Properties

Label 3900.2.j.h.649.4
Level $3900$
Weight $2$
Character 3900.649
Analytic conductor $31.142$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3900,2,Mod(649,3900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3900, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3900.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3900.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.1416567883\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 156)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.4
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 3900.649
Dual form 3900.2.j.h.649.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} -1.00000 q^{9} +3.46410i q^{11} +(3.46410 + 1.00000i) q^{13} +6.00000i q^{17} +6.92820i q^{19} -1.00000i q^{27} +6.00000 q^{29} -6.92820i q^{31} -3.46410 q^{33} +(-1.00000 + 3.46410i) q^{39} -3.46410i q^{41} -8.00000i q^{43} -3.46410 q^{47} -7.00000 q^{49} -6.00000 q^{51} -6.00000i q^{53} -6.92820 q^{57} +3.46410i q^{59} +10.0000 q^{61} -13.8564 q^{67} +10.3923i q^{71} -6.92820 q^{73} +8.00000 q^{79} +1.00000 q^{81} -3.46410 q^{83} +6.00000i q^{87} +17.3205i q^{89} +6.92820 q^{93} -6.92820 q^{97} -3.46410i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} + 24 q^{29} - 4 q^{39} - 28 q^{49} - 24 q^{51} + 40 q^{61} + 32 q^{79} + 4 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3900\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1951\) \(3277\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 3.46410i 1.04447i 0.852803 + 0.522233i \(0.174901\pi\)
−0.852803 + 0.522233i \(0.825099\pi\)
\(12\) 0 0
\(13\) 3.46410 + 1.00000i 0.960769 + 0.277350i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.00000i 1.45521i 0.685994 + 0.727607i \(0.259367\pi\)
−0.685994 + 0.727607i \(0.740633\pi\)
\(18\) 0 0
\(19\) 6.92820i 1.58944i 0.606977 + 0.794719i \(0.292382\pi\)
−0.606977 + 0.794719i \(0.707618\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 6.92820i 1.24434i −0.782881 0.622171i \(-0.786251\pi\)
0.782881 0.622171i \(-0.213749\pi\)
\(32\) 0 0
\(33\) −3.46410 −0.603023
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) −1.00000 + 3.46410i −0.160128 + 0.554700i
\(40\) 0 0
\(41\) 3.46410i 0.541002i −0.962720 0.270501i \(-0.912811\pi\)
0.962720 0.270501i \(-0.0871893\pi\)
\(42\) 0 0
\(43\) 8.00000i 1.21999i −0.792406 0.609994i \(-0.791172\pi\)
0.792406 0.609994i \(-0.208828\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.46410 −0.505291 −0.252646 0.967559i \(-0.581301\pi\)
−0.252646 + 0.967559i \(0.581301\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) −6.00000 −0.840168
\(52\) 0 0
\(53\) 6.00000i 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −6.92820 −0.917663
\(58\) 0 0
\(59\) 3.46410i 0.450988i 0.974245 + 0.225494i \(0.0723995\pi\)
−0.974245 + 0.225494i \(0.927600\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −13.8564 −1.69283 −0.846415 0.532524i \(-0.821244\pi\)
−0.846415 + 0.532524i \(0.821244\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.3923i 1.23334i 0.787222 + 0.616670i \(0.211519\pi\)
−0.787222 + 0.616670i \(0.788481\pi\)
\(72\) 0 0
\(73\) −6.92820 −0.810885 −0.405442 0.914121i \(-0.632883\pi\)
−0.405442 + 0.914121i \(0.632883\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −3.46410 −0.380235 −0.190117 0.981761i \(-0.560887\pi\)
−0.190117 + 0.981761i \(0.560887\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 6.00000i 0.643268i
\(88\) 0 0
\(89\) 17.3205i 1.83597i 0.396615 + 0.917985i \(0.370185\pi\)
−0.396615 + 0.917985i \(0.629815\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 6.92820 0.718421
