Properties

Label 529.1.d.a.263.1
Level 529529
Weight 11
Character 529.263
Analytic conductor 0.2640.264
Analytic rank 00
Dimension 1010
Projective image D3D_{3}
CM discriminant -23
Inner twists 2020

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [529,1,Mod(28,529)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(529, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("529.28");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 529=232 529 = 23^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 529.d (of order 2222, degree 1010, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.2640053916830.264005391683
Analytic rank: 00
Dimension: 1010
Coefficient field: Q(ζ22)\Q(\zeta_{22})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x10x9+x8x7+x6x5+x4x3+x2x+1 x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 23)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.23.1
Artin image: S3×C11S_3\times C_{11}
Artin field: Galois closure of Q[x]/(x33)\mathbb{Q}[x]/(x^{33} - \cdots)

Embedding invariants

Embedding label 263.1
Root 0.415415+0.909632i-0.415415 + 0.909632i of defining polynomial
Character χ\chi == 529.263
Dual form 529.1.d.a.352.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.654861+0.755750i)q2+(0.8412540.540641i)q3+(0.1423150.989821i)q6+(0.8412540.540641i)q8+(0.9594930.281733i)q13+(0.959493+0.281733i)q161.00000q24+(0.6548610.755750i)q25+(0.841254+0.540641i)q26+(0.142315+0.989821i)q27+(0.142315+0.989821i)q29+(0.841254+0.540641i)q31+(0.9594930.281733i)q39+(0.415415+0.909632i)q411.00000q47+(0.6548610.755750i)q48+(0.841254+0.540641i)q49+(0.1423150.989821i)q50+(0.841254+0.540641i)q54+(0.654861+0.755750i)q58+(1.91899+0.563465i)q59+(0.9594930.281733i)q62+(0.4154150.909632i)q64+(0.654861+0.755750i)q71+(0.1423150.989821i)q73+(0.142315+0.989821i)q75+(0.4154150.909632i)q78+(0.6548610.755750i)q81+(0.959493+0.281733i)q82+(0.4154150.909632i)q87+1.00000q93+(0.6548610.755750i)q94+(0.142315+0.989821i)q98+O(q100)q+(0.654861 + 0.755750i) q^{2} +(-0.841254 - 0.540641i) q^{3} +(-0.142315 - 0.989821i) q^{6} +(0.841254 - 0.540641i) q^{8} +(0.959493 - 0.281733i) q^{13} +(0.959493 + 0.281733i) q^{16} -1.00000 q^{24} +(-0.654861 - 0.755750i) q^{25} +(0.841254 + 0.540641i) q^{26} +(-0.142315 + 0.989821i) q^{27} +(0.142315 + 0.989821i) q^{29} +(-0.841254 + 0.540641i) q^{31} +(-0.959493 - 0.281733i) q^{39} +(-0.415415 + 0.909632i) q^{41} -1.00000 q^{47} +(-0.654861 - 0.755750i) q^{48} +(0.841254 + 0.540641i) q^{49} +(0.142315 - 0.989821i) q^{50} +(-0.841254 + 0.540641i) q^{54} +(-0.654861 + 0.755750i) q^{58} +(-1.91899 + 0.563465i) q^{59} +(-0.959493 - 0.281733i) q^{62} +(0.415415 - 0.909632i) q^{64} +(0.654861 + 0.755750i) q^{71} +(0.142315 - 0.989821i) q^{73} +(0.142315 + 0.989821i) q^{75} +(-0.415415 - 0.909632i) q^{78} +(0.654861 - 0.755750i) q^{81} +(-0.959493 + 0.281733i) q^{82} +(0.415415 - 0.909632i) q^{87} +1.00000 q^{93} +(-0.654861 - 0.755750i) q^{94} +(0.142315 + 0.989821i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q+q2+q3q6q8+q13+q1610q24q25q26q27+q29+q31q39+q4110q47q48q49+q50+q54q58++q98+O(q100) 10 q + q^{2} + q^{3} - q^{6} - q^{8} + q^{13} + q^{16} - 10 q^{24} - q^{25} - q^{26} - q^{27} + q^{29} + q^{31} - q^{39} + q^{41} - 10 q^{47} - q^{48} - q^{49} + q^{50} + q^{54} - q^{58}+ \cdots + q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/529Z)×\left(\mathbb{Z}/529\mathbb{Z}\right)^\times.

