Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [6084,2,Mod(1,6084)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6084, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6084.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 6084 = 2^{2} \cdot 3^{2} \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6084.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(48.5809845897\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\zeta_{12})^+\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} - 3 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 156) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.2 | ||
Root | \(1.73205\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 6084.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 3.46410 | 1.54919 | 0.774597 | − | 0.632456i | \(-0.217953\pi\) | ||||
0.774597 | + | 0.632456i | \(0.217953\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −3.46410 | −1.04447 | −0.522233 | − | 0.852803i | \(-0.674901\pi\) | ||||
−0.522233 | + | 0.852803i | \(0.674901\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 6.00000 | 1.45521 | 0.727607 | − | 0.685994i | \(-0.240633\pi\) | ||||
0.727607 | + | 0.685994i | \(0.240633\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 6.92820 | 1.58944 | 0.794719 | − | 0.606977i | \(-0.207618\pi\) | ||||
0.794719 | + | 0.606977i | \(0.207618\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 7.00000 | 1.40000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 6.00000 | 1.11417 | 0.557086 | − | 0.830455i | \(-0.311919\pi\) | ||||
0.557086 | + | 0.830455i | \(0.311919\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 6.92820 | 1.24434 | 0.622171 | − | 0.782881i | \(-0.286251\pi\) | ||||
0.622171 | + | 0.782881i | \(0.286251\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −3.46410 | −0.541002 | −0.270501 | − | 0.962720i | \(-0.587189\pi\) | ||||
−0.270501 | + | 0.962720i | \(0.587189\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −8.00000 | −1.21999 | −0.609994 | − | 0.792406i | \(-0.708828\pi\) | ||||
−0.609994 | + | 0.792406i | \(0.708828\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −3.46410 | −0.505291 | −0.252646 | − | 0.967559i | \(-0.581301\pi\) | ||||
−0.252646 | + | 0.967559i | \(0.581301\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −7.00000 | −1.00000 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −6.00000 | −0.824163 | −0.412082 | − | 0.911147i | \(-0.635198\pi\) | ||||
−0.412082 | + | 0.911147i | \(0.635198\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −12.0000 | −1.61808 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 3.46410 | 0.450988 | 0.225494 | − | 0.974245i | \(-0.427600\pi\) | ||||
0.225494 | + | 0.974245i | \(0.427600\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 10.0000 | 1.28037 | 0.640184 | − | 0.768221i | \(-0.278858\pi\) | ||||
0.640184 | + | 0.768221i | \(0.278858\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −13.8564 | −1.69283 | −0.846415 | − | 0.532524i | \(-0.821244\pi\) | ||||
−0.846415 | + | 0.532524i | \(0.821244\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 10.3923 | 1.23334 | 0.616670 | − | 0.787222i | \(-0.288481\pi\) | ||||
0.616670 | + | 0.787222i | \(0.288481\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −6.92820 | −0.810885 | −0.405442 | − | 0.914121i | \(-0.632883\pi\) | ||||
−0.405442 | + | 0.914121i | \(0.632883\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −8.00000 | −0.900070 | −0.450035 | − | 0.893011i | \(-0.648589\pi\) | ||||
−0.450035 | + | 0.893011i | \(0.648589\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −3.46410 | −0.380235 | −0.190117 | − | 0.981761i | \(-0.560887\pi\) | ||||
−0.190117 | + | 0.981761i | \(0.560887\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 20.7846 | 2.25441 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 17.3205 | 1.83597 | 0.917985 | − | 0.396615i | \(-0.129815\pi\) | ||||
0.917985 | + | 0.396615i | \(0.129815\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 24.0000 | 2.46235 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −6.92820 | −0.703452 | −0.351726 | − | 0.936103i | \(-0.614405\pi\) | ||||
