Properties

Label 3528.2.s.q.3313.1
Level $3528$
Weight $2$
Character 3528.3313
Analytic conductor $28.171$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3528,2,Mod(361,3528)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3528, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3528.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3528.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.1712218331\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 3313.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 3528.3313
Dual form 3528.2.s.q.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{5} +(1.50000 + 2.59808i) q^{11} +6.00000 q^{13} +(2.50000 + 4.33013i) q^{17} +(0.500000 - 0.866025i) q^{19} +(-3.50000 + 6.06218i) q^{23} +(2.00000 + 3.46410i) q^{25} -2.00000 q^{29} +(-2.50000 - 4.33013i) q^{31} +(-1.50000 + 2.59808i) q^{37} -2.00000 q^{41} -4.00000 q^{43} +(-2.50000 + 4.33013i) q^{47} +(-0.500000 - 0.866025i) q^{53} +3.00000 q^{55} +(-7.50000 - 12.9904i) q^{59} +(-2.50000 + 4.33013i) q^{61} +(3.00000 - 5.19615i) q^{65} +(4.50000 + 7.79423i) q^{67} +(3.50000 + 6.06218i) q^{73} +(-0.500000 + 0.866025i) q^{79} +12.0000 q^{83} +5.00000 q^{85} +(-3.50000 + 6.06218i) q^{89} +(-0.500000 - 0.866025i) q^{95} +2.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{5} + 3 q^{11} + 12 q^{13} + 5 q^{17} + q^{19} - 7 q^{23} + 4 q^{25} - 4 q^{29} - 5 q^{31} - 3 q^{37} - 4 q^{41} - 8 q^{43} - 5 q^{47} - q^{53} + 6 q^{55} - 15 q^{59} - 5 q^{61} + 6 q^{65} + 9 q^{67}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(1765\) \(2647\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.500000 0.866025i 0.223607 0.387298i −0.732294 0.680989i \(-0.761550\pi\)
0.955901 + 0.293691i \(0.0948835\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) 0 0
\(13\) 6.00000 1.66410 0.832050 0.554700i \(-0.187167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.50000 + 4.33013i 0.606339 + 1.05021i 0.991838 + 0.127502i \(0.0406959\pi\)
−0.385499 + 0.922708i \(0.625971\pi\)
\(18\) 0 0
\(19\) 0.500000 0.866025i 0.114708 0.198680i −0.802955 0.596040i \(-0.796740\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.50000 + 6.06218i −0.729800 + 1.26405i 0.227167 + 0.973856i \(0.427054\pi\)
−0.956967 + 0.290196i \(0.906280\pi\)
\(24\) 0 0
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −2.50000 4.33013i −0.449013 0.777714i 0.549309 0.835619i \(-0.314891\pi\)
−0.998322 + 0.0579057i \(0.981558\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.50000 + 2.59808i −0.246598 + 0.427121i −0.962580 0.270998i \(-0.912646\pi\)
0.715981 + 0.698119i \(0.245980\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.50000 + 4.33013i −0.364662 + 0.631614i −0.988722 0.149763i \(-0.952149\pi\)
0.624059 + 0.781377i \(0.285482\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.500000 0.866025i −0.0686803 0.118958i 0.829640 0.558298i \(-0.188546\pi\)
−0.898321 + 0.439340i \(0.855212\pi\)
\(54\) 0 0
\(55\) 3.00000 0.404520
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −7.50000 12.9904i −0.976417 1.69120i −0.675178 0.737655i \(-0.735933\pi\)
−0.301239 0.953549i \(-0.597400\pi\)
\(60\) 0 0
\(61\) −2.50000 + 4.33013i −0.320092 + 0.554416i −0.980507 0.196485i \(-0.937047\pi\)
0.660415 + 0.750901i \(0.270381\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.00000 5.19615i 0.372104 0.644503i
\(66\) 0 0
\(67\) 4.50000 + 7.79423i 0.549762 + 0.952217i 0.998290 + 0.0584478i \(0.0186151\pi\)
−0.448528 + 0.893769i \(0.648052\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 3.50000 + 6.06218i 0.409644 + 0.709524i 0.994850 0.101361i \(-0.0323196\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.500000 + 0.866025i −0.0562544 + 0.0974355i −0.892781 0.450490i \(-0.851249\pi\)
0.836527 + 0.547926i \(0.184582\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 5.00000 0.542326
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.50000 + 6.06218i −0.370999 + 0.642590i −0.989720 0.143022i \(-0.954318\pi\)