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −6.92820 −0.703452 −0.351726 0.936103i \(-0.614405\pi\)
−0.351726 + 0.936103i \(0.614405\pi\)
\(98\) 0 0
\(99\) 3.46410i 0.348155i
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 4.00000i 0.394132i 0.980390 + 0.197066i \(0.0631413\pi\)
−0.980390 + 0.197066i \(0.936859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0000i 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) 6.92820i 0.663602i 0.943349 + 0.331801i \(0.107656\pi\)
−0.943349 + 0.331801i \(0.892344\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 18.0000i 1.69330i 0.532152 + 0.846649i \(0.321383\pi\)
−0.532152 + 0.846649i \(0.678617\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −3.46410 1.00000i −0.320256 0.0924500i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 3.46410 0.312348
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 16.0000i 1.41977i 0.704317 + 0.709885i \(0.251253\pi\)
−0.704317 + 0.709885i \(0.748747\pi\)
\(128\) 0 0
\(129\) 8.00000 0.704361
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.3923 0.887875 0.443937 0.896058i \(-0.353581\pi\)
0.443937 + 0.896058i \(0.353581\pi\)
\(138\) 0 0
\(139\) −8.00000 −0.678551 −0.339276 0.940687i \(-0.610182\pi\)
−0.339276 + 0.940687i \(0.610182\pi\)
\(140\) 0 0
\(141\) 3.46410i 0.291730i
\(142\) 0 0
\(143\) −3.46410 + 12.0000i −0.289683 + 1.00349i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 7.00000i 0.577350i
\(148\) 0 0
\(149\) 17.3205i 1.41895i 0.704730 + 0.709476i \(0.251068\pi\)
−0.704730 + 0.709476i \(0.748932\pi\)
\(150\) 0 0
\(151\) 6.92820i 0.563809i 0.959442 + 0.281905i \(0.0909662\pi\)
−0.959442 + 0.281905i \(0.909034\pi\)
\(152\) 0 0
\(153\) 6.00000i 0.485071i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2.00000i 0.159617i 0.996810 + 0.0798087i \(0.0254309\pi\)
−0.996810 + 0.0798087i \(0.974569\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −20.7846 −1.62798 −0.813988 0.580881i \(-0.802708\pi\)
−0.813988 + 0.580881i \(0.802708\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −17.3205 −1.34030 −0.670151 0.742225i \(-0.733770\pi\)
−0.670151 + 0.742225i \(0.733770\pi\)
\(168\) 0 0
\(169\) 11.0000 + 6.92820i 0.846154 + 0.532939i
\(170\) 0 0
\(171\) 6.92820i 0.529813i
\(172\) 0 0
\(173\) 6.00000i 0.456172i −0.973641 0.228086i \(-0.926753\pi\)
0.973641 0.228086i \(-0.0732467\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −3.46410 −0.260378
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 0 0
\(183\) 10.0000i 0.739221i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −20.7846 −1.51992
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 13.8564 0.997406 0.498703 0.866773i \(-0.333810\pi\)
0.498703 + 0.866773i \(0.333810\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −17.3205 −1.23404 −0.617018 0.786949i \(-0.711659\pi\)
−0.617018 + 0.786949i \(0.711659\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) 13.8564i 0.977356i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −24.0000 −1.66011
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) −10.3923 −0.712069
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 6.92820i 0.468165i
\(220\) 0 0
\(221\) −6.00000 + 20.7846i −0.403604 + 1.39812i
\(222\) 0 0
\(223\) −6.92820 −0.463947 −0.231973 0.972722i \(-0.574518\pi\)
−0.231973 + 0.972722i \(0.574518\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.3923 0.689761 0.344881 0.938647i \(-0.387919\pi\)
0.344881 + 0.938647i \(0.387919\pi\)
\(228\) 0 0
\(229\) 6.92820i 0.457829i −0.973447 0.228914i \(-0.926482\pi\)
0.973447 0.228914i \(-0.0735176\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.0000i 1.17922i −0.807688 0.589610i \(-0.799282\pi\)
