Properties

Label 392.2.a.c.1.1
Level $392$
Weight $2$
Character 392.1
Self dual yes
Analytic conductor $3.130$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [392,2,Mod(1,392)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(392, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("392.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 392.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.13013575923\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 392.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -1.00000 q^{5} -2.00000 q^{9} +3.00000 q^{11} -6.00000 q^{13} +1.00000 q^{15} -5.00000 q^{17} +1.00000 q^{19} -7.00000 q^{23} -4.00000 q^{25} +5.00000 q^{27} +2.00000 q^{29} -5.00000 q^{31} -3.00000 q^{33} +3.00000 q^{37} +6.00000 q^{39} -2.00000 q^{41} -4.00000 q^{43} +2.00000 q^{45} +5.00000 q^{47} +5.00000 q^{51} -1.00000 q^{53} -3.00000 q^{55} -1.00000 q^{57} +15.0000 q^{59} -5.00000 q^{61} +6.00000 q^{65} -9.00000 q^{67} +7.00000 q^{69} +7.00000 q^{73} +4.00000 q^{75} +1.00000 q^{79} +1.00000 q^{81} +12.0000 q^{83} +5.00000 q^{85} -2.00000 q^{87} +7.00000 q^{89} +5.00000 q^{93} -1.00000 q^{95} -2.00000 q^{97} -6.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) −6.00000 −1.66410 −0.832050 0.554700i \(-0.812833\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) −5.00000 −1.21268 −0.606339 0.795206i \(-0.707363\pi\)
−0.606339 + 0.795206i \(0.707363\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.00000 −1.45960 −0.729800 0.683660i \(-0.760387\pi\)
−0.729800 + 0.683660i \(0.760387\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) −5.00000 −0.898027 −0.449013 0.893525i \(-0.648224\pi\)
−0.449013 + 0.893525i \(0.648224\pi\)
\(32\) 0 0
\(33\) −3.00000 −0.522233
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) 0 0
\(39\) 6.00000 0.960769
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 0 0
\(47\) 5.00000 0.729325 0.364662 0.931140i \(-0.381184\pi\)
0.364662 + 0.931140i \(0.381184\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 5.00000 0.700140
\(52\) 0 0
\(53\) −1.00000 −0.137361 −0.0686803 0.997639i \(-0.521879\pi\)
−0.0686803 + 0.997639i \(0.521879\pi\)
\(54\) 0 0
\(55\) −3.00000 −0.404520
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) 0 0
\(59\) 15.0000 1.95283 0.976417 0.215894i \(-0.0692665\pi\)
0.976417 + 0.215894i \(0.0692665\pi\)
\(60\) 0 0
\(61\) −5.00000 −0.640184 −0.320092 0.947386i \(-0.603714\pi\)
−0.320092 + 0.947386i \(0.603714\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.00000 0.744208
\(66\) 0 0
\(67\) −9.00000 −1.09952 −0.549762 0.835321i \(-0.685282\pi\)
−0.549762 + 0.835321i \(0.685282\pi\)
\(68\) 0 0
\(69\) 7.00000 0.842701
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 7.00000 0.819288 0.409644 0.912245i \(-0.365653\pi\)
0.409644 + 0.912245i \(0.365653\pi\)
\(74\) 0 0
\(75\) 4.00000 0.461880
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.00000 0.112509 0.0562544 0.998416i \(-0.482084\pi\)
0.0562544 + 0.998416i \(0.482084\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 5.00000 0.542326
\(86\) 0 0
\(87\) −2.00000 −0.214423
\(88\) 0 0
\(89\) 7.00000 0.741999 0.370999 0.928633i \(-0.379015\pi\)
0.370999 + 0.928633i \(0.379015\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 5.00000 0.518476
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) −6.00000 −0.603023
\(100\) 0 0
\(101\) 3.00000 0.298511 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(102\) 0 0
\(103\) −15.0000 −1.47799 −0.738997 0.673709i \(-0.764700\pi\)
−0.738997 + 0.673709i \(0.764700\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.00000 0.870063 0.435031 0.900415i \(-0.356737\pi\)
0.435031 + 0.900415i \(0.356737\pi\)
\(108\) 0 0
\(109\) −5.00000 −0.478913 −0.239457 0.970907i \(-0.576969\pi\)
−0.239457 + 0.970907i \(0.576969\pi\)
\(110\) 0 0
\(111\) −3.00000 −0.284747
\(112\) 0 0
\(113\) −18.0000 −1.69330 −0.846649 0.532152i \(-0.821383\pi\)