−0.351726 | + | 0.936103i | \(0.614405\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 6.00000 | 0.597022 | 0.298511 | − | 0.954406i | \(-0.403510\pi\) | ||||
0.298511 | + | 0.954406i | \(0.403510\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 4.00000 | 0.394132 | 0.197066 | − | 0.980390i | \(-0.436859\pi\) | ||||
0.197066 | + | 0.980390i | \(0.436859\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 12.0000 | 1.16008 | 0.580042 | − | 0.814587i | \(-0.303036\pi\) | ||||
0.580042 | + | 0.814587i | \(0.303036\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 6.92820 | 0.663602 | 0.331801 | − | 0.943349i | \(-0.392344\pi\) | ||||
0.331801 | + | 0.943349i | \(0.392344\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 18.0000 | 1.69330 | 0.846649 | − | 0.532152i | \(-0.178617\pi\) | ||||
0.846649 | + | 0.532152i | \(0.178617\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 1.00000 | 0.0909091 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 6.92820 | 0.619677 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −16.0000 | −1.41977 | −0.709885 | − | 0.704317i | \(-0.751253\pi\) | ||||
−0.709885 | + | 0.704317i | \(0.751253\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 12.0000 | 1.04844 | 0.524222 | − | 0.851581i | \(-0.324356\pi\) | ||||
0.524222 | + | 0.851581i | \(0.324356\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 10.3923 | 0.887875 | 0.443937 | − | 0.896058i | \(-0.353581\pi\) | ||||
0.443937 | + | 0.896058i | \(0.353581\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 8.00000 | 0.678551 | 0.339276 | − | 0.940687i | \(-0.389818\pi\) | ||||
0.339276 | + | 0.940687i | \(0.389818\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 20.7846 | 1.72607 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −17.3205 | −1.41895 | −0.709476 | − | 0.704730i | \(-0.751068\pi\) | ||||
−0.709476 | + | 0.704730i | \(0.751068\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 6.92820 | 0.563809 | 0.281905 | − | 0.959442i | \(-0.409034\pi\) | ||||
0.281905 | + | 0.959442i | \(0.409034\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 24.0000 | 1.92773 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 2.00000 | 0.159617 | 0.0798087 | − | 0.996810i | \(-0.474569\pi\) | ||||
0.0798087 | + | 0.996810i | \(0.474569\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −20.7846 | −1.62798 | −0.813988 | − | 0.580881i | \(-0.802708\pi\) | ||||
−0.813988 | + | 0.580881i | \(0.802708\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −17.3205 | −1.34030 | −0.670151 | − | 0.742225i | \(-0.733770\pi\) | ||||
−0.670151 | + | 0.742225i | \(0.733770\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 0 | 0 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 6.00000 | 0.456172 | 0.228086 | − | 0.973641i | \(-0.426753\pi\) | ||||
0.228086 | + | 0.973641i | \(0.426753\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −12.0000 | −0.896922 | −0.448461 | − | 0.893802i | \(-0.648028\pi\) | ||||
−0.448461 | + | 0.893802i | \(0.648028\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 22.0000 | 1.63525 | 0.817624 | − | 0.575753i | \(-0.195291\pi\) | ||||
0.817624 | + | 0.575753i | \(0.195291\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | −20.7846 | −1.51992 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 13.8564 | 0.997406 | 0.498703 | − | 0.866773i | \(-0.333810\pi\) | ||||
0.498703 | + | 0.866773i | \(0.333810\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 17.3205 | 1.23404 | 0.617018 | − | 0.786949i | \(-0.288341\pi\) | ||||
0.617018 | + | 0.786949i | \(0.288341\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 8.00000 | 0.567105 | 0.283552 | − | 0.958957i | \(-0.408487\pi\) | ||||
0.283552 | + | 0.958957i | \(0.408487\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −12.0000 | −0.838116 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −24.0000 | −1.66011 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 4.00000 | 0.275371 | 0.137686 | − | 0.990476i | \(-0.456034\pi\) | ||||
