Properties

Label 39.3.l.b.28.2
Level $39$
Weight $3$
Character 39.28
Analytic conductor $1.063$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [39,3,Mod(7,39)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(39, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 11]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("39.7");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 39 = 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 39.l (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.06267303101\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 8 x^{10} + 8 x^{9} + 178 x^{8} - 620 x^{7} + 1088 x^{6} + 640 x^{5} + 7921 x^{4} + \cdots + 5184 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 28.2
Root \(0.689992 - 0.689992i\) of defining polynomial
Character \(\chi\) \(=\) 39.28
Dual form 39.3.l.b.7.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.942546 - 0.252555i) q^{2} +(-0.866025 - 1.50000i) q^{3} +(-2.63949 - 1.52391i) q^{4} +(6.89545 - 6.89545i) q^{5} +(0.437437 + 1.63254i) q^{6} +(-5.17460 + 1.38653i) q^{7} +(4.86294 + 4.86294i) q^{8} +(-1.50000 + 2.59808i) q^{9} +(-8.24076 + 4.75781i) q^{10} +(0.0813836 - 0.303728i) q^{11} +5.27898i q^{12} +(12.0477 + 4.88406i) q^{13} +5.22747 q^{14} +(-16.3148 - 4.37154i) q^{15} +(2.74026 + 4.74626i) q^{16} +(3.97936 + 2.29749i) q^{17} +(2.06998 - 2.06998i) q^{18} +(1.10893 + 4.13857i) q^{19} +(-28.7086 + 7.69243i) q^{20} +(6.56113 + 6.56113i) q^{21} +(-0.153416 + 0.265724i) q^{22} +(23.2175 - 13.4046i) q^{23} +(3.08298 - 11.5058i) q^{24} -70.0946i q^{25} +(-10.1220 - 7.64615i) q^{26} +5.19615 q^{27} +(15.7713 + 4.22589i) q^{28} +(7.34569 + 12.7231i) q^{29} +(14.2734 + 8.24076i) q^{30} +(-33.3193 + 33.3193i) q^{31} +(-8.50397 - 31.7372i) q^{32} +(-0.526072 + 0.140961i) q^{33} +(-3.17049 - 3.17049i) q^{34} +(-26.1204 + 45.2419i) q^{35} +(7.91848 - 4.57173i) q^{36} +(-6.45378 + 24.0858i) q^{37} -4.18086i q^{38} +(-3.10748 - 22.3012i) q^{39} +67.0644 q^{40} +(-33.5135 - 8.97992i) q^{41} +(-4.52712 - 7.84121i) q^{42} +(32.3017 + 18.6494i) q^{43} +(-0.677665 + 0.677665i) q^{44} +(7.57173 + 28.2581i) q^{45} +(-25.2690 + 6.77081i) q^{46} +(15.4956 + 15.4956i) q^{47} +(4.74626 - 8.22077i) q^{48} +(-17.5813 + 10.1505i) q^{49} +(-17.7027 + 66.0674i) q^{50} -7.95873i q^{51} +(-24.3568 - 31.2510i) q^{52} +10.8673 q^{53} +(-4.89761 - 1.31231i) q^{54} +(-1.53316 - 2.65552i) q^{55} +(-31.9064 - 18.4211i) q^{56} +(5.24749 - 5.24749i) q^{57} +(-3.71038 - 13.8473i) q^{58} +(-36.6456 + 9.81916i) q^{59} +(36.4010 + 36.4010i) q^{60} +(14.9287 - 25.8573i) q^{61} +(39.8199 - 22.9900i) q^{62} +(4.15959 - 15.5238i) q^{63} +10.1395i q^{64} +(116.752 - 49.3962i) q^{65} +0.531447 q^{66} +(-86.6166 - 23.2088i) q^{67} +(-7.00233 - 12.1284i) q^{68} +(-40.2139 - 23.2175i) q^{69} +(36.0458 - 36.0458i) q^{70} +(-10.0790 - 37.6154i) q^{71} +(-19.9287 + 5.33988i) q^{72} +(74.0873 + 74.0873i) q^{73} +(12.1660 - 21.0721i) q^{74} +(-105.142 + 60.7037i) q^{75} +(3.37981 - 12.6136i) q^{76} +1.68451i q^{77} +(-2.70333 + 21.8047i) q^{78} -61.9843 q^{79} +(51.6230 + 13.8323i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(29.3201 + 16.9280i) q^{82} +(63.4852 - 63.4852i) q^{83} +(-7.31946 - 27.3166i) q^{84} +(43.2817 - 11.5973i) q^{85} +(-25.7358 - 25.7358i) q^{86} +(12.7231 - 22.0371i) q^{87} +(1.87277 - 1.08125i) q^{88} +(-16.7879 + 62.6535i) q^{89} -28.5468i q^{90} +(-69.1136 - 8.56865i) q^{91} -81.7100 q^{92} +(78.8343 + 21.1236i) q^{93} +(-10.6918 - 18.5188i) q^{94} +(36.1838 + 20.8908i) q^{95} +(-40.2412 + 40.2412i) q^{96} +(-6.66892 - 24.8887i) q^{97} +(19.1347 - 5.12713i) q^{98} +(0.667032 + 0.667032i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} - 12 q^{4} + 4 q^{5} + 6 q^{6} - 32 q^{7} - 24 q^{8} - 18 q^{9} + 30 q^{10} + 22 q^{11} + 2 q^{13} + 92 q^{14} + 52 q^{16} - 6 q^{17} + 12 q^{18} + 4 q^{19} - 208 q^{20} + 54 q^{21} - 98 q^{22}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/39\mathbb{Z}\right)^\times\).

\(n\) \(14\) \(28\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.942546 0.252555i −0.471273 0.126277i 0.0153630 0.999882i \(-0.495110\pi\)
−0.486636 + 0.873605i \(0.661776\pi\)
\(3\) −0.866025 1.50000i −0.288675 0.500000i
\(4\) −2.63949 1.52391i −0.659873 0.380978i
\(5\) 6.89545 6.89545i 1.37909 1.37909i 0.532934 0.846157i \(-0.321089\pi\)
0.846157 0.532934i \(-0.178911\pi\)
\(6\) 0.437437 + 1.63254i 0.0729062 + 0.272090i
\(7\) −5.17460 + 1.38653i −0.739228 + 0.198076i −0.608735 0.793374i \(-0.708323\pi\)
−0.130493 + 0.991449i \(0.541656\pi\)
\(8\) 4.86294 + 4.86294i 0.607867 + 0.607867i
\(9\) −1.50000 + 2.59808i −0.166667 + 0.288675i
\(10\) −8.24076 + 4.75781i −0.824076 + 0.475781i
\(11\) 0.0813836 0.303728i 0.00739851 0.0276116i −0.962128 0.272598i \(-0.912117\pi\)
0.969526 + 0.244987i \(0.0787836\pi\)
\(12\) 5.27898i 0.439915i
\(13\) 12.0477 + 4.88406i 0.926742 + 0.375697i
\(14\) 5.22747 0.373391
\(15\) −16.3148 4.37154i −1.08765 0.291436i
\(16\) 2.74026 + 4.74626i 0.171266 + 0.296641i
\(17\) 3.97936 + 2.29749i 0.234080 + 0.135146i 0.612453 0.790507i \(-0.290183\pi\)
−0.378373 + 0.925653i \(0.623516\pi\)
\(18\) 2.06998 2.06998i 0.114999 0.114999i
\(19\) 1.10893 + 4.13857i 0.0583645 + 0.217819i 0.988949 0.148259i \(-0.0473669\pi\)
−0.930584 + 0.366078i \(0.880700\pi\)
\(20\) −28.7086 + 7.69243i −1.43543 + 0.384622i
\(21\) 6.56113 + 6.56113i 0.312435 + 0.312435i
\(22\) −0.153416 + 0.265724i −0.00697344 + 0.0120783i
\(23\) 23.2175 13.4046i 1.00946 0.582811i 0.0984248 0.995144i \(-0.468620\pi\)
0.911033 + 0.412334i \(0.135286\pi\)
\(24\) 3.08298 11.5058i 0.128458 0.479410i
\(25\) 70.0946i 2.80378i
\(26\) −10.1220 7.64615i −0.389307 0.294083i
\(27\) 5.19615 0.192450
\(28\) 15.7713 + 4.22589i 0.563259 + 0.150925i
\(29\) 7.34569 + 12.7231i 0.253300 + 0.438728i 0.964432 0.264330i \(-0.0851508\pi\)
−0.711133 + 0.703058i \(0.751817\pi\)
\(30\) 14.2734 + 8.24076i 0.475781 + 0.274692i
\(31\) −33.3193 + 33.3193i −1.07482 + 1.07482i −0.0778512 + 0.996965i \(0.524806\pi\)
−0.996965 + 0.0778512i \(0.975194\pi\)
\(32\) −8.50397 31.7372i −0.265749 0.991789i
\(33\) −0.526072 + 0.140961i −0.0159416 + 0.00427153i
\(34\) −3.17049 3.17049i −0.0932498 0.0932498i
\(35\) −26.1204 + 45.2419i −0.746299 + 1.29263i
\(36\) 7.91848 4.57173i 0.219958 0.126993i
\(37\) −6.45378 + 24.0858i −0.174427 + 0.650969i 0.822222 + 0.569167i \(0.192734\pi\)
−0.996649 + 0.0818020i \(0.973932\pi\)
\(38\) 4.18086i 0.110023i
\(39\) −3.10748 22.3012i −0.0796789 0.571826i
\(40\) 67.0644 1.67661
\(41\) −33.5135 8.97992i −0.817403 0.219023i −0.174192 0.984712i \(-0.555731\pi\)
−0.643211 + 0.765689i \(0.722398\pi\)
\(42\) −4.52712 7.84121i −0.107789 0.186695i
\(43\) 32.3017 + 18.6494i 0.751201 + 0.433706i 0.826128 0.563483i \(-0.190539\pi\)
−0.0749265 + 0.997189i \(0.523872\pi\)
\(44\) −0.677665 + 0.677665i −0.0154015 + 0.0154015i
\(45\) 7.57173 + 28.2581i 0.168261 + 0.627958i
\(46\) −25.2690 + 6.77081i −0.549326 + 0.147191i
\(47\) 15.4956 + 15.4956i 0.329693 + 0.329693i 0.852470 0.522777i \(-0.175104\pi\)
−0.522777 + 0.852470i \(0.675104\pi\)
\(48\) 4.74626 8.22077i 0.0988805 0.171266i
\(49\) −17.5813 + 10.1505i −0.358801 + 0.207154i
\(50\) −17.7027 + 66.0674i −0.354054 + 1.32135i
\(51\) 7.95873i 0.156053i
\(52\) −24.3568 31.2510i −0.468400 0.600981i
\(53\) 10.8673 0.205043 0.102522 0.994731i \(-0.467309\pi\)
0.102522 + 0.994731i \(0.467309\pi\)
\(54\) −4.89761 1.31231i −0.0906966 0.0243021i
\(55\) −1.53316 2.65552i −0.0278757 0.0482821i
\(56\) −31.9064 18.4211i −0.569756 0.328949i
\(57\) 5.24749 5.24749i 0.0920613 0.0920613i
\(58\) −3.71038 13.8473i −0.0639720 0.238747i
\(59\) −36.6456 + 9.81916i −0.621112 + 0.166426i −0.555633 0.831428i \(-0.687524\pi\)
