Properties

Label 392.6.i.p.361.5
Level $392$
Weight $6$
Character 392.361
Analytic conductor $62.870$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [392,6,Mod(177,392)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(392, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("392.177");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 392 = 2^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 392.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(62.8704573667\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 3 x^{9} - 119 x^{8} - 521 x^{7} - 898 x^{6} + 27806 x^{5} + 657990 x^{4} + 3648839 x^{3} + \cdots + 92895579 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{2}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.5
Root \(-5.12305 + 3.65205i\) of defining polynomial
Character \(\chi\) \(=\) 392.361
Dual form 392.6.i.p.177.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(12.5967 - 21.8182i) q^{3} +(40.3290 + 69.8518i) q^{5} +(-195.855 - 339.231i) q^{9} +(253.362 - 438.837i) q^{11} -391.283 q^{13} +2032.05 q^{15} +(-449.706 + 778.913i) q^{17} +(168.157 + 291.256i) q^{19} +(-2436.06 - 4219.37i) q^{23} +(-1690.35 + 2927.78i) q^{25} -3746.51 q^{27} +546.591 q^{29} +(3049.51 - 5281.91i) q^{31} +(-6383.07 - 11055.8i) q^{33} +(-7404.84 - 12825.6i) q^{37} +(-4928.89 + 8537.08i) q^{39} +9837.31 q^{41} +18661.0 q^{43} +(15797.3 - 27361.6i) q^{45} +(699.243 + 1211.12i) q^{47} +(11329.6 + 19623.5i) q^{51} +(9880.41 - 17113.4i) q^{53} +40871.4 q^{55} +8472.89 q^{57} +(13585.4 - 23530.6i) q^{59} +(7083.72 + 12269.4i) q^{61} +(-15780.1 - 27331.9i) q^{65} +(25223.0 - 43687.6i) q^{67} -122745. q^{69} -45279.2 q^{71} +(-3783.41 + 6553.06i) q^{73} +(42585.8 + 73760.8i) q^{75} +(-2414.96 - 4182.83i) q^{79} +(398.990 - 691.071i) q^{81} +14067.3 q^{83} -72544.7 q^{85} +(6885.25 - 11925.6i) q^{87} +(-44776.9 - 77555.9i) q^{89} +(-76827.7 - 133070. i) q^{93} +(-13563.2 + 23492.1i) q^{95} -7209.53 q^{97} -198489. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 13 q^{3} + 31 q^{5} - 230 q^{9} + 351 q^{11} + 108 q^{13} + 1214 q^{15} + 111 q^{17} + 1035 q^{19} - 3639 q^{23} - 1540 q^{25} - 7214 q^{27} - 1468 q^{29} + 7677 q^{31} - 7439 q^{33} - 13595 q^{37}+ \cdots - 600308 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/392\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(297\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 12.5967 21.8182i 0.808080 1.39964i −0.106112 0.994354i \(-0.533840\pi\)
0.914192 0.405282i \(-0.132827\pi\)
\(4\) 0 0
\(5\) 40.3290 + 69.8518i 0.721427 + 1.24955i 0.960428 + 0.278528i \(0.0898467\pi\)
−0.239001 + 0.971019i \(0.576820\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −195.855 339.231i −0.805987 1.39601i
\(10\) 0 0
\(11\) 253.362 438.837i 0.631336 1.09351i −0.355943 0.934508i \(-0.615840\pi\)
0.987279 0.158998i \(-0.0508264\pi\)
\(12\) 0 0
\(13\) −391.283 −0.642145 −0.321072 0.947055i \(-0.604043\pi\)