−0.846649 + 0.532152i \(0.821383\pi\)
\(114\) 0 0
\(115\) 7.00000 0.652753
\(116\) 0 0
\(117\) 12.0000 1.10940
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 2.00000 0.180334
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) 5.00000 0.436852 0.218426 0.975854i \(-0.429908\pi\)
0.218426 + 0.975854i \(0.429908\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −5.00000 −0.430331
\(136\) 0 0
\(137\) 11.0000 0.939793 0.469897 0.882721i \(-0.344291\pi\)
0.469897 + 0.882721i \(0.344291\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) −5.00000 −0.421076
\(142\) 0 0
\(143\) −18.0000 −1.50524
\(144\) 0 0
\(145\) −2.00000 −0.166091
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −17.0000 −1.39269 −0.696347 0.717705i \(-0.745193\pi\)
−0.696347 + 0.717705i \(0.745193\pi\)
\(150\) 0 0
\(151\) −5.00000 −0.406894 −0.203447 0.979086i \(-0.565214\pi\)
−0.203447 + 0.979086i \(0.565214\pi\)
\(152\) 0 0
\(153\) 10.0000 0.808452
\(154\) 0 0
\(155\) 5.00000 0.401610
\(156\) 0 0
\(157\) −9.00000 −0.718278 −0.359139 0.933284i \(-0.616930\pi\)
−0.359139 + 0.933284i \(0.616930\pi\)
\(158\) 0 0
\(159\) 1.00000 0.0793052
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 13.0000 1.01824 0.509119 0.860696i \(-0.329971\pi\)
0.509119 + 0.860696i \(0.329971\pi\)
\(164\) 0 0
\(165\) 3.00000 0.233550
\(166\) 0 0
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) −2.00000 −0.152944
\(172\) 0 0
\(173\) −13.0000 −0.988372 −0.494186 0.869356i \(-0.664534\pi\)
−0.494186 + 0.869356i \(0.664534\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −15.0000 −1.12747
\(178\) 0 0
\(179\) −13.0000 −0.971666 −0.485833 0.874052i \(-0.661484\pi\)
−0.485833 + 0.874052i \(0.661484\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) 5.00000 0.369611
\(184\) 0 0
\(185\) −3.00000 −0.220564
\(186\) 0 0
\(187\) −15.0000 −1.09691
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.0000 −0.795932 −0.397966 0.917400i \(-0.630284\pi\)
−0.397966 + 0.917400i \(0.630284\pi\)
\(192\) 0 0
\(193\) 3.00000 0.215945 0.107972 0.994154i \(-0.465564\pi\)
0.107972 + 0.994154i \(0.465564\pi\)
\(194\) 0 0
\(195\) −6.00000 −0.429669
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) −13.0000 −0.921546 −0.460773 0.887518i \(-0.652428\pi\)
−0.460773 + 0.887518i \(0.652428\pi\)
\(200\) 0 0
\(201\) 9.00000 0.634811
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 2.00000 0.139686
\(206\) 0 0
\(207\) 14.0000 0.973067
\(208\) 0 0
\(209\) 3.00000 0.207514
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −7.00000 −0.473016
\(220\) 0 0
\(221\) 30.0000 2.01802
\(222\) 0 0
\(223\) −24.0000 −1.60716 −0.803579 0.595198i \(-0.797074\pi\)
−0.803579 + 0.595198i \(0.797074\pi\)
\(224\) 0 0
\(225\) 8.00000 0.533333
\(226\) 0 0
\(227\) 11.0000 0.730096 0.365048 0.930989i \(-0.381053\pi\)
0.365048 + 0.930989i \(0.381053\pi\)
\(228\) 0 0
\(229\) 23.0000 1.51988 0.759941 0.649992i \(-0.225228\pi\)
0.759941 + 0.649992i \(0.225228\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.0000 0.720634 0.360317 0.932830i \(-0.382669\pi\)
0.360317 + 0.932830i \(0.382669\pi\)
\(234\) 0 0
\(235\) −5.00000 −0.326164
\(236\) 0 0
\(237\) −1.00000 −0.0649570
\(238\) 0 0
\(239\) 20.0000 1.29369 0.646846 0.762620i \(-0.276088\pi\)
0.646846 + 0.762620i \(0.276088\pi\)
\(240\) 0 0
\(241\) −17.0000 −1.09507 −0.547533 0.836784i \(-0.684433\pi\)
−0.547533 + 0.836784i \(0.684433\pi\)
\(242\) 0 0
\(243\) −16.0000 −1.02640
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −6.00000 −0.381771
\(248\) 0 0
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) 16.0000 1.00991 0.504956 0.863145i \(-0.331509\pi\)
0.504956 + 0.863145i \(0.331509\pi\)
\(252\) 0 0
\(253\) −21.0000 −1.32026
\(254\) 0 0
\(255\) −5.00000 −0.313112
\(256\) 0 0
\(257\) −21.0000 −1.30994 −0.654972 0.755653i \(-0.727320\pi\)
−0.654972 + 0.755653i \(0.727320\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −4.00000 −0.247594