0.807688 0.589610i \(-0.200718\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 8.00000i 0.519656i
\(238\) 0 0
\(239\) 10.3923i 0.672222i −0.941822 0.336111i \(-0.890888\pi\)
0.941822 0.336111i \(-0.109112\pi\)
\(240\) 0 0
\(241\) 20.7846i 1.33885i −0.742878 0.669427i \(-0.766540\pi\)
0.742878 0.669427i \(-0.233460\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −6.92820 + 24.0000i −0.440831 + 1.52708i
\(248\) 0 0
\(249\) 3.46410i 0.219529i
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.00000i 0.374270i −0.982334 0.187135i \(-0.940080\pi\)
0.982334 0.187135i \(-0.0599201\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −17.3205 −1.06000
\(268\) 0 0
\(269\) 30.0000 1.82913 0.914566 0.404436i \(-0.132532\pi\)
0.914566 + 0.404436i \(0.132532\pi\)
\(270\) 0 0
\(271\) 27.7128i 1.68343i −0.539919 0.841717i \(-0.681545\pi\)
0.539919 0.841717i \(-0.318455\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 10.0000i 0.600842i −0.953807 0.300421i \(-0.902873\pi\)
0.953807 0.300421i \(-0.0971271\pi\)
\(278\) 0 0
\(279\) 6.92820i 0.414781i
\(280\) 0 0
\(281\) 17.3205i 1.03325i 0.856210 + 0.516627i \(0.172813\pi\)
−0.856210 + 0.516627i \(0.827187\pi\)
\(282\) 0 0
\(283\) 20.0000i 1.18888i 0.804141 + 0.594438i \(0.202626\pi\)
−0.804141 + 0.594438i \(0.797374\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −19.0000 −1.11765
\(290\) 0 0
\(291\) 6.92820i 0.406138i
\(292\) 0 0
\(293\) 3.46410 0.202375 0.101187 0.994867i \(-0.467736\pi\)
0.101187 + 0.994867i \(0.467736\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 3.46410 0.201008
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 6.00000i 0.344691i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) −4.00000 −0.227552
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) 10.0000i 0.565233i −0.959233 0.282617i \(-0.908798\pi\)
0.959233 0.282617i \(-0.0912024\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 24.2487 1.36194 0.680972 0.732310i \(-0.261558\pi\)
0.680972 + 0.732310i \(0.261558\pi\)
\(318\) 0 0
\(319\) 20.7846i 1.16371i
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) −41.5692 −2.31297
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −6.92820 −0.383131
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 13.8564i 0.761617i 0.924654 + 0.380808i \(0.124354\pi\)
−0.924654 + 0.380808i \(0.875646\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 10.0000i 0.544735i 0.962193 + 0.272367i \(0.0878066\pi\)
−0.962193 + 0.272367i \(0.912193\pi\)
\(338\) 0 0
\(339\) −18.0000 −0.977626
\(340\) 0 0
\(341\) 24.0000 1.29967
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.0000i 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 1.00000 3.46410i 0.0533761 0.184900i
\(352\) 0 0
\(353\) 10.3923 0.553127 0.276563 0.960996i \(-0.410804\pi\)
0.276563 + 0.960996i \(0.410804\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.2487i 1.27980i 0.768459 + 0.639899i \(0.221024\pi\)
−0.768459 + 0.639899i \(0.778976\pi\)
\(360\) 0 0
\(361\) −29.0000 −1.52632
\(362\) 0 0
\(363\) 1.00000i 0.0524864i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 28.0000i 1.46159i −0.682598 0.730794i \(-0.739150\pi\)
0.682598 0.730794i \(-0.260850\pi\)
\(368\) 0 0
\(369\) 3.46410i 0.180334i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 2.00000i 0.103556i 0.998659 + 0.0517780i \(0.0164888\pi\)
−0.998659 + 0.0517780i \(0.983511\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20.7846 + 6.00000i 1.07046 + 0.309016i
\(378\) 0 0
\(379\) 20.7846i 1.06763i −0.845600 0.533817i \(-0.820757\pi\)
0.845600 0.533817i \(-0.179243\pi\)
\(380\) 0 0