nn 55
χ(n)\chi(n) e(322)e\left(\frac{3}{22}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.654861 + 0.755750i 0.654861 + 0.755750i 0.981929 0.189251i 0.0606061π-0.0606061\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
33 −0.841254 0.540641i −0.841254 0.540641i 0.0475819 0.998867i 0.484848π-0.484848\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
44 0 0
55 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
66 −0.142315 0.989821i −0.142315 0.989821i
77 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
88 0.841254 0.540641i 0.841254 0.540641i
99 0 0
1010 0 0
1111 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
1212 0 0
1313 0.959493 0.281733i 0.959493 0.281733i 0.235759 0.971812i 0.424242π-0.424242\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
1414 0 0
1515 0 0
1616 0.959493 + 0.281733i 0.959493 + 0.281733i
1717 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
1818 0 0
1919 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0
2424 −1.00000 −1.00000
2525 −0.654861 0.755750i −0.654861 0.755750i
2626 0.841254 + 0.540641i 0.841254 + 0.540641i
2727 −0.142315 + 0.989821i −0.142315 + 0.989821i
2828 0 0
2929 0.142315 + 0.989821i 0.142315 + 0.989821i 0.928368 + 0.371662i 0.121212π0.121212\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
3030 0 0
3131 −0.841254 + 0.540641i −0.841254 + 0.540641i −0.888835 0.458227i 0.848485π-0.848485\pi
0.0475819 + 0.998867i 0.484848π0.484848\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
3838 0 0
3939 −0.959493 0.281733i −0.959493 0.281733i
4040 0 0
4141 −0.415415 + 0.909632i −0.415415 + 0.909632i 0.580057 + 0.814576i 0.303030π0.303030\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
4242 0 0
4343 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
4444 0 0
4545 0 0
4646 0 0
4747 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4848 −0.654861 0.755750i −0.654861 0.755750i
4949 0.841254 + 0.540641i 0.841254 + 0.540641i
5050 0.142315 0.989821i 0.142315 0.989821i
5151 0 0
5252 0 0
5353 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
5454 −0.841254 + 0.540641i −0.841254 + 0.540641i
5555 0 0
5656 0 0
5757 0 0
5858 −0.654861 + 0.755750i −0.654861 + 0.755750i
5959 −1.91899 + 0.563465i −1.91899 + 0.563465i −0.959493 + 0.281733i 0.909091π0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
6060 0 0
6161 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
6262 −0.959493 0.281733i −0.959493 0.281733i
6363 0 0
6464 0.415415 0.909632i 0.415415 0.909632i
6565 0 0
6666 0 0
6767 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
6868 0 0
6969 0 0
7070 0 0
7171 0.654861 + 0.755750i 0.654861 + 0.755750i 0.981929 0.189251i 0.0606061π-0.0606061\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
7272 0 0
7373 0.142315 0.989821i 0.142315 0.989821i −0.786053 0.618159i 0.787879π-0.787879\pi
0.928368 0.371662i 0.121212π-0.121212\pi
7474 0 0
7575 0.142315 + 0.989821i 0.142315 + 0.989821i
7676 0 0
7777 0 0
7878 −0.415415 0.909632i −0.415415 0.909632i
7979 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
8080 0 0
8181 0.654861 0.755750i 0.654861 0.755750i
8282 −0.959493 + 0.281733i −0.959493 + 0.281733i
8383 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
8484 0 0
8585 0 0
8686 0 0
8787 0.415415 0.909632i 0.415415 0.909632i
8888 0 0
8989 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
9090 0 0
9191 0 0
9292 0 0
9393 1.00000 1.00000
9494 −0.654861 0.755750i −0.654861 0.755750i
9595 0 0
9696 0 0
9797 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
9898 0.142315 + 0.989821i 0.142315 + 0.989821i
9999 0 0
100100 0 0
101101 0.830830 + 1.81926i 0.830830 + 1.81926i 0.415415 + 0.909632i 0.363636π0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
102102 0 0
103103 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
104104 0.654861 0.755750i 0.654861 0.755750i
105105 0 0
106106 0 0
107107 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
108108 0 0
109109 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
110110 0 0
111111 0 0
112112 0 0
113113 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 −1.68251 1.08128i −1.68251 1.08128i
119119 0 0
120120 0 0
121121 −0.142315 0.989821i −0.142315 0.989821i
122122 0 0
123123 0.841254 0.540641i 0.841254 0.540641i
124124 0 0
125125 0 0
126126 0 0
127127 0.654861 0.755750i 0.654861 0.755750i −0.327068 0.945001i 0.606061π-0.606061\pi
0.981929 + 0.189251i 0.0606061π0.0606061\pi
128128 0.959493 0.281733i 0.959493 0.281733i
129129 0 0
130130 0 0
131131 0.959493 + 0.281733i 0.959493 + 0.281733i 0.723734 0.690079i 0.242424π-0.242424\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 0 0 1.00000 00
−1.00000 π\pi
138138 0 0
139139 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
140140 0 0
141141 0.841254 + 0.540641i 0.841254 + 0.540641i
142142 −0.142315 + 0.989821i −0.142315 + 0.989821i
143143 0 0
144144 0 0
145145 0 0
146146 0.841254 0.540641i 0.841254 0.540641i