\(262\) 0 0
\(263\) −9.00000 −0.554964 −0.277482 0.960731i \(-0.589500\pi\)
−0.277482 + 0.960731i \(0.589500\pi\)
\(264\) 0 0
\(265\) 1.00000 0.0614295
\(266\) 0 0
\(267\) −7.00000 −0.428393
\(268\) 0 0
\(269\) −9.00000 −0.548740 −0.274370 0.961624i \(-0.588469\pi\)
−0.274370 + 0.961624i \(0.588469\pi\)
\(270\) 0 0
\(271\) −7.00000 −0.425220 −0.212610 0.977137i \(-0.568196\pi\)
−0.212610 + 0.977137i \(0.568196\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −12.0000 −0.723627
\(276\) 0 0
\(277\) −17.0000 −1.02143 −0.510716 0.859750i \(-0.670619\pi\)
−0.510716 + 0.859750i \(0.670619\pi\)
\(278\) 0 0
\(279\) 10.0000 0.598684
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) −13.0000 −0.772770 −0.386385 0.922338i \(-0.626276\pi\)
−0.386385 + 0.922338i \(0.626276\pi\)
\(284\) 0 0
\(285\) 1.00000 0.0592349
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 2.00000 0.117242
\(292\) 0 0
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) −15.0000 −0.873334
\(296\) 0 0
\(297\) 15.0000 0.870388
\(298\) 0 0
\(299\) 42.0000 2.42892
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −3.00000 −0.172345
\(304\) 0 0
\(305\) 5.00000 0.286299
\(306\) 0 0
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) 0 0
\(309\) 15.0000 0.853320
\(310\) 0 0
\(311\) 15.0000 0.850572 0.425286 0.905059i \(-0.360174\pi\)
0.425286 + 0.905059i \(0.360174\pi\)
\(312\) 0 0
\(313\) −1.00000 −0.0565233 −0.0282617 0.999601i \(-0.508997\pi\)
−0.0282617 + 0.999601i \(0.508997\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.00000 0.168497 0.0842484 0.996445i \(-0.473151\pi\)
0.0842484 + 0.996445i \(0.473151\pi\)
\(318\) 0 0
\(319\) 6.00000 0.335936
\(320\) 0 0
\(321\) −9.00000 −0.502331
\(322\) 0 0
\(323\) −5.00000 −0.278207
\(324\) 0 0
\(325\) 24.0000 1.33128
\(326\) 0 0
\(327\) 5.00000 0.276501
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 29.0000 1.59398 0.796992 0.603990i \(-0.206423\pi\)
0.796992 + 0.603990i \(0.206423\pi\)
\(332\) 0 0
\(333\) −6.00000 −0.328798
\(334\) 0 0
\(335\) 9.00000 0.491723
\(336\) 0 0
\(337\) −10.0000 −0.544735 −0.272367 0.962193i \(-0.587807\pi\)
−0.272367 + 0.962193i \(0.587807\pi\)
\(338\) 0 0
\(339\) 18.0000 0.977626
\(340\) 0 0
\(341\) −15.0000 −0.812296
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −7.00000 −0.376867
\(346\) 0 0
\(347\) 15.0000 0.805242 0.402621 0.915367i \(-0.368099\pi\)
0.402621 + 0.915367i \(0.368099\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 0 0
\(351\) −30.0000 −1.60128
\(352\) 0 0
\(353\) 3.00000 0.159674 0.0798369 0.996808i \(-0.474560\pi\)
0.0798369 + 0.996808i \(0.474560\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 21.0000 1.10834 0.554169 0.832404i \(-0.313036\pi\)
0.554169 + 0.832404i \(0.313036\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 0 0
\(363\) 2.00000 0.104973
\(364\) 0 0
\(365\) −7.00000 −0.366397
\(366\) 0 0
\(367\) 23.0000 1.20059 0.600295 0.799779i \(-0.295050\pi\)
0.600295 + 0.799779i \(0.295050\pi\)
\(368\) 0 0
\(369\) 4.00000 0.208232
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 11.0000 0.569558 0.284779 0.958593i \(-0.408080\pi\)
0.284779 + 0.958593i \(0.408080\pi\)
\(374\) 0 0
\(375\) −9.00000 −0.464758
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) 24.0000 1.23280 0.616399 0.787434i \(-0.288591\pi\)
0.616399 + 0.787434i \(0.288591\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) 0 0
\(383\) −3.00000 −0.153293 −0.0766464 0.997058i \(-0.524421\pi\)
−0.0766464 + 0.997058i \(0.524421\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.00000 0.406663
\(388\) 0 0
\(389\) −29.0000 −1.47036 −0.735179 0.677873i \(-0.762902\pi\)
−0.735179 + 0.677873i \(0.762902\pi\)
\(390\) 0 0
\(391\) 35.0000 1.77003
\(392\) 0 0
\(393\) −5.00000 −0.252217
\(394\) 0 0
\(395\) −1.00000 −0.0503155
\(396\) 0 0
\(397\) −17.0000 −0.853206 −0.426603 0.904439i \(-0.640290\pi\)