\(381\) −16.0000 −0.819705
\(382\) 0 0
\(383\) −24.2487 −1.23905 −0.619526 0.784976i \(-0.712675\pi\)
−0.619526 + 0.784976i \(0.712675\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.00000i 0.406663i
\(388\) 0 0
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 12.0000i 0.605320i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −13.8564 −0.695433 −0.347717 0.937600i \(-0.613043\pi\)
−0.347717 + 0.937600i \(0.613043\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10.3923i 0.518967i 0.965748 + 0.259483i \(0.0835523\pi\)
−0.965748 + 0.259483i \(0.916448\pi\)
\(402\) 0 0
\(403\) 6.92820 24.0000i 0.345118 1.19553i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 20.7846i 1.02773i −0.857870 0.513866i \(-0.828213\pi\)
0.857870 0.513866i \(-0.171787\pi\)
\(410\) 0 0
\(411\) 10.3923i 0.512615i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 8.00000i 0.391762i
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) 20.7846i 1.01298i −0.862246 0.506490i \(-0.830943\pi\)
0.862246 0.506490i \(-0.169057\pi\)
\(422\) 0 0
\(423\) 3.46410 0.168430
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −12.0000 3.46410i −0.579365 0.167248i
\(430\) 0 0
\(431\) 31.1769i 1.50174i 0.660451 + 0.750870i \(0.270365\pi\)
−0.660451 + 0.750870i \(0.729635\pi\)
\(432\) 0 0
\(433\) 2.00000i 0.0961139i 0.998845 + 0.0480569i \(0.0153029\pi\)
−0.998845 + 0.0480569i \(0.984697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −20.0000 −0.954548 −0.477274 0.878755i \(-0.658375\pi\)
−0.477274 + 0.878755i \(0.658375\pi\)
\(440\) 0 0
\(441\) 7.00000 0.333333
\(442\) 0 0
\(443\) 12.0000i 0.570137i 0.958507 + 0.285069i \(0.0920164\pi\)
−0.958507 + 0.285069i \(0.907984\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −17.3205 −0.819232
\(448\) 0 0
\(449\) 3.46410i 0.163481i 0.996654 + 0.0817405i \(0.0260479\pi\)
−0.996654 + 0.0817405i \(0.973952\pi\)
\(450\) 0 0
\(451\) 12.0000 0.565058
\(452\) 0 0
\(453\) −6.92820 −0.325515
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6.92820 −0.324088 −0.162044 0.986784i \(-0.551809\pi\)
−0.162044 + 0.986784i \(0.551809\pi\)
\(458\) 0 0
\(459\) 6.00000 0.280056
\(460\) 0 0
\(461\) 10.3923i 0.484018i −0.970274 0.242009i \(-0.922194\pi\)
0.970274 0.242009i \(-0.0778063\pi\)
\(462\) 0 0
\(463\) 13.8564 0.643962 0.321981 0.946746i \(-0.395651\pi\)
0.321981 + 0.946746i \(0.395651\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 36.0000i 1.66588i 0.553362 + 0.832941i \(0.313345\pi\)
−0.553362 + 0.832941i \(0.686655\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −2.00000 −0.0921551
\(472\) 0 0
\(473\) 27.7128 1.27424
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.00000i 0.274721i
\(478\) 0 0
\(479\) 3.46410i 0.158279i 0.996864 + 0.0791394i \(0.0252172\pi\)
−0.996864 + 0.0791394i \(0.974783\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −6.92820 −0.313947 −0.156973 0.987603i \(-0.550174\pi\)
−0.156973 + 0.987603i \(0.550174\pi\)
\(488\) 0 0
\(489\) 20.7846i 0.939913i
\(490\) 0 0
\(491\) −36.0000 −1.62466 −0.812329 0.583200i \(-0.801800\pi\)
−0.812329 + 0.583200i \(0.801800\pi\)
\(492\) 0 0
\(493\) 36.0000i 1.62136i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 17.3205i 0.773823i
\(502\) 0 0
\(503\) 24.0000i 1.07011i −0.844818 0.535054i \(-0.820291\pi\)
0.844818 0.535054i \(-0.179709\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −6.92820 + 11.0000i −0.307692 + 0.488527i
\(508\) 0 0
\(509\) 24.2487i 1.07481i 0.843326 + 0.537403i \(0.180594\pi\)
−0.843326 + 0.537403i \(0.819406\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 6.92820 0.305888
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 12.0000i 0.527759i