0.618720 + 0.785611i \(0.287651\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.500000 0.866025i −0.0512989 0.0888523i
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.50000 2.59808i −0.149256 0.258518i 0.781697 0.623658i \(-0.214354\pi\)
−0.930953 + 0.365140i \(0.881021\pi\)
\(102\) 0 0
\(103\) −7.50000 + 12.9904i −0.738997 + 1.27998i 0.213950 + 0.976845i \(0.431367\pi\)
−0.952947 + 0.303136i \(0.901966\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.50000 7.79423i 0.435031 0.753497i −0.562267 0.826956i \(-0.690071\pi\)
0.997298 + 0.0734594i \(0.0234039\pi\)
\(108\) 0 0
\(109\) 2.50000 + 4.33013i 0.239457 + 0.414751i 0.960558 0.278078i \(-0.0896974\pi\)
−0.721102 + 0.692829i \(0.756364\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) 3.50000 + 6.06218i 0.326377 + 0.565301i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2.50000 + 4.33013i −0.218426 + 0.378325i −0.954327 0.298764i \(-0.903426\pi\)
0.735901 + 0.677089i \(0.236759\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.50000 + 9.52628i 0.469897 + 0.813885i 0.999408 0.0344182i \(-0.0109578\pi\)
−0.529511 + 0.848303i \(0.677624\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.00000 + 15.5885i 0.752618 + 1.30357i
\(144\) 0 0
\(145\) −1.00000 + 1.73205i −0.0830455 + 0.143839i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −8.50000 + 14.7224i −0.696347 + 1.20611i 0.273377 + 0.961907i \(0.411859\pi\)
−0.969724 + 0.244202i \(0.921474\pi\)
\(150\) 0 0
\(151\) 2.50000 + 4.33013i 0.203447 + 0.352381i 0.949637 0.313353i \(-0.101452\pi\)
−0.746190 + 0.665733i \(0.768119\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −5.00000 −0.401610
\(156\) 0 0
\(157\) −4.50000 7.79423i −0.359139 0.622047i 0.628678 0.777666i \(-0.283596\pi\)
−0.987817 + 0.155618i \(0.950263\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −6.50000 + 11.2583i −0.509119 + 0.881820i 0.490825 + 0.871258i \(0.336695\pi\)
−0.999944 + 0.0105623i \(0.996638\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.50000 11.2583i 0.494186 0.855955i −0.505792 0.862656i \(-0.668800\pi\)
0.999978 + 0.00670064i \(0.00213290\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −6.50000 11.2583i −0.485833 0.841487i 0.514035 0.857769i \(-0.328150\pi\)
−0.999867 + 0.0162823i \(0.994817\pi\)
\(180\) 0 0
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.50000 + 2.59808i 0.110282 + 0.191014i
\(186\) 0 0
\(187\) −7.50000 + 12.9904i −0.548454 + 0.949951i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.50000 + 9.52628i −0.397966 + 0.689297i −0.993475 0.114051i \(-0.963617\pi\)
0.595509 + 0.803349i \(0.296950\pi\)
\(192\) 0 0
\(193\) −1.50000 2.59808i −0.107972 0.187014i 0.806976 0.590584i \(-0.201102\pi\)
−0.914949 + 0.403570i \(0.867769\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −6.50000 11.2583i −0.460773 0.798082i 0.538227 0.842800i \(-0.319094\pi\)
−0.999000 + 0.0447181i \(0.985761\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.00000 + 1.73205i −0.0698430 + 0.120972i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.00000 0.207514
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.00000 + 3.46410i −0.136399 + 0.236250i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 15.0000 + 25.9808i 1.00901 + 1.74766i
\(222\) 0 0
\(223\) 24.0000 1.60716 0.803579 0.595198i \(-0.202926\pi\)
0.803579 + 0.595198i \(0.202926\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.50000 9.52628i −0.365048 0.632281i 0.623736 0.781635i \(-0.285614\pi\)
−0.988784 + 0.149354i \(0.952281\pi\)
\(228\) 0 0
\(229\) 11.5000 19.9186i 0.759941 1.31626i −0.182939 0.983124i \(-0.558561\pi\)
0.942880 0.333133i \(-0.108106\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.50000 9.52628i 0.360317 0.624087i −0.627696 0.778459i \(-0.716002\pi\)
0.988013 + 0.154371i \(0.0493352\pi\)
\(234\) 0 0
\(235\) 2.50000 + 4.33013i 0.163082 + 0.282466i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 0 0
\(241\) −8.50000 14.7224i −0.547533 0.948355i −0.998443 0.0557856i \(-0.982234\pi\)