−0.426603 + 0.904439i \(0.640290\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 27.0000 1.34832 0.674158 0.738587i \(-0.264507\pi\)
0.674158 + 0.738587i \(0.264507\pi\)
\(402\) 0 0
\(403\) 30.0000 1.49441
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 9.00000 0.446113
\(408\) 0 0
\(409\) 27.0000 1.33506 0.667532 0.744581i \(-0.267351\pi\)
0.667532 + 0.744581i \(0.267351\pi\)
\(410\) 0 0
\(411\) −11.0000 −0.542590
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) 0 0
\(417\) 12.0000 0.587643
\(418\) 0 0
\(419\) 20.0000 0.977064 0.488532 0.872546i \(-0.337533\pi\)
0.488532 + 0.872546i \(0.337533\pi\)
\(420\) 0 0
\(421\) 34.0000 1.65706 0.828529 0.559946i \(-0.189178\pi\)
0.828529 + 0.559946i \(0.189178\pi\)
\(422\) 0 0
\(423\) −10.0000 −0.486217
\(424\) 0 0
\(425\) 20.0000 0.970143
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 18.0000 0.869048
\(430\) 0 0
\(431\) 3.00000 0.144505 0.0722525 0.997386i \(-0.476981\pi\)
0.0722525 + 0.997386i \(0.476981\pi\)
\(432\) 0 0
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) 0 0
\(435\) 2.00000 0.0958927
\(436\) 0 0
\(437\) −7.00000 −0.334855
\(438\) 0 0
\(439\) 21.0000 1.00228 0.501138 0.865368i \(-0.332915\pi\)
0.501138 + 0.865368i \(0.332915\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −31.0000 −1.47285 −0.736427 0.676517i \(-0.763489\pi\)
−0.736427 + 0.676517i \(0.763489\pi\)
\(444\) 0 0
\(445\) −7.00000 −0.331832
\(446\) 0 0
\(447\) 17.0000 0.804072
\(448\) 0 0
\(449\) −26.0000 −1.22702 −0.613508 0.789689i \(-0.710242\pi\)
−0.613508 + 0.789689i \(0.710242\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) 0 0
\(453\) 5.00000 0.234920
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −17.0000 −0.795226 −0.397613 0.917553i \(-0.630161\pi\)
−0.397613 + 0.917553i \(0.630161\pi\)
\(458\) 0 0
\(459\) −25.0000 −1.16690
\(460\) 0 0
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 0 0
\(465\) −5.00000 −0.231869
\(466\) 0 0
\(467\) −3.00000 −0.138823 −0.0694117 0.997588i \(-0.522112\pi\)
−0.0694117 + 0.997588i \(0.522112\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 9.00000 0.414698
\(472\) 0 0
\(473\) −12.0000 −0.551761
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) 2.00000 0.0915737
\(478\) 0 0
\(479\) 31.0000 1.41643 0.708213 0.705999i \(-0.249502\pi\)
0.708213 + 0.705999i \(0.249502\pi\)
\(480\) 0 0
\(481\) −18.0000 −0.820729
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.00000 0.0908153
\(486\) 0 0
\(487\) 7.00000 0.317200 0.158600 0.987343i \(-0.449302\pi\)
0.158600 + 0.987343i \(0.449302\pi\)
\(488\) 0 0
\(489\) −13.0000 −0.587880
\(490\) 0 0
\(491\) −24.0000 −1.08310 −0.541552 0.840667i \(-0.682163\pi\)
−0.541552 + 0.840667i \(0.682163\pi\)
\(492\) 0 0
\(493\) −10.0000 −0.450377
\(494\) 0 0
\(495\) 6.00000 0.269680
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −35.0000 −1.56682 −0.783408 0.621508i \(-0.786520\pi\)
−0.783408 + 0.621508i \(0.786520\pi\)
\(500\) 0 0
\(501\) 12.0000 0.536120
\(502\) 0 0
\(503\) −32.0000 −1.42681 −0.713405 0.700752i \(-0.752848\pi\)
−0.713405 + 0.700752i \(0.752848\pi\)
\(504\) 0 0
\(505\) −3.00000 −0.133498
\(506\) 0 0
\(507\) −23.0000 −1.02147
\(508\) 0 0
\(509\) −9.00000 −0.398918 −0.199459 0.979906i \(-0.563918\pi\)
−0.199459 + 0.979906i \(0.563918\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 5.00000 0.220755
\(514\) 0 0
\(515\) 15.0000 0.660979
\(516\) 0 0
\(517\) 15.0000 0.659699
\(518\) 0 0
\(519\) 13.0000 0.570637
\(520\) 0 0
\(521\) −33.0000 −1.44576 −0.722878 0.690976i \(-0.757181\pi\)
−0.722878 + 0.690976i \(0.757181\pi\)
\(522\) 0 0
\(523\) −7.00000 −0.306089 −0.153044 0.988219i \(-0.548908\pi\)
−0.153044 + 0.988219i \(0.548908\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 25.0000 1.08902
\(528\) 0 0
\(529\) 26.0000 1.13043
\(530\) 0 0
\(531\) −30.0000 −1.30189
\(532\) 0 0
\(533\) 12.0000 0.519778
\(534\) 0 0