−0.321072 + 0.947055i \(0.604043\pi\)
\(14\) 0 0
\(15\) 2032.05 2.33188
\(16\) 0 0
\(17\) −449.706 + 778.913i −0.377404 + 0.653682i −0.990684 0.136183i \(-0.956516\pi\)
0.613280 + 0.789866i \(0.289850\pi\)
\(18\) 0 0
\(19\) 168.157 + 291.256i 0.106864 + 0.185093i 0.914498 0.404590i \(-0.132586\pi\)
−0.807634 + 0.589684i \(0.799252\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2436.06 4219.37i −0.960213 1.66314i −0.721960 0.691934i \(-0.756759\pi\)
−0.238252 0.971203i \(-0.576575\pi\)
\(24\) 0 0
\(25\) −1690.35 + 2927.78i −0.540913 + 0.936889i
\(26\) 0 0
\(27\) −3746.51 −0.989048
\(28\) 0 0
\(29\) 546.591 0.120689 0.0603444 0.998178i \(-0.480780\pi\)
0.0603444 + 0.998178i \(0.480780\pi\)
\(30\) 0 0
\(31\) 3049.51 5281.91i 0.569936 0.987158i −0.426636 0.904424i \(-0.640301\pi\)
0.996572 0.0827346i \(-0.0263654\pi\)
\(32\) 0 0
\(33\) −6383.07 11055.8i −1.02034 1.76728i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −7404.84 12825.6i −0.889224 1.54018i −0.840794 0.541355i \(-0.817911\pi\)
−0.0484303 0.998827i \(-0.515422\pi\)
\(38\) 0 0
\(39\) −4928.89 + 8537.08i −0.518904 + 0.898769i
\(40\) 0 0
\(41\) 9837.31 0.913938 0.456969 0.889483i \(-0.348935\pi\)
0.456969 + 0.889483i \(0.348935\pi\)
\(42\) 0 0
\(43\) 18661.0 1.53909 0.769546 0.638591i \(-0.220482\pi\)
0.769546 + 0.638591i \(0.220482\pi\)
\(44\) 0 0
\(45\) 15797.3 27361.6i 1.16292 2.01424i
\(46\) 0 0
\(47\) 699.243 + 1211.12i 0.0461725 + 0.0799731i 0.888188 0.459480i \(-0.151964\pi\)
−0.842016 + 0.539453i \(0.818631\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 11329.6 + 19623.5i 0.609945 + 1.05646i
\(52\) 0 0
\(53\) 9880.41 17113.4i 0.483154 0.836847i −0.516659 0.856191i \(-0.672825\pi\)
0.999813 + 0.0193444i \(0.00615789\pi\)
\(54\) 0 0
\(55\) 40871.4 1.82185
\(56\) 0 0
\(57\) 8472.89 0.345418
\(58\) 0 0
\(59\) 13585.4 23530.6i 0.508092 0.880041i −0.491864 0.870672i \(-0.663684\pi\)
0.999956 0.00936932i \(-0.00298239\pi\)
\(60\) 0 0
\(61\) 7083.72 + 12269.4i 0.243746 + 0.422180i 0.961778 0.273830i \(-0.0882905\pi\)
−0.718033 + 0.696009i \(0.754957\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −15780.1 27331.9i −0.463260 0.802391i
\(66\) 0 0
\(67\) 25223.0 43687.6i 0.686453 1.18897i −0.286525 0.958073i \(-0.592500\pi\)
0.972978 0.230898i \(-0.0741664\pi\)
\(68\) 0 0
\(69\) −122745. −3.10372
\(70\) 0 0
\(71\) −45279.2 −1.06599 −0.532995 0.846118i \(-0.678934\pi\)
−0.532995 + 0.846118i \(0.678934\pi\)
\(72\) 0 0
\(73\) −3783.41 + 6553.06i −0.0830953 + 0.143925i −0.904578 0.426308i \(-0.859814\pi\)
0.821483 + 0.570233i \(0.193147\pi\)
\(74\) 0 0
\(75\) 42585.8 + 73760.8i 0.874202 + 1.51416i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −2414.96 4182.83i −0.0435353 0.0754054i 0.843437 0.537229i \(-0.180529\pi\)
−0.886972 + 0.461823i \(0.847195\pi\)
\(80\) 0 0
\(81\) 398.990 691.071i 0.00675693 0.0117033i
\(82\) 0 0
\(83\) 14067.3 0.224138 0.112069 0.993700i \(-0.464252\pi\)