0.450910 0.892570i \(-0.351100\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.00000 5.19615i 0.190885 0.330623i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 16.0000 1.00991 0.504956 0.863145i \(-0.331509\pi\)
0.504956 + 0.863145i \(0.331509\pi\)
\(252\) 0 0
\(253\) −21.0000 −1.32026
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.5000 18.1865i 0.654972 1.13444i −0.326929 0.945049i \(-0.606014\pi\)
0.981901 0.189396i \(-0.0606529\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.50000 7.79423i −0.277482 0.480613i 0.693276 0.720672i \(-0.256167\pi\)
−0.970758 + 0.240059i \(0.922833\pi\)
\(264\) 0 0
\(265\) −1.00000 −0.0614295
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.50000 + 7.79423i 0.274370 + 0.475223i 0.969976 0.243201i \(-0.0781974\pi\)
−0.695606 + 0.718423i \(0.744864\pi\)
\(270\) 0 0
\(271\) −3.50000 + 6.06218i −0.212610 + 0.368251i −0.952531 0.304443i \(-0.901530\pi\)
0.739921 + 0.672694i \(0.234863\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.00000 + 10.3923i −0.361814 + 0.626680i
\(276\) 0 0
\(277\) 8.50000 + 14.7224i 0.510716 + 0.884585i 0.999923 + 0.0124177i \(0.00395278\pi\)
−0.489207 + 0.872167i \(0.662714\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −6.50000 11.2583i −0.386385 0.669238i 0.605575 0.795788i \(-0.292943\pi\)
−0.991960 + 0.126550i \(0.959610\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −4.00000 + 6.92820i −0.235294 + 0.407541i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) −15.0000 −0.873334
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −21.0000 + 36.3731i −1.21446 + 2.10351i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.50000 + 4.33013i 0.143150 + 0.247942i
\(306\) 0 0
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −7.50000 12.9904i −0.425286 0.736617i 0.571161 0.820838i \(-0.306493\pi\)
−0.996447 + 0.0842210i \(0.973160\pi\)
\(312\) 0 0
\(313\) −0.500000 + 0.866025i −0.0282617 + 0.0489506i −0.879810 0.475325i \(-0.842331\pi\)
0.851549 + 0.524276i \(0.175664\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.50000 2.59808i 0.0842484 0.145922i −0.820822 0.571184i \(-0.806484\pi\)
0.905071 + 0.425261i \(0.139818\pi\)
\(318\) 0 0
\(319\) −3.00000 5.19615i −0.167968 0.290929i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.00000 0.278207
\(324\) 0 0
\(325\) 12.0000 + 20.7846i 0.665640 + 1.15292i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −14.5000 + 25.1147i −0.796992 + 1.38043i 0.124574 + 0.992210i \(0.460243\pi\)
−0.921567 + 0.388221i \(0.873090\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 9.00000 0.491723
\(336\) 0 0
\(337\) −10.0000 −0.544735 −0.272367 0.962193i \(-0.587807\pi\)
−0.272367 + 0.962193i \(0.587807\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.50000 12.9904i 0.406148 0.703469i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.50000 + 12.9904i 0.402621 + 0.697360i 0.994041 0.109003i \(-0.0347659\pi\)
−0.591420 + 0.806363i \(0.701433\pi\)
\(348\) 0 0
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.50000 2.59808i −0.0798369 0.138282i 0.823343 0.567545i \(-0.192107\pi\)
−0.903179 + 0.429263i \(0.858773\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.5000 18.1865i 0.554169 0.959849i −0.443799 0.896126i \(-0.646370\pi\)
0.997968 0.0637221i \(-0.0202971\pi\)
\(360\) 0 0
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7.00000 0.366397
\(366\) 0 0
\(367\) 11.5000 + 19.9186i 0.600295 + 1.03974i 0.992776 + 0.119982i \(0.0382835\pi\)
−0.392481 + 0.919760i \(0.628383\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −5.50000 + 9.52628i −0.284779 + 0.493252i −0.972556 0.232671i \(-0.925254\pi\)
0.687776 + 0.725923i \(0.258587\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) 24.0000 1.23280 0.616399 0.787434i \(-0.288591\pi\)
0.616399 + 0.787434i \(0.288591\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.50000 2.59808i 0.0766464 0.132755i −0.825155 0.564907i \(-0.808912\pi\)
0.901801 + 0.432151i \(0.142245\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −14.5000 25.1147i −0.735179 1.27337i −0.954645 0.297747i \(-0.903765\pi\)