−0.0654786 + 0.997854i \(0.520857\pi\)
\(60\) 36.4010 + 36.4010i 0.606683 + 0.606683i
\(61\) 14.9287 25.8573i 0.244733 0.423890i −0.717324 0.696740i \(-0.754633\pi\)
0.962056 + 0.272851i \(0.0879664\pi\)
\(62\) 39.8199 22.9900i 0.642257 0.370807i
\(63\) 4.15959 15.5238i 0.0660252 0.246409i
\(64\) 10.1395i 0.158429i
\(65\) 116.752 49.3962i 1.79618 0.759941i
\(66\) 0.531447 0.00805223
\(67\) −86.6166 23.2088i −1.29278 0.346401i −0.454067 0.890967i \(-0.650027\pi\)
−0.838717 + 0.544567i \(0.816694\pi\)
\(68\) −7.00233 12.1284i −0.102975 0.178359i
\(69\) −40.2139 23.2175i −0.582811 0.336486i
\(70\) 36.0458 36.0458i 0.514940 0.514940i
\(71\) −10.0790 37.6154i −0.141958 0.529794i −0.999872 0.0160009i \(-0.994907\pi\)
0.857914 0.513793i \(-0.171760\pi\)
\(72\) −19.9287 + 5.33988i −0.276787 + 0.0741650i
\(73\) 74.0873 + 74.0873i 1.01490 + 1.01490i 0.999887 + 0.0150077i \(0.00477727\pi\)
0.0150077 + 0.999887i \(0.495223\pi\)
\(74\) 12.1660 21.0721i 0.164405 0.284758i
\(75\) −105.142 + 60.7037i −1.40189 + 0.809382i
\(76\) 3.37981 12.6136i 0.0444712 0.165969i
\(77\) 1.68451i 0.0218767i
\(78\) −2.70333 + 21.8047i −0.0346581 + 0.279548i
\(79\) −61.9843 −0.784612 −0.392306 0.919835i \(-0.628323\pi\)
−0.392306 + 0.919835i \(0.628323\pi\)
\(80\) 51.6230 + 13.8323i 0.645287 + 0.172904i
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) 29.3201 + 16.9280i 0.357563 + 0.206439i
\(83\) 63.4852 63.4852i 0.764882 0.764882i −0.212318 0.977201i \(-0.568101\pi\)
0.977201 + 0.212318i \(0.0681013\pi\)
\(84\) −7.31946 27.3166i −0.0871365 0.325198i
\(85\) 43.2817 11.5973i 0.509197 0.136439i
\(86\) −25.7358 25.7358i −0.299254 0.299254i
\(87\) 12.7231 22.0371i 0.146243 0.253300i
\(88\) 1.87277 1.08125i 0.0212815 0.0122869i
\(89\) −16.7879 + 62.6535i −0.188629 + 0.703972i 0.805196 + 0.593009i \(0.202060\pi\)
−0.993825 + 0.110963i \(0.964607\pi\)
\(90\) 28.5468i 0.317187i
\(91\) −69.1136 8.56865i −0.759491 0.0941609i
\(92\) −81.7100 −0.888152
\(93\) 78.8343 + 21.1236i 0.847681 + 0.227135i
\(94\) −10.6918 18.5188i −0.113743 0.197008i
\(95\) 36.1838 + 20.8908i 0.380883 + 0.219903i
\(96\) −40.2412 + 40.2412i −0.419179 + 0.419179i
\(97\) −6.66892 24.8887i −0.0687517 0.256585i 0.922992 0.384818i \(-0.125736\pi\)
−0.991744 + 0.128234i \(0.959069\pi\)
\(98\) 19.1347 5.12713i 0.195252 0.0523177i
\(99\) 0.667032 + 0.667032i 0.00673770 + 0.00673770i
\(100\) −106.818 + 185.014i −1.06818 + 1.85014i
\(101\) −29.2083 + 16.8634i −0.289191 + 0.166964i −0.637577 0.770387i \(-0.720063\pi\)
0.348386 + 0.937351i \(0.386730\pi\)
\(102\) −2.01001 + 7.50147i −0.0197060 + 0.0735438i
\(103\) 57.8138i 0.561299i 0.959810 + 0.280650i \(0.0905499\pi\)
−0.959810 + 0.280650i \(0.909450\pi\)
\(104\) 34.8361 + 82.3379i 0.334962 + 0.791711i
\(105\) 90.4839 0.861751
\(106\) −10.2429 2.74458i −0.0966313 0.0258923i
\(107\) 93.3606 + 161.705i 0.872529 + 1.51126i 0.859372 + 0.511351i \(0.170855\pi\)
0.0131573 + 0.999913i \(0.495812\pi\)
\(108\) −13.7152 7.91848i −0.126993 0.0733192i
\(109\) −76.2177 + 76.2177i −0.699245 + 0.699245i −0.964248 0.265002i \(-0.914627\pi\)
0.265002 + 0.964248i \(0.414627\pi\)
\(110\) 0.774415 + 2.89016i 0.00704013 + 0.0262741i
\(111\) 41.7179 11.1783i 0.375837 0.100705i
\(112\) −20.7606 20.7606i −0.185362 0.185362i
\(113\) 52.2233 90.4534i 0.462153 0.800472i −0.536915 0.843636i \(-0.680410\pi\)
0.999068 + 0.0431640i \(0.0137438\pi\)
\(114\) −6.27128 + 3.62073i −0.0550113 + 0.0317608i
\(115\) 67.6643 252.526i 0.588385 2.19588i
\(116\) 44.7767i 0.386006i
\(117\) −30.7606 + 23.9746i −0.262912 + 0.204911i
\(118\) 37.0200 0.313729
\(119\) −23.7771 6.37106i −0.199808 0.0535384i
\(120\) −58.0794 100.597i −0.483995 0.838304i
\(121\) 104.703 + 60.4506i 0.865318 + 0.499591i
\(122\) −20.6014 + 20.6014i −0.168864 + 0.168864i
\(123\) 15.5537 + 58.0471i 0.126453 + 0.471928i
\(124\) 138.722 37.1704i 1.11872 0.299761i
\(125\) −310.948 310.948i −2.48758 2.48758i
\(126\) −7.84121 + 13.5814i −0.0622318 + 0.107789i
\(127\) 55.4089 31.9903i 0.436290 0.251892i −0.265732 0.964047i \(-0.585614\pi\)
0.702023 + 0.712154i \(0.252280\pi\)
\(128\) −31.4551 + 117.392i −0.245743 + 0.917125i
\(129\) 64.6033i 0.500801i
\(130\) −122.519 + 17.0720i −0.942456 + 0.131323i
\(131\) −84.2275 −0.642958 −0.321479 0.946917i \(-0.604180\pi\)
−0.321479 + 0.946917i \(0.604180\pi\)
\(132\) 1.60337 + 0.429623i 0.0121468 + 0.00325472i
\(133\) −11.4765 19.8779i −0.0862894 0.149458i
\(134\) 75.7786 + 43.7508i 0.565512 + 0.326499i
\(135\) 35.8298 35.8298i 0.265406 0.265406i
\(136\) 8.17887 + 30.5239i 0.0601387 + 0.224441i
\(137\) −122.118 + 32.7214i −0.891372 + 0.238842i −0.675307 0.737537i \(-0.735989\pi\)
−0.216065 + 0.976379i \(0.569322\pi\)
\(138\) 32.0398 + 32.0398i 0.232172 + 0.232172i
\(139\) 88.6393 153.528i 0.637693 1.10452i −0.348245 0.937404i \(-0.613222\pi\)
0.985938 0.167113i \(-0.0534444\pi\)
\(140\) 137.889 79.6105i 0.984924 0.568646i
\(141\) 9.82381 36.6629i 0.0696724 0.260021i
\(142\) 37.9997i 0.267604i
\(143\) 2.46391 3.26172i 0.0172301 0.0228093i
\(144\) −16.4415 −0.114177
\(145\) 138.384 + 37.0798i 0.954369 + 0.255722i
\(146\) −51.1197 88.5418i −0.350135 0.606451i
\(147\) 30.4516 + 17.5813i 0.207154 + 0.119600i
\(148\) 53.7394 53.7394i 0.363104 0.363104i
\(149\) −0.101905 0.380316i −0.000683929 0.00255246i 0.965583 0.260095i \(-0.0837539\pi\)
−0.966267 + 0.257543i \(0.917087\pi\)
\(150\) 114.432 30.6620i 0.762880 0.204413i
\(151\) 28.4273 + 28.4273i 0.188260 + 0.188260i 0.794944 0.606683i \(-0.207500\pi\)
−0.606683 + 0.794944i \(0.707500\pi\)
\(152\) −14.7330 + 25.5182i −0.0969274 + 0.167883i
\(153\) −11.9381 + 6.89246i −0.0780267 + 0.0450488i
\(154\) 0.425430 1.58773i 0.00276254 0.0103099i
\(155\) 459.503i 2.96454i
\(156\) −25.7829 + 63.5994i −0.165275 + 0.407688i
\(157\) −122.557 −0.780617 −0.390308 0.920684i \(-0.627632\pi\)
−0.390308 + 0.920684i \(0.627632\pi\)
\(158\) 58.4231 + 15.6544i 0.369767 + 0.0990786i
\(159\) −9.41135 16.3009i −0.0591909 0.102522i
\(160\) −277.481 160.204i −1.73426 1.00127i
\(161\) −101.555 + 101.555i −0.630779 + 0.630779i
\(162\) 2.27299 + 8.48292i 0.0140308 + 0.0523637i
\(163\) 1.84022 0.493087i 0.0112897 0.00302507i −0.253170 0.967422i \(-0.581473\pi\)
0.264459 + 0.964397i \(0.414806\pi\)
\(164\) 74.7741 + 74.7741i 0.455940 + 0.455940i
\(165\) −2.65552 + 4.59949i −0.0160940 + 0.0278757i
\(166\) −75.8713 + 43.8043i −0.457056 + 0.263881i
\(167\) 34.2280 127.741i 0.204958 0.764914i −0.784504 0.620123i \(-0.787083\pi\)
0.989462 0.144790i \(-0.0462508\pi\)
\(168\) 63.8127i 0.379838i
\(169\) 121.292 + 117.683i 0.717703 + 0.696349i
\(170\) −43.7240 −0.257200
\(171\) −12.4157 3.32678i −0.0726064 0.0194548i
\(172\) −56.8400 98.4497i −0.330465 0.572382i
\(173\) −251.676 145.305i −1.45478 0.839915i −0.456029 0.889965i \(-0.650729\pi\)
−0.998747 + 0.0500494i \(0.984062\pi\)
\(174\) −17.5577 + 17.5577i −0.100906 + 0.100906i
\(175\) 97.1882 + 362.711i 0.555361 + 2.07264i
\(176\) 1.66458 0.446024i 0.00945786 0.00253423i
\(177\) 46.4647 + 46.4647i 0.262513 + 0.262513i
\(178\) 31.6468 54.8139i 0.177791 0.307943i
\(179\) 163.408 94.3436i 0.912893 0.527059i 0.0315322 0.999503i \(-0.489961\pi\)
0.881361 + 0.472444i \(0.156628\pi\)
\(180\) 23.0773 86.1257i 0.128207 0.478476i
\(181\) 41.0627i 0.226865i −0.993546 0.113433i \(-0.963815\pi\)
0.993546 0.113433i \(-0.0361846\pi\)
\(182\) 62.9788 + 25.5313i 0.346037 + 0.140282i
\(183\) −51.7145 −0.282593
\(184\) 178.091 + 47.7194i 0.967888 + 0.259345i
\(185\) 121.581 + 210.585i 0.657195 + 1.13830i
\(186\) −68.9701 39.8199i −0.370807 0.214086i
\(187\) 1.02167 1.02167i 0.00546345 0.00546345i
\(188\) −17.2866 64.5144i −0.0919498 0.343161i
\(189\) −26.8880 + 7.20462i −0.142265 + 0.0381197i