\(518\) 0 0
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) 0 0
\(523\) 8.00000i 0.349816i −0.984585 0.174908i \(-0.944037\pi\)
0.984585 0.174908i \(-0.0559627\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 41.5692 1.81078
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 3.46410i 0.150329i
\(532\) 0 0
\(533\) 3.46410 12.0000i 0.150047 0.519778i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 12.0000i 0.517838i
\(538\) 0 0
\(539\) 24.2487i 1.04447i
\(540\) 0 0
\(541\) 20.7846i 0.893600i −0.894634 0.446800i \(-0.852564\pi\)
0.894634 0.446800i \(-0.147436\pi\)
\(542\) 0 0
\(543\) 22.0000i 0.944110i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 8.00000i 0.342055i 0.985266 + 0.171028i \(0.0547087\pi\)
−0.985266 + 0.171028i \(0.945291\pi\)
\(548\) 0 0
\(549\) −10.0000 −0.426790
\(550\) 0 0
\(551\) 41.5692i 1.77091i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24.2487 1.02745 0.513725 0.857955i \(-0.328265\pi\)
0.513725 + 0.857955i \(0.328265\pi\)
\(558\) 0 0
\(559\) 8.00000 27.7128i 0.338364 1.17213i
\(560\) 0 0
\(561\) 20.7846i 0.877527i
\(562\) 0 0
\(563\) 36.0000i 1.51722i 0.651546 + 0.758610i \(0.274121\pi\)
−0.651546 + 0.758610i \(0.725879\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) 0 0
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 13.8564 0.576850 0.288425 0.957503i \(-0.406868\pi\)
0.288425 + 0.957503i \(0.406868\pi\)
\(578\) 0 0
\(579\) 13.8564i 0.575853i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 20.7846 0.860811
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 31.1769 1.28681 0.643404 0.765526i \(-0.277521\pi\)
0.643404 + 0.765526i \(0.277521\pi\)
\(588\) 0 0
\(589\) 48.0000 1.97781
\(590\) 0 0
\(591\) 17.3205i 0.712470i
\(592\) 0 0
\(593\) 24.2487 0.995775 0.497888 0.867242i \(-0.334109\pi\)
0.497888 + 0.867242i \(0.334109\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8.00000i 0.327418i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) 13.8564 0.564276
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 28.0000i 1.13648i −0.822861 0.568242i \(-0.807624\pi\)
0.822861 0.568242i \(-0.192376\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −12.0000 3.46410i −0.485468 0.140143i
\(612\) 0 0
\(613\) 13.8564 0.559655 0.279827 0.960050i \(-0.409723\pi\)
0.279827 + 0.960050i \(0.409723\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 31.1769 1.25514 0.627568 0.778562i \(-0.284051\pi\)
0.627568 + 0.778562i \(0.284051\pi\)
\(618\) 0 0
\(619\) 27.7128i 1.11387i 0.830555 + 0.556936i \(0.188023\pi\)
−0.830555 + 0.556936i \(0.811977\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 24.0000i 0.958468i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 20.7846i 0.827422i 0.910408 + 0.413711i \(0.135768\pi\)
−0.910408 + 0.413711i \(0.864232\pi\)
\(632\) 0 0
\(633\) 4.00000i 0.158986i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −24.2487 7.00000i −0.960769 0.277350i
\(638\) 0 0
\(639\) 10.3923i 0.411113i
\(640\) 0 0
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) −41.5692 −1.63933 −0.819665 0.572843i \(-0.805840\pi\)
−0.819665 + 0.572843i \(0.805840\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) −12.0000 −0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.00000i 0.234798i 0.993085 + 0.117399i \(0.0374557\pi\)
−0.993085 + 0.117399i \(0.962544\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 6.92820 0.270295
\(658\) 0 0
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) 13.8564i 0.538952i −0.963007 0.269476i \(-0.913150\pi\)
0.963007 0.269476i \(-0.0868504\pi\)
\(662\) 0 0