0.219465 0.975620i \(-0.429569\pi\)
\(390\) 0 0
\(391\) −35.0000 −1.77003
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.500000 + 0.866025i 0.0251577 + 0.0435745i
\(396\) 0 0
\(397\) −8.50000 + 14.7224i −0.426603 + 0.738898i −0.996569 0.0827707i \(-0.973623\pi\)
0.569966 + 0.821668i \(0.306956\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13.5000 23.3827i 0.674158 1.16768i −0.302556 0.953131i \(-0.597840\pi\)
0.976714 0.214544i \(-0.0688266\pi\)
\(402\) 0 0
\(403\) −15.0000 25.9808i −0.747203 1.29419i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −9.00000 −0.446113
\(408\) 0 0
\(409\) 13.5000 + 23.3827i 0.667532 + 1.15620i 0.978592 + 0.205809i \(0.0659826\pi\)
−0.311060 + 0.950390i \(0.600684\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 6.00000 10.3923i 0.294528 0.510138i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 20.0000 0.977064 0.488532 0.872546i \(-0.337533\pi\)
0.488532 + 0.872546i \(0.337533\pi\)
\(420\) 0 0
\(421\) 34.0000 1.65706 0.828529 0.559946i \(-0.189178\pi\)
0.828529 + 0.559946i \(0.189178\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −10.0000 + 17.3205i −0.485071 + 0.840168i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.50000 + 2.59808i 0.0722525 + 0.125145i 0.899888 0.436121i \(-0.143648\pi\)
−0.827636 + 0.561266i \(0.810315\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.50000 + 6.06218i 0.167428 + 0.289993i
\(438\) 0 0
\(439\) 10.5000 18.1865i 0.501138 0.867996i −0.498861 0.866682i \(-0.666248\pi\)
0.999999 0.00131415i \(-0.000418308\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −15.5000 + 26.8468i −0.736427 + 1.27553i 0.217667 + 0.976023i \(0.430155\pi\)
−0.954094 + 0.299506i \(0.903178\pi\)
\(444\) 0 0
\(445\) 3.50000 + 6.06218i 0.165916 + 0.287375i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 26.0000 1.22702 0.613508 0.789689i \(-0.289758\pi\)
0.613508 + 0.789689i \(0.289758\pi\)
\(450\) 0 0
\(451\) −3.00000 5.19615i −0.141264 0.244677i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 8.50000 14.7224i 0.397613 0.688686i −0.595818 0.803120i \(-0.703172\pi\)
0.993431 + 0.114433i \(0.0365053\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.50000 2.59808i 0.0694117 0.120225i −0.829231 0.558906i \(-0.811221\pi\)
0.898642 + 0.438682i \(0.144554\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −6.00000 10.3923i −0.275880 0.477839i
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.5000 26.8468i −0.708213 1.22666i −0.965519 0.260331i \(-0.916168\pi\)
0.257306 0.966330i \(-0.417165\pi\)
\(480\) 0 0
\(481\) −9.00000 + 15.5885i −0.410365 + 0.710772i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.00000 1.73205i 0.0454077 0.0786484i
\(486\) 0 0
\(487\) −3.50000 6.06218i −0.158600 0.274703i 0.775764 0.631023i \(-0.217365\pi\)
−0.934364 + 0.356320i \(0.884031\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 24.0000 1.08310 0.541552 0.840667i \(-0.317837\pi\)
0.541552 + 0.840667i \(0.317837\pi\)
\(492\) 0 0
\(493\) −5.00000 8.66025i −0.225189 0.390038i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 17.5000 30.3109i 0.783408 1.35690i −0.146538 0.989205i \(-0.546813\pi\)
0.929946 0.367697i \(-0.119854\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −32.0000 −1.42681 −0.713405 0.700752i \(-0.752848\pi\)
−0.713405 + 0.700752i \(0.752848\pi\)
\(504\) 0 0
\(505\) −3.00000 −0.133498
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4.50000 7.79423i 0.199459 0.345473i −0.748894 0.662690i \(-0.769415\pi\)
0.948353 + 0.317217i \(0.102748\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7.50000 + 12.9904i 0.330489 + 0.572425i
\(516\) 0 0
\(517\) −15.0000 −0.659699
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 16.5000 + 28.5788i 0.722878 + 1.25206i 0.959841 + 0.280543i \(0.0905145\pi\)
−0.236963 + 0.971519i \(0.576152\pi\)
\(522\) 0 0
\(523\) −3.50000 + 6.06218i −0.153044 + 0.265081i −0.932345 0.361569i \(-0.882241\pi\)
0.779301 + 0.626650i \(0.215574\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 12.5000 21.6506i 0.544509 0.943116i