0.137686 | + | 0.990476i | \(0.456034\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | −27.7128 | −1.89000 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 6.92820 | 0.463947 | 0.231973 | − | 0.972722i | \(-0.425482\pi\) | ||||
0.231973 | + | 0.972722i | \(0.425482\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | −10.3923 | −0.689761 | −0.344881 | − | 0.938647i | \(-0.612081\pi\) | ||||
−0.344881 | + | 0.938647i | \(0.612081\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 6.92820 | 0.457829 | 0.228914 | − | 0.973447i | \(-0.426482\pi\) | ||||
0.228914 | + | 0.973447i | \(0.426482\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 18.0000 | 1.17922 | 0.589610 | − | 0.807688i | \(-0.299282\pi\) | ||||
0.589610 | + | 0.807688i | \(0.299282\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −12.0000 | −0.782794 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 10.3923 | 0.672222 | 0.336111 | − | 0.941822i | \(-0.390888\pi\) | ||||
0.336111 | + | 0.941822i | \(0.390888\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −20.7846 | −1.33885 | −0.669427 | − | 0.742878i | \(-0.733460\pi\) | ||||
−0.669427 | + | 0.742878i | \(0.733460\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | −24.2487 | −1.54919 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 12.0000 | 0.757433 | 0.378717 | − | 0.925513i | \(-0.376365\pi\) | ||||
0.378717 | + | 0.925513i | \(0.376365\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −6.00000 | −0.374270 | −0.187135 | − | 0.982334i | \(-0.559920\pi\) | ||||
−0.187135 | + | 0.982334i | \(0.559920\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −20.7846 | −1.27679 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 30.0000 | 1.82913 | 0.914566 | − | 0.404436i | \(-0.132532\pi\) | ||||
0.914566 | + | 0.404436i | \(0.132532\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −27.7128 | −1.68343 | −0.841717 | − | 0.539919i | \(-0.818455\pi\) | ||||
−0.841717 | + | 0.539919i | \(0.818455\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | −24.2487 | −1.46225 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 10.0000 | 0.600842 | 0.300421 | − | 0.953807i | \(-0.402873\pi\) | ||||
0.300421 | + | 0.953807i | \(0.402873\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −17.3205 | −1.03325 | −0.516627 | − | 0.856210i | \(-0.672813\pi\) | ||||
−0.516627 | + | 0.856210i | \(0.672813\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 20.0000 | 1.18888 | 0.594438 | − | 0.804141i | \(-0.297374\pi\) | ||||
0.594438 | + | 0.804141i | \(0.297374\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 19.0000 | 1.11765 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −3.46410 | −0.202375 | −0.101187 | − | 0.994867i | \(-0.532264\pi\) | ||||
−0.101187 | + | 0.994867i | \(0.532264\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 12.0000 | 0.698667 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 34.6410 | 1.98354 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 24.0000 | 1.36092 | 0.680458 | − | 0.732787i | \(-0.261781\pi\) | ||||
0.680458 | + | 0.732787i | \(0.261781\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 10.0000 | 0.565233 | 0.282617 | − | 0.959233i | \(-0.408798\pi\) | ||||
0.282617 | + | 0.959233i | \(0.408798\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −24.2487 | −1.36194 | −0.680972 | − | 0.732310i | \(-0.738442\pi\) | ||||
−0.680972 | + | 0.732310i | \(0.738442\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −20.7846 | −1.16371 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 41.5692 | 2.31297 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −13.8564 | −0.761617 | −0.380808 | − | 0.924654i | \(-0.624354\pi\) | ||||
−0.380808 | + | 0.924654i | \(0.624354\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | −48.0000 | −2.62252 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −10.0000 | −0.544735 | −0.272367 | − | 0.962193i | \(-0.587807\pi\) | ||||
−0.272367 | + | 0.962193i | \(0.587807\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −24.0000 | −1.29967 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 12.0000 | 0.644194 | 0.322097 | − | 0.946707i | \(-0.395612\pi\) | ||||