\(190\) −28.8289 28.8289i −0.151731 0.151731i
\(191\) 76.6779 132.810i 0.401455 0.695341i −0.592447 0.805610i \(-0.701838\pi\)
0.993902 + 0.110269i \(0.0351712\pi\)
\(192\) 15.2092 8.78105i 0.0792147 0.0457346i
\(193\) −50.0546 + 186.806i −0.259350 + 0.967908i 0.706268 + 0.707944i \(0.250377\pi\)
−0.965618 + 0.259964i \(0.916289\pi\)
\(194\) 25.1430i 0.129603i
\(195\) −175.204 132.349i −0.898484 0.678715i
\(196\) 61.8741 0.315684
\(197\) −125.139 33.5308i −0.635222 0.170207i −0.0731837 0.997318i \(-0.523316\pi\)
−0.562038 + 0.827111i \(0.689983\pi\)
\(198\) −0.460247 0.797171i −0.00232448 0.00402612i
\(199\) −154.129 88.9864i −0.774518 0.447168i 0.0599662 0.998200i \(-0.480901\pi\)
−0.834484 + 0.551032i \(0.814234\pi\)
\(200\) 340.866 340.866i 1.70433 1.70433i
\(201\) 40.1989 + 150.024i 0.199994 + 0.746390i
\(202\) 31.7891 8.51786i 0.157372 0.0421676i
\(203\) −55.6520 55.6520i −0.274148 0.274148i
\(204\) −12.1284 + 21.0070i −0.0594529 + 0.102975i
\(205\) −293.012 + 169.170i −1.42933 + 0.825221i
\(206\) 14.6011 54.4922i 0.0708793 0.264525i
\(207\) 80.4279i 0.388540i
\(208\) 9.83260 + 70.5649i 0.0472721 + 0.339254i
\(209\) 1.34725 0.00644615
\(210\) −85.2853 22.8521i −0.406120 0.108820i
\(211\) −99.4899 172.322i −0.471516 0.816690i 0.527953 0.849274i \(-0.322960\pi\)
−0.999469 + 0.0325837i \(0.989626\pi\)
\(212\) −28.6841 16.5608i −0.135302 0.0781169i
\(213\) −47.6944 + 47.6944i −0.223917 + 0.223917i
\(214\) −47.1573 175.993i −0.220361 0.822399i
\(215\) 351.330 94.1387i 1.63410 0.437854i
\(216\) 25.2686 + 25.2686i 0.116984 + 0.116984i
\(217\) 126.216 218.612i 0.581640 1.00743i
\(218\) 91.0879 52.5896i 0.417834 0.241237i
\(219\) 46.9695 175.293i 0.214473 0.800422i
\(220\) 9.34562i 0.0424801i
\(221\) 36.7209 + 47.1148i 0.166158 + 0.213189i
\(222\) −42.1442 −0.189839
\(223\) −104.323 27.9532i −0.467815 0.125351i 0.0172080 0.999852i \(-0.494522\pi\)
−0.485023 + 0.874501i \(0.661189\pi\)
\(224\) 88.0092 + 152.436i 0.392898 + 0.680520i
\(225\) 182.111 + 105.142i 0.809382 + 0.467297i
\(226\) −72.0673 + 72.0673i −0.318882 + 0.318882i
\(227\) −19.5749 73.0545i −0.0862330 0.321826i 0.909312 0.416115i \(-0.136609\pi\)
−0.995545 + 0.0942894i \(0.969942\pi\)
\(228\) −21.8474 + 5.85400i −0.0958220 + 0.0256754i
\(229\) −166.985 166.985i −0.729194 0.729194i 0.241265 0.970459i \(-0.422438\pi\)
−0.970459 + 0.241265i \(0.922438\pi\)
\(230\) −127.553 + 220.929i −0.554580 + 0.960561i
\(231\) 2.52676 1.45883i 0.0109384 0.00631527i
\(232\) −26.1501 + 97.5934i −0.112716 + 0.420661i
\(233\) 250.124i 1.07349i −0.843743 0.536747i \(-0.819653\pi\)
0.843743 0.536747i \(-0.180347\pi\)
\(234\) 35.0482 14.8285i 0.149779 0.0633694i
\(235\) 213.698 0.909354
\(236\) 111.689 + 29.9270i 0.473260 + 0.126810i
\(237\) 53.6800 + 92.9765i 0.226498 + 0.392306i
\(238\) 20.8020 + 12.0100i 0.0874034 + 0.0504624i
\(239\) −200.613 + 200.613i −0.839385 + 0.839385i −0.988778 0.149393i \(-0.952268\pi\)
0.149393 + 0.988778i \(0.452268\pi\)
\(240\) −23.9583 89.4136i −0.0998262 0.372557i
\(241\) 74.0273 19.8355i 0.307167 0.0823052i −0.101943 0.994790i \(-0.532506\pi\)
0.409110 + 0.912485i \(0.365839\pi\)
\(242\) −83.4208 83.4208i −0.344714 0.344714i
\(243\) −7.79423 + 13.5000i −0.0320750 + 0.0555556i
\(244\) −78.8083 + 45.5000i −0.322985 + 0.186475i
\(245\) −51.2381 + 191.223i −0.209135 + 0.780503i
\(246\) 58.6403i 0.238375i
\(247\) −6.85308 + 55.2761i −0.0277452 + 0.223790i
\(248\) −324.060 −1.30669
\(249\) −150.208 40.2480i −0.603244 0.161639i
\(250\) 214.551 + 371.614i 0.858205 + 1.48645i
\(251\) 401.597 + 231.862i 1.59999 + 0.923754i 0.991487 + 0.130202i \(0.0415627\pi\)
0.608502 + 0.793552i \(0.291771\pi\)
\(252\) −34.6361 + 34.6361i −0.137445 + 0.137445i
\(253\) −2.18184 8.14272i −0.00862386 0.0321847i
\(254\) −60.3048 + 16.1586i −0.237420 + 0.0636166i
\(255\) −54.8790 54.8790i −0.215212 0.215212i
\(256\) 79.5747 137.827i 0.310839 0.538389i
\(257\) 225.803 130.368i 0.878612 0.507267i 0.00841152 0.999965i \(-0.497322\pi\)
0.870201 + 0.492698i \(0.163989\pi\)
\(258\) −16.3159 + 60.8916i −0.0632398 + 0.236014i
\(259\) 133.583i 0.515764i
\(260\) −383.441 47.5387i −1.47477 0.182841i
\(261\) −44.0742 −0.168866
\(262\) 79.3884 + 21.2720i 0.303009 + 0.0811910i
\(263\) −203.056 351.704i −0.772078 1.33728i −0.936422 0.350875i \(-0.885884\pi\)
0.164344 0.986403i \(-0.447449\pi\)
\(264\) −3.24374 1.87277i −0.0122869 0.00709384i
\(265\) 74.9349 74.9349i 0.282773 0.282773i
\(266\) 5.79688 + 21.6342i 0.0217928 + 0.0813317i
\(267\) 108.519 29.0776i 0.406438 0.108905i
\(268\) 193.256 + 193.256i 0.721103 + 0.721103i
\(269\) −188.681 + 326.805i −0.701417 + 1.21489i 0.266552 + 0.963821i \(0.414116\pi\)
−0.967969 + 0.251069i \(0.919218\pi\)
\(270\) −42.8203 + 24.7223i −0.158594 + 0.0915640i
\(271\) 9.57586 35.7376i 0.0353353 0.131873i −0.946005 0.324152i \(-0.894921\pi\)
0.981340 + 0.192279i \(0.0615878\pi\)
\(272\) 25.1828i 0.0925839i
\(273\) 47.0012 + 111.091i 0.172166 + 0.406927i
\(274\) 123.366 0.450240
\(275\) −21.2897 5.70455i −0.0774170 0.0207438i
\(276\) 70.7629 + 122.565i 0.256387 + 0.444076i
\(277\) 287.203 + 165.817i 1.03683 + 0.598616i 0.918935 0.394410i \(-0.129051\pi\)
0.117898 + 0.993026i \(0.462384\pi\)
\(278\) −122.321 + 122.321i −0.440003 + 0.440003i
\(279\) −36.5871 136.545i −0.131137 0.489409i
\(280\) −347.031 + 92.9867i −1.23940 + 0.332095i
\(281\) 167.285 + 167.285i 0.595321 + 0.595321i 0.939064 0.343743i \(-0.111695\pi\)
−0.343743 + 0.939064i \(0.611695\pi\)
\(282\) −18.5188 + 32.0755i −0.0656694 + 0.113743i
\(283\) 57.6310 33.2733i 0.203643 0.117574i −0.394710 0.918806i \(-0.629155\pi\)
0.598354 + 0.801232i \(0.295822\pi\)
\(284\) −30.7190 + 114.645i −0.108166 + 0.403680i
\(285\) 72.3677i 0.253922i
\(286\) −3.14611 + 2.45205i −0.0110004 + 0.00857362i
\(287\) 185.870 0.647631
\(288\) 95.2117 + 25.5119i 0.330596 + 0.0885830i
\(289\) −133.943 231.996i −0.463471 0.802755i
\(290\) −121.068 69.8988i −0.417477 0.241030i
\(291\) −31.5576 + 31.5576i −0.108446 + 0.108446i
\(292\) −82.6504 308.455i −0.283049 1.05635i
\(293\) −268.304 + 71.8917i −0.915712 + 0.245364i −0.685752 0.727836i \(-0.740526\pi\)
−0.229960 + 0.973200i \(0.573860\pi\)
\(294\) −24.2618 24.2618i −0.0825233 0.0825233i
\(295\) −184.980 + 320.396i −0.627052 + 1.08609i
\(296\) −148.512 + 85.7437i −0.501731 + 0.289675i
\(297\) 0.422882 1.57822i 0.00142384 0.00531386i
\(298\) 0.384203i 0.00128927i
\(299\) 345.186 48.0986i 1.15447 0.160865i
\(300\) 370.028 1.23343
\(301\) −193.006 51.7158i −0.641216 0.171813i
\(302\) −19.6146 33.9735i −0.0649491 0.112495i
\(303\) 50.5902 + 29.2083i 0.166964 + 0.0963970i
\(304\) −16.6040 + 16.6040i −0.0546184 + 0.0546184i
\(305\) −75.3574 281.238i −0.247073 0.922091i
\(306\) 12.9929 3.48144i 0.0424605 0.0113773i
\(307\) 123.072 + 123.072i 0.400886 + 0.400886i 0.878545 0.477659i \(-0.158515\pi\)
−0.477659 + 0.878545i \(0.658515\pi\)
\(308\) 2.56704 4.44625i 0.00833455 0.0144359i
\(309\) 86.7207 50.0682i 0.280650 0.162033i
\(310\) 116.050 433.103i 0.374354 1.39711i
\(311\) 300.718i 0.966939i −0.875361 0.483469i \(-0.839376\pi\)
0.875361 0.483469i \(-0.160624\pi\)
\(312\) 93.3379 123.561i 0.299160 0.396028i
\(313\) −361.233 −1.15410 −0.577050 0.816709i \(-0.695796\pi\)
−0.577050 + 0.816709i \(0.695796\pi\)
\(314\) 115.515 + 30.9523i 0.367884 + 0.0985741i
\(315\) −78.3613 135.726i −0.248766 0.430876i
\(316\) 163.607 + 94.4586i 0.517744 + 0.298920i
\(317\) 108.893 108.893i 0.343512 0.343512i −0.514174 0.857686i \(-0.671902\pi\)
0.857686 + 0.514174i \(0.171902\pi\)
\(318\) 4.75376 + 17.7413i 0.0149489 + 0.0557901i
\(319\) 4.46218 1.19564i 0.0139880 0.00374808i
\(320\) 69.9163 + 69.9163i 0.218488 + 0.218488i