\(528\) 0 0
\(529\) −13.0000 22.5167i −0.565217 0.978985i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) −4.50000 7.79423i −0.194552 0.336974i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 20.5000 35.5070i 0.881364 1.52657i 0.0315385 0.999503i \(-0.489959\pi\)
0.849825 0.527064i \(-0.176707\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.00000 0.214176
\(546\) 0 0
\(547\) −8.00000 −0.342055 −0.171028 0.985266i \(-0.554709\pi\)
−0.171028 + 0.985266i \(0.554709\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.00000 + 1.73205i −0.0426014 + 0.0737878i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.50000 4.33013i −0.105928 0.183473i 0.808189 0.588924i \(-0.200448\pi\)
−0.914117 + 0.405450i \(0.867115\pi\)
\(558\) 0 0
\(559\) −24.0000 −1.01509
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 20.5000 + 35.5070i 0.863972 + 1.49644i 0.868064 + 0.496452i \(0.165364\pi\)
−0.00409232 + 0.999992i \(0.501303\pi\)
\(564\) 0 0
\(565\) 9.00000 15.5885i 0.378633 0.655811i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −16.5000 + 28.5788i −0.691716 + 1.19809i 0.279559 + 0.960128i \(0.409812\pi\)
−0.971275 + 0.237959i \(0.923522\pi\)
\(570\) 0 0
\(571\) 6.50000 + 11.2583i 0.272017 + 0.471146i 0.969378 0.245573i \(-0.0789761\pi\)
−0.697362 + 0.716720i \(0.745643\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −28.0000 −1.16768
\(576\) 0 0
\(577\) −16.5000 28.5788i −0.686904 1.18975i −0.972834 0.231502i \(-0.925636\pi\)
0.285930 0.958250i \(-0.407697\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.50000 2.59808i 0.0621237 0.107601i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −20.0000 −0.825488 −0.412744 0.910847i \(-0.635430\pi\)
−0.412744 + 0.910847i \(0.635430\pi\)
\(588\) 0 0
\(589\) −5.00000 −0.206021
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 22.5000 38.9711i 0.923964 1.60035i 0.130746 0.991416i \(-0.458263\pi\)
0.793219 0.608937i \(-0.208404\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −8.50000 14.7224i −0.347301 0.601542i 0.638468 0.769648i \(-0.279568\pi\)
−0.985769 + 0.168106i \(0.946235\pi\)
\(600\) 0 0
\(601\) −22.0000 −0.897399 −0.448699 0.893683i \(-0.648113\pi\)
−0.448699 + 0.893683i \(0.648113\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.00000 1.73205i −0.0406558 0.0704179i
\(606\) 0 0
\(607\) 6.50000 11.2583i 0.263827 0.456962i −0.703429 0.710766i \(-0.748349\pi\)
0.967256 + 0.253804i \(0.0816819\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −15.0000 + 25.9808i −0.606835 + 1.05107i
\(612\) 0 0
\(613\) −21.5000 37.2391i −0.868377 1.50407i −0.863655 0.504084i \(-0.831830\pi\)
−0.00472215 0.999989i \(-0.501503\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −30.0000 −1.20775 −0.603877 0.797077i \(-0.706378\pi\)
−0.603877 + 0.797077i \(0.706378\pi\)
\(618\) 0 0
\(619\) −4.50000 7.79423i −0.180870 0.313276i 0.761307 0.648392i \(-0.224558\pi\)
−0.942177 + 0.335115i \(0.891225\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −15.0000 −0.598089
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.00000 6.92820i 0.158735 0.274937i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −8.50000 14.7224i −0.335730 0.581501i 0.647895 0.761730i \(-0.275650\pi\)
−0.983625 + 0.180229i \(0.942316\pi\)
\(642\) 0 0
\(643\) 44.0000 1.73519 0.867595 0.497271i \(-0.165665\pi\)
0.867595 + 0.497271i \(0.165665\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −7.50000 12.9904i −0.294855 0.510705i 0.680096 0.733123i \(-0.261938\pi\)
−0.974951 + 0.222419i \(0.928605\pi\)
\(648\) 0 0
\(649\) 22.5000 38.9711i 0.883202 1.52975i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 17.5000 30.3109i 0.684828 1.18616i −0.288663 0.957431i \(-0.593211\pi\)
0.973491 0.228726i \(-0.0734560\pi\)
\(654\) 0 0
\(655\) 2.50000 + 4.33013i 0.0976831 + 0.169192i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −44.0000 −1.71400 −0.856998 0.515319i \(-0.827673\pi\)
−0.856998 + 0.515319i \(0.827673\pi\)
\(660\) 0 0