147147 −0.415415 0.909632i −0.415415 0.909632i
148148 0 0
149149 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
150150 −0.654861 + 0.755750i −0.654861 + 0.755750i
151151 0.959493 0.281733i 0.959493 0.281733i 0.235759 0.971812i 0.424242π-0.424242\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 1.00000 1.00000
163163 0.654861 + 0.755750i 0.654861 + 0.755750i 0.981929 0.189251i 0.0606061π-0.0606061\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
164164 0 0
165165 0 0
166166 0 0
167167 −0.284630 1.97964i −0.284630 1.97964i −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 0.989821i 0.545455π-0.545455\pi
168168 0 0
169169 0 0
170170 0 0
171171 0 0
172172 0 0
173173 −1.30972 + 1.51150i −1.30972 + 1.51150i −0.654861 + 0.755750i 0.727273π0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
174174 0.959493 0.281733i 0.959493 0.281733i
175175 0 0
176176 0 0
177177 1.91899 + 0.563465i 1.91899 + 0.563465i
178178 0 0
179179 −0.415415 + 0.909632i −0.415415 + 0.909632i 0.580057 + 0.814576i 0.303030π0.303030\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
180180 0 0
181181 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0.654861 + 0.755750i 0.654861 + 0.755750i
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
192192 −0.841254 + 0.540641i −0.841254 + 0.540641i
193193 −0.415415 0.909632i −0.415415 0.909632i −0.995472 0.0950560i 0.969697π-0.969697\pi
0.580057 0.814576i 0.303030π-0.303030\pi
194194 0 0
195195 0 0
196196 0 0
197197 0.959493 0.281733i 0.959493 0.281733i 0.235759 0.971812i 0.424242π-0.424242\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
198198 0 0
199199 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
200200 −0.959493 0.281733i −0.959493 0.281733i
201201 0 0
202202 −0.830830 + 1.81926i −0.830830 + 1.81926i
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 1.00000 1.00000
209209 0 0
210210 0 0
211211 −0.284630 + 1.97964i −0.284630 + 1.97964i −0.142315 + 0.989821i 0.545455π0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
212212 0 0
213213 −0.142315 0.989821i −0.142315 0.989821i
214214 0 0
215215 0 0
216216 0.415415 + 0.909632i 0.415415 + 0.909632i
217217 0 0
218218 0 0
219219 −0.654861 + 0.755750i −0.654861 + 0.755750i
220220 0 0
221221 0 0
222222 0 0
223223 −1.91899 0.563465i −1.91899 0.563465i −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 0.281733i 0.909091π-0.909091\pi
224224 0 0
225225 0 0
226226 0 0
227227 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 0 0
232232 0.654861 + 0.755750i 0.654861 + 0.755750i
233233 −0.841254 0.540641i −0.841254 0.540641i 0.0475819 0.998867i 0.484848π-0.484848\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 −0.415415 0.909632i −0.415415 0.909632i −0.995472 0.0950560i 0.969697π-0.969697\pi
0.580057 0.814576i 0.303030π-0.303030\pi
240240 0 0
241241 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
242242 0.654861 0.755750i 0.654861 0.755750i
243243 0 0
244244 0 0
245245 0 0
246246 0.959493 + 0.281733i 0.959493 + 0.281733i
247247 0 0
248248 −0.415415 + 0.909632i −0.415415 + 0.909632i
249249 0 0
250250 0 0
251251 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
252252 0 0
253253 0 0
254254 1.00000 1.00000
255255 0 0
256256 0 0
257257 0.142315 0.989821i 0.142315 0.989821i −0.786053 0.618159i 0.787879π-0.787879\pi
0.928368 0.371662i 0.121212π-0.121212\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0.415415 + 0.909632i 0.415415 + 0.909632i
263263 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0.959493 + 0.281733i 0.959493 + 0.281733i 0.723734 0.690079i 0.242424π-0.242424\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
270270 0 0
271271 0.830830 1.81926i 0.830830 1.81926i 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 0.909632i 0.363636π-0.363636\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
278278 −0.654861 0.755750i −0.654861 0.755750i
279279 0 0
280280 0 0
281281 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
282282 0.142315 + 0.989821i 0.142315 + 0.989821i
283283 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −0.959493 + 0.281733i −0.959493 + 0.281733i
290290 0 0
291291 0 0
292292 0 0
293293 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
294294 0.415415 0.909632i 0.415415 0.909632i
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0.841254 + 0.540641i 0.841254 + 0.540641i
303303 0.284630 1.97964i 0.284630 1.97964i
304304 0 0
305305 0 0
306306 0 0
307307 1.68251 1.08128i 1.68251 1.08128i 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 0.540641i 0.181818π-0.181818\pi
308308 0 0
309309 0 0
310310 0 0
311311 0.654861 0.755750i 0.654861 0.755750i −0.327068 0.945001i 0.606061π-0.606061\pi
0.981929 + 0.189251i 0.0606061π0.0606061\pi
312312 −0.959493 + 0.281733i −0.959493 + 0.281733i
313313 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
314314 0 0
315315 0 0
316316 0 0