\(321\) 161.705 280.082i 0.503755 0.872529i
\(322\) 121.369 70.0724i 0.376922 0.217616i
\(323\) −5.09548 + 19.0166i −0.0157755 + 0.0588749i
\(324\) 27.4304i 0.0846617i
\(325\) 342.346 844.475i 1.05337 2.59838i
\(326\) −1.85903 −0.00570254
\(327\) 180.333 + 48.3201i 0.551477 + 0.147768i
\(328\) −119.305 206.643i −0.363736 0.630010i
\(329\) −101.668 58.6983i −0.309023 0.178414i
\(330\) 3.66457 3.66457i 0.0111048 0.0111048i
\(331\) 131.451 + 490.584i 0.397134 + 1.48213i 0.818114 + 0.575056i \(0.195020\pi\)
−0.420980 + 0.907070i \(0.638314\pi\)
\(332\) −264.315 + 70.8229i −0.796128 + 0.213322i
\(333\) −52.8962 52.8962i −0.158847 0.158847i
\(334\) −64.5229 + 111.757i −0.193182 + 0.334602i
\(335\) −757.296 + 437.225i −2.26059 + 1.30515i
\(336\) −13.1617 + 49.1200i −0.0391716 + 0.146190i
\(337\) 458.553i 1.36069i 0.732891 + 0.680346i \(0.238171\pi\)
−0.732891 + 0.680346i \(0.761829\pi\)
\(338\) −84.6018 141.554i −0.250301 0.418800i
\(339\) −180.907 −0.533648
\(340\) −131.915 35.3465i −0.387985 0.103960i
\(341\) 7.40835 + 12.8316i 0.0217254 + 0.0376294i
\(342\) 10.8622 + 6.27128i 0.0317608 + 0.0183371i
\(343\) 262.517 262.517i 0.765356 0.765356i
\(344\) 66.3902 + 247.772i 0.192995 + 0.720267i
\(345\) −437.389 + 117.198i −1.26779 + 0.339704i
\(346\) 200.519 + 200.519i 0.579535 + 0.579535i
\(347\) 141.666 245.373i 0.408260 0.707127i −0.586435 0.809996i \(-0.699469\pi\)
0.994695 + 0.102869i \(0.0328023\pi\)
\(348\) −67.1651 + 38.7778i −0.193003 + 0.111430i
\(349\) −91.8619 + 342.833i −0.263214 + 0.982330i 0.700120 + 0.714025i \(0.253130\pi\)
−0.963334 + 0.268304i \(0.913537\pi\)
\(350\) 366.417i 1.04691i
\(351\) 62.6014 + 25.3783i 0.178352 + 0.0723030i
\(352\) −10.3316 −0.0293510
\(353\) −12.6618 3.39272i −0.0358692 0.00961112i 0.240840 0.970565i \(-0.422577\pi\)
−0.276709 + 0.960954i \(0.589244\pi\)
\(354\) −32.0603 55.5301i −0.0905658 0.156865i
\(355\) −328.874 189.876i −0.926407 0.534861i
\(356\) 139.790 139.790i 0.392668 0.392668i
\(357\) 11.0350 + 41.1832i 0.0309104 + 0.115359i
\(358\) −177.846 + 47.6538i −0.496778 + 0.133111i
\(359\) 290.563 + 290.563i 0.809369 + 0.809369i 0.984538 0.175170i \(-0.0560474\pi\)
−0.175170 + 0.984538i \(0.556047\pi\)
\(360\) −100.597 + 174.238i −0.279435 + 0.483995i
\(361\) 296.737 171.321i 0.821987 0.474574i
\(362\) −10.3706 + 38.7035i −0.0286480 + 0.106916i
\(363\) 209.407i 0.576878i
\(364\) 169.367 + 127.940i 0.465294 + 0.351483i
\(365\) 1021.73 2.79926
\(366\) 48.7433 + 13.0607i 0.133179 + 0.0356851i
\(367\) 198.828 + 344.380i 0.541766 + 0.938366i 0.998803 + 0.0489181i \(0.0155773\pi\)
−0.457037 + 0.889448i \(0.651089\pi\)
\(368\) 127.244 + 73.4643i 0.345772 + 0.199631i
\(369\) 73.6008 73.6008i 0.199460 0.199460i
\(370\) −61.4117 229.192i −0.165978 0.619437i
\(371\) −56.2338 + 15.0678i −0.151574 + 0.0406140i
\(372\) −175.892 175.892i −0.472828 0.472828i
\(373\) −289.584 + 501.575i −0.776365 + 1.34470i 0.157659 + 0.987494i \(0.449605\pi\)
−0.934024 + 0.357210i \(0.883728\pi\)
\(374\) −1.22099 + 0.704941i −0.00326469 + 0.00188487i
\(375\) −197.133 + 735.710i −0.525688 + 1.96189i
\(376\) 150.708i 0.400820i
\(377\) 26.3578 + 189.160i 0.0699147 + 0.501752i
\(378\) 27.1627 0.0718591
\(379\) −566.316 151.744i −1.49424 0.400380i −0.583072 0.812420i \(-0.698150\pi\)
−0.911166 + 0.412040i \(0.864816\pi\)
\(380\) −63.6713 110.282i −0.167556 0.290216i
\(381\) −95.9710 55.4089i −0.251892 0.145430i
\(382\) −105.814 + 105.814i −0.277001 + 0.277001i
\(383\) −16.7397 62.4733i −0.0437067 0.163116i 0.940623 0.339453i \(-0.110242\pi\)
−0.984330 + 0.176337i \(0.943575\pi\)
\(384\) 203.329 54.4818i 0.529502 0.141880i
\(385\) 11.6155 + 11.6155i 0.0301700 + 0.0301700i
\(386\) 94.3575 163.432i 0.244450 0.423399i
\(387\) −96.9050 + 55.9481i −0.250400 + 0.144569i
\(388\) −20.3257 + 75.8564i −0.0523858 + 0.195506i
\(389\) 262.126i 0.673847i 0.941532 + 0.336923i \(0.109386\pi\)
−0.941532 + 0.336923i \(0.890614\pi\)
\(390\) 131.713 + 168.994i 0.337725 + 0.433318i
\(391\) 123.188 0.315059
\(392\) −134.858 36.1351i −0.344026 0.0921814i
\(393\) 72.9432 + 126.341i 0.185606 + 0.321479i
\(394\) 109.481 + 63.2087i 0.277870 + 0.160428i
\(395\) −427.410 + 427.410i −1.08205 + 1.08205i
\(396\) −0.744128 2.77712i −0.00187911 0.00701294i
\(397\) −363.818 + 97.4848i −0.916418 + 0.245554i −0.686054 0.727551i \(-0.740659\pi\)
−0.230365 + 0.973104i \(0.573992\pi\)
\(398\) 122.800 + 122.800i 0.308542 + 0.308542i
\(399\) −19.8779 + 34.4295i −0.0498192 + 0.0862894i
\(400\) 332.687 192.077i 0.831718 0.480193i
\(401\) 110.749 413.319i 0.276181 1.03072i −0.678865 0.734263i \(-0.737528\pi\)
0.955046 0.296458i \(-0.0958055\pi\)
\(402\) 151.557i 0.377008i
\(403\) −564.153 + 238.686i −1.39988 + 0.592272i
\(404\) 102.793 0.254439
\(405\) −84.7743 22.7152i −0.209319 0.0560869i
\(406\) 38.3994 + 66.5097i 0.0945798 + 0.163817i
\(407\) 6.79031 + 3.92039i 0.0166838 + 0.00963240i
\(408\) 38.7028 38.7028i 0.0948598 0.0948598i
\(409\) −138.605 517.279i −0.338886 1.26474i −0.899594 0.436727i \(-0.856137\pi\)
0.560708 0.828014i \(-0.310529\pi\)
\(410\) 318.902 85.4495i 0.777809 0.208413i
\(411\) 154.839 + 154.839i 0.376738 + 0.376738i
\(412\) 88.1031 152.599i 0.213843 0.370386i
\(413\) 176.012 101.620i 0.426178 0.246054i
\(414\) 20.3124 75.8070i 0.0490638 0.183109i
\(415\) 875.519i 2.10968i
\(416\) 52.5539 423.893i 0.126331 1.01897i
\(417\) −307.056 −0.736344
\(418\) −1.26984 0.340253i −0.00303790 0.000814002i
\(419\) −42.8617 74.2387i −0.102295 0.177181i 0.810335 0.585967i \(-0.199285\pi\)
−0.912630 + 0.408787i \(0.865952\pi\)
\(420\) −238.831 137.889i −0.568646 0.328308i
\(421\) 337.386 337.386i 0.801391 0.801391i −0.181922 0.983313i \(-0.558232\pi\)
0.983313 + 0.181922i \(0.0582318\pi\)
\(422\) 50.2533 + 187.548i 0.119084 + 0.444426i
\(423\) −63.5021 + 17.0153i −0.150123 + 0.0402254i
\(424\) 52.8470 + 52.8470i 0.124639 + 0.124639i
\(425\) 161.041 278.932i 0.378921 0.656310i
\(426\) 56.9996 32.9087i 0.133802 0.0772506i
\(427\) −41.3981 + 154.500i −0.0969512 + 0.361827i
\(428\) 569.093i 1.32966i
\(429\) −7.02639 0.871125i −0.0163785 0.00203060i
\(430\) −354.920 −0.825396
\(431\) −73.1773 19.6078i −0.169785 0.0454937i 0.172925 0.984935i \(-0.444678\pi\)
−0.342710 + 0.939441i \(0.611345\pi\)
\(432\) 14.2388 + 24.6623i 0.0329602 + 0.0570887i
\(433\) 511.717 + 295.440i 1.18179 + 0.682309i 0.956429 0.291965i \(-0.0943092\pi\)
0.225365 + 0.974274i \(0.427642\pi\)
\(434\) −174.176 + 174.176i −0.401327 + 0.401327i
\(435\) −64.2240 239.687i −0.147641 0.551005i
\(436\) 317.325 85.0270i 0.727810 0.195016i
\(437\) 81.2225 + 81.2225i 0.185864 + 0.185864i
\(438\) −88.5418 + 153.359i −0.202150 + 0.350135i
\(439\) 49.6419 28.6608i 0.113079 0.0652865i −0.442394 0.896821i \(-0.645871\pi\)
0.555473 + 0.831535i \(0.312537\pi\)
\(440\) 5.45794 20.3693i 0.0124044 0.0462939i
\(441\) 60.9032i 0.138103i
\(442\) −22.7121 53.6819i −0.0513849 0.121452i
\(443\) −90.2289 −0.203677 −0.101838 0.994801i \(-0.532472\pi\)
−0.101838 + 0.994801i \(0.532472\pi\)
\(444\) −127.149 34.0694i −0.286371 0.0767329i
\(445\) 316.264 + 547.785i 0.710705 + 1.23098i
\(446\) 91.2694 + 52.6944i 0.204640 + 0.118149i
\(447\) −0.482222 + 0.482222i −0.00107880 + 0.00107880i
\(448\) −14.0587 52.4677i −0.0313810 0.117115i
\(449\) 213.236 57.1363i 0.474913 0.127252i −0.0134202 0.999910i \(-0.504272\pi\)
0.488333 + 0.872658i \(0.337605\pi\)
\(450\) −145.094 145.094i −0.322431 0.322431i
\(451\) −5.45490 + 9.44817i −0.0120951 + 0.0209494i
\(452\) −275.686 + 159.167i −0.609924 + 0.352140i
\(453\) 18.0222 67.2597i 0.0397841 0.148476i
\(454\) 73.8010i 0.162557i
\(455\) −535.655 + 417.485i −1.17726 + 0.917550i
\(456\) 51.0365 0.111922
\(457\) 244.381 + 65.4817i 0.534751 + 0.143286i 0.516081 0.856540i \(-0.327390\pi\)