0.112069 + 0.993700i \(0.464252\pi\)
\(84\) 0 0
\(85\) −72544.7 −1.08908
\(86\) 0 0
\(87\) 6885.25 11925.6i 0.0975262 0.168920i
\(88\) 0 0
\(89\) −44776.9 77555.9i −0.599210 1.03786i −0.992938 0.118636i \(-0.962148\pi\)
0.393727 0.919227i \(-0.371185\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −76827.7 133070.i −0.921108 1.59541i
\(94\) 0 0
\(95\) −13563.2 + 23492.1i −0.154189 + 0.267063i
\(96\) 0 0
\(97\) −7209.53 −0.0777997 −0.0388998 0.999243i \(-0.512385\pi\)
−0.0388998 + 0.999243i \(0.512385\pi\)
\(98\) 0 0
\(99\) −198489. −2.03539
\(100\) 0 0
\(101\) −97609.2 + 169064.i −0.952110 + 1.64910i −0.211263 + 0.977429i \(0.567758\pi\)
−0.740847 + 0.671674i \(0.765576\pi\)
\(102\) 0 0
\(103\) −11816.8 20467.2i −0.109750 0.190093i 0.805919 0.592026i \(-0.201672\pi\)
−0.915669 + 0.401933i \(0.868338\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 53546.1 + 92744.5i 0.452135 + 0.783121i 0.998518 0.0544144i \(-0.0173292\pi\)
−0.546383 + 0.837535i \(0.683996\pi\)
\(108\) 0 0
\(109\) −23110.7 + 40029.0i −0.186315 + 0.322707i −0.944019 0.329892i \(-0.892988\pi\)
0.757704 + 0.652598i \(0.226321\pi\)
\(110\) 0 0
\(111\) −373107. −2.87426
\(112\) 0 0
\(113\) 55520.3 0.409030 0.204515 0.978863i \(-0.434438\pi\)
0.204515 + 0.978863i \(0.434438\pi\)
\(114\) 0 0
\(115\) 196487. 340326.i 1.38545 2.39966i
\(116\) 0 0
\(117\) 76634.7 + 132735.i 0.517560 + 0.896441i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −47859.5 82895.1i −0.297170 0.514713i
\(122\) 0 0
\(123\) 123918. 214632.i 0.738535 1.27918i
\(124\) 0 0
\(125\) −20624.8 −0.118063
\(126\) 0 0
\(127\) −230185. −1.26639 −0.633195 0.773992i \(-0.718257\pi\)
−0.633195 + 0.773992i \(0.718257\pi\)
\(128\) 0 0
\(129\) 235068. 407150.i 1.24371 2.15417i
\(130\) 0 0
\(131\) 99500.5 + 172340.i 0.506579 + 0.877420i 0.999971 + 0.00761308i \(0.00242334\pi\)
−0.493392 + 0.869807i \(0.664243\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −151093. 261701.i −0.713526 1.23586i
\(136\) 0 0
\(137\) −63765.5 + 110445.i −0.290258 + 0.502741i −0.973871 0.227104i \(-0.927074\pi\)
0.683613 + 0.729845i \(0.260408\pi\)
\(138\) 0 0
\(139\) −17259.8 −0.0757703 −0.0378851 0.999282i \(-0.512062\pi\)
−0.0378851 + 0.999282i \(0.512062\pi\)
\(140\) 0 0
\(141\) 35232.7 0.149244
\(142\) 0 0
\(143\) −99136.5 + 171709.i −0.405409 + 0.702189i
\(144\) 0 0
\(145\) 22043.4 + 38180.4i 0.0870682 + 0.150806i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 417.263 + 722.720i 0.00153973 + 0.00266689i 0.866794 0.498666i \(-0.166177\pi\)
−0.865255 + 0.501333i \(0.832843\pi\)
\(150\) 0 0
\(151\) −20469.3 + 35453.9i −0.0730569 + 0.126538i −0.900240 0.435395i \(-0.856609\pi\)
0.827183 + 0.561933i \(0.189942\pi\)
\(152\) 0 0
\(153\) 352308. 1.21673
\(154\) 0 0
\(155\) 491935. 1.64467
\(156\) 0 0
\(157\) 16444.1 28482.0i 0.0532428 0.0922193i −0.838176 0.545400i \(-0.816378\pi\)
0.891418 + 0.453181i \(0.149711\pi\)