\(535\) −9.00000 −0.389104
\(536\) 0 0
\(537\) 13.0000 0.560991
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −41.0000 −1.76273 −0.881364 0.472438i \(-0.843374\pi\)
−0.881364 + 0.472438i \(0.843374\pi\)
\(542\) 0 0
\(543\) 10.0000 0.429141
\(544\) 0 0
\(545\) 5.00000 0.214176
\(546\) 0 0
\(547\) −8.00000 −0.342055 −0.171028 0.985266i \(-0.554709\pi\)
−0.171028 + 0.985266i \(0.554709\pi\)
\(548\) 0 0
\(549\) 10.0000 0.426790
\(550\) 0 0
\(551\) 2.00000 0.0852029
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 3.00000 0.127343
\(556\) 0 0
\(557\) −5.00000 −0.211857 −0.105928 0.994374i \(-0.533781\pi\)
−0.105928 + 0.994374i \(0.533781\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 15.0000 0.633300
\(562\) 0 0
\(563\) −41.0000 −1.72794 −0.863972 0.503540i \(-0.832031\pi\)
−0.863972 + 0.503540i \(0.832031\pi\)
\(564\) 0 0
\(565\) 18.0000 0.757266
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −33.0000 −1.38343 −0.691716 0.722170i \(-0.743145\pi\)
−0.691716 + 0.722170i \(0.743145\pi\)
\(570\) 0 0
\(571\) −13.0000 −0.544033 −0.272017 0.962293i \(-0.587691\pi\)
−0.272017 + 0.962293i \(0.587691\pi\)
\(572\) 0 0
\(573\) 11.0000 0.459532
\(574\) 0 0
\(575\) 28.0000 1.16768
\(576\) 0 0
\(577\) −33.0000 −1.37381 −0.686904 0.726748i \(-0.741031\pi\)
−0.686904 + 0.726748i \(0.741031\pi\)
\(578\) 0 0
\(579\) −3.00000 −0.124676
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −3.00000 −0.124247
\(584\) 0 0
\(585\) −12.0000 −0.496139
\(586\) 0 0
\(587\) −20.0000 −0.825488 −0.412744 0.910847i \(-0.635430\pi\)
−0.412744 + 0.910847i \(0.635430\pi\)
\(588\) 0 0
\(589\) −5.00000 −0.206021
\(590\) 0 0
\(591\) 6.00000 0.246807
\(592\) 0 0
\(593\) −45.0000 −1.84793 −0.923964 0.382479i \(-0.875070\pi\)
−0.923964 + 0.382479i \(0.875070\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 13.0000 0.532055
\(598\) 0 0
\(599\) −17.0000 −0.694601 −0.347301 0.937754i \(-0.612902\pi\)
−0.347301 + 0.937754i \(0.612902\pi\)
\(600\) 0 0
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) 0 0
\(603\) 18.0000 0.733017
\(604\) 0 0
\(605\) 2.00000 0.0813116
\(606\) 0 0
\(607\) 13.0000 0.527654 0.263827 0.964570i \(-0.415015\pi\)
0.263827 + 0.964570i \(0.415015\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −30.0000 −1.21367
\(612\) 0 0
\(613\) 43.0000 1.73675 0.868377 0.495905i \(-0.165164\pi\)
0.868377 + 0.495905i \(0.165164\pi\)
\(614\) 0 0
\(615\) −2.00000 −0.0806478
\(616\) 0 0
\(617\) 30.0000 1.20775 0.603877 0.797077i \(-0.293622\pi\)
0.603877 + 0.797077i \(0.293622\pi\)
\(618\) 0 0
\(619\) −9.00000 −0.361741 −0.180870 0.983507i \(-0.557891\pi\)
−0.180870 + 0.983507i \(0.557891\pi\)
\(620\) 0 0
\(621\) −35.0000 −1.40450
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) −3.00000 −0.119808
\(628\) 0 0
\(629\) −15.0000 −0.598089
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 4.00000 0.158986
\(634\) 0 0
\(635\) −8.00000 −0.317470
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −17.0000 −0.671460 −0.335730 0.941958i \(-0.608983\pi\)
−0.335730 + 0.941958i \(0.608983\pi\)
\(642\) 0 0
\(643\) −44.0000 −1.73519 −0.867595 0.497271i \(-0.834335\pi\)
−0.867595 + 0.497271i \(0.834335\pi\)
\(644\) 0 0
\(645\) −4.00000 −0.157500
\(646\) 0 0
\(647\) 15.0000 0.589711 0.294855 0.955542i \(-0.404729\pi\)
0.294855 + 0.955542i \(0.404729\pi\)
\(648\) 0 0
\(649\) 45.0000 1.76640
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 35.0000 1.36966 0.684828 0.728705i \(-0.259877\pi\)
0.684828 + 0.728705i \(0.259877\pi\)
\(654\) 0 0
\(655\) −5.00000 −0.195366
\(656\) 0 0
\(657\) −14.0000 −0.546192
\(658\) 0 0
\(659\) 44.0000 1.71400 0.856998 0.515319i \(-0.172327\pi\)
0.856998 + 0.515319i \(0.172327\pi\)
\(660\) 0 0
\(661\) 23.0000 0.894596 0.447298 0.894385i \(-0.352386\pi\)
0.447298 + 0.894385i \(0.352386\pi\)
\(662\) 0 0
\(663\) −30.0000 −1.16510
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −14.0000 −0.542082