0.0186697 + 0.999826i \(0.494057\pi\)
\(458\) 115.219 + 199.565i 0.251569 + 0.435730i
\(459\) 20.6774 + 11.9381i 0.0450488 + 0.0260089i
\(460\) −563.427 + 563.427i −1.22484 + 1.22484i
\(461\) 5.06613 + 18.9071i 0.0109894 + 0.0410131i 0.971203 0.238254i \(-0.0765751\pi\)
−0.960213 + 0.279267i \(0.909908\pi\)
\(462\) −2.75003 + 0.736867i −0.00595244 + 0.00159495i
\(463\) −474.372 474.372i −1.02456 1.02456i −0.999691 0.0248701i \(-0.992083\pi\)
−0.0248701 0.999691i \(-0.507917\pi\)
\(464\) −40.2582 + 69.7292i −0.0867633 + 0.150278i
\(465\) 689.255 397.942i 1.48227 0.855788i
\(466\) −63.1700 + 235.754i −0.135558 + 0.505909i
\(467\) 115.781i 0.247926i −0.992287 0.123963i \(-0.960440\pi\)
0.992287 0.123963i \(-0.0395604\pi\)
\(468\) 117.728 16.4043i 0.251555 0.0350520i
\(469\) 480.386 1.02428
\(470\) −201.420 53.9704i −0.428554 0.114831i
\(471\) 106.137 + 183.835i 0.225345 + 0.390308i
\(472\) −225.955 130.455i −0.478719 0.276388i
\(473\) 8.29315 8.29315i 0.0175331 0.0175331i
\(474\) −27.1143 101.192i −0.0572031 0.213485i
\(475\) 290.091 77.7297i 0.610718 0.163641i
\(476\) 53.0506 + 53.0506i 0.111451 + 0.111451i
\(477\) −16.3009 + 28.2340i −0.0341739 + 0.0591909i
\(478\) 239.753 138.421i 0.501575 0.289585i
\(479\) 244.866 913.851i 0.511202 1.90783i 0.103752 0.994603i \(-0.466915\pi\)
0.407450 0.913227i \(-0.366418\pi\)
\(480\) 554.963i 1.15617i
\(481\) −195.390 + 258.657i −0.406216 + 0.537749i
\(482\) −74.7837 −0.155153
\(483\) 240.283 + 64.3835i 0.497480 + 0.133299i
\(484\) −184.243 319.118i −0.380667 0.659334i
\(485\) −217.604 125.634i −0.448669 0.259039i
\(486\) 10.7559 10.7559i 0.0221315 0.0221315i
\(487\) 50.5017 + 188.475i 0.103700 + 0.387012i 0.998194 0.0600663i \(-0.0191312\pi\)
−0.894495 + 0.447078i \(0.852465\pi\)
\(488\) 198.340 53.1450i 0.406434 0.108904i
\(489\) −2.33331 2.33331i −0.00477160 0.00477160i
\(490\) 96.5886 167.296i 0.197120 0.341421i
\(491\) −650.368 + 375.490i −1.32458 + 0.764746i −0.984455 0.175634i \(-0.943802\pi\)
−0.340124 + 0.940381i \(0.610469\pi\)
\(492\) 47.4049 176.917i 0.0963514 0.359588i
\(493\) 67.5065i 0.136930i
\(494\) 20.4196 50.3695i 0.0413352 0.101963i
\(495\) 9.19898 0.0185838
\(496\) −249.446 66.8388i −0.502915 0.134756i
\(497\) 104.310 + 180.670i 0.209879 + 0.363520i
\(498\) 131.413 + 75.8713i 0.263881 + 0.152352i
\(499\) −142.732 + 142.732i −0.286037 + 0.286037i −0.835511 0.549474i \(-0.814828\pi\)
0.549474 + 0.835511i \(0.314828\pi\)
\(500\) 346.887 + 1294.60i 0.693774 + 2.58920i
\(501\) −221.253 + 59.2846i −0.441623 + 0.118333i
\(502\) −319.966 319.966i −0.637383 0.637383i
\(503\) −51.3612 + 88.9602i −0.102110 + 0.176859i −0.912554 0.408957i \(-0.865893\pi\)
0.810444 + 0.585816i \(0.199226\pi\)
\(504\) 95.7191 55.2634i 0.189919 0.109650i
\(505\) −85.1235 + 317.685i −0.168561 + 0.629080i
\(506\) 8.22593i 0.0162568i
\(507\) 71.4827 283.854i 0.140992 0.559870i
\(508\) −195.002 −0.383862
\(509\) −491.180 131.611i −0.964989 0.258568i −0.258278 0.966071i \(-0.583155\pi\)
−0.706711 + 0.707502i \(0.749822\pi\)
\(510\) 37.8661 + 65.5860i 0.0742472 + 0.128600i
\(511\) −486.096 280.648i −0.951265 0.549213i
\(512\) 233.936 233.936i 0.456906 0.456906i
\(513\) 5.76215 + 21.5046i 0.0112323 + 0.0419193i
\(514\) −245.755 + 65.8499i −0.478123 + 0.128113i
\(515\) 398.653 + 398.653i 0.774083 + 0.774083i
\(516\) −98.4497 + 170.520i −0.190794 + 0.330465i
\(517\) 5.96752 3.44535i 0.0115426 0.00666412i
\(518\) −33.7370 + 125.908i −0.0651293 + 0.243066i
\(519\) 503.353i 0.969851i
\(520\) 807.968 + 327.547i 1.55378 + 0.629897i
\(521\) −671.421 −1.28872 −0.644358 0.764724i \(-0.722875\pi\)
−0.644358 + 0.764724i \(0.722875\pi\)
\(522\) 41.5419 + 11.1311i 0.0795822 + 0.0213240i
\(523\) −0.627885 1.08753i −0.00120055 0.00207941i 0.865425 0.501039i \(-0.167049\pi\)
−0.866625 + 0.498960i \(0.833715\pi\)
\(524\) 222.318 + 128.355i 0.424271 + 0.244953i
\(525\) 459.899 459.899i 0.875999 0.875999i
\(526\) 102.566 + 382.780i 0.194992 + 0.727719i
\(527\) −209.140 + 56.0390i −0.396851 + 0.106336i
\(528\) −2.11061 2.11061i −0.00399736 0.00399736i
\(529\) 94.8689 164.318i 0.179336 0.310620i
\(530\) −89.5547 + 51.7044i −0.168971 + 0.0975556i
\(531\) 29.4575 109.937i 0.0554755 0.207037i
\(532\) 69.9566i 0.131497i
\(533\) −359.901 271.869i −0.675236 0.510074i
\(534\) −109.628 −0.205296
\(535\) 1758.80 + 471.268i 3.28747 + 0.880874i
\(536\) −308.348 534.074i −0.575276 0.996407i
\(537\) −283.031 163.408i −0.527059 0.304298i
\(538\) 260.377 260.377i 0.483972 0.483972i
\(539\) 1.65217 + 6.16600i 0.00306526 + 0.0114397i
\(540\) −149.174 + 39.9711i −0.276248 + 0.0740205i
\(541\) −422.938 422.938i −0.781770 0.781770i 0.198359 0.980129i \(-0.436439\pi\)
−0.980129 + 0.198359i \(0.936439\pi\)
\(542\) −18.0514 + 31.2659i −0.0333051 + 0.0576862i
\(543\) −61.5940 + 35.5613i −0.113433 + 0.0654904i
\(544\) 39.0755 145.832i 0.0718300 0.268073i
\(545\) 1051.11i 1.92865i
\(546\) −16.2442 116.579i −0.0297514 0.213514i
\(547\) 476.094 0.870372 0.435186 0.900341i \(-0.356683\pi\)
0.435186 + 0.900341i \(0.356683\pi\)
\(548\) 372.194 + 99.7290i 0.679186 + 0.181987i
\(549\) 44.7861 + 77.5718i 0.0815776 + 0.141297i
\(550\) 18.6258 + 10.7536i 0.0338651 + 0.0195520i
\(551\) −44.5096 + 44.5096i −0.0807797 + 0.0807797i
\(552\) −82.6525 308.463i −0.149733 0.558810i
\(553\) 320.744 85.9431i 0.580007 0.155412i
\(554\) −228.824 228.824i −0.413040 0.413040i
\(555\) 210.585 364.743i 0.379432 0.657195i
\(556\) −467.925 + 270.157i −0.841592 + 0.485894i
\(557\) 94.4432 352.467i 0.169557 0.632795i −0.827858 0.560938i \(-0.810441\pi\)
0.997415 0.0718572i \(-0.0228926\pi\)
\(558\) 137.940i 0.247205i
\(559\) 298.074 + 382.444i 0.533228 + 0.684158i
\(560\) −286.307 −0.511262
\(561\) −2.41729 0.647710i −0.00430889 0.00115456i
\(562\) −115.425 199.923i −0.205383 0.355735i
\(563\) −575.667 332.362i −1.02250 0.590341i −0.107673 0.994186i \(-0.534340\pi\)
−0.914827 + 0.403846i \(0.867673\pi\)
\(564\) −81.8009 + 81.8009i −0.145037 + 0.145037i
\(565\) −263.614 983.820i −0.466573 1.74127i
\(566\) −62.7233 + 16.8066i −0.110818 + 0.0296937i
\(567\) 34.0926 + 34.0926i 0.0601281 + 0.0601281i
\(568\) 133.908 231.935i 0.235753 0.408336i
\(569\) 342.108 197.516i 0.601244 0.347129i −0.168287 0.985738i \(-0.553823\pi\)
0.769531 + 0.638610i \(0.220490\pi\)
\(570\) −18.2768 + 68.2099i −0.0320645 + 0.119666i
\(571\) 106.069i 0.185760i 0.995677 + 0.0928800i \(0.0296073\pi\)
−0.995677 + 0.0928800i \(0.970393\pi\)
\(572\) −11.4740 + 4.85452i −0.0200595 + 0.00848692i
\(573\) −265.620 −0.463561
\(574\) −175.191 46.9423i −0.305211 0.0817810i
\(575\) −939.593 1627.42i −1.63407 2.83030i
\(576\) −26.3431 15.2092i −0.0457346 0.0264049i
\(577\) 49.3185 49.3185i 0.0854740 0.0854740i −0.663077 0.748551i \(-0.730750\pi\)
0.748551 + 0.663077i \(0.230750\pi\)
\(578\) 67.6559 + 252.495i 0.117052 + 0.436843i
\(579\) 323.558 86.6971i 0.558822 0.149736i
\(580\) −308.756 308.756i −0.532338 0.532338i
\(581\) −240.486 + 416.535i −0.413918 + 0.716927i
\(582\) 37.7146 21.7745i 0.0648017 0.0374133i
\(583\) 0.884419 3.30070i 0.00151701 0.00566157i
\(584\) 720.565i 1.23384i
\(585\) −46.7927 + 377.425i −0.0799876 + 0.645170i
\(586\) 271.045 0.462534
\(587\) 544.114 + 145.795i 0.926940 + 0.248373i 0.690550 0.723285i \(-0.257369\pi\)
0.236391 + 0.971658i \(0.424035\pi\)
\(588\) −53.5845 92.8111i −0.0911302 0.157842i
\(589\) −174.843 100.946i −0.296847 0.171385i
\(590\) 255.270 255.270i 0.432661 0.432661i
\(591\) 58.0771 + 216.747i 0.0982692 + 0.366745i
\(592\) −132.003 + 35.3700i −0.222978 + 0.0597467i
\(593\) 418.464 + 418.464i 0.705672 + 0.705672i 0.965622 0.259950i \(-0.0837060\pi\)
−0.259950 + 0.965622i \(0.583706\pi\)