317317 0.830830 1.81926i 0.830830 1.81926i 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 0.909632i 0.363636π-0.363636\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 −0.841254 0.540641i −0.841254 0.540641i
326326 −0.142315 + 0.989821i −0.142315 + 0.989821i
327327 0 0
328328 0.142315 + 0.989821i 0.142315 + 0.989821i
329329 0 0
330330 0 0
331331 −0.415415 0.909632i −0.415415 0.909632i −0.995472 0.0950560i 0.969697π-0.969697\pi
0.580057 0.814576i 0.303030π-0.303030\pi
332332 0 0
333333 0 0
334334 1.30972 1.51150i 1.30972 1.51150i
335335 0 0
336336 0 0
337337 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 −2.00000 −2.00000
347347 −1.30972 1.51150i −1.30972 1.51150i −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 0.755750i 0.727273π-0.727273\pi
348348 0 0
349349 0.142315 0.989821i 0.142315 0.989821i −0.786053 0.618159i 0.787879π-0.787879\pi
0.928368 0.371662i 0.121212π-0.121212\pi
350350 0 0
351351 0.142315 + 0.989821i 0.142315 + 0.989821i
352352 0 0
353353 −0.841254 + 0.540641i −0.841254 + 0.540641i −0.888835 0.458227i 0.848485π-0.848485\pi
0.0475819 + 0.998867i 0.484848π0.484848\pi
354354 0.830830 + 1.81926i 0.830830 + 1.81926i
355355 0 0
356356 0 0
357357 0 0
358358 −0.959493 + 0.281733i −0.959493 + 0.281733i
359359 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
360360 0 0
361361 −0.959493 0.281733i −0.959493 0.281733i
362362 0 0
363363 −0.415415 + 0.909632i −0.415415 + 0.909632i
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
374374 0 0
375375 0 0
376376 −0.841254 + 0.540641i −0.841254 + 0.540641i
377377 0.415415 + 0.909632i 0.415415 + 0.909632i
378378 0 0
379379 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
380380 0 0
381381 −0.959493 + 0.281733i −0.959493 + 0.281733i
382382 0 0
383383 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
384384 −0.959493 0.281733i −0.959493 0.281733i
385385 0 0
386386 0.415415 0.909632i 0.415415 0.909632i
387387 0 0
388388 0 0
389389 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
390390 0 0
391391 0 0
392392 1.00000 1.00000
393393 −0.654861 0.755750i −0.654861 0.755750i
394394 0.841254 + 0.540641i 0.841254 + 0.540641i
395395 0 0
396396 0 0
397397 0.142315 + 0.989821i 0.142315 + 0.989821i 0.928368 + 0.371662i 0.121212π0.121212\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
398398 0 0
399399 0 0
400400 −0.415415 0.909632i −0.415415 0.909632i
401401 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
402402 0 0
403403 −0.654861 + 0.755750i −0.654861 + 0.755750i
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 −0.415415 + 0.909632i −0.415415 + 0.909632i 0.580057 + 0.814576i 0.303030π0.303030\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0.841254 + 0.540641i 0.841254 + 0.540641i
418418 0 0
419419 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
420420 0 0
421421 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
422422 −1.68251 + 1.08128i −1.68251 + 1.08128i
423423 0 0
424424 0 0
425425 0 0
426426 0.654861 0.755750i 0.654861 0.755750i
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
432432 −0.415415 + 0.909632i −0.415415 + 0.909632i
433433 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 −1.00000 −1.00000
439439 0.654861 + 0.755750i 0.654861 + 0.755750i 0.981929 0.189251i 0.0606061π-0.0606061\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
440440 0 0
441441 0 0
442442 0 0
443443 0.142315 + 0.989821i 0.142315 + 0.989821i 0.928368 + 0.371662i 0.121212π0.121212\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
444444 0 0
445445 0 0
446446 −0.830830 1.81926i −0.830830 1.81926i
447447 0 0
448448 0 0
449449 −1.30972 + 1.51150i −1.30972 + 1.51150i −0.654861 + 0.755750i 0.727273π0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
450450 0 0
451451 0 0
452452 0 0
453453 −0.959493 0.281733i −0.959493 0.281733i
454454 0 0
455455 0 0
456456 0 0
457457 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
458458 0 0
459459 0 0
460460 0 0
461461 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
462462 0 0
463463 1.68251 + 1.08128i 1.68251 + 1.08128i 0.841254 + 0.540641i 0.181818π0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
464464 −0.142315 + 0.989821i −0.142315 + 0.989821i
465465 0 0
466466 −0.142315 0.989821i −0.142315 0.989821i
467467 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 −1.30972 + 1.51150i −1.30972 + 1.51150i
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0.415415 0.909632i 0.415415 0.909632i
479479 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0.142315 0.989821i 0.142315 0.989821i −0.786053 0.618159i 0.787879π-0.787879\pi
0.928368 0.371662i 0.121212π-0.121212\pi
488488 0 0
489489 −0.142315 0.989821i −0.142315 0.989821i
490490 0 0
491491 −0.841254 + 0.540641i −0.841254 + 0.540641i −0.888835 0.458227i 0.848485π-0.848485\pi
0.0475819 + 0.998867i 0.484848π0.484848\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 −0.959493 + 0.281733i −0.959493 + 0.281733i
497497 0 0
498498 0 0