\(668\) 0 0
\(669\) 24.0000 0.927894
\(670\) 0 0
\(671\) −15.0000 −0.579069
\(672\) 0 0
\(673\) −26.0000 −1.00223 −0.501113 0.865382i \(-0.667076\pi\)
−0.501113 + 0.865382i \(0.667076\pi\)
\(674\) 0 0
\(675\) −20.0000 −0.769800
\(676\) 0 0
\(677\) 39.0000 1.49889 0.749446 0.662066i \(-0.230320\pi\)
0.749446 + 0.662066i \(0.230320\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −11.0000 −0.421521
\(682\) 0 0
\(683\) 27.0000 1.03313 0.516563 0.856249i \(-0.327211\pi\)
0.516563 + 0.856249i \(0.327211\pi\)
\(684\) 0 0
\(685\) −11.0000 −0.420288
\(686\) 0 0
\(687\) −23.0000 −0.877505
\(688\) 0 0
\(689\) 6.00000 0.228582
\(690\) 0 0
\(691\) 5.00000 0.190209 0.0951045 0.995467i \(-0.469681\pi\)
0.0951045 + 0.995467i \(0.469681\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 12.0000 0.455186
\(696\) 0 0
\(697\) 10.0000 0.378777
\(698\) 0 0
\(699\) −11.0000 −0.416058
\(700\) 0 0
\(701\) −50.0000 −1.88847 −0.944237 0.329267i \(-0.893198\pi\)
−0.944237 + 0.329267i \(0.893198\pi\)
\(702\) 0 0
\(703\) 3.00000 0.113147
\(704\) 0 0
\(705\) 5.00000 0.188311
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −29.0000 −1.08912 −0.544559 0.838723i \(-0.683303\pi\)
−0.544559 + 0.838723i \(0.683303\pi\)
\(710\) 0 0
\(711\) −2.00000 −0.0750059
\(712\) 0 0
\(713\) 35.0000 1.31076
\(714\) 0 0
\(715\) 18.0000 0.673162
\(716\) 0 0
\(717\) −20.0000 −0.746914
\(718\) 0 0
\(719\) −39.0000 −1.45445 −0.727227 0.686397i \(-0.759191\pi\)
−0.727227 + 0.686397i \(0.759191\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 17.0000 0.632237
\(724\) 0 0
\(725\) −8.00000 −0.297113
\(726\) 0 0
\(727\) 32.0000 1.18681 0.593407 0.804902i \(-0.297782\pi\)
0.593407 + 0.804902i \(0.297782\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 20.0000 0.739727
\(732\) 0 0
\(733\) 19.0000 0.701781 0.350891 0.936416i \(-0.385879\pi\)
0.350891 + 0.936416i \(0.385879\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −27.0000 −0.994558
\(738\) 0 0
\(739\) −5.00000 −0.183928 −0.0919640 0.995762i \(-0.529314\pi\)
−0.0919640 + 0.995762i \(0.529314\pi\)
\(740\) 0 0
\(741\) 6.00000 0.220416
\(742\) 0 0
\(743\) −16.0000 −0.586983 −0.293492 0.955962i \(-0.594817\pi\)
−0.293492 + 0.955962i \(0.594817\pi\)
\(744\) 0 0
\(745\) 17.0000 0.622832
\(746\) 0 0
\(747\) −24.0000 −0.878114
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 53.0000 1.93400 0.966999 0.254781i \(-0.0820034\pi\)
0.966999 + 0.254781i \(0.0820034\pi\)
\(752\) 0 0
\(753\) −16.0000 −0.583072
\(754\) 0 0
\(755\) 5.00000 0.181969
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) 0 0
\(759\) 21.0000 0.762252
\(760\) 0 0
\(761\) 3.00000 0.108750 0.0543750 0.998521i \(-0.482683\pi\)
0.0543750 + 0.998521i \(0.482683\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −10.0000 −0.361551
\(766\) 0 0
\(767\) −90.0000 −3.24971
\(768\) 0 0
\(769\) 22.0000 0.793340 0.396670 0.917961i \(-0.370166\pi\)
0.396670 + 0.917961i \(0.370166\pi\)
\(770\) 0 0
\(771\) 21.0000 0.756297
\(772\) 0 0
\(773\) 19.0000 0.683383 0.341691 0.939812i \(-0.389000\pi\)
0.341691 + 0.939812i \(0.389000\pi\)
\(774\) 0 0
\(775\) 20.0000 0.718421
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.00000 −0.0716574
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 10.0000 0.357371
\(784\) 0 0
\(785\) 9.00000 0.321224
\(786\) 0 0
\(787\) −17.0000 −0.605985 −0.302992 0.952993i \(-0.597986\pi\)
−0.302992 + 0.952993i \(0.597986\pi\)
\(788\) 0 0
\(789\) 9.00000 0.320408
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 30.0000 1.06533
\(794\) 0 0
\(795\) −1.00000 −0.0354663
\(796\) 0 0
\(797\) 18.0000 0.637593 0.318796 0.947823i \(-0.396721\pi\)
0.318796 + 0.947823i \(0.396721\pi\)
\(798\) 0 0
\(799\) −25.0000 −0.884436
\(800\) 0 0
\(801\) −14.0000 −0.494666
\(802\) 0 0
\(803\) 21.0000 0.741074
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 9.00000 0.316815
\(808\) 0 0
