 odd 22 3887.1.d.b.2874.1 1
299.54 odd 132 3887.1.j.e.2851.1 4
299.61 odd 66 3887.1.h.c.3357.1 2
299.77 even 22 3887.1.d.b.2874.1 1
299.84 even 132 3887.1.j.e.3403.2 4
299.100 even 33 3887.1.h.c.3357.1 2
299.107 odd 66 3887.1.h.c.22.1 2
299.123 odd 132 3887.1.j.e.3403.2 4
299.146 even 33 3887.1.h.c.22.1 2
299.153 odd 66 3887.1.h.a.22.1 2
299.176 even 132 3887.1.j.e.3403.1 4
299.192 even 66 3887.1.h.a.22.1 2
299.199 odd 66 3887.1.h.a.3357.1 2
299.215 odd 132 3887.1.j.e.3403.1 4
299.238 even 66 3887.1.h.a.3357.1 2
299.245 even 132 3887.1.j.e.2851.2 4
299.268 even 44 3887.1.c.a.3886.1 2
299.284 odd 132 3887.1.j.e.2851.2 4
299.291 even 44 3887.1.c.a.3886.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.1.b.a.22.1 1 23.8 even 11
23.1.b.a.22.1 1 23.15 odd 22
207.1.d.a.91.1 1 69.8 odd 22
207.1.d.a.91.1 1 69.38 even 22
368.1.f.a.321.1 1 92.15 even 22
368.1.f.a.321.1 1 92.31 odd 22
529.1.d.a.28.1 10 23.5 odd 22 inner
529.1.d.a.28.1 10 23.18 even 11 inner
529.1.d.a.42.1 10 23.7 odd 22 inner
529.1.d.a.42.1 10 23.16 even 11 inner
529.1.d.a.63.1 10 23.4 even 11 inner
529.1.d.a.63.1 10 23.19 odd 22 inner
529.1.d.a.130.1 10 23.11 odd 22 inner
529.1.d.a.130.1 10 23.12 even 11 inner
529.1.d.a.195.1 10 23.3 even 11 inner
529.1.d.a.195.1 10 23.20 odd 22 inner
529.1.d.a.263.1 10 23.2 even 11 inner
529.1.d.a.263.1 10 23.21 odd 22 inner
529.1.d.a.274.1 10 23.6 even 11 inner
529.1.d.a.274.1 10 23.17 odd 22 inner
529.1.d.a.352.1 10 23.9 even 11 inner
529.1.d.a.352.1 10 23.14 odd 22 inner
529.1.d.a.359.1 10 1.1 even 1 trivial
529.1.d.a.359.1 10 23.22 odd 2 CM
529.1.d.a.411.1 10 23.10 odd 22 inner
529.1.d.a.411.1 10 23.13 even 11 inner
575.1.c.a.574.1 2 115.77 odd 44
575.1.c.a.574.1 2 115.107 even 44
575.1.c.a.574.2 2 115.8 odd 44
575.1.c.a.574.2 2 115.38 even 44
575.1.d.a.551.1 1 115.54 even 22
575.1.d.a.551.1 1 115.84 odd 22
1127.1.d.b.344.1 1 161.146 odd 22
1127.1.d.b.344.1 1 161.153 even 22
1127.1.f.a.275.1 2 161.31 odd 66
1127.1.f.a.275.1 2 161.38 even 66
1127.1.f.a.459.1 2 161.54 odd 66
1127.1.f.a.459.1 2 161.61 even 66
1127.1.f.b.275.1 2 161.123 even 33
1127.1.f.b.275.1 2 161.130 odd 66
1127.1.f.b.459.1 2 161.100 even 33
1127.1.f.b.459.1 2 161.107 odd 66
1472.1.f.a.321.1 1 184.107 even 22
1472.1.f.a.321.1 1 184.123 odd 22
1472.1.f.b.321.1 1 184.61 odd 22
1472.1.f.b.321.1 1 184.77 even 22
1863.1.f.a.298.1 2 207.77 odd 66
1863.1.f.a.298.1 2 207.176 even 66
1863.1.f.a.919.1 2 207.38 even 66
1863.1.f.a.919.1 2 207.146 odd 66
1863.1.f.b.298.1 2 207.31 even 33
1863.1.f.b.298.1 2 207.130 odd 66
1863.1.f.b.919.1 2 207.61 odd 66
1863.1.f.b.919.1 2 207.169 even 33
2783.1.d.b.1816.1 1 253.54 odd 22
2783.1.d.b.1816.1 1 253.153 even 22
2783.1.f.a.390.1 4 253.84 even 110
2783.1.f.a.390.1 4 253.238 odd 110
2783.1.f.a.735.1 4 253.8 odd 110
2783.1.f.a.735.1 4 253.107 even 110
2783.1.f.a.850.1 4 253.61 even 110
2783.1.f.a.850.1 4 253.215 odd 110
2783.1.f.a.2138.1 4 253.123 odd 110
2783.1.f.a.2138.1 4 253.222 even 110
2783.1.f.c.390.1 4 253.15 odd 110
2783.1.f.c.390.1 4 253.169 even 55
2783.1.f.c.735.1 4 253.146 even 55
2783.1.f.c.735.1 4 253.245 odd 110
2783.1.f.c.850.1 4 253.38 odd 110
2783.1.f.c.850.1 4 253.192 even 55
2783.1.f.c.2138.1 4 253.31 even 55
2783.1.f.c.2138.1 4 253.130 odd 110
3312.1.c.a.2161.1 1 276.107 odd 22
3312.1.c.a.2161.1 1 276.215 even 22
3887.1.c.a.3886.1 2 299.8 odd 44
3887.1.c.a.3886.1 2 299.268 even 44
3887.1.c.a.3886.2 2 299.31 odd 44
3887.1.c.a.3886.2 2 299.291 even 44
3887.1.d.b.2874.1 1 299.38 odd 22
3887.1.d.b.2874.1 1 299.77 even 22
3887.1.h.a.22.1 2 299.153 odd 66
3887.1.h.a.22.1 2 299.192 even 66
3887.1.h.a.3357.1 2 299.199 odd 66
3887.1.h.a.3357.1 2 299.238 even 66
3887.1.h.c.22.1 2 299.107 odd 66
3887.1.h.c.22.1 2 299.146 even 33
3887.1.h.c.3357.1 2 299.61 odd 66
3887.1.h.c.3357.1 2 299.100 even 33
3887.1.j.e.2851.1 4 299.15 even 132
3887.1.j.e.2851.1 4 299.54 odd 132
3887.1.j.e.2851.2 4 299.245 even 132
3887.1.j.e.2851.2 4 299.284 odd 132
3887.1.j.e.3403.1 4 299.176 even 132
3887.1.j.e.3403.1 4 299.215 odd 132
3887.1.j.e.3403.2 4 299.84 even 132
3887.1.j.e.3403.2 4 299.123 odd 132