499499 0.959493 + 0.281733i 0.959493 + 0.281733i 0.723734 0.690079i 0.242424π-0.242424\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
500500 0 0
501501 −0.830830 + 1.81926i −0.830830 + 1.81926i
502502 0 0
503503 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 −0.841254 0.540641i −0.841254 0.540641i 0.0475819 0.998867i 0.484848π-0.484848\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
510510 0 0
511511 0 0
512512 −0.142315 0.989821i −0.142315 0.989821i
513513 0 0
514514 0.841254 0.540641i 0.841254 0.540641i
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 1.91899 0.563465i 1.91899 0.563465i
520520 0 0
521521 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
522522 0 0
523523 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 0 0
530530 0 0
531531 0 0
532532 0 0
533533 −0.142315 + 0.989821i −0.142315 + 0.989821i
534534 0 0
535535 0 0
536536 0 0
537537 0.841254 0.540641i 0.841254 0.540641i
538538 0.415415 + 0.909632i 0.415415 + 0.909632i
539539 0 0
540540 0 0
541541 0.654861 0.755750i 0.654861 0.755750i −0.327068 0.945001i 0.606061π-0.606061\pi
0.981929 + 0.189251i 0.0606061π0.0606061\pi
542542 1.91899 0.563465i 1.91899 0.563465i
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 −0.415415 + 0.909632i −0.415415 + 0.909632i 0.580057 + 0.814576i 0.303030π0.303030\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 −0.654861 0.755750i −0.654861 0.755750i
555555 0 0
556556 0 0
557557 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0.959493 + 0.281733i 0.959493 + 0.281733i
569569 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
570570 0 0
571571 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 0.654861 + 0.755750i 0.654861 + 0.755750i 0.981929 0.189251i 0.0606061π-0.0606061\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
578578 −0.841254 0.540641i −0.841254 0.540641i
579579 −0.142315 + 0.989821i −0.142315 + 0.989821i
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 −0.415415 0.909632i −0.415415 0.909632i
585585 0 0
586586 0 0
587587 0.654861 0.755750i 0.654861 0.755750i −0.327068 0.945001i 0.606061π-0.606061\pi
0.981929 + 0.189251i 0.0606061π0.0606061\pi
588588 0 0
589589 0 0
590590 0 0
591591 −0.959493 0.281733i −0.959493 0.281733i
592592 0 0
593593 0.830830 1.81926i 0.830830 1.81926i 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 0.909632i 0.363636π-0.363636\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 2.00000 2.00000 1.00000 00
1.00000 00
600600 0.654861 + 0.755750i 0.654861 + 0.755750i
601601 −0.841254 0.540641i −0.841254 0.540641i 0.0475819 0.998867i 0.484848π-0.484848\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 1.68251 1.08128i 1.68251 1.08128i
607607 0.830830 + 1.81926i 0.830830 + 1.81926i 0.415415 + 0.909632i 0.363636π0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
608608 0 0
609609 0 0
610610 0 0
611611 −0.959493 + 0.281733i −0.959493 + 0.281733i
612612 0 0
613613 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
614614 1.91899 + 0.563465i 1.91899 + 0.563465i
615615 0 0
616616 0 0
617617 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
618618 0 0
619619 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
620620 0 0
621621 0 0
622622 1.00000 1.00000
623623 0 0
624624 −0.841254 0.540641i −0.841254 0.540641i
625625 −0.142315 + 0.989821i −0.142315 + 0.989821i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
632632 0 0
633633 1.30972 1.51150i 1.30972 1.51150i
634634 1.91899 0.563465i 1.91899 0.563465i
635635 0 0
636636 0 0
637637 0.959493 + 0.281733i 0.959493 + 0.281733i
638638 0 0
639639 0 0
640640 0 0
641641 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 −0.841254 0.540641i −0.841254 0.540641i 0.0475819 0.998867i 0.484848π-0.484848\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
648648 0.142315 0.989821i 0.142315 0.989821i
649649 0 0
650650 −0.142315 0.989821i −0.142315 0.989821i
651651 0 0
652652 0 0
653653 −0.415415 0.909632i −0.415415 0.909632i −0.995472 0.0950560i 0.969697π-0.969697\pi
0.580057 0.814576i 0.303030π-0.303030\pi
654654 0 0
655655 0 0
656656 −0.654861 + 0.755750i −0.654861 + 0.755750i
657657 0 0
658658 0 0
659659 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
660660 0 0
661661 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
662662 0.415415 0.909632i 0.415415 0.909632i
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 1.30972 + 1.51150i 1.30972 + 1.51150i
670670 0 0
671671 0 0
672672 0 0
673673 0.142315 + 0.989821i 0.142315 + 0.989821i 0.928368 + 0.371662i 0.121212π0.121212\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
674674 0 0
675675 0.841254 0.540641i 0.841254 0.540641i
676676 0 0
677677 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0.959493 + 0.281733i 0.959493 + 0.281733i 0.723734 0.690079i 0.242424π-0.242424\pi
0.235759 + 0.971812i 0.424242π0.424242\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 2.00000 2.00000 1.00000 00
1.00000 00
692692 0 0
693693 0 0