\(158\) 0 0
\(159\) −248922. 431145.i −0.780854 1.35248i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 35149.3 + 60880.4i 0.103621 + 0.179477i 0.913174 0.407570i \(-0.133624\pi\)
−0.809553 + 0.587047i \(0.800290\pi\)
\(164\) 0 0
\(165\) 514846. 891739.i 1.47220 2.54993i
\(166\) 0 0
\(167\) −227937. −0.632447 −0.316224 0.948685i \(-0.602415\pi\)
−0.316224 + 0.948685i \(0.602415\pi\)
\(168\) 0 0
\(169\) −218190. −0.587650
\(170\) 0 0
\(171\) 65868.6 114088.i 0.172262 0.298366i
\(172\) 0 0
\(173\) −16895.1 29263.2i −0.0429186 0.0743372i 0.843768 0.536708i \(-0.180332\pi\)
−0.886687 + 0.462371i \(0.846999\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −342263. 592817.i −0.821158 1.42229i
\(178\) 0 0
\(179\) −307606. + 532789.i −0.717567 + 1.24286i 0.244394 + 0.969676i \(0.421411\pi\)
−0.961961 + 0.273186i \(0.911922\pi\)
\(180\) 0 0
\(181\) 678787. 1.54006 0.770029 0.638008i \(-0.220242\pi\)
0.770029 + 0.638008i \(0.220242\pi\)
\(182\) 0 0
\(183\) 356927. 0.787864
\(184\) 0 0
\(185\) 597259. 1.03448e6i 1.28302 2.22226i
\(186\) 0 0
\(187\) 227877. + 394695.i 0.476537 + 0.825386i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −327588. 567398.i −0.649747 1.12539i −0.983183 0.182622i \(-0.941542\pi\)
0.333436 0.942773i \(-0.391792\pi\)
\(192\) 0 0
\(193\) 160230. 277526.i 0.309635 0.536303i −0.668648 0.743579i \(-0.733126\pi\)
0.978282 + 0.207276i \(0.0664598\pi\)
\(194\) 0 0
\(195\) −795108. −1.49741
\(196\) 0 0
\(197\) 202103. 0.371029 0.185514 0.982642i \(-0.440605\pi\)
0.185514 + 0.982642i \(0.440605\pi\)
\(198\) 0 0
\(199\) 319170. 552819.i 0.571333 0.989578i −0.425096 0.905148i \(-0.639760\pi\)
0.996429 0.0844301i \(-0.0269070\pi\)
\(200\) 0 0
\(201\) −635455. 1.10064e6i −1.10942 1.92157i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 396729. + 687154.i 0.659339 + 1.14201i
\(206\) 0 0
\(207\) −954226. + 1.65277e6i −1.54784 + 2.68093i
\(208\) 0 0
\(209\) 170418. 0.269868
\(210\) 0 0
\(211\) −517370. −0.800010 −0.400005 0.916513i \(-0.630992\pi\)
−0.400005 + 0.916513i \(0.630992\pi\)
\(212\) 0 0
\(213\) −570370. + 987909.i −0.861405 + 1.49200i
\(214\) 0 0
\(215\) 752581. + 1.30351e6i 1.11034 + 1.92317i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 95317.2 + 165094.i 0.134295 + 0.232606i
\(220\) 0 0
\(221\) 175962. 304776.i 0.242348 0.419759i
\(222\) 0 0
\(223\) −755836. −1.01781 −0.508904 0.860824i \(-0.669949\pi\)
−0.508904 + 0.860824i \(0.669949\pi\)
\(224\) 0 0
\(225\) 1.32426e6 1.74388
\(226\) 0 0
\(227\) −440624. + 763184.i −0.567550 + 0.983025i 0.429258 + 0.903182i \(0.358775\pi\)
−0.996807 + 0.0798426i \(0.974558\pi\)
\(228\) 0 0
\(229\) −139756. 242065.i −0.176109 0.305031i 0.764435 0.644701i \(-0.223018\pi\)
−0.940545 + 0.339670i \(0.889685\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 533391. + 923860.i 0.643659 + 1.11485i 0.984609 + 0.174769i \(0.0559179\pi\)
−0.340950 + 0.940081i \(0.610749\pi\)