\(663\) −20.7846 6.00000i −0.807207 0.233021i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 6.92820i 0.267860i
\(670\) 0 0
\(671\) 34.6410i 1.33730i
\(672\) 0 0
\(673\) 14.0000i 0.539660i −0.962908 0.269830i \(-0.913032\pi\)
0.962908 0.269830i \(-0.0869676\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 18.0000i 0.691796i −0.938272 0.345898i \(-0.887574\pi\)
0.938272 0.345898i \(-0.112426\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 10.3923i 0.398234i
\(682\) 0 0
\(683\) 3.46410 0.132550 0.0662751 0.997801i \(-0.478889\pi\)
0.0662751 + 0.997801i \(0.478889\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 6.92820 0.264327
\(688\) 0 0
\(689\) 6.00000 20.7846i 0.228582 0.791831i
\(690\) 0 0
\(691\) 27.7128i 1.05425i 0.849789 + 0.527123i \(0.176729\pi\)
−0.849789 + 0.527123i \(0.823271\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 20.7846 0.787273
\(698\) 0 0
\(699\) 18.0000 0.680823
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 6.92820i 0.260194i 0.991501 + 0.130097i \(0.0415289\pi\)
−0.991501 + 0.130097i \(0.958471\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 10.3923 0.388108
\(718\) 0 0
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 20.7846 0.772988
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 16.0000i 0.593407i 0.954970 + 0.296704i \(0.0958873\pi\)
−0.954970 + 0.296704i \(0.904113\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 48.0000 1.77534
\(732\) 0 0
\(733\) 6.92820 0.255899 0.127950 0.991781i \(-0.459160\pi\)
0.127950 + 0.991781i \(0.459160\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 48.0000i 1.76810i
\(738\) 0 0
\(739\) 27.7128i 1.01943i −0.860343 0.509716i \(-0.829750\pi\)
0.860343 0.509716i \(-0.170250\pi\)
\(740\) 0 0
\(741\) −24.0000 6.92820i −0.881662 0.254514i
\(742\) 0 0
\(743\) 10.3923 0.381257 0.190628 0.981662i \(-0.438947\pi\)
0.190628 + 0.981662i \(0.438947\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 3.46410 0.126745
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −28.0000 −1.02173 −0.510867 0.859660i \(-0.670676\pi\)
−0.510867 + 0.859660i \(0.670676\pi\)
\(752\) 0 0
\(753\) 12.0000i 0.437304i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 38.0000i 1.38113i −0.723269 0.690567i \(-0.757361\pi\)
0.723269 0.690567i \(-0.242639\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 31.1769i 1.13016i 0.825035 + 0.565081i \(0.191155\pi\)
−0.825035 + 0.565081i \(0.808845\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.46410 + 12.0000i −0.125081 + 0.433295i
\(768\) 0 0
\(769\) 27.7128i 0.999350i −0.866213 0.499675i \(-0.833453\pi\)
0.866213 0.499675i \(-0.166547\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) 0 0
\(773\) 51.9615 1.86893 0.934463 0.356060i \(-0.115880\pi\)
0.934463 + 0.356060i \(0.115880\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 24.0000 0.859889
\(780\) 0 0
\(781\) −36.0000 −1.28818
\(782\) 0 0
\(783\) 6.00000i 0.214423i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 27.7128 0.987855 0.493928 0.869503i \(-0.335561\pi\)
0.493928 + 0.869503i \(0.335561\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 34.6410 + 10.0000i 1.23014 + 0.355110i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 30.0000i 1.06265i −0.847167 0.531327i \(-0.821693\pi\)
0.847167 0.531327i \(-0.178307\pi\)
\(798\) 0 0
\(799\) 20.7846i 0.735307i
\(800\) 0 0
\(801\) 17.3205i 0.611990i
\(802\) 0 0
\(803\) 24.0000i 0.846942i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 30.0000i 1.05605i
\(808\) 0 0
\(809\) 18.0000 0.632846 0.316423 0.948618i \(-0.397518\pi\)
0.316423 + 0.948618i \(0.397518\pi\)
\(810\) 0 0
\(811\) 6.92820i 0.243282i 0.992574 + 0.121641i \(0.0388157\pi\)