\(661\) 11.5000 + 19.9186i 0.447298 + 0.774743i 0.998209 0.0598209i \(-0.0190530\pi\)
−0.550911 + 0.834564i \(0.685720\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 7.00000 12.1244i 0.271041 0.469457i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −15.0000 −0.579069
\(672\) 0 0
\(673\) −26.0000 −1.00223 −0.501113 0.865382i \(-0.667076\pi\)
−0.501113 + 0.865382i \(0.667076\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −19.5000 + 33.7750i −0.749446 + 1.29808i 0.198643 + 0.980072i \(0.436347\pi\)
−0.948089 + 0.318006i \(0.896987\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 13.5000 + 23.3827i 0.516563 + 0.894714i 0.999815 + 0.0192323i \(0.00612219\pi\)
−0.483252 + 0.875481i \(0.660544\pi\)
\(684\) 0 0
\(685\) 11.0000 0.420288
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.00000 5.19615i −0.114291 0.197958i
\(690\) 0 0
\(691\) 2.50000 4.33013i 0.0951045 0.164726i −0.814548 0.580097i \(-0.803015\pi\)
0.909652 + 0.415371i \(0.136348\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.00000 10.3923i 0.227593 0.394203i
\(696\) 0 0
\(697\) −5.00000 8.66025i −0.189389 0.328031i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 50.0000 1.88847 0.944237 0.329267i \(-0.106802\pi\)
0.944237 + 0.329267i \(0.106802\pi\)
\(702\) 0 0
\(703\) 1.50000 + 2.59808i 0.0565736 + 0.0979883i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 14.5000 25.1147i 0.544559 0.943204i −0.454076 0.890963i \(-0.650030\pi\)
0.998635 0.0522406i \(-0.0166363\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 35.0000 1.31076
\(714\) 0 0
\(715\) 18.0000 0.673162
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 19.5000 33.7750i 0.727227 1.25959i −0.230823 0.972996i \(-0.574142\pi\)
0.958051 0.286599i \(-0.0925247\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.00000 6.92820i −0.148556 0.257307i
\(726\) 0 0
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −10.0000 17.3205i −0.369863 0.640622i
\(732\) 0 0
\(733\) 9.50000 16.4545i 0.350891 0.607760i −0.635515 0.772088i \(-0.719212\pi\)
0.986406 + 0.164328i \(0.0525456\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −13.5000 + 23.3827i −0.497279 + 0.861312i
\(738\) 0 0
\(739\) 2.50000 + 4.33013i 0.0919640 + 0.159286i 0.908337 0.418238i \(-0.137352\pi\)
−0.816373 + 0.577524i \(0.804019\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16.0000 0.586983 0.293492 0.955962i \(-0.405183\pi\)
0.293492 + 0.955962i \(0.405183\pi\)
\(744\) 0 0
\(745\) 8.50000 + 14.7224i 0.311416 + 0.539388i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −26.5000 + 45.8993i −0.966999 + 1.67489i −0.262852 + 0.964836i \(0.584663\pi\)
−0.704146 + 0.710055i \(0.748670\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 5.00000 0.181969
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.50000 + 2.59808i −0.0543750 + 0.0941802i −0.891932 0.452170i \(-0.850650\pi\)
0.837557 + 0.546350i \(0.183983\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −45.0000 77.9423i −1.62486 2.81433i
\(768\) 0 0
\(769\) −22.0000 −0.793340 −0.396670 0.917961i \(-0.629834\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −9.50000 16.4545i −0.341691 0.591827i 0.643056 0.765819i \(-0.277666\pi\)
−0.984747 + 0.173993i \(0.944333\pi\)
\(774\) 0 0
\(775\) 10.0000 17.3205i 0.359211 0.622171i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.00000 + 1.73205i −0.0358287 + 0.0620572i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −9.00000 −0.321224
\(786\) 0 0
\(787\) −8.50000 14.7224i −0.302992 0.524798i 0.673820 0.738896i \(-0.264652\pi\)
−0.976812 + 0.214097i \(0.931319\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −15.0000 + 25.9808i −0.532666 + 0.922604i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 18.0000 0.637593 0.318796 0.947823i \(-0.396721\pi\)
0.318796 + 0.947823i \(0.396721\pi\)
\(798\) 0 0
\(799\) −25.0000 −0.884436
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −10.5000 + 18.1865i −0.370537 + 0.641789i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 19.5000 + 33.7750i 0.685583 + 1.18747i 0.973253 + 0.229736i \(0.0737862\pi\)