\(234\) 0 0
\(235\) −56399.5 + 97686.8i −0.0666201 + 0.115389i
\(236\) 0 0
\(237\) −121682. −0.140720
\(238\) 0 0
\(239\) −270341. −0.306138 −0.153069 0.988215i \(-0.548916\pi\)
−0.153069 + 0.988215i \(0.548916\pi\)
\(240\) 0 0
\(241\) −657034. + 1.13802e6i −0.728694 + 1.26214i 0.228741 + 0.973487i \(0.426539\pi\)
−0.957435 + 0.288648i \(0.906794\pi\)
\(242\) 0 0
\(243\) −465253. 805841.i −0.505444 0.875455i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −65796.9 113964.i −0.0686220 0.118857i
\(248\) 0 0
\(249\) 177202. 306923.i 0.181122 0.313712i
\(250\) 0 0
\(251\) 1.31291e6 1.31538 0.657690 0.753289i \(-0.271534\pi\)
0.657690 + 0.753289i \(0.271534\pi\)
\(252\) 0 0
\(253\) −2.46882e6 −2.42487
\(254\) 0 0
\(255\) −913825. + 1.58279e6i −0.880061 + 1.52431i
\(256\) 0 0
\(257\) 353720. + 612661.i 0.334062 + 0.578612i 0.983304 0.181970i \(-0.0582472\pi\)
−0.649242 + 0.760582i \(0.724914\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −107052. 185420.i −0.0972736 0.168483i
\(262\) 0 0
\(263\) 369721. 640376.i 0.329598 0.570881i −0.652834 0.757501i \(-0.726420\pi\)
0.982432 + 0.186620i \(0.0597534\pi\)
\(264\) 0 0
\(265\) 1.59387e6 1.39424
\(266\) 0 0
\(267\) −2.25617e6 −1.93684
\(268\) 0 0
\(269\) −619595. + 1.07317e6i −0.522068 + 0.904249i 0.477602 + 0.878576i \(0.341506\pi\)
−0.999670 + 0.0256724i \(0.991827\pi\)
\(270\) 0 0
\(271\) −257391. 445815.i −0.212898 0.368749i 0.739723 0.672912i \(-0.234957\pi\)
−0.952620 + 0.304163i \(0.901623\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 856544. + 1.48358e6i 0.682996 + 1.18298i
\(276\) 0 0
\(277\) 648520. 1.12327e6i 0.507837 0.879599i −0.492122 0.870526i \(-0.663779\pi\)
0.999959 0.00907261i \(-0.00288794\pi\)
\(278\) 0 0
\(279\) −2.38905e6 −1.83744
\(280\) 0 0
\(281\) 2.61884e6 1.97853 0.989265 0.146133i \(-0.0466828\pi\)
0.989265 + 0.146133i \(0.0466828\pi\)
\(282\) 0 0
\(283\) 20922.9 36239.4i 0.0155294 0.0268977i −0.858156 0.513389i \(-0.828390\pi\)
0.873686 + 0.486491i \(0.161723\pi\)
\(284\) 0 0
\(285\) 341703. + 591847.i 0.249194 + 0.431616i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 305458. + 529069.i 0.215133 + 0.372621i
\(290\) 0 0
\(291\) −90816.5 + 157299.i −0.0628684 + 0.108891i
\(292\) 0 0
\(293\) 1.94837e6 1.32588 0.662938 0.748674i \(-0.269309\pi\)
0.662938 + 0.748674i \(0.269309\pi\)
\(294\) 0 0
\(295\) 2.19154e6 1.46620
\(296\) 0 0
\(297\) −949225. + 1.64411e6i −0.624422 + 1.08153i
\(298\) 0 0
\(299\) 953188. + 1.65097e6i 0.616596 + 1.06798i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2.45911e6 + 4.25931e6i 1.53876 + 2.66521i
\(304\) 0 0
\(305\) −571358. + 989622.i −0.351689 + 0.609143i
\(306\) 0 0
\(307\) 209113. 0.126630 0.0633149 0.997994i \(-0.479833\pi\)
0.0633149 + 0.997994i \(0.479833\pi\)
\(308\) 0 0
\(309\) −595410. −0.354748
\(310\) 0 0
\(311\) −46862.0 + 81167.3i −0.0274739 + 0.0475861i −0.879435 0.476018i \(-0.842080\pi\)