\(809\) 39.0000 1.37117 0.685583 0.727994i \(-0.259547\pi\)
0.685583 + 0.727994i \(0.259547\pi\)
\(810\) 0 0
\(811\) 12.0000 0.421377 0.210688 0.977553i \(-0.432429\pi\)
0.210688 + 0.977553i \(0.432429\pi\)
\(812\) 0 0
\(813\) 7.00000 0.245501
\(814\) 0 0
\(815\) −13.0000 −0.455370
\(816\) 0 0
\(817\) −4.00000 −0.139942
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −9.00000 −0.314102 −0.157051 0.987590i \(-0.550199\pi\)
−0.157051 + 0.987590i \(0.550199\pi\)
\(822\) 0 0
\(823\) 47.0000 1.63832 0.819159 0.573567i \(-0.194441\pi\)
0.819159 + 0.573567i \(0.194441\pi\)
\(824\) 0 0
\(825\) 12.0000 0.417786
\(826\) 0 0
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) 11.0000 0.382046 0.191023 0.981586i \(-0.438820\pi\)
0.191023 + 0.981586i \(0.438820\pi\)
\(830\) 0 0
\(831\) 17.0000 0.589723
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 12.0000 0.415277
\(836\) 0 0
\(837\) −25.0000 −0.864126
\(838\) 0 0
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) −6.00000 −0.206651
\(844\) 0 0
\(845\) −23.0000 −0.791224
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 13.0000 0.446159
\(850\) 0 0
\(851\) −21.0000 −0.719871
\(852\) 0 0
\(853\) 34.0000 1.16414 0.582069 0.813139i \(-0.302243\pi\)
0.582069 + 0.813139i \(0.302243\pi\)
\(854\) 0 0
\(855\) 2.00000 0.0683986
\(856\) 0 0
\(857\) 39.0000 1.33221 0.666107 0.745856i \(-0.267959\pi\)
0.666107 + 0.745856i \(0.267959\pi\)
\(858\) 0 0
\(859\) 1.00000 0.0341196 0.0170598 0.999854i \(-0.494569\pi\)
0.0170598 + 0.999854i \(0.494569\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 17.0000 0.578687 0.289343 0.957225i \(-0.406563\pi\)
0.289343 + 0.957225i \(0.406563\pi\)
\(864\) 0 0
\(865\) 13.0000 0.442013
\(866\) 0 0
\(867\) −8.00000 −0.271694
\(868\) 0 0
\(869\) 3.00000 0.101768
\(870\) 0 0
\(871\) 54.0000 1.82972
\(872\) 0 0
\(873\) 4.00000 0.135379
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 23.0000 0.776655 0.388327 0.921521i \(-0.373053\pi\)
0.388327 + 0.921521i \(0.373053\pi\)
\(878\) 0 0
\(879\) −6.00000 −0.202375
\(880\) 0 0
\(881\) −14.0000 −0.471672 −0.235836 0.971793i \(-0.575783\pi\)
−0.235836 + 0.971793i \(0.575783\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 0 0
\(885\) 15.0000 0.504219
\(886\) 0 0
\(887\) −3.00000 −0.100730 −0.0503651 0.998731i \(-0.516038\pi\)
−0.0503651 + 0.998731i \(0.516038\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 3.00000 0.100504
\(892\) 0 0
\(893\) 5.00000 0.167319
\(894\) 0 0
\(895\) 13.0000 0.434542
\(896\) 0 0
\(897\) −42.0000 −1.40234
\(898\) 0 0
\(899\) −10.0000 −0.333519
\(900\) 0 0
\(901\) 5.00000 0.166574
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10.0000 0.332411
\(906\) 0 0
\(907\) −1.00000 −0.0332045 −0.0166022 0.999862i \(-0.505285\pi\)
−0.0166022 + 0.999862i \(0.505285\pi\)
\(908\) 0 0
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) 16.0000 0.530104 0.265052 0.964234i \(-0.414611\pi\)
0.265052 + 0.964234i \(0.414611\pi\)
\(912\) 0 0
\(913\) 36.0000 1.19143
\(914\) 0 0
\(915\) −5.00000 −0.165295
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −11.0000 −0.362857 −0.181428 0.983404i \(-0.558072\pi\)
−0.181428 + 0.983404i \(0.558072\pi\)
\(920\) 0 0
\(921\) −4.00000 −0.131804
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −12.0000 −0.394558
\(926\) 0 0
\(927\) 30.0000 0.985329
\(928\) 0 0
\(929\) 7.00000 0.229663 0.114831 0.993385i \(-0.463367\pi\)
0.114831 + 0.993385i \(0.463367\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −15.0000 −0.491078
\(934\) 0 0
\(935\) 15.0000 0.490552
\(936\) 0 0
\(937\) −6.00000 −0.196011 −0.0980057 0.995186i \(-0.531246\pi\)
−0.0980057 + 0.995186i \(0.531246\pi\)
\(938\) 0 0
\(939\) 1.00000 0.0326338
\(940\) 0 0
\(941\) −33.0000 −1.07577 −0.537885 0.843018i \(-0.680776\pi\)
−0.537885 + 0.843018i \(0.680776\pi\)
\(942\) 0 0
\(943\) 14.0000 0.455903
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 37.0000 1.20234 0.601169 0.799122i \(-0.294702\pi\)