−0.992574 + 0.121641i \(0.961184\pi\)
\(812\) 0 0
\(813\) 27.7128 0.971931
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 55.4256 1.93910
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.46410i 0.120898i −0.998171 0.0604490i \(-0.980747\pi\)
0.998171 0.0604490i \(-0.0192532\pi\)
\(822\) 0 0
\(823\) 4.00000i 0.139431i 0.997567 + 0.0697156i \(0.0222092\pi\)
−0.997567 + 0.0697156i \(0.977791\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −17.3205 −0.602293 −0.301147 0.953578i \(-0.597369\pi\)
−0.301147 + 0.953578i \(0.597369\pi\)
\(828\) 0 0
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) 0 0
\(831\) 10.0000 0.346896
\(832\) 0 0
\(833\) 42.0000i 1.45521i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −6.92820 −0.239474
\(838\) 0 0
\(839\) 10.3923i 0.358782i −0.983778 0.179391i \(-0.942587\pi\)
0.983778 0.179391i \(-0.0574128\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) −17.3205 −0.596550
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −20.0000 −0.686398
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 13.8564 0.474434 0.237217 0.971457i \(-0.423765\pi\)
0.237217 + 0.971457i \(0.423765\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.00000i 0.204956i −0.994735 0.102478i \(-0.967323\pi\)
0.994735 0.102478i \(-0.0326771\pi\)
\(858\) 0 0
\(859\) −28.0000 −0.955348 −0.477674 0.878537i \(-0.658520\pi\)
−0.477674 + 0.878537i \(0.658520\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −38.1051 −1.29711 −0.648557 0.761166i \(-0.724627\pi\)
−0.648557 + 0.761166i \(0.724627\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 19.0000i 0.645274i
\(868\) 0 0
\(869\) 27.7128i 0.940093i
\(870\) 0 0
\(871\) −48.0000 13.8564i −1.62642 0.469506i
\(872\) 0 0
\(873\) 6.92820 0.234484
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −41.5692 −1.40369 −0.701846 0.712328i \(-0.747641\pi\)
−0.701846 + 0.712328i \(0.747641\pi\)
\(878\) 0 0
\(879\) 3.46410i 0.116841i
\(880\) 0 0
\(881\) −6.00000 −0.202145 −0.101073 0.994879i \(-0.532227\pi\)
−0.101073 + 0.994879i \(0.532227\pi\)
\(882\) 0 0
\(883\) 20.0000i 0.673054i 0.941674 + 0.336527i \(0.109252\pi\)
−0.941674 + 0.336527i \(0.890748\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 48.0000i 1.61168i −0.592132 0.805841i \(-0.701714\pi\)
0.592132 0.805841i \(-0.298286\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 3.46410i 0.116052i
\(892\) 0 0
\(893\) 24.0000i 0.803129i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 41.5692i 1.38641i
\(900\) 0 0
\(901\) 36.0000 1.19933
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 28.0000i 0.929725i 0.885383 + 0.464862i \(0.153896\pi\)
−0.885383 + 0.464862i \(0.846104\pi\)
\(908\) 0 0
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 0 0
\(913\) 12.0000i 0.397142i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 32.0000 1.05558 0.527791 0.849374i \(-0.323020\pi\)
0.527791 + 0.849374i \(0.323020\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −10.3923 + 36.0000i −0.342067 + 1.18495i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 4.00000i 0.131377i
\(928\) 0 0
\(929\) 31.1769i 1.02288i 0.859319 + 0.511441i \(0.170888\pi\)
−0.859319 + 0.511441i \(0.829112\pi\)
\(930\) 0 0
\(931\) 48.4974i 1.58944i
\(932\) 0 0
\(933\) 24.0000i 0.785725i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 22.0000i 0.718709i 0.933201 + 0.359354i \(0.117003\pi\)
−0.933201 + 0.359354i \(0.882997\pi\)
\(938\) 0 0
\(939\) 10.0000 0.326338
\(940\) 0 0
\(941\) 10.3923i 0.338779i 0.985549 + 0.169390i \(0.0541797\pi\)
−0.985549 + 0.169390i \(0.945820\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 45.0333 1.46339 0.731693 0.681634i \(-0.238730\pi\)