0.851962 + 0.523604i \(0.175413\pi\)
\(312\) 0 0
\(313\) −250057. 433112.i −0.144271 0.249884i 0.784830 0.619711i \(-0.212750\pi\)
−0.929101 + 0.369827i \(0.879417\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 737146. + 1.27677e6i 0.412007 + 0.713618i 0.995109 0.0987813i \(-0.0314944\pi\)
−0.583102 + 0.812399i \(0.698161\pi\)
\(318\) 0 0
\(319\) 138485. 239864.i 0.0761952 0.131974i
\(320\) 0 0
\(321\) 2.69802e6 1.46145
\(322\) 0 0
\(323\) −302484. −0.161323
\(324\) 0 0
\(325\) 661407. 1.14559e6i 0.347345 0.601618i
\(326\) 0 0
\(327\) 582239. + 1.00847e6i 0.301115 + 0.521546i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.18818e6 + 2.05800e6i 0.596093 + 1.03246i 0.993392 + 0.114774i \(0.0366143\pi\)
−0.397299 + 0.917689i \(0.630052\pi\)
\(332\) 0 0
\(333\) −2.90055e6 + 5.02390e6i −1.43341 + 2.48273i
\(334\) 0 0
\(335\) 4.06888e6 1.98090
\(336\) 0 0
\(337\) 2.56857e6 1.23202 0.616008 0.787740i \(-0.288749\pi\)
0.616008 + 0.787740i \(0.288749\pi\)
\(338\) 0 0
\(339\) 699374. 1.21135e6i 0.330529 0.572494i
\(340\) 0 0
\(341\) −1.54526e6 2.67647e6i −0.719642 1.24646i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −4.95019e6 8.57398e6i −2.23910 3.87824i
\(346\) 0 0
\(347\) 306273. 530480.i 0.136548 0.236508i −0.789640 0.613571i \(-0.789733\pi\)
0.926188 + 0.377063i \(0.123066\pi\)
\(348\) 0 0
\(349\) −3.83323e6 −1.68462 −0.842310 0.538994i \(-0.818805\pi\)
−0.842310 + 0.538994i \(0.818805\pi\)
\(350\) 0 0
\(351\) 1.46595e6 0.635112
\(352\) 0 0
\(353\) 1.42925e6 2.47554e6i 0.610481 1.05738i −0.380679 0.924707i \(-0.624310\pi\)
0.991159 0.132676i \(-0.0423570\pi\)
\(354\) 0 0
\(355\) −1.82606e6 3.16284e6i −0.769034 1.33201i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −193874. 335800.i −0.0793933 0.137513i 0.823595 0.567178i \(-0.191965\pi\)
−0.902988 + 0.429665i \(0.858632\pi\)
\(360\) 0 0
\(361\) 1.18150e6 2.04641e6i 0.477160 0.826466i
\(362\) 0 0
\(363\) −2.41149e6 −0.960549
\(364\) 0 0
\(365\) −610325. −0.239789
\(366\) 0 0
\(367\) 96154.9 166545.i 0.0372654 0.0645456i −0.846791 0.531926i \(-0.821469\pi\)
0.884057 + 0.467380i \(0.154802\pi\)
\(368\) 0 0
\(369\) −1.92669e6 3.33712e6i −0.736622 1.27587i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1.13262e6 + 1.96175e6i 0.421514 + 0.730083i 0.996088 0.0883694i \(-0.0281656\pi\)
−0.574574 + 0.818453i \(0.694832\pi\)
\(374\) 0 0
\(375\) −259805. + 449995.i −0.0954044 + 0.165245i
\(376\) 0 0
\(377\) −213872. −0.0774997
\(378\) 0 0
\(379\) 4.46258e6 1.59583 0.797917 0.602767i \(-0.205935\pi\)
0.797917 + 0.602767i \(0.205935\pi\)
\(380\) 0 0
\(381\) −2.89957e6 + 5.02221e6i −1.02334 + 1.77248i
\(382\) 0 0
\(383\) −902218. 1.56269e6i −0.314279 0.544346i 0.665005 0.746839i \(-0.268429\pi\)
−0.979284 + 0.202492i \(0.935096\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3.65486e6 6.33040e6i −1.24049 2.14859i
\(388\) 0 0
\(389\) −55455.6 + 96051.9i −0.0185811 + 0.0321834i −0.875166 0.483822i \(-0.839248\pi\)