\(594\) −0.797171 + 1.38074i −0.00134204 + 0.00232448i
\(595\) −207.886 + 120.023i −0.349387 + 0.201719i
\(596\) −0.310590 + 1.15914i −0.000521124 + 0.00194486i
\(597\) 308.258i 0.516345i
\(598\) −337.501 41.8431i −0.564383 0.0699717i
\(599\) 673.651 1.12463 0.562313 0.826924i \(-0.309912\pi\)
0.562313 + 0.826924i \(0.309912\pi\)
\(600\) −806.497 216.100i −1.34416 0.360167i
\(601\) −21.0004 36.3737i −0.0349424 0.0605220i 0.848025 0.529956i \(-0.177791\pi\)
−0.882968 + 0.469434i \(0.844458\pi\)
\(602\) 168.856 + 97.4890i 0.280492 + 0.161942i
\(603\) 190.223 190.223i 0.315461 0.315461i
\(604\) −31.7130 118.354i −0.0525049 0.195951i
\(605\) 1138.81 305.144i 1.88233 0.504370i
\(606\) −40.3070 40.3070i −0.0665131 0.0665131i
\(607\) 336.816 583.383i 0.554887 0.961092i −0.443026 0.896509i \(-0.646095\pi\)
0.997912 0.0645829i \(-0.0205717\pi\)
\(608\) 121.916 70.3885i 0.200520 0.115771i
\(609\) −35.2819 + 131.674i −0.0579342 + 0.216213i
\(610\) 284.111i 0.465756i
\(611\) 111.004 + 262.367i 0.181676 + 0.429406i
\(612\) 42.0140 0.0686503
\(613\) 341.800 + 91.5849i 0.557585 + 0.149404i 0.526597 0.850115i \(-0.323468\pi\)
0.0309884 + 0.999520i \(0.490135\pi\)
\(614\) −84.9187 147.084i −0.138304 0.239550i
\(615\) 507.511 + 293.012i 0.825221 + 0.476442i
\(616\) −8.19167 + 8.19167i −0.0132982 + 0.0132982i
\(617\) −13.1564 49.1005i −0.0213232 0.0795794i 0.954444 0.298389i \(-0.0964493\pi\)
−0.975768 + 0.218810i \(0.929783\pi\)
\(618\) −94.3833 + 25.2899i −0.152724 + 0.0409222i
\(619\) −143.390 143.390i −0.231647 0.231647i 0.581733 0.813380i \(-0.302375\pi\)
−0.813380 + 0.581733i \(0.802375\pi\)
\(620\) 700.242 1212.86i 1.12942 1.95622i
\(621\) 120.642 69.6526i 0.194270 0.112162i
\(622\) −75.9477 + 283.441i −0.122102 + 0.455692i
\(623\) 347.483i 0.557758i
\(624\) 97.3321 75.8599i 0.155981 0.121570i
\(625\) −2535.88 −4.05742
\(626\) 340.479 + 91.2310i 0.543896 + 0.145736i
\(627\) −1.16675 2.02087i −0.00186084 0.00322308i
\(628\) 323.488 + 186.766i 0.515108 + 0.297398i
\(629\) −81.0189 + 81.0189i −0.128806 + 0.128806i
\(630\) 39.5810 + 147.718i 0.0628270 + 0.234474i
\(631\) −423.417 + 113.454i −0.671025 + 0.179801i −0.578217 0.815883i \(-0.696251\pi\)
−0.0928086 + 0.995684i \(0.529584\pi\)
\(632\) −301.426 301.426i −0.476940 0.476940i
\(633\) −172.322 + 298.470i −0.272230 + 0.471516i
\(634\) −130.138 + 75.1354i −0.205265 + 0.118510i
\(635\) 161.482 602.657i 0.254302 0.949067i
\(636\) 57.3682i 0.0902016i
\(637\) −261.389 + 36.4222i −0.410343 + 0.0571777i
\(638\) −4.50778 −0.00706548
\(639\) 112.846 + 30.2370i 0.176598 + 0.0473193i
\(640\) 592.574 + 1026.37i 0.925897 + 1.60370i
\(641\) 274.753 + 158.629i 0.428632 + 0.247471i 0.698764 0.715353i \(-0.253734\pi\)
−0.270132 + 0.962823i \(0.587067\pi\)
\(642\) −223.151 + 223.151i −0.347587 + 0.347587i
\(643\) 246.809 + 921.104i 0.383840 + 1.43251i 0.839987 + 0.542606i \(0.182562\pi\)
−0.456147 + 0.889904i \(0.650771\pi\)
\(644\) 422.816 113.293i 0.656547 0.175921i
\(645\) −445.469 445.469i −0.690650 0.690650i
\(646\) 9.60546 16.6371i 0.0148691 0.0257541i
\(647\) −654.981 + 378.153i −1.01233 + 0.584472i −0.911874 0.410469i \(-0.865365\pi\)
−0.100460 + 0.994941i \(0.532032\pi\)
\(648\) 16.0196 59.7861i 0.0247217 0.0922625i
\(649\) 11.9294i 0.0183812i
\(650\) −535.953 + 709.496i −0.824544 + 1.09153i
\(651\) −437.224 −0.671620
\(652\) −5.60868 1.50284i −0.00860227 0.00230497i
\(653\) 483.378 + 837.235i 0.740242 + 1.28214i 0.952385 + 0.304898i \(0.0986223\pi\)
−0.212143 + 0.977239i \(0.568044\pi\)
\(654\) −157.769 91.0879i −0.241237 0.139278i
\(655\) −580.787 + 580.787i −0.886698 + 0.886698i
\(656\) −49.2146 183.671i −0.0750222 0.279987i
\(657\) −303.616 + 81.3535i −0.462124 + 0.123826i
\(658\) 81.0027 + 81.0027i 0.123104 + 0.123104i
\(659\) −607.966 + 1053.03i −0.922559 + 1.59792i −0.127118 + 0.991888i \(0.540573\pi\)
−0.795441 + 0.606031i \(0.792761\pi\)
\(660\) 14.0184 8.09355i 0.0212400 0.0122629i
\(661\) 28.8873 107.809i 0.0437025 0.163100i −0.940626 0.339445i \(-0.889761\pi\)
0.984328 + 0.176345i \(0.0564275\pi\)
\(662\) 495.596i 0.748635i
\(663\) 38.8709 95.8840i 0.0586289 0.144621i
\(664\) 617.450 0.929894
\(665\) −216.202 57.9313i −0.325116 0.0871147i
\(666\) 36.4979 + 63.2163i 0.0548017 + 0.0949194i
\(667\) 341.098 + 196.933i 0.511391 + 0.295252i
\(668\) −285.010 + 285.010i −0.426661 + 0.426661i
\(669\) 48.4164 + 180.692i 0.0723713 + 0.270093i
\(670\) 824.210 220.846i 1.23016 0.329621i
\(671\) −6.63862 6.63862i −0.00989362 0.00989362i
\(672\) 152.436 264.028i 0.226840 0.392898i
\(673\) 789.813 455.998i 1.17357 0.677561i 0.219052 0.975713i \(-0.429704\pi\)
0.954518 + 0.298152i \(0.0963703\pi\)
\(674\) 115.810 432.208i 0.171825 0.641258i
\(675\) 364.222i 0.539588i
\(676\) −140.810 495.461i −0.208299 0.732931i
\(677\) 243.272 0.359338 0.179669 0.983727i \(-0.442497\pi\)
0.179669 + 0.983727i \(0.442497\pi\)
\(678\) 170.513 + 45.6888i 0.251494 + 0.0673876i
\(679\) 69.0179 + 119.543i 0.101646 + 0.176057i
\(680\) 266.873 + 154.079i 0.392461 + 0.226587i
\(681\) −92.6294 + 92.6294i −0.136020 + 0.136020i
\(682\) −3.74203 13.9654i −0.00548684 0.0204772i
\(683\) 779.390 208.837i 1.14113 0.305764i 0.361723 0.932286i \(-0.382189\pi\)
0.779404 + 0.626522i \(0.215522\pi\)
\(684\) 27.7014 + 27.7014i 0.0404992 + 0.0404992i
\(685\) −616.430 + 1067.69i −0.899897 + 1.55867i
\(686\) −313.735 + 181.135i −0.457339 + 0.264045i
\(687\) −105.865 + 395.092i −0.154097 + 0.575097i
\(688\) 204.416i 0.297117i
\(689\) 130.925 + 53.0765i 0.190022 + 0.0770341i
\(690\) 441.858 0.640374
\(691\) −505.499 135.448i −0.731546 0.196017i −0.126229 0.992001i \(-0.540287\pi\)
−0.605318 + 0.795984i \(0.706954\pi\)
\(692\) 442.865 + 767.065i 0.639978 + 1.10847i
\(693\) −4.37648 2.52676i −0.00631527 0.00364612i
\(694\) −195.497 + 195.497i −0.281696 + 0.281696i
\(695\) −447.435 1669.85i −0.643792 2.40266i
\(696\) 169.037 45.2933i 0.242869 0.0650765i
\(697\) −112.731 112.731i −0.161738 0.161738i
\(698\) 173.168 299.936i 0.248092 0.429708i
\(699\) −375.186 + 216.614i −0.536747 + 0.309891i
\(700\) 296.212 1105.48i 0.423160 1.57926i
\(701\) 485.809i 0.693023i 0.938046 + 0.346512i \(0.112634\pi\)
−0.938046 + 0.346512i \(0.887366\pi\)
\(702\) −52.5953 39.7305i −0.0749221 0.0565962i
\(703\) −106.838 −0.151974
\(704\) 3.07964 + 0.825187i 0.00437449 + 0.00117214i
\(705\) −185.068 320.547i −0.262508 0.454677i
\(706\) 11.0775 + 6.39560i 0.0156905 + 0.00905892i
\(707\) 127.759 127.759i 0.180706 0.180706i
\(708\) −51.8352 193.451i −0.0732135 0.273237i
\(709\) 910.021 243.839i 1.28353 0.343920i 0.448329 0.893869i \(-0.352019\pi\)
0.835199 + 0.549948i \(0.185353\pi\)
\(710\) 262.025 + 262.025i 0.369050 + 0.369050i
\(711\) 92.9765 161.040i 0.130769 0.226498i
\(712\) −386.319 + 223.041i −0.542583 + 0.313260i
\(713\) −326.958 + 1220.23i −0.458567 + 1.71140i
\(714\) 41.6040i 0.0582689i
\(715\) −5.50130 39.4808i −0.00769413 0.0552179i
\(716\) −575.085 −0.803191
\(717\) 474.656 + 127.184i 0.662002 + 0.177383i
\(718\) −200.486 347.252i −0.279229 0.483639i
\(719\) −982.025 566.972i −1.36582 0.788557i −0.375429 0.926851i \(-0.622505\pi\)
−0.990391 + 0.138294i \(0.955838\pi\)
\(720\) −113.372 + 113.372i −0.157461 + 0.157461i
\(721\) −80.1606 299.163i −0.111180 0.414928i
\(722\) −322.956 + 86.5359i −0.447308 + 0.119856i
\(723\) −93.8628 93.8628i −0.129824 0.129824i
\(724\) −62.5758 + 108.385i −0.0864307 + 0.149702i
\(725\) 891.821 514.893i 1.23010 0.710197i
\(726\) −52.8867 + 197.376i −0.0728466 + 0.271867i
\(727\) 96.4774i 0.132706i −0.997796 0.0663531i \(-0.978864\pi\)
0.997796 0.0663531i \(-0.0211364\pi\)
\(728\) −294.427 377.764i −0.404432 0.518907i
\(729\) 27.0000 0.0370370
\(730\) −963.029 258.043i −1.31922 0.353484i