0.731693 + 0.681634i \(0.238730\pi\)
\(948\) 0 0
\(949\) −24.0000 6.92820i −0.779073 0.224899i
\(950\) 0 0
\(951\) 24.2487i 0.786318i
\(952\) 0 0
\(953\) 6.00000i 0.194359i 0.995267 + 0.0971795i \(0.0309821\pi\)
−0.995267 + 0.0971795i \(0.969018\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −20.7846 −0.671871
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −17.0000 −0.548387
\(962\) 0 0
\(963\) 12.0000i 0.386695i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 34.6410 1.11398 0.556990 0.830519i \(-0.311956\pi\)
0.556990 + 0.830519i \(0.311956\pi\)
\(968\) 0 0
\(969\) 41.5692i 1.33540i
\(970\) 0 0
\(971\) 60.0000 1.92549 0.962746 0.270408i \(-0.0871586\pi\)
0.962746 + 0.270408i \(0.0871586\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.2487 0.775785 0.387893 0.921705i \(-0.373203\pi\)
0.387893 + 0.921705i \(0.373203\pi\)
\(978\) 0 0
\(979\) −60.0000 −1.91761
\(980\) 0 0
\(981\) 6.92820i 0.221201i
\(982\) 0 0
\(983\) −31.1769 −0.994389 −0.497195 0.867639i \(-0.665636\pi\)
−0.497195 + 0.867639i \(0.665636\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) 0 0
\(993\) −13.8564 −0.439720
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 38.0000i 1.20347i 0.798695 + 0.601736i \(0.205524\pi\)
−0.798695 + 0.601736i \(0.794476\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3900.2.j.h.649.4 4
5.2 odd 4 3900.2.c.c.3301.2 2
5.3 odd 4 156.2.b.a.25.2 yes 2
5.4 even 2 inner 3900.2.j.h.649.2 4
13.12 even 2 inner 3900.2.j.h.649.3 4
15.8 even 4 468.2.b.a.181.1 2
20.3 even 4 624.2.c.f.337.2 2
35.13 even 4 7644.2.e.g.4705.1 2
40.3 even 4 2496.2.c.e.961.1 2
40.13 odd 4 2496.2.c.l.961.1 2
60.23 odd 4 1872.2.c.c.1585.1 2
65.3 odd 12 2028.2.q.b.1837.1 2
65.8 even 4 2028.2.a.g.1.1 2
65.12 odd 4 3900.2.c.c.3301.1 2
65.18 even 4 2028.2.a.g.1.2 2
65.23 odd 12 2028.2.q.c.1837.1 2
65.28 even 12 2028.2.i.i.529.2 4
65.33 even 12 2028.2.i.i.2005.1 4
65.38 odd 4 156.2.b.a.25.1 2
65.43 odd 12 2028.2.q.b.361.1 2
65.48 odd 12 2028.2.q.c.361.1 2
65.58 even 12 2028.2.i.i.2005.2 4
65.63 even 12 2028.2.i.i.529.1 4
65.64 even 2 inner 3900.2.j.h.649.1 4
195.8 odd 4 6084.2.a.v.1.2 2
195.38 even 4 468.2.b.a.181.2 2
195.83 odd 4 6084.2.a.v.1.1 2
260.83 odd 4 8112.2.a.bs.1.2 2
260.103 even 4 624.2.c.f.337.1 2
260.203 odd 4 8112.2.a.bs.1.1 2
455.363 even 4 7644.2.e.g.4705.2 2
520.363 even 4 2496.2.c.e.961.2 2
520.493 odd 4 2496.2.c.l.961.2 2
780.623 odd 4 1872.2.c.c.1585.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.2.b.a.25.1 2 65.38 odd 4
156.2.b.a.25.2 yes 2 5.3 odd 4
468.2.b.a.181.1 2 15.8 even 4
468.2.b.a.181.2 2 195.38 even 4
624.2.c.f.337.1 2 260.103 even 4
624.2.c.f.337.2 2 20.3 even 4
1872.2.c.c.1585.1 2 60.23 odd 4
1872.2.c.c.1585.2 2 780.623 odd 4
2028.2.a.g.1.1 2 65.8 even 4
2028.2.a.g.1.2 2 65.18 even 4
2028.2.i.i.529.1 4 65.63 even 12
2028.2.i.i.529.2 4 65.28 even 12
2028.2.i.i.2005.1 4 65.33 even 12
2028.2.i.i.2005.2 4 65.58 even 12
2028.2.q.b.361.1 2 65.43 odd 12
2028.2.q.b.1837.1 2 65.3 odd 12
2028.2.q.c.361.1 2 65.48 odd 12
2028.2.q.c.1837.1 2 65.23 odd 12
2496.2.c.e.961.1 2 40.3 even 4
2496.2.c.e.961.2 2 520.363 even 4
2496.2.c.l.961.1 2 40.13 odd 4
2496.2.c.l.961.2 2 520.493 odd 4
3900.2.c.c.3301.1 2 65.12 odd 4
3900.2.c.c.3301.2 2 5.2 odd 4
3900.2.j.h.649.1 4 65.64 even 2 inner
3900.2.j.h.649.2 4 5.4 even 2 inner
3900.2.j.h.649.3 4 13.12 even 2 inner
3900.2.j.h.649.4 4 1.1 even 1 trivial
6084.2.a.v.1.1 2 195.83 odd 4
6084.2.a.v.1.2 2 195.8 odd 4
7644.2.e.g.4705.1 2 35.13 even 4
7644.2.e.g.4705.2 2 455.363 even 4
8112.2.a.bs.1.1 2 260.203 odd 4
8112.2.a.bs.1.2 2 260.83 odd 4