0.322097 | + | 0.946707i | \(0.395612\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 10.3923 | 0.553127 | 0.276563 | − | 0.960996i | \(-0.410804\pi\) | ||||
0.276563 | + | 0.960996i | \(0.410804\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 36.0000 | 1.91068 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 24.2487 | 1.27980 | 0.639899 | − | 0.768459i | \(-0.278976\pi\) | ||||
0.639899 | + | 0.768459i | \(0.278976\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 29.0000 | 1.52632 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | −24.0000 | −1.25622 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −28.0000 | −1.46159 | −0.730794 | − | 0.682598i | \(-0.760850\pi\) | ||||
−0.730794 | + | 0.682598i | \(0.760850\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −2.00000 | −0.103556 | −0.0517780 | − | 0.998659i | \(-0.516489\pi\) | ||||
−0.0517780 | + | 0.998659i | \(0.516489\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −20.7846 | −1.06763 | −0.533817 | − | 0.845600i | \(-0.679243\pi\) | ||||
−0.533817 | + | 0.845600i | \(0.679243\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −24.2487 | −1.23905 | −0.619526 | − | 0.784976i | \(-0.712675\pi\) | ||||
−0.619526 | + | 0.784976i | \(0.712675\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −6.00000 | −0.304212 | −0.152106 | − | 0.988364i | \(-0.548606\pi\) | ||||
−0.152106 | + | 0.988364i | \(0.548606\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | −27.7128 | −1.39438 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 13.8564 | 0.695433 | 0.347717 | − | 0.937600i | \(-0.386957\pi\) | ||||
0.347717 | + | 0.937600i | \(0.386957\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −10.3923 | −0.518967 | −0.259483 | − | 0.965748i | \(-0.583552\pi\) | ||||
−0.259483 | + | 0.965748i | \(0.583552\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −20.7846 | −1.02773 | −0.513866 | − | 0.857870i | \(-0.671787\pi\) | ||||
−0.513866 | + | 0.857870i | \(0.671787\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −12.0000 | −0.589057 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −12.0000 | −0.586238 | −0.293119 | − | 0.956076i | \(-0.594693\pi\) | ||||
−0.293119 | + | 0.956076i | \(0.594693\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 20.7846 | 1.01298 | 0.506490 | − | 0.862246i | \(-0.330943\pi\) | ||||
0.506490 | + | 0.862246i | \(0.330943\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 42.0000 | 2.03730 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 31.1769 | 1.50174 | 0.750870 | − | 0.660451i | \(-0.229635\pi\) | ||||
0.750870 | + | 0.660451i | \(0.229635\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 2.00000 | 0.0961139 | 0.0480569 | − | 0.998845i | \(-0.484697\pi\) | ||||
0.0480569 | + | 0.998845i | \(0.484697\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −20.0000 | −0.954548 | −0.477274 | − | 0.878755i | \(-0.658375\pi\) | ||||
−0.477274 | + | 0.878755i | \(0.658375\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 12.0000 | 0.570137 | 0.285069 | − | 0.958507i | \(-0.407984\pi\) | ||||
0.285069 | + | 0.958507i | \(0.407984\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 60.0000 | 2.84427 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 3.46410 | 0.163481 | 0.0817405 | − | 0.996654i | \(-0.473952\pi\) | ||||
0.0817405 | + | 0.996654i | \(0.473952\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 12.0000 | 0.565058 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −6.92820 | −0.324088 | −0.162044 | − | 0.986784i | \(-0.551809\pi\) | ||||
−0.162044 | + | 0.986784i | \(0.551809\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −10.3923 | −0.484018 | −0.242009 | − | 0.970274i | \(-0.577806\pi\) | ||||
−0.242009 | + | 0.970274i | \(0.577806\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 13.8564 | 0.643962 | 0.321981 | − | 0.946746i | \(-0.395651\pi\) | ||||
0.321981 | + | 0.946746i | \(0.395651\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 36.0000 | 1.66588 | 0.832941 | − | 0.553362i | \(-0.186655\pi\) | ||||