0.601169 + 0.799122i \(0.294702\pi\)
\(948\) 0 0
\(949\) −42.0000 −1.36338
\(950\) 0 0
\(951\) −3.00000 −0.0972817
\(952\) 0 0
\(953\) 22.0000 0.712650 0.356325 0.934362i \(-0.384030\pi\)
0.356325 + 0.934362i \(0.384030\pi\)
\(954\) 0 0
\(955\) 11.0000 0.355952
\(956\) 0 0
\(957\) −6.00000 −0.193952
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) 0 0
\(963\) −18.0000 −0.580042
\(964\) 0 0
\(965\) −3.00000 −0.0965734
\(966\) 0 0
\(967\) 48.0000 1.54358 0.771788 0.635880i \(-0.219363\pi\)
0.771788 + 0.635880i \(0.219363\pi\)
\(968\) 0 0
\(969\) 5.00000 0.160623
\(970\) 0 0
\(971\) −35.0000 −1.12320 −0.561602 0.827408i \(-0.689815\pi\)
−0.561602 + 0.827408i \(0.689815\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −24.0000 −0.768615
\(976\) 0 0
\(977\) 3.00000 0.0959785 0.0479893 0.998848i \(-0.484719\pi\)
0.0479893 + 0.998848i \(0.484719\pi\)
\(978\) 0 0
\(979\) 21.0000 0.671163
\(980\) 0 0
\(981\) 10.0000 0.319275
\(982\) 0 0
\(983\) −21.0000 −0.669796 −0.334898 0.942254i \(-0.608702\pi\)
−0.334898 + 0.942254i \(0.608702\pi\)
\(984\) 0 0
\(985\) 6.00000 0.191176
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 28.0000 0.890348
\(990\) 0 0
\(991\) 15.0000 0.476491 0.238245 0.971205i \(-0.423428\pi\)
0.238245 + 0.971205i \(0.423428\pi\)
\(992\) 0 0
\(993\) −29.0000 −0.920287
\(994\) 0 0
\(995\) 13.0000 0.412128
\(996\) 0 0
\(997\) −41.0000 −1.29848 −0.649242 0.760582i \(-0.724914\pi\)
−0.649242 + 0.760582i \(0.724914\pi\)
\(998\) 0 0
\(999\) 15.0000 0.474579
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.2.a.c.1.1 1
3.2 odd 2 3528.2.a.p.1.1 1
4.3 odd 2 784.2.a.h.1.1 1
5.4 even 2 9800.2.a.be.1.1 1
7.2 even 3 56.2.i.b.25.1 yes 2
7.3 odd 6 392.2.i.b.177.1 2
7.4 even 3 56.2.i.b.9.1 2
7.5 odd 6 392.2.i.b.361.1 2
7.6 odd 2 392.2.a.e.1.1 1
8.3 odd 2 3136.2.a.j.1.1 1
8.5 even 2 3136.2.a.u.1.1 1
12.11 even 2 7056.2.a.bj.1.1 1
21.2 odd 6 504.2.s.c.361.1 2
21.5 even 6 3528.2.s.q.361.1 2
21.11 odd 6 504.2.s.c.289.1 2
21.17 even 6 3528.2.s.q.3313.1 2
21.20 even 2 3528.2.a.j.1.1 1
28.3 even 6 784.2.i.h.177.1 2
28.11 odd 6 112.2.i.a.65.1 2
28.19 even 6 784.2.i.h.753.1 2
28.23 odd 6 112.2.i.a.81.1 2
28.27 even 2 784.2.a.c.1.1 1
35.2 odd 12 1400.2.bh.a.249.1 4
35.4 even 6 1400.2.q.d.401.1 2
35.9 even 6 1400.2.q.d.1201.1 2
35.18 odd 12 1400.2.bh.a.849.1 4
35.23 odd 12 1400.2.bh.a.249.2 4
35.32 odd 12 1400.2.bh.a.849.2 4
35.34 odd 2 9800.2.a.s.1.1 1
56.11 odd 6 448.2.i.d.65.1 2
56.13 odd 2 3136.2.a.i.1.1 1
56.27 even 2 3136.2.a.t.1.1 1
56.37 even 6 448.2.i.b.193.1 2
56.51 odd 6 448.2.i.d.193.1 2
56.53 even 6 448.2.i.b.65.1 2
84.11 even 6 1008.2.s.g.289.1 2
84.23 even 6 1008.2.s.g.865.1 2
84.83 odd 2 7056.2.a.u.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.i.b.9.1 2 7.4 even 3
56.2.i.b.25.1 yes 2 7.2 even 3
112.2.i.a.65.1 2 28.11 odd 6
112.2.i.a.81.1 2 28.23 odd 6
392.2.a.c.1.1 1 1.1 even 1 trivial
392.2.a.e.1.1 1 7.6 odd 2
392.2.i.b.177.1 2 7.3 odd 6
392.2.i.b.361.1 2 7.5 odd 6
448.2.i.b.65.1 2 56.53 even 6
448.2.i.b.193.1 2 56.37 even 6
448.2.i.d.65.1 2 56.11 odd 6
448.2.i.d.193.1 2 56.51 odd 6
504.2.s.c.289.1 2 21.11 odd 6
504.2.s.c.361.1 2 21.2 odd 6
784.2.a.c.1.1 1 28.27 even 2
784.2.a.h.1.1 1 4.3 odd 2
784.2.i.h.177.1 2 28.3 even 6
784.2.i.h.753.1 2 28.19 even 6
1008.2.s.g.289.1 2 84.11 even 6
1008.2.s.g.865.1 2 84.23 even 6
1400.2.q.d.401.1 2 35.4 even 6
1400.2.q.d.1201.1 2 35.9 even 6
1400.2.bh.a.249.1 4 35.2 odd 12
1400.2.bh.a.249.2 4 35.23 odd 12
1400.2.bh.a.849.1 4 35.18 odd 12
1400.2.bh.a.849.2 4 35.32 odd 12
3136.2.a.i.1.1 1 56.13 odd 2
3136.2.a.j.1.1 1 8.3 odd 2
3136.2.a.t.1.1 1 56.27 even 2
3136.2.a.u.1.1 1 8.5 even 2
3528.2.a.j.1.1 1 21.20 even 2
3528.2.a.p.1.1 1 3.2 odd 2
3528.2.s.q.361.1 2 21.5 even 6
3528.2.s.q.3313.1 2 21.17 even 6
7056.2.a.u.1.1 1 84.83 odd 2
7056.2.a.bj.1.1 1 12.11 even 2
9800.2.a.s.1.1 1 35.34 odd 2
9800.2.a.be.1.1 1 5.4 even 2