694694 0.284630 1.97964i 0.284630 1.97964i
695695 0 0
696696 −0.142315 0.989821i −0.142315 0.989821i
697697 0 0
698698 0.841254 0.540641i 0.841254 0.540641i
699699 0.415415 + 0.909632i 0.415415 + 0.909632i
700700 0 0
701701 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
702702 −0.654861 + 0.755750i −0.654861 + 0.755750i
703703 0 0
704704 0 0
705705 0 0
706706 −0.959493 0.281733i −0.959493 0.281733i
707707 0 0
708708 0 0
709709 0 0 0.142315 0.989821i 0.454545π-0.454545\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 −0.142315 + 0.989821i −0.142315 + 0.989821i
718718 0 0
719719 −0.284630 1.97964i −0.284630 1.97964i −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 0.989821i 0.545455π-0.545455\pi
720720 0 0
721721 0 0
722722 −0.415415 0.909632i −0.415415 0.909632i
723723 0 0
724724 0 0
725725 0.654861 0.755750i 0.654861 0.755750i
726726 −0.959493 + 0.281733i −0.959493 + 0.281733i
727727 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
728728 0 0
729729 −0.959493 0.281733i −0.959493 0.281733i
730730 0 0
731731 0 0
732732 0 0
733733 0 0 −0.841254 0.540641i 0.818182π-0.818182\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 −0.841254 0.540641i −0.841254 0.540641i 0.0475819 0.998867i 0.484848π-0.484848\pi
−0.888835 + 0.458227i 0.848485π0.848485\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
744744 0.841254 0.540641i 0.841254 0.540641i
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
752752 −0.959493 0.281733i −0.959493 0.281733i
753753 0 0
754754 −0.415415 + 0.909632i −0.415415 + 0.909632i
755755 0 0
756756 0 0
757757 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
758758 0 0
759759 0 0
760760 0 0
761761 0.654861 + 0.755750i 0.654861 + 0.755750i 0.981929 0.189251i 0.0606061π-0.0606061\pi
−0.327068 + 0.945001i 0.606061π0.606061\pi
762762 −0.841254 0.540641i −0.841254 0.540641i
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 −1.68251 + 1.08128i −1.68251 + 1.08128i
768768 0 0
769769 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
770770 0 0
771771 −0.654861 + 0.755750i −0.654861 + 0.755750i
772772 0 0
773773 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
774774 0 0
775775 0.959493 + 0.281733i 0.959493 + 0.281733i
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 −1.00000 −1.00000
784784 0.654861 + 0.755750i 0.654861 + 0.755750i
785785 0 0
786786 0.142315 0.989821i 0.142315 0.989821i
787787 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 −0.654861 + 0.755750i −0.654861 + 0.755750i
795795 0 0
796796 0 0
797797 0 0 0.841254 0.540641i 0.181818π-0.181818\pi
−0.841254 + 0.540641i 0.818182π0.818182\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 −1.00000 −1.00000
807807 −0.654861 0.755750i −0.654861 0.755750i
808808 1.68251 + 1.08128i 1.68251 + 1.08128i
809809 −0.284630 + 1.97964i −0.284630 + 1.97964i −0.142315 + 0.989821i 0.545455π0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
810810 0 0
811811 0.142315 + 0.989821i 0.142315 + 0.989821i 0.928368 + 0.371662i 0.121212π0.121212\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
812812 0 0
813813 −1.68251 + 1.08128i −1.68251 + 1.08128i
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 −0.959493 + 0.281733i −0.959493 + 0.281733i
819819 0 0
820820 0 0
821821 −1.91899 0.563465i −1.91899 0.563465i −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 0.281733i 0.909091π-0.909091\pi
822822 0 0
823823 −0.415415 + 0.909632i −0.415415 + 0.909632i 0.580057 + 0.814576i 0.303030π0.303030\pi
−0.995472 + 0.0950560i 0.969697π0.969697\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 2.00000 2.00000 1.00000 00
1.00000 00
830830 0 0
831831 0.841254 + 0.540641i 0.841254 + 0.540641i
832832 0.142315 0.989821i 0.142315 0.989821i
833833 0 0
834834 0.142315 + 0.989821i 0.142315 + 0.989821i
835835 0 0
836836 0 0
837837 −0.415415 0.909632i −0.415415 0.909632i
838838 0 0
839839 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
840840 0 0
841841 0 0
842842 0 0
843843 0 0
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 −1.30972 1.51150i −1.30972 1.51150i −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 0.755750i 0.727273π-0.727273\pi
854854 0 0
855855 0 0
856856 0 0
857857 0.142315 + 0.989821i 0.142315 + 0.989821i 0.928368 + 0.371662i 0.121212π0.121212\pi
−0.786053 + 0.618159i 0.787879π0.787879\pi
858858 0 0
859859 −0.841254 + 0.540641i −0.841254 + 0.540641i −0.888835 0.458227i 0.848485π-0.848485\pi
0.0475819 + 0.998867i 0.484848π0.484848\pi
860860 0 0
861861 0 0
862862 0 0
863863 0.654861 0.755750i 0.654861 0.755750i −0.327068 0.945001i 0.606061π-0.606061\pi
0.981929 + 0.189251i 0.0606061π0.0606061\pi
864864 0 0
865865 0 0
866866 0 0
867867 0.959493 + 0.281733i 0.959493 + 0.281733i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 1.68251 + 1.08128i 1.68251 + 1.08128i 0.841254 + 0.540641i 0.181818π0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
878878 −0.142315 + 0.989821i −0.142315 + 0.989821i