−0.287670 + 0.957730i \(0.592880\pi\)
\(810\) 0 0
\(811\) −12.0000 −0.421377 −0.210688 0.977553i \(-0.567571\pi\)
−0.210688 + 0.977553i \(0.567571\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.50000 + 11.2583i 0.227685 + 0.394362i
\(816\) 0 0
\(817\) −2.00000 + 3.46410i −0.0699711 + 0.121194i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −4.50000 + 7.79423i −0.157051 + 0.272020i −0.933804 0.357785i \(-0.883532\pi\)
0.776753 + 0.629805i \(0.216865\pi\)
\(822\) 0 0
\(823\) −23.5000 40.7032i −0.819159 1.41882i −0.906303 0.422628i \(-0.861108\pi\)
0.0871445 0.996196i \(-0.472226\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 36.0000 1.25184 0.625921 0.779886i \(-0.284723\pi\)
0.625921 + 0.779886i \(0.284723\pi\)
\(828\) 0 0
\(829\) 5.50000 + 9.52628i 0.191023 + 0.330861i 0.945589 0.325362i \(-0.105486\pi\)
−0.754567 + 0.656223i \(0.772153\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −6.00000 + 10.3923i −0.207639 + 0.359641i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 11.5000 19.9186i 0.395612 0.685220i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −10.5000 18.1865i −0.359935 0.623426i
\(852\) 0 0
\(853\) −34.0000 −1.16414 −0.582069 0.813139i \(-0.697757\pi\)
−0.582069 + 0.813139i \(0.697757\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −19.5000 33.7750i −0.666107 1.15373i −0.978984 0.203938i \(-0.934626\pi\)
0.312877 0.949794i \(-0.398707\pi\)
\(858\) 0 0
\(859\) 0.500000 0.866025i 0.0170598 0.0295484i −0.857369 0.514701i \(-0.827903\pi\)
0.874429 + 0.485153i \(0.161236\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 8.50000 14.7224i 0.289343 0.501157i −0.684310 0.729191i \(-0.739896\pi\)
0.973653 + 0.228034i \(0.0732297\pi\)
\(864\) 0 0
\(865\) −6.50000 11.2583i −0.221007 0.382795i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.00000 −0.101768
\(870\) 0 0
\(871\) 27.0000 + 46.7654i 0.914860 + 1.58458i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −11.5000 + 19.9186i −0.388327 + 0.672603i −0.992225 0.124459i \(-0.960280\pi\)
0.603897 + 0.797062i \(0.293614\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −14.0000 −0.471672 −0.235836 0.971793i \(-0.575783\pi\)
−0.235836 + 0.971793i \(0.575783\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.50000 2.59808i 0.0503651 0.0872349i −0.839744 0.542983i \(-0.817295\pi\)
0.890109 + 0.455748i \(0.150628\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.50000 + 4.33013i 0.0836593 + 0.144902i
\(894\) 0 0
\(895\) −13.0000 −0.434542
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 5.00000 + 8.66025i 0.166759 + 0.288836i
\(900\) 0 0
\(901\) 2.50000 4.33013i 0.0832871 0.144257i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.00000 8.66025i 0.166206 0.287877i
\(906\) 0 0
\(907\) 0.500000 + 0.866025i 0.0166022 + 0.0287559i 0.874207 0.485553i \(-0.161382\pi\)
−0.857605 + 0.514309i \(0.828048\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −16.0000 −0.530104 −0.265052 0.964234i \(-0.585389\pi\)
−0.265052 + 0.964234i \(0.585389\pi\)
\(912\) 0 0
\(913\) 18.0000 + 31.1769i 0.595713 + 1.03181i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 5.50000 9.52628i 0.181428 0.314243i −0.760939 0.648824i \(-0.775261\pi\)
0.942367 + 0.334581i \(0.108595\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −12.0000 −0.394558
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −3.50000 + 6.06218i −0.114831 + 0.198894i −0.917712 0.397246i \(-0.869966\pi\)
0.802881 + 0.596139i \(0.203299\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 7.50000 + 12.9904i 0.245276 + 0.424831i
\(936\) 0 0
\(937\) 6.00000 0.196011 0.0980057 0.995186i \(-0.468754\pi\)
0.0980057 + 0.995186i \(0.468754\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 16.5000 + 28.5788i 0.537885 + 0.931644i 0.999018 + 0.0443125i \(0.0141097\pi\)
−0.461133 + 0.887331i \(0.652557\pi\)
\(942\) 0 0
\(943\) 7.00000 12.1244i 0.227951 0.394823i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18.5000 32.0429i 0.601169 1.04126i −0.391475 0.920189i \(-0.628035\pi\)