0.832941 | + | 0.553362i | \(0.186655\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 27.7128 | 1.27424 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 48.4974 | 2.22521 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 3.46410 | 0.158279 | 0.0791394 | − | 0.996864i | \(-0.474783\pi\) | ||||
0.0791394 | + | 0.996864i | \(0.474783\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | −24.0000 | −1.08978 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −6.92820 | −0.313947 | −0.156973 | − | 0.987603i | \(-0.550174\pi\) | ||||
−0.156973 | + | 0.987603i | \(0.550174\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −36.0000 | −1.62466 | −0.812329 | − | 0.583200i | \(-0.801800\pi\) | ||||
−0.812329 | + | 0.583200i | \(0.801800\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 36.0000 | 1.62136 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −24.0000 | −1.07011 | −0.535054 | − | 0.844818i | \(-0.679709\pi\) | ||||
−0.535054 | + | 0.844818i | \(0.679709\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 20.7846 | 0.924903 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −24.2487 | −1.07481 | −0.537403 | − | 0.843326i | \(-0.680594\pi\) | ||||
−0.537403 | + | 0.843326i | \(0.680594\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 13.8564 | 0.610586 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 12.0000 | 0.527759 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −6.00000 | −0.262865 | −0.131432 | − | 0.991325i | \(-0.541958\pi\) | ||||
−0.131432 | + | 0.991325i | \(0.541958\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 8.00000 | 0.349816 | 0.174908 | − | 0.984585i | \(-0.444037\pi\) | ||||
0.174908 | + | 0.984585i | \(0.444037\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 41.5692 | 1.81078 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −23.0000 | −1.00000 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 41.5692 | 1.79719 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 24.2487 | 1.04447 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −20.7846 | −0.893600 | −0.446800 | − | 0.894634i | \(-0.647436\pi\) | ||||
−0.446800 | + | 0.894634i | \(0.647436\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 24.0000 | 1.02805 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 8.00000 | 0.342055 | 0.171028 | − | 0.985266i | \(-0.445291\pi\) | ||||
0.171028 | + | 0.985266i | \(0.445291\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 41.5692 | 1.77091 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 24.2487 | 1.02745 | 0.513725 | − | 0.857955i | \(-0.328265\pi\) | ||||
0.513725 | + | 0.857955i | \(0.328265\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −36.0000 | −1.51722 | −0.758610 | − | 0.651546i | \(-0.774121\pi\) | ||||
−0.758610 | + | 0.651546i | \(0.774121\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 62.3538 | 2.62325 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 18.0000 | 0.754599 | 0.377300 | − | 0.926091i | \(-0.376853\pi\) | ||||
0.377300 | + | 0.926091i | \(0.376853\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −28.0000 | −1.17176 | −0.585882 | − | 0.810397i | \(-0.699252\pi\) | ||||
−0.585882 | + | 0.810397i | \(0.699252\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 13.8564 | 0.576850 | 0.288425 | − | 0.957503i | \(-0.406868\pi\) | ||||
0.288425 | + | 0.957503i | \(0.406868\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 20.7846 | 0.860811 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −31.1769 | −1.28681 | −0.643404 | − | 0.765526i | \(-0.722479\pi\) | ||||
−0.643404 | + | 0.765526i | \(0.722479\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 48.0000 | 1.97781 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −24.2487 | −0.995775 | −0.497888 | − | 0.867242i | \(-0.665891\pi\) | ||||
−0.497888 | + | 0.867242i | \(0.665891\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 10.0000 | 0.407909 | 0.203954 | − | 0.978980i | \(-0.434621\pi\) | ||||
0.203954 | + | 0.978980i | \(0.434621\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 3.46410 | 0.140836 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −28.0000 | −1.13648 | −0.568242 | − | 0.822861i | \(-0.692376\pi\) | ||||