879879 0 0
880880 0 0
881881 0 0 −0.959493 0.281733i 0.909091π-0.909091\pi
0.959493 + 0.281733i 0.0909091π0.0909091\pi
882882 0 0
883883 0.830830 + 1.81926i 0.830830 + 1.81926i 0.415415 + 0.909632i 0.363636π0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
884884 0 0
885885 0 0
886886 −0.654861 + 0.755750i −0.654861 + 0.755750i
887887 0.959493 0.281733i 0.959493 0.281733i 0.235759 0.971812i 0.424242π-0.424242\pi
0.723734 + 0.690079i 0.242424π0.242424\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 −2.00000 −2.00000
899899 −0.654861 0.755750i −0.654861 0.755750i
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 −0.415415 0.909632i −0.415415 0.909632i
907907 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 −0.415415 0.909632i 0.636364π-0.636364\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 −2.00000 −2.00000
922922 −0.654861 0.755750i −0.654861 0.755750i
923923 0.841254 + 0.540641i 0.841254 + 0.540641i
924924 0 0
925925 0 0
926926 0.284630 + 1.97964i 0.284630 + 1.97964i
927927 0 0
928928 0 0
929929 −0.415415 0.909632i −0.415415 0.909632i −0.995472 0.0950560i 0.969697π-0.969697\pi
0.580057 0.814576i 0.303030π-0.303030\pi
930930 0 0
931931 0 0
932932 0 0
933933 −0.959493 + 0.281733i −0.959493 + 0.281733i
934934 0 0
935935 0 0
936936 0 0
937937 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 −0.654861 0.755750i 0.727273π-0.727273\pi
0.654861 + 0.755750i 0.272727π0.272727\pi
942942 0 0
943943 0 0
944944 −2.00000 −2.00000
945945 0 0
946946 0 0
947947 0.142315 0.989821i 0.142315 0.989821i −0.786053 0.618159i 0.787879π-0.787879\pi
0.928368 0.371662i 0.121212π-0.121212\pi
948948 0 0
949949 −0.142315 0.989821i −0.142315 0.989821i
950950 0 0
951951 −1.68251 + 1.08128i −1.68251 + 1.08128i
952952 0 0
953953 0 0 0.959493 0.281733i 0.0909091π-0.0909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0 0
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
968968 −0.654861 0.755750i −0.654861 0.755750i
969969 0 0
970970 0 0
971971 0 0 0.415415 0.909632i 0.363636π-0.363636\pi
−0.415415 + 0.909632i 0.636364π0.636364\pi
972972 0 0
973973 0 0
974974 0.841254 0.540641i 0.841254 0.540641i
975975 0.415415 + 0.909632i 0.415415 + 0.909632i
976976 0 0
977977 0 0 0.654861 0.755750i 0.272727π-0.272727\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
978978 0.654861 0.755750i 0.654861 0.755750i
979979 0 0
980980 0 0
981981 0 0
982982 −0.959493 0.281733i −0.959493 0.281733i
983983 0 0 −0.142315 0.989821i 0.545455π-0.545455\pi
0.142315 + 0.989821i 0.454545π0.454545\pi
984984 0.415415 0.909632i 0.415415 0.909632i
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 −1.30972 1.51150i −1.30972 1.51150i −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 0.755750i 0.727273π-0.727273\pi
992992 0 0
993993 −0.142315 + 0.989821i −0.142315 + 0.989821i
994994 0 0
995995 0 0
996996 0 0
997997 1.68251 1.08128i 1.68251 1.08128i 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 0.540641i 0.181818π-0.181818\pi
998998 0.415415 + 0.909632i 0.415415 + 0.909632i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.1.d.a.263.1 10
23.2 even 11 inner 529.1.d.a.63.1 10
23.3 even 11 inner 529.1.d.a.274.1 10
23.4 even 11 23.1.b.a.22.1 1
23.5 odd 22 inner 529.1.d.a.411.1 10
23.6 even 11 inner 529.1.d.a.130.1 10
23.7 odd 22 inner 529.1.d.a.352.1 10
23.8 even 11 inner 529.1.d.a.42.1 10
23.9 even 11 inner 529.1.d.a.28.1 10
23.10 odd 22 inner 529.1.d.a.195.1 10
23.11 odd 22 inner 529.1.d.a.359.1 10
23.12 even 11 inner 529.1.d.a.359.1 10
23.13 even 11 inner 529.1.d.a.195.1 10
23.14 odd 22 inner 529.1.d.a.28.1 10
23.15 odd 22 inner 529.1.d.a.42.1 10
23.16 even 11 inner 529.1.d.a.352.1 10
23.17 odd 22 inner 529.1.d.a.130.1 10
23.18 even 11 inner 529.1.d.a.411.1 10
23.19 odd 22 23.1.b.a.22.1 1
23.20 odd 22 inner 529.1.d.a.274.1 10
23.21 odd 22 inner 529.1.d.a.63.1 10
23.22 odd 2 CM 529.1.d.a.263.1 10
69.50 odd 22 207.1.d.a.91.1 1
69.65 even 22 207.1.d.a.91.1 1
92.19 even 22 368.1.f.a.321.1 1
92.27 odd 22 368.1.f.a.321.1 1
115.4 even 22 575.1.d.a.551.1 1
115.19 odd 22 575.1.d.a.551.1 1
115.27 odd 44 575.1.c.a.574.1 2
115.42 even 44 575.1.c.a.574.1 2
115.73 odd 44 575.1.c.a.574.2 2
115.88 even 44 575.1.c.a.574.2 2
161.4 even 33 1127.1.f.b.275.1 2
161.19 even 66 1127.1.f.a.459.1 2
161.27 odd 22 1127.1.d.b.344.1 1
161.65 odd 66 1127.1.f.b.459.1 2
161.73 odd 66 1127.1.f.a.275.1 2
161.88 odd 66 1127.1.f.b.275.1 2
161.96 odd 66 1127.1.f.a.459.1 2
161.111 even 22 1127.1.d.b.344.1 1
161.142 even 33 1127.1.f.b.459.1 2
161.157 even 66 1127.1.f.a.275.1 2
184.19 even 22 1472.1.f.a.321.1 1
184.27 odd 22 1472.1.f.a.321.1 1
184.157 odd 22 1472.1.f.b.321.1 1
184.165 even 22 1472.1.f.b.321.1 1
207.4 even 33 1863.1.f.b.298.1 2
207.50 odd 66 1863.1.f.a.298.1 2
207.65 even 66 1863.1.f.a.919.1 2
207.88 odd 66 1863.1.f.b.919.1 2
207.119 odd 66 1863.1.f.a.919.1 2
207.142 even 33 1863.1.f.b.919.1 2
207.157 odd 66 1863.1.f.b.298.1 2