0.856585 + 0.516005i \(0.172582\pi\)
\(390\) 0 0
\(391\) 4.38203e6 1.44955
\(392\) 0 0
\(393\) 5.01352e6 1.63742
\(394\) 0 0
\(395\) 194786. 337379.i 0.0628151 0.108799i
\(396\) 0 0
\(397\) 2.74389e6 + 4.75256e6i 0.873758 + 1.51339i 0.858080 + 0.513516i \(0.171657\pi\)
0.0156779 + 0.999877i \(0.495009\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −467219. 809247.i −0.145097 0.251316i 0.784312 0.620367i \(-0.213016\pi\)
−0.929409 + 0.369051i \(0.879683\pi\)
\(402\) 0 0
\(403\) −1.19322e6 + 2.06672e6i −0.365982 + 0.633899i
\(404\) 0 0
\(405\) 64363.4 0.0194985
\(406\) 0 0
\(407\) −7.50443e6 −2.24560
\(408\) 0 0
\(409\) −738463. + 1.27905e6i −0.218283 + 0.378078i −0.954283 0.298904i \(-0.903379\pi\)
0.736000 + 0.676981i \(0.236712\pi\)
\(410\) 0 0
\(411\) 1.60647e6 + 2.78249e6i 0.469103 + 0.812511i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 567320. + 982627.i 0.161699 + 0.280071i
\(416\) 0 0
\(417\) −217417. + 376577.i −0.0612285 + 0.106051i
\(418\) 0 0
\(419\) −2.66235e6 −0.740849 −0.370424 0.928863i \(-0.620788\pi\)
−0.370424 + 0.928863i \(0.620788\pi\)
\(420\) 0 0
\(421\) −1.02032e6 −0.280563 −0.140282 0.990112i \(-0.544801\pi\)
−0.140282 + 0.990112i \(0.544801\pi\)
\(422\) 0 0
\(423\) 273900. 474409.i 0.0744288 0.128915i
\(424\) 0 0
\(425\) −1.52032e6 2.63328e6i −0.408285 0.707170i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 2.49759e6 + 4.32595e6i 0.655206 + 1.13485i
\(430\) 0 0
\(431\) 100134. 173436.i 0.0259649 0.0449725i −0.852751 0.522318i \(-0.825068\pi\)
0.878716 + 0.477345i \(0.158401\pi\)
\(432\) 0 0
\(433\) −5.84752e6 −1.49883 −0.749415 0.662101i \(-0.769665\pi\)
−0.749415 + 0.662101i \(0.769665\pi\)
\(434\) 0 0
\(435\) 1.11070e6 0.281432
\(436\) 0 0
\(437\) 819278. 1.41903e6i 0.205224 0.355458i
\(438\) 0 0
\(439\) 3.16278e6 + 5.47809e6i 0.783262 + 1.35665i 0.930032 + 0.367479i \(0.119779\pi\)
−0.146769 + 0.989171i \(0.546888\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.10193e6 1.90859e6i −0.266774 0.462066i 0.701253 0.712913i \(-0.252624\pi\)
−0.968027 + 0.250846i \(0.919291\pi\)
\(444\) 0 0
\(445\) 3.61162e6 6.25550e6i 0.864573 1.49748i
\(446\) 0 0
\(447\) 21024.6 0.00497689
\(448\) 0 0
\(449\) −2.66634e6 −0.624166 −0.312083 0.950055i \(-0.601027\pi\)
−0.312083 + 0.950055i \(0.601027\pi\)
\(450\) 0 0
\(451\) 2.49241e6 4.31697e6i 0.577002 0.999397i
\(452\) 0 0
\(453\) 515693. + 893206.i 0.118072 + 0.204506i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.04406e6 + 5.27247e6i 0.681809 + 1.18093i 0.974428 + 0.224699i \(0.0721400\pi\)
−0.292619 + 0.956229i \(0.594527\pi\)
\(458\) 0 0
\(459\) 1.68483e6 2.91820e6i 0.373270 0.646523i
\(460\) 0 0
\(461\) −381317. −0.0835668 −0.0417834 0.999127i \(-0.513304\pi\)
−0.0417834 + 0.999127i \(0.513304\pi\)
\(462\) 0 0
\(463\) −99697.8 −0.0216139 −0.0108069 0.999942i \(-0.503440\pi\)
−0.0108069 + 0.999942i \(0.503440\pi\)
\(464\) 0 0