−0.568242 | + | 0.822861i | \(0.692376\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −13.8564 | −0.559655 | −0.279827 | − | 0.960050i | \(-0.590277\pi\) | ||||
−0.279827 | + | 0.960050i | \(0.590277\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −31.1769 | −1.25514 | −0.627568 | − | 0.778562i | \(-0.715949\pi\) | ||||
−0.627568 | + | 0.778562i | \(0.715949\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −27.7128 | −1.11387 | −0.556936 | − | 0.830555i | \(-0.688023\pi\) | ||||
−0.556936 | + | 0.830555i | \(0.688023\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | −11.0000 | −0.440000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 20.7846 | 0.827422 | 0.413711 | − | 0.910408i | \(-0.364232\pi\) | ||||
0.413711 | + | 0.910408i | \(0.364232\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | −55.4256 | −2.19950 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 30.0000 | 1.18493 | 0.592464 | − | 0.805597i | \(-0.298155\pi\) | ||||
0.592464 | + | 0.805597i | \(0.298155\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 41.5692 | 1.63933 | 0.819665 | − | 0.572843i | \(-0.194160\pi\) | ||||
0.819665 | + | 0.572843i | \(0.194160\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −12.0000 | −0.471041 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 6.00000 | 0.234798 | 0.117399 | − | 0.993085i | \(-0.462544\pi\) | ||||
0.117399 | + | 0.993085i | \(0.462544\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 41.5692 | 1.62424 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −12.0000 | −0.467454 | −0.233727 | − | 0.972302i | \(-0.575092\pi\) | ||||
−0.233727 | + | 0.972302i | \(0.575092\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −13.8564 | −0.538952 | −0.269476 | − | 0.963007i | \(-0.586850\pi\) | ||||
−0.269476 | + | 0.963007i | \(0.586850\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −34.6410 | −1.33730 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −14.0000 | −0.539660 | −0.269830 | − | 0.962908i | \(-0.586968\pi\) | ||||
−0.269830 | + | 0.962908i | \(0.586968\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 18.0000 | 0.691796 | 0.345898 | − | 0.938272i | \(-0.387574\pi\) | ||||
0.345898 | + | 0.938272i | \(0.387574\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −3.46410 | −0.132550 | −0.0662751 | − | 0.997801i | \(-0.521111\pi\) | ||||
−0.0662751 | + | 0.997801i | \(0.521111\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 36.0000 | 1.37549 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −27.7128 | −1.05425 | −0.527123 | − | 0.849789i | \(-0.676729\pi\) | ||||
−0.527123 | + | 0.849789i | \(0.676729\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 27.7128 | 1.05121 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | −20.7846 | −0.787273 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −30.0000 | −1.13308 | −0.566542 | − | 0.824033i | \(-0.691719\pi\) | ||||
−0.566542 | + | 0.824033i | \(0.691719\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0 | 0 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −6.92820 | −0.260194 | −0.130097 | − | 0.991501i | \(-0.541529\pi\) | ||||
−0.130097 | + | 0.991501i | \(0.541529\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 24.0000 | 0.895049 | 0.447524 | − | 0.894272i | \(-0.352306\pi\) | ||||
0.447524 | + | 0.894272i | \(0.352306\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 42.0000 | 1.55984 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −16.0000 | −0.593407 | −0.296704 | − | 0.954970i | \(-0.595887\pi\) | ||||
−0.296704 | + | 0.954970i | \(0.595887\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −48.0000 | −1.77534 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −6.92820 | −0.255899 | −0.127950 | − | 0.991781i | \(-0.540840\pi\) | ||||
−0.127950 | + | 0.991781i | \(0.540840\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 48.0000 | 1.76810 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 27.7128 | 1.01943 | 0.509716 | − | 0.860343i | \(-0.329750\pi\) | ||||