\(731\) 85.6933 + 148.425i 0.117228 + 0.203044i
\(732\) 136.500 + 78.8083i 0.186475 + 0.107662i
\(733\) 573.659 573.659i 0.782618 0.782618i −0.197654 0.980272i \(-0.563332\pi\)
0.980272 + 0.197654i \(0.0633323\pi\)
\(734\) −100.430 374.809i −0.136825 0.510639i
\(735\) 331.208 88.7470i 0.450624 0.120744i
\(736\) −622.867 622.867i −0.846287 0.846287i
\(737\) −14.0983 + 24.4190i −0.0191294 + 0.0331330i
\(738\) −87.9604 + 50.7840i −0.119188 + 0.0688130i
\(739\) −66.7623 + 249.160i −0.0903415 + 0.337159i −0.996272 0.0862673i \(-0.972506\pi\)
0.905931 + 0.423426i \(0.139173\pi\)
\(740\) 741.115i 1.00151i
\(741\) 88.8491 37.5909i 0.119904 0.0507299i
\(742\) 56.8084 0.0765612
\(743\) 849.884 + 227.726i 1.14385 + 0.306495i 0.780500 0.625156i \(-0.214965\pi\)
0.363355 + 0.931651i \(0.381631\pi\)
\(744\) 280.644 + 486.089i 0.377209 + 0.653346i
\(745\) −3.32514 1.91977i −0.00446327 0.00257687i
\(746\) 399.621 399.621i 0.535686 0.535686i
\(747\) 69.7116 + 260.167i 0.0933221 + 0.348283i
\(748\) −4.25360 + 1.13975i −0.00568664 + 0.00152373i
\(749\) −707.313 707.313i −0.944343 0.944343i
\(750\) 371.614 643.654i 0.495485 0.858205i
\(751\) 522.287 301.542i 0.695455 0.401521i −0.110197 0.993910i \(-0.535148\pi\)
0.805652 + 0.592389i \(0.201815\pi\)
\(752\) −31.0842 + 116.008i −0.0413354 + 0.154266i
\(753\) 803.195i 1.06666i
\(754\) 22.9298 184.949i 0.0304109 0.245291i
\(755\) 392.038 0.519256
\(756\) 81.9498 + 21.9584i 0.108399 + 0.0290455i
\(757\) −369.921 640.722i −0.488667 0.846396i 0.511248 0.859433i \(-0.329183\pi\)
−0.999915 + 0.0130371i \(0.995850\pi\)
\(758\) 495.456 + 286.051i 0.653635 + 0.377377i
\(759\) −10.3246 + 10.3246i −0.0136028 + 0.0136028i
\(760\) 74.3694 + 277.550i 0.0978545 + 0.365198i
\(761\) −798.767 + 214.029i −1.04963 + 0.281247i −0.742098 0.670292i \(-0.766169\pi\)
−0.307530 + 0.951538i \(0.599502\pi\)
\(762\) 76.4634 + 76.4634i 0.100346 + 0.100346i
\(763\) 288.718 500.074i 0.378398 0.655405i
\(764\) −404.782 + 233.701i −0.529819 + 0.305891i
\(765\) −34.7919 + 129.845i −0.0454796 + 0.169732i
\(766\) 63.1117i 0.0823912i
\(767\) −489.451 60.6816i −0.638137 0.0791156i
\(768\) −275.655 −0.358926
\(769\) −721.379 193.293i −0.938074 0.251356i −0.242780 0.970081i \(-0.578059\pi\)
−0.695294 + 0.718725i \(0.744726\pi\)
\(770\) −8.01457 13.8816i −0.0104085 0.0180281i
\(771\) −391.103 225.803i −0.507267 0.292871i
\(772\) 416.795 416.795i 0.539890 0.539890i
\(773\) 313.220 + 1168.95i 0.405201 + 1.51223i 0.803685 + 0.595055i \(0.202870\pi\)
−0.398484 + 0.917175i \(0.630464\pi\)
\(774\) 105.467 28.2599i 0.136263 0.0365115i
\(775\) 2335.50 + 2335.50i 3.01355 + 3.01355i
\(776\) 88.6019 153.463i 0.114178 0.197762i
\(777\) −200.374 + 115.686i −0.257882 + 0.148888i
\(778\) 66.2012 247.066i 0.0850915 0.317566i
\(779\) 148.656i 0.190829i
\(780\) 260.762 + 616.331i 0.334310 + 0.790168i
\(781\) −12.2451 −0.0156787
\(782\) −116.110 31.1117i −0.148479 0.0397847i
\(783\) 38.1693 + 66.1112i 0.0487476 + 0.0844332i
\(784\) −96.3543 55.6302i −0.122901 0.0709569i
\(785\) −845.085 + 845.085i −1.07654 + 1.07654i
\(786\) −36.8443 137.505i −0.0468757 0.174942i
\(787\) −316.242 + 84.7369i −0.401833 + 0.107671i −0.454075 0.890964i \(-0.650030\pi\)
0.0522418 + 0.998634i \(0.483363\pi\)
\(788\) 279.205 + 279.205i 0.354321 + 0.354321i
\(789\) −351.704 + 609.169i −0.445759 + 0.772078i
\(790\) 510.798 294.910i 0.646580 0.373303i
\(791\) −144.818 + 540.469i −0.183082 + 0.683273i
\(792\) 6.48748i 0.00819126i
\(793\) 306.144 238.607i 0.386058 0.300891i
\(794\) 367.536 0.462891
\(795\) −177.298 47.5068i −0.223016 0.0597570i
\(796\) 271.215 + 469.758i 0.340722 + 0.590148i
\(797\) −1337.51 772.211i −1.67818 0.968897i −0.962821 0.270139i \(-0.912930\pi\)
−0.715358 0.698758i \(-0.753736\pi\)
\(798\) 27.4311 27.4311i 0.0343748 0.0343748i
\(799\) 26.0617 + 97.2634i 0.0326178 + 0.121731i
\(800\) −2224.61 + 596.082i −2.78076 + 0.745102i
\(801\) −137.597 137.597i −0.171781 0.171781i
\(802\) −208.771 + 361.602i −0.260313 + 0.450876i
\(803\) 28.5319 16.4729i 0.0355316 0.0205142i
\(804\) 122.519 457.247i 0.152387 0.568716i
\(805\) 1400.54i 1.73980i
\(806\) 592.021 82.4930i 0.734518 0.102349i
\(807\) 653.611 0.809927
\(808\) −224.044 60.0324i −0.277282 0.0742975i
\(809\) −424.887 735.925i −0.525200 0.909673i −0.999569 0.0293471i \(-0.990657\pi\)
0.474369 0.880326i \(-0.342676\pi\)
\(810\) 74.1669 + 42.8203i 0.0915640 + 0.0528645i
\(811\) 681.010 681.010i 0.839717 0.839717i −0.149105 0.988821i \(-0.547639\pi\)
0.988821 + 0.149105i \(0.0476391\pi\)
\(812\) 62.0842 + 231.702i 0.0764584 + 0.285347i
\(813\) −61.8993 + 16.5859i −0.0761369 + 0.0204008i
\(814\) −5.41007 5.41007i −0.00664628 0.00664628i
\(815\) 9.28913 16.0892i 0.0113977 0.0197414i
\(816\) 37.7742 21.8090i 0.0462919 0.0267267i
\(817\) −41.3615 + 154.363i −0.0506261 + 0.188939i
\(818\) 522.565i 0.638832i
\(819\) 125.932 166.710i 0.153764 0.203553i
\(820\) 1031.20 1.25756
\(821\) 512.185 + 137.240i 0.623855 + 0.167161i 0.556880 0.830593i \(-0.311998\pi\)
0.0669754 + 0.997755i \(0.478665\pi\)
\(822\) −106.838 185.049i −0.129973 0.225120i
\(823\) −115.461 66.6613i −0.140293 0.0809980i 0.428211 0.903679i \(-0.359144\pi\)
−0.568503 + 0.822681i \(0.692477\pi\)
\(824\) −281.145 + 281.145i −0.341196 + 0.341196i
\(825\) 9.88057 + 36.8748i 0.0119764 + 0.0446967i
\(826\) −191.564 + 51.3294i −0.231917 + 0.0621421i
\(827\) 303.738 + 303.738i 0.367277 + 0.367277i 0.866483 0.499206i \(-0.166375\pi\)
−0.499206 + 0.866483i \(0.666375\pi\)
\(828\) 122.565 212.289i 0.148025 0.256387i
\(829\) −68.0197 + 39.2712i −0.0820503 + 0.0473718i −0.540464 0.841367i \(-0.681751\pi\)
0.458414 + 0.888739i \(0.348418\pi\)
\(830\) −221.116 + 825.217i −0.266405 + 0.994238i
\(831\) 574.405i 0.691222i
\(832\) −49.5219 + 122.157i −0.0595215 + 0.146823i
\(833\) −93.2829 −0.111984
\(834\) 289.414 + 77.5483i 0.347019 + 0.0929835i
\(835\) −644.812 1116.85i −0.772230 1.33754i
\(836\) −3.55604 2.05308i −0.00425364 0.00245584i
\(837\) −173.132 + 173.132i −0.206848 + 0.206848i
\(838\) 21.6498 + 80.7983i 0.0258351 + 0.0964181i
\(839\) 51.0874 13.6888i 0.0608908 0.0163157i −0.228245 0.973604i \(-0.573299\pi\)
0.289136 + 0.957288i \(0.406632\pi\)
\(840\) 440.018 + 440.018i 0.523831 + 0.523831i
\(841\) 312.582 541.407i 0.371678 0.643766i
\(842\) −403.210 + 232.793i −0.478872 + 0.276477i
\(843\) 106.055 395.801i 0.125806 0.469515i
\(844\) 606.455i 0.718549i
\(845\) 1647.84 24.8844i 1.95011 0.0294490i
\(846\) 64.1509 0.0758285
\(847\) −625.615 167.633i −0.738624 0.197914i
\(848\) 29.7792 + 51.5790i 0.0351169 + 0.0608243i
\(849\) −99.8199 57.6310i −0.117574 0.0678811i
\(850\) −222.234 + 222.234i −0.261452 + 0.261452i
\(851\) 173.021 + 645.724i 0.203315 + 0.758783i
\(852\) 198.571 53.2069i 0.233065 0.0624495i
\(853\) −7.55706 7.55706i −0.00885939 0.00885939i 0.702663 0.711523i \(-0.251994\pi\)
−0.711523 + 0.702663i \(0.751994\pi\)
\(854\) 78.0393 135.168i 0.0913810 0.158276i
\(855\) −108.552 + 62.6723i −0.126961 + 0.0733009i
\(856\) −332.356 + 1240.37i −0.388267 + 1.44903i
\(857\) 1162.26i 1.35619i −0.734974 0.678096i \(-0.762806\pi\)
0.734974 0.678096i \(-0.237194\pi\)
\(858\) 6.40269 + 2.59562i 0.00746234 + 0.00302520i
\(859\) 968.066 1.12697 0.563484 0.826127i \(-0.309461\pi\)
0.563484 + 0.826127i \(0.309461\pi\)
\(860\) −1070.79 286.918i −1.24511 0.333626i
\(861\) −160.968 278.805i −0.186955 0.323815i
\(862\) 64.0209 + 36.9625i 0.0742702 + 0.0428799i
\(863\) 935.257 935.257i 1.08373 1.08373i 0.0875694 0.996158i \(-0.472090\pi\)
0.996158 0.0875694i \(-0.0279099\pi\)
\(864\) −44.1879 164.912i −0.0511434 0.190870i
\(865\) −2737.37 + 733.476i −3.16459 + 0.847949i
\(866\) −407.702 407.702i −0.470788 0.470788i