207.203 even 66 1863.1.f.a.298.1 2
253.4 even 55 2783.1.f.c.390.1 4
253.19 even 110 2783.1.f.a.735.1 4
253.27 even 55 2783.1.f.c.850.1 4
253.42 odd 110 2783.1.f.c.2138.1 4
253.50 odd 110 2783.1.f.a.850.1 4
253.65 even 22 2783.1.d.b.1816.1 1
253.73 odd 110 2783.1.f.a.390.1 4
253.96 odd 110 2783.1.f.a.735.1 4
253.119 even 55 2783.1.f.c.2138.1 4
253.134 even 110 2783.1.f.a.2138.1 4
253.142 odd 22 2783.1.d.b.1816.1 1
253.157 odd 110 2783.1.f.c.735.1 4
253.180 odd 110 2783.1.f.c.390.1 4
253.203 odd 110 2783.1.f.c.850.1 4
253.211 odd 110 2783.1.f.a.2138.1 4
253.226 even 110 2783.1.f.a.850.1 4
253.234 even 55 2783.1.f.c.735.1 4
253.249 even 110 2783.1.f.a.390.1 4
276.119 even 22 3312.1.c.a.2161.1 1
276.203 odd 22 3312.1.c.a.2161.1 1
299.4 even 66 3887.1.h.a.3357.1 2
299.19 even 132 3887.1.j.e.3403.2 4
299.42 odd 66 3887.1.h.c.22.1 2
299.50 odd 132 3887.1.j.e.2851.2 4
299.73 odd 44 3887.1.c.a.3886.1 2
299.88 odd 66 3887.1.h.a.22.1 2
299.96 odd 44 3887.1.c.a.3886.2 2
299.111 even 132 3887.1.j.e.3403.1 4
299.119 odd 132 3887.1.j.e.2851.1 4
299.134 odd 66 3887.1.h.a.3357.1 2
299.142 even 22 3887.1.d.b.2874.1 1
299.165 even 33 3887.1.h.c.3357.1 2
299.180 even 132 3887.1.j.e.2851.2 4
299.188 odd 132 3887.1.j.e.3403.2 4
299.203 even 44 3887.1.c.a.3886.1 2
299.211 even 33 3887.1.h.c.22.1 2
299.226 even 44 3887.1.c.a.3886.2 2
299.249 even 132 3887.1.j.e.2851.1 4
299.257 even 66 3887.1.h.a.22.1 2
299.272 odd 22 3887.1.d.b.2874.1 1
299.280 odd 132 3887.1.j.e.3403.1 4
299.295 odd 66 3887.1.h.c.3357.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.1.b.a.22.1 1 23.4 even 11
23.1.b.a.22.1 1 23.19 odd 22
207.1.d.a.91.1 1 69.50 odd 22
207.1.d.a.91.1 1 69.65 even 22
368.1.f.a.321.1 1 92.19 even 22
368.1.f.a.321.1 1 92.27 odd 22
529.1.d.a.28.1 10 23.9 even 11 inner
529.1.d.a.28.1 10 23.14 odd 22 inner
529.1.d.a.42.1 10 23.8 even 11 inner
529.1.d.a.42.1 10 23.15 odd 22 inner
529.1.d.a.63.1 10 23.2 even 11 inner
529.1.d.a.63.1 10 23.21 odd 22 inner
529.1.d.a.130.1 10 23.6 even 11 inner
529.1.d.a.130.1 10 23.17 odd 22 inner
529.1.d.a.195.1 10 23.10 odd 22 inner
529.1.d.a.195.1 10 23.13 even 11 inner
529.1.d.a.263.1 10 1.1 even 1 trivial
529.1.d.a.263.1 10 23.22 odd 2 CM
529.1.d.a.274.1 10 23.3 even 11 inner
529.1.d.a.274.1 10 23.20 odd 22 inner
529.1.d.a.352.1 10 23.7 odd 22 inner
529.1.d.a.352.1 10 23.16 even 11 inner
529.1.d.a.359.1 10 23.11 odd 22 inner
529.1.d.a.359.1 10 23.12 even 11 inner
529.1.d.a.411.1 10 23.5 odd 22 inner
529.1.d.a.411.1 10 23.18 even 11 inner
575.1.c.a.574.1 2 115.27 odd 44
575.1.c.a.574.1 2 115.42 even 44
575.1.c.a.574.2 2 115.73 odd 44
575.1.c.a.574.2 2 115.88 even 44
575.1.d.a.551.1 1 115.4 even 22
575.1.d.a.551.1 1 115.19 odd 22
1127.1.d.b.344.1 1 161.27 odd 22
1127.1.d.b.344.1 1 161.111 even 22
1127.1.f.a.275.1 2 161.73 odd 66
1127.1.f.a.275.1 2 161.157 even 66
1127.1.f.a.459.1 2 161.19 even 66
1127.1.f.a.459.1 2 161.96 odd 66
1127.1.f.b.275.1 2 161.4 even 33
1127.1.f.b.275.1 2 161.88 odd 66
1127.1.f.b.459.1 2 161.65 odd 66
1127.1.f.b.459.1 2 161.142 even 33
1472.1.f.a.321.1 1 184.19 even 22
1472.1.f.a.321.1 1 184.27 odd 22
1472.1.f.b.321.1 1 184.157 odd 22
1472.1.f.b.321.1 1 184.165 even 22
1863.1.f.a.298.1 2 207.50 odd 66
1863.1.f.a.298.1 2 207.203 even 66
1863.1.f.a.919.1 2 207.65 even 66
1863.1.f.a.919.1 2 207.119 odd 66
1863.1.f.b.298.1 2 207.4 even 33
1863.1.f.b.298.1 2 207.157 odd 66
1863.1.f.b.919.1 2 207.88 odd 66
1863.1.f.b.919.1 2 207.142 even 33
2783.1.d.b.1816.1 1 253.65 even 22
2783.1.d.b.1816.1 1 253.142 odd 22
2783.1.f.a.390.1 4 253.73 odd 110
2783.1.f.a.390.1 4 253.249 even 110
2783.1.f.a.735.1 4 253.19 even 110
2783.1.f.a.735.1 4 253.96 odd 110
2783.1.f.a.850.1 4 253.50 odd 110
2783.1.f.a.850.1 4 253.226 even 110
2783.1.f.a.2138.1 4 253.134 even 110
2783.1.f.a.2138.1 4 253.211 odd 110
2783.1.f.c.390.1 4 253.4 even 55
2783.1.f.c.390.1 4 253.180 odd 110
2783.1.f.c.735.1 4 253.157 odd 110
2783.1.f.c.735.1 4 253.234 even 55
2783.1.f.c.850.1 4 253.27 even 55
2783.1.f.c.850.1 4 253.203 odd 110
2783.1.f.c.2138.1 4 253.42 odd 110
2783.1.f.c.2138.1 4 253.119 even 55
3312.1.c.a.2161.1 1 276.119 even 22
3312.1.c.a.2161.1 1 276.203 odd 22
3887.1.c.a.3886.1 2 299.73 odd 44
3887.1.c.a.3886.1 2 299.203 even 44
3887.1.c.a.3886.2 2 299.96 odd 44
3887.1.c.a.3886.2 2 299.226 even 44
3887.1.d.b.2874.1 1 299.142 even 22
3887.1.d.b.2874.1 1 299.272 odd 22
3887.1.h.a.22.1 2 299.88 odd 66
3887.1.h.a.22.1 2 299.257 even 66
3887.1.h.a.3357.1 2 299.4 even 66
3887.1.h.a.3357.1 2 299.134 odd 66
3887.1.h.c.22.1 2 299.42 odd 66
3887.1.h.c.22.1 2 299.211 even 33
3887.1.h.c.3357.1 2 299.165 even 33
3887.1.h.c.3357.1 2 299.295 odd 66
3887.1.j.e.2851.1 4 299.119 odd 132
3887.1.j.e.2851.1 4 299.249 even 132
3887.1.j.e.2851.2 4 299.50 odd 132
3887.1.j.e.2851.2 4 299.180 even 132
3887.1.j.e.3403.1 4 299.111 even 132
3887.1.j.e.3403.1 4 299.280 odd 132
3887.1.j.e.3403.2 4 299.19 even 132
3887.1.j.e.3403.2 4 299.188 odd 132