0.509716 | + | 0.860343i | \(0.329750\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 10.3923 | 0.381257 | 0.190628 | − | 0.981662i | \(-0.438947\pi\) | ||||
0.190628 | + | 0.981662i | \(0.438947\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −60.0000 | −2.19823 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 28.0000 | 1.02173 | 0.510867 | − | 0.859660i | \(-0.329324\pi\) | ||||
0.510867 | + | 0.859660i | \(0.329324\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 24.0000 | 0.873449 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −38.0000 | −1.38113 | −0.690567 | − | 0.723269i | \(-0.742639\pi\) | ||||
−0.690567 | + | 0.723269i | \(0.742639\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −31.1769 | −1.13016 | −0.565081 | − | 0.825035i | \(-0.691155\pi\) | ||||
−0.565081 | + | 0.825035i | \(0.691155\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −27.7128 | −0.999350 | −0.499675 | − | 0.866213i | \(-0.666547\pi\) | ||||
−0.499675 | + | 0.866213i | \(0.666547\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 51.9615 | 1.86893 | 0.934463 | − | 0.356060i | \(-0.115880\pi\) | ||||
0.934463 | + | 0.356060i | \(0.115880\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 48.4974 | 1.74208 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −24.0000 | −0.859889 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −36.0000 | −1.28818 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 6.92820 | 0.247278 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −27.7128 | −0.987855 | −0.493928 | − | 0.869503i | \(-0.664439\pi\) | ||||
−0.493928 | + | 0.869503i | \(0.664439\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −30.0000 | −1.06265 | −0.531327 | − | 0.847167i | \(-0.678307\pi\) | ||||
−0.531327 | + | 0.847167i | \(0.678307\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −20.7846 | −0.735307 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 24.0000 | 0.846942 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 18.0000 | 0.632846 | 0.316423 | − | 0.948618i | \(-0.397518\pi\) | ||||
0.316423 | + | 0.948618i | \(0.397518\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −6.92820 | −0.243282 | −0.121641 | − | 0.992574i | \(-0.538816\pi\) | ||||
−0.121641 | + | 0.992574i | \(0.538816\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | −72.0000 | −2.52205 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −55.4256 | −1.93910 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −3.46410 | −0.120898 | −0.0604490 | − | 0.998171i | \(-0.519253\pi\) | ||||
−0.0604490 | + | 0.998171i | \(0.519253\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 4.00000 | 0.139431 | 0.0697156 | − | 0.997567i | \(-0.477791\pi\) | ||||
0.0697156 | + | 0.997567i | \(0.477791\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −17.3205 | −0.602293 | −0.301147 | − | 0.953578i | \(-0.597369\pi\) | ||||
−0.301147 | + | 0.953578i | \(0.597369\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −34.0000 | −1.18087 | −0.590434 | − | 0.807086i | \(-0.701044\pi\) | ||||
−0.590434 | + | 0.807086i | \(0.701044\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −42.0000 | −1.45521 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | −60.0000 | −2.07639 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −10.3923 | −0.358782 | −0.179391 | − | 0.983778i | \(-0.557413\pi\) | ||||
−0.179391 | + | 0.983778i | \(0.557413\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 13.8564 | 0.474434 | 0.237217 | − | 0.971457i | \(-0.423765\pi\) | ||||
0.237217 | + | 0.971457i | \(0.423765\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −6.00000 | −0.204956 | −0.102478 | − | 0.994735i | \(-0.532677\pi\) | ||||
−0.102478 | + | 0.994735i | \(0.532677\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 28.0000 | 0.955348 | 0.477674 | − | 0.878537i | \(-0.341480\pi\) | ||||
0.477674 | + | 0.878537i | \(0.341480\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −38.1051 | −1.29711 | −0.648557 | − | 0.761166i | \(-0.724627\pi\) | ||||