0.992644 0.121067i \(-0.0386316\pi\)
\(948\) 0 0
\(949\) 21.0000 + 36.3731i 0.681689 + 1.18072i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −22.0000 −0.712650 −0.356325 0.934362i \(-0.615970\pi\)
−0.356325 + 0.934362i \(0.615970\pi\)
\(954\) 0 0
\(955\) 5.50000 + 9.52628i 0.177976 + 0.308263i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 3.00000 5.19615i 0.0967742 0.167618i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −3.00000 −0.0965734
\(966\) 0 0
\(967\) 48.0000 1.54358 0.771788 0.635880i \(-0.219363\pi\)
0.771788 + 0.635880i \(0.219363\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 17.5000 30.3109i 0.561602 0.972723i −0.435755 0.900065i \(-0.643519\pi\)
0.997357 0.0726575i \(-0.0231480\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.50000 + 2.59808i 0.0479893 + 0.0831198i 0.889022 0.457864i \(-0.151385\pi\)
−0.841033 + 0.540984i \(0.818052\pi\)
\(978\) 0 0
\(979\) −21.0000 −0.671163
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 10.5000 + 18.1865i 0.334898 + 0.580060i 0.983465 0.181097i \(-0.0579648\pi\)
−0.648567 + 0.761157i \(0.724631\pi\)
\(984\) 0 0
\(985\) 3.00000 5.19615i 0.0955879 0.165563i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 14.0000 24.2487i 0.445174 0.771064i
\(990\) 0 0
\(991\) −7.50000 12.9904i −0.238245 0.412653i 0.721966 0.691929i \(-0.243239\pi\)
−0.960211 + 0.279276i \(0.909906\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −13.0000 −0.412128
\(996\) 0 0
\(997\) −20.5000 35.5070i −0.649242 1.12452i −0.983304 0.181968i \(-0.941753\pi\)
0.334063 0.942551i \(-0.391580\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3528.2.s.q.3313.1 2
3.2 odd 2 392.2.i.b.177.1 2
7.2 even 3 3528.2.a.j.1.1 1
7.3 odd 6 504.2.s.c.361.1 2
7.4 even 3 inner 3528.2.s.q.361.1 2
7.5 odd 6 3528.2.a.p.1.1 1
7.6 odd 2 504.2.s.c.289.1 2
12.11 even 2 784.2.i.h.177.1 2
21.2 odd 6 392.2.a.e.1.1 1
21.5 even 6 392.2.a.c.1.1 1
21.11 odd 6 392.2.i.b.361.1 2
21.17 even 6 56.2.i.b.25.1 yes 2
21.20 even 2 56.2.i.b.9.1 2
28.3 even 6 1008.2.s.g.865.1 2
28.19 even 6 7056.2.a.bj.1.1 1
28.23 odd 6 7056.2.a.u.1.1 1
28.27 even 2 1008.2.s.g.289.1 2
84.11 even 6 784.2.i.h.753.1 2
84.23 even 6 784.2.a.c.1.1 1
84.47 odd 6 784.2.a.h.1.1 1
84.59 odd 6 112.2.i.a.81.1 2
84.83 odd 2 112.2.i.a.65.1 2
105.17 odd 12 1400.2.bh.a.249.1 4
105.38 odd 12 1400.2.bh.a.249.2 4
105.44 odd 6 9800.2.a.s.1.1 1
105.59 even 6 1400.2.q.d.1201.1 2
105.62 odd 4 1400.2.bh.a.849.2 4
105.83 odd 4 1400.2.bh.a.849.1 4
105.89 even 6 9800.2.a.be.1.1 1
105.104 even 2 1400.2.q.d.401.1 2
168.5 even 6 3136.2.a.u.1.1 1
168.59 odd 6 448.2.i.d.193.1 2
168.83 odd 2 448.2.i.d.65.1 2
168.101 even 6 448.2.i.b.193.1 2
168.107 even 6 3136.2.a.t.1.1 1
168.125 even 2 448.2.i.b.65.1 2
168.131 odd 6 3136.2.a.j.1.1 1
168.149 odd 6 3136.2.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.i.b.9.1 2 21.20 even 2
56.2.i.b.25.1 yes 2 21.17 even 6
112.2.i.a.65.1 2 84.83 odd 2
112.2.i.a.81.1 2 84.59 odd 6
392.2.a.c.1.1 1 21.5 even 6
392.2.a.e.1.1 1 21.2 odd 6
392.2.i.b.177.1 2 3.2 odd 2
392.2.i.b.361.1 2 21.11 odd 6
448.2.i.b.65.1 2 168.125 even 2
448.2.i.b.193.1 2 168.101 even 6
448.2.i.d.65.1 2 168.83 odd 2
448.2.i.d.193.1 2 168.59 odd 6
504.2.s.c.289.1 2 7.6 odd 2
504.2.s.c.361.1 2 7.3 odd 6
784.2.a.c.1.1 1 84.23 even 6
784.2.a.h.1.1 1 84.47 odd 6
784.2.i.h.177.1 2 12.11 even 2
784.2.i.h.753.1 2 84.11 even 6
1008.2.s.g.289.1 2 28.27 even 2
1008.2.s.g.865.1 2 28.3 even 6
1400.2.q.d.401.1 2 105.104 even 2
1400.2.q.d.1201.1 2 105.59 even 6
1400.2.bh.a.249.1 4 105.17 odd 12
1400.2.bh.a.249.2 4 105.38 odd 12
1400.2.bh.a.849.1 4 105.83 odd 4
1400.2.bh.a.849.2 4 105.62 odd 4
3136.2.a.i.1.1 1 168.149 odd 6
3136.2.a.j.1.1 1 168.131 odd 6
3136.2.a.t.1.1 1 168.107 even 6
3136.2.a.u.1.1 1 168.5 even 6
3528.2.a.j.1.1 1 7.2 even 3
3528.2.a.p.1.1 1 7.5 odd 6
3528.2.s.q.361.1 2 7.4 even 3 inner
3528.2.s.q.3313.1 2 1.1 even 1 trivial
7056.2.a.u.1.1 1 28.23 odd 6
7056.2.a.bj.1.1 1 28.19 even 6
9800.2.a.s.1.1 1 105.44 odd 6
9800.2.a.be.1.1 1 105.89 even 6