\(867\) −231.996 + 401.829i −0.267585 + 0.463471i
\(868\) −666.291 + 384.683i −0.767616 + 0.443184i
\(869\) −5.04451 + 18.8264i −0.00580496 + 0.0216644i
\(870\) 242.136i 0.278318i
\(871\) −930.173 702.653i −1.06794 0.806720i
\(872\) −741.285 −0.850097
\(873\) 74.6662 + 20.0067i 0.0855283 + 0.0229172i
\(874\) −56.0429 97.0691i −0.0641223 0.111063i
\(875\) 2040.17 + 1177.89i 2.33162 + 1.34616i
\(876\) −391.106 + 391.106i −0.446468 + 0.446468i
\(877\) 42.4456 + 158.409i 0.0483986 + 0.180626i 0.985894 0.167372i \(-0.0535282\pi\)
−0.937495 + 0.347998i \(0.886862\pi\)
\(878\) −54.0282 + 14.4768i −0.0615355 + 0.0164884i
\(879\) 340.195 + 340.195i 0.387025 + 0.387025i
\(880\) 8.40252 14.5536i 0.00954832 0.0165382i
\(881\) 759.282 438.372i 0.861841 0.497584i −0.00278713 0.999996i \(-0.500887\pi\)
0.864628 + 0.502412i \(0.167554\pi\)
\(882\) −15.3814 + 57.4041i −0.0174392 + 0.0650840i
\(883\) 1594.53i 1.80581i −0.429839 0.902906i \(-0.641430\pi\)
0.429839 0.902906i \(-0.358570\pi\)
\(884\) −25.1258 180.318i −0.0284228 0.203980i
\(885\) 640.791 0.724058
\(886\) 85.0449 + 22.7877i 0.0959875 + 0.0257198i
\(887\) 540.875 + 936.823i 0.609780 + 1.05617i 0.991276 + 0.131800i \(0.0420755\pi\)
−0.381496 + 0.924370i \(0.624591\pi\)
\(888\) 257.231 + 148.512i 0.289675 + 0.167244i
\(889\) −242.363 + 242.363i −0.272624 + 0.272624i
\(890\) −159.748 596.186i −0.179492 0.669872i
\(891\) −2.73355 + 0.732452i −0.00306796 + 0.000822057i
\(892\) 232.761 + 232.761i 0.260943 + 0.260943i
\(893\) −46.9461 + 81.3129i −0.0525712 + 0.0910559i
\(894\) 0.576304 0.332729i 0.000644635 0.000372180i
\(895\) 476.230 1777.31i 0.532100 1.98582i
\(896\) 651.070i 0.726640i
\(897\) −371.088 476.124i −0.413699 0.530796i
\(898\) −215.415 −0.239883
\(899\) −668.679 179.172i −0.743803 0.199301i
\(900\) −320.454 555.042i −0.356060 0.616713i
\(901\) 43.2449 + 24.9674i 0.0479965 + 0.0277108i
\(902\) 7.52768 7.52768i 0.00834554 0.00834554i
\(903\) 89.5744 + 334.296i 0.0991964 + 0.370206i
\(904\) 693.828 185.911i 0.767509 0.205653i
\(905\) −283.146 283.146i −0.312868 0.312868i
\(906\) −33.9735 + 58.8438i −0.0374984 + 0.0649491i
\(907\) −77.6431 + 44.8272i −0.0856043 + 0.0494236i −0.542191 0.840255i \(-0.682405\pi\)
0.456587 + 0.889679i \(0.349072\pi\)
\(908\) −59.6608 + 222.657i −0.0657057 + 0.245217i
\(909\) 101.180i 0.111310i
\(910\) 610.317 258.217i 0.670678 0.283755i
\(911\) 378.748 0.415750 0.207875 0.978155i \(-0.433345\pi\)
0.207875 + 0.978155i \(0.433345\pi\)
\(912\) 39.2855 + 10.5265i 0.0430762 + 0.0115422i
\(913\) −14.1156 24.4489i −0.0154606 0.0267786i
\(914\) −213.803 123.439i −0.233920 0.135054i
\(915\) −356.595 + 356.595i −0.389721 + 0.389721i
\(916\) 186.286 + 695.228i 0.203369 + 0.758982i
\(917\) 435.844 116.784i 0.475293 0.127354i
\(918\) −16.4744 16.4744i −0.0179459 0.0179459i
\(919\) −576.994 + 999.383i −0.627850 + 1.08747i 0.360132 + 0.932901i \(0.382732\pi\)
−0.987982 + 0.154567i \(0.950602\pi\)
\(920\) 1557.07 898.974i 1.69247 0.977145i
\(921\) 78.0245 291.192i 0.0847172 0.316169i
\(922\) 19.1003i 0.0207161i
\(923\) 62.2875 502.404i 0.0674838 0.544316i
\(924\) −8.89250 −0.00962391
\(925\) 1688.29 + 452.375i 1.82518 + 0.489054i
\(926\) 327.313 + 566.922i 0.353469 + 0.612227i
\(927\) −150.205 86.7207i −0.162033 0.0935499i
\(928\) 341.329 341.329i 0.367811 0.367811i
\(929\) −463.856 1731.13i −0.499306 1.86344i −0.504435 0.863450i \(-0.668299\pi\)
0.00512891 0.999987i \(-0.498367\pi\)
\(930\) −750.157 + 201.004i −0.806620 + 0.216133i
\(931\) −61.5050 61.5050i −0.0660634 0.0660634i
\(932\) −381.167 + 660.201i −0.408977 + 0.708370i
\(933\) −451.077 + 260.429i −0.483469 + 0.279131i
\(934\) −29.2411 + 109.129i −0.0313074 + 0.116841i
\(935\) 14.0897i 0.0150692i
\(936\) −266.174 33.0000i −0.284374 0.0352565i
\(937\) 798.972 0.852692 0.426346 0.904560i \(-0.359801\pi\)
0.426346 + 0.904560i \(0.359801\pi\)
\(938\) −452.786 121.324i −0.482714 0.129343i
\(939\) 312.837 + 541.850i 0.333160 + 0.577050i
\(940\) −564.054 325.657i −0.600058 0.346444i
\(941\) −10.8954 + 10.8954i −0.0115786 + 0.0115786i −0.712872 0.701294i \(-0.752606\pi\)
0.701294 + 0.712872i \(0.252606\pi\)
\(942\) −53.6109 200.079i −0.0569118 0.212398i
\(943\) −898.474 + 240.745i −0.952783 + 0.255297i
\(944\) −147.023 147.023i −0.155744 0.155744i
\(945\) −135.726 + 235.084i −0.143625 + 0.248766i
\(946\) −9.91116 + 5.72221i −0.0104769 + 0.00604885i
\(947\) 341.173 1273.27i 0.360267 1.34453i −0.513458 0.858115i \(-0.671636\pi\)
0.873725 0.486420i \(-0.161698\pi\)
\(948\) 327.214i 0.345163i
\(949\) 530.731 + 1254.43i 0.559253 + 1.32184i
\(950\) −293.055 −0.308479
\(951\) −257.644 69.0355i −0.270919 0.0725925i
\(952\) −84.6447 146.609i −0.0889125 0.154001i
\(953\) −28.6812 16.5591i −0.0300957 0.0173758i 0.484877 0.874583i \(-0.338864\pi\)
−0.514972 + 0.857207i \(0.672198\pi\)
\(954\) 22.4950 22.4950i 0.0235797 0.0235797i
\(955\) −387.057 1444.52i −0.405295 1.51258i
\(956\) 835.233 223.800i 0.873675 0.234101i
\(957\) −5.65782 5.65782i −0.00591204 0.00591204i
\(958\) −461.594 + 799.505i −0.481831 + 0.834556i
\(959\) 586.542 338.640i 0.611618 0.353118i
\(960\) 44.3252 165.424i 0.0461720 0.172316i
\(961\) 1259.35i 1.31046i
\(962\) 249.489 194.450i 0.259344 0.202131i
\(963\) −560.164 −0.581686
\(964\) −225.622 60.4552i −0.234048 0.0627129i
\(965\) 942.965 + 1633.26i 0.977166 + 1.69250i
\(966\) −210.217 121.369i −0.217616 0.125641i
\(967\) −977.248 + 977.248i −1.01060 + 1.01060i −0.0106547 + 0.999943i \(0.503392\pi\)
−0.999943 + 0.0106547i \(0.996608\pi\)
\(968\) 215.199 + 803.134i 0.222313 + 0.829684i
\(969\) 32.9377 8.82564i 0.0339915 0.00910798i
\(970\) 173.373 + 173.373i 0.178735 + 0.178735i
\(971\) −736.766 + 1276.12i −0.758770 + 1.31423i 0.184708 + 0.982793i \(0.440866\pi\)
−0.943478 + 0.331435i \(0.892467\pi\)
\(972\) 41.1456 23.7554i 0.0423309 0.0244397i
\(973\) −245.802 + 917.345i −0.252623 + 0.942801i
\(974\) 190.401i 0.195483i
\(975\) −1563.19 + 217.817i −1.60328 + 0.223402i
\(976\) 163.634 0.167658
\(977\) −371.388 99.5130i −0.380131 0.101856i 0.0636938 0.997969i \(-0.479712\pi\)
−0.443824 + 0.896114i \(0.646379\pi\)
\(978\) 1.60997 + 2.78854i 0.00164618 + 0.00285127i
\(979\) 17.6633 + 10.1979i 0.0180422 + 0.0104167i
\(980\) 426.650 426.650i 0.435357 0.435357i
\(981\) −83.6929 312.346i −0.0853139 0.318396i
\(982\) 707.834 189.664i 0.720809 0.193140i
\(983\) −987.556 987.556i −1.00464 1.00464i −0.999989 0.00464599i \(-0.998521\pi\)
−0.00464599 0.999989i \(-0.501479\pi\)
\(984\) −206.643 + 357.916i −0.210003 + 0.363736i
\(985\) −1094.10 + 631.678i −1.11076 + 0.641297i
\(986\) 17.0491 63.6280i 0.0172912 0.0645315i
\(987\) 203.337i 0.206015i
\(988\) 102.324 135.457i 0.103567 0.137102i
\(989\) 999.953 1.01107
\(990\) −8.67047 2.32324i −0.00875805 0.00234671i
\(991\) 463.821 + 803.362i 0.468034 + 0.810658i 0.999333 0.0365264i \(-0.0116293\pi\)
−0.531299 + 0.847184i \(0.678296\pi\)
\(992\) 1340.81 + 774.116i 1.35162 + 0.780359i
\(993\) 622.035 622.035i 0.626420 0.626420i
\(994\) −52.6877 196.633i −0.0530058 0.197820i
\(995\) −1676.39 + 449.188i −1.68482 + 0.451445i
\(996\) 335.138 + 335.138i 0.336483 + 0.336483i
\(997\) 478.824 829.348i 0.480265 0.831844i −0.519478 0.854484i \(-0.673874\pi\)
0.999744 + 0.0226397i \(0.00720707\pi\)
\(998\) 170.579 98.4841i 0.170921 0.0986814i
\(999\) −33.5348 + 125.154i −0.0335684 + 0.125279i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 39.3.l.b.28.2 yes 12
3.2 odd 2 117.3.bd.d.28.2 12
13.7 odd 12 inner 39.3.l.b.7.2 12
39.20 even 12 117.3.bd.d.46.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.3.l.b.7.2 12 13.7 odd 12 inner
39.3.l.b.28.2 yes 12 1.1 even 1 trivial
117.3.bd.d.28.2 12 3.2 odd 2
117.3.bd.d.46.2 12 39.20 even 12