−0.648557 | + | 0.761166i | \(0.724627\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 20.7846 | 0.706698 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 27.7128 | 0.940093 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −41.5692 | −1.40369 | −0.701846 | − | 0.712328i | \(-0.747641\pi\) | ||||
−0.701846 | + | 0.712328i | \(0.747641\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −6.00000 | −0.202145 | −0.101073 | − | 0.994879i | \(-0.532227\pi\) | ||||
−0.101073 | + | 0.994879i | \(0.532227\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 20.0000 | 0.673054 | 0.336527 | − | 0.941674i | \(-0.390748\pi\) | ||||
0.336527 | + | 0.941674i | \(0.390748\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 48.0000 | 1.61168 | 0.805841 | − | 0.592132i | \(-0.201714\pi\) | ||||
0.805841 | + | 0.592132i | \(0.201714\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −24.0000 | −0.803129 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | −41.5692 | −1.38951 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 41.5692 | 1.38641 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −36.0000 | −1.19933 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 76.2102 | 2.53331 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −28.0000 | −0.929725 | −0.464862 | − | 0.885383i | \(-0.653896\pi\) | ||||
−0.464862 | + | 0.885383i | \(0.653896\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 24.0000 | 0.795155 | 0.397578 | − | 0.917568i | \(-0.369851\pi\) | ||||
0.397578 | + | 0.917568i | \(0.369851\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 12.0000 | 0.397142 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −32.0000 | −1.05558 | −0.527791 | − | 0.849374i | \(-0.676980\pi\) | ||||
−0.527791 | + | 0.849374i | \(0.676980\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −31.1769 | −1.02288 | −0.511441 | − | 0.859319i | \(-0.670888\pi\) | ||||
−0.511441 | + | 0.859319i | \(0.670888\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −48.4974 | −1.58944 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | −72.0000 | −2.35465 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 22.0000 | 0.718709 | 0.359354 | − | 0.933201i | \(-0.382997\pi\) | ||||
0.359354 | + | 0.933201i | \(0.382997\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 10.3923 | 0.338779 | 0.169390 | − | 0.985549i | \(-0.445820\pi\) | ||||
0.169390 | + | 0.985549i | \(0.445820\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 45.0333 | 1.46339 | 0.731693 | − | 0.681634i | \(-0.238730\pi\) | ||||
0.731693 | + | 0.681634i | \(0.238730\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −6.00000 | −0.194359 | −0.0971795 | − | 0.995267i | \(-0.530982\pi\) | ||||
−0.0971795 | + | 0.995267i | \(0.530982\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 17.0000 | 0.548387 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 48.0000 | 1.54517 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 34.6410 | 1.11398 | 0.556990 | − | 0.830519i | \(-0.311956\pi\) | ||||
0.556990 | + | 0.830519i | \(0.311956\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −60.0000 | −1.92549 | −0.962746 | − | 0.270408i | \(-0.912841\pi\) | ||||
−0.962746 | + | 0.270408i | \(0.912841\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −24.2487 | −0.775785 | −0.387893 | − | 0.921705i | \(-0.626797\pi\) | ||||
−0.387893 | + | 0.921705i | \(0.626797\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −60.0000 | −1.91761 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 31.1769 | 0.994389 | 0.497195 | − | 0.867639i | \(-0.334364\pi\) | ||||
0.497195 | + | 0.867639i | \(0.334364\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 60.0000 | 1.91176 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 20.0000 | 0.635321 | 0.317660 | − | 0.948205i | \(-0.397103\pi\) | ||||
0.317660 | + | 0.948205i | \(0.397103\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 27.7128 | 0.878555 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 38.0000 | 1.20347 | 0.601736 | − | 0.798695i | \(-0.294476\pi\) | ||||
0.601736 | + | 0.798695i | \(0.294476\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))