\(465\) 6.19677e6 1.07331e7i 1.32902 2.30194i
\(466\) 0 0
\(467\) 2.81889e6 + 4.88246e6i 0.598116 + 1.03597i 0.993099 + 0.117279i \(0.0374172\pi\)
−0.394983 + 0.918689i \(0.629249\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −414284. 717561.i −0.0860490 0.149041i
\(472\) 0 0
\(473\) 4.72801e6 8.18915e6i 0.971685 1.68301i
\(474\) 0 0
\(475\) −1.13698e6 −0.231216
\(476\) 0 0
\(477\) −7.74051e6 −1.55766
\(478\) 0 0
\(479\) −870394. + 1.50757e6i −0.173331 + 0.300219i −0.939583 0.342322i \(-0.888787\pi\)
0.766251 + 0.642541i \(0.222120\pi\)
\(480\) 0 0
\(481\) 2.89739e6 + 5.01843e6i 0.571011 + 0.989020i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −290753. 503599.i −0.0561268 0.0972144i
\(486\) 0 0
\(487\) −2.41235e6 + 4.17832e6i −0.460913 + 0.798324i −0.999007 0.0445607i \(-0.985811\pi\)
0.538094 + 0.842885i \(0.319145\pi\)
\(488\) 0 0
\(489\) 1.77106e6 0.334936
\(490\) 0 0
\(491\) −4.46085e6 −0.835053 −0.417527 0.908665i \(-0.637103\pi\)
−0.417527 + 0.908665i \(0.637103\pi\)
\(492\) 0 0
\(493\) −245805. + 425746.i −0.0455484 + 0.0788921i
\(494\) 0 0
\(495\) −8.00486e6 1.38648e7i −1.46839 2.54332i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 370378. + 641513.i 0.0665876 + 0.115333i 0.897397 0.441224i \(-0.145455\pi\)
−0.830810 + 0.556557i \(0.812122\pi\)
\(500\) 0 0
\(501\) −2.87126e6 + 4.97317e6i −0.511068 + 0.885196i
\(502\) 0 0
\(503\) 3.74899e6 0.660686 0.330343 0.943861i \(-0.392836\pi\)
0.330343 + 0.943861i \(0.392836\pi\)
\(504\) 0 0
\(505\) −1.57459e7 −2.74751
\(506\) 0 0
\(507\) −2.74848e6 + 4.76051e6i −0.474868 + 0.822496i
\(508\) 0 0
\(509\) −1.33228e6 2.30757e6i −0.227929 0.394785i 0.729265 0.684231i \(-0.239862\pi\)
−0.957194 + 0.289446i \(0.906529\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −630001. 1.09119e6i −0.105693 0.183066i
\(514\) 0 0
\(515\) 953116. 1.65085e6i 0.158353 0.274276i
\(516\) 0 0
\(517\) 708647. 0.116601
\(518\) 0 0
\(519\) −851292. −0.138727
\(520\) 0 0
\(521\) 416312. 721073.i 0.0671930 0.116382i −0.830472 0.557061i \(-0.811929\pi\)
0.897665 + 0.440679i \(0.145262\pi\)
\(522\) 0 0
\(523\) −936507. 1.62208e6i −0.149712 0.259309i 0.781409 0.624019i \(-0.214501\pi\)
−0.931121 + 0.364710i \(0.881168\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.74277e6 + 4.75061e6i 0.430192 + 0.745114i
\(528\) 0 0
\(529\) −8.65056e6 + 1.49832e7i −1.34402 + 2.32791i
\(530\) 0 0
\(531\) −1.06431e7 −1.63806
\(532\) 0 0
\(533\) −3.84918e6 −0.586881
\(534\) 0 0
\(535\) −4.31892e6 + 7.48058e6i −0.652364 + 1.12993i
\(536\) 0 0
\(537\) 7.74966e6 + 1.34228e7i 1.15970 + 2.00866i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −2.23793e6 3.87621e6i −0.328741 0.569395i 0.653522 0.756908i \(-0.273291\pi\)
−0.982262 + 0.187512i \(0.939958\pi\)
\(542\) 0 0
\(543\) 8.55050e6 1.48099e7i 1.24449 2.15552i
\(544\) 0 0
\(545\) −3.72813e6 −0.537650
\(546\) 0 0
\(547\) 6.12226e6 0.874869 0.437435 0.899250i \(-0.355887\pi\)
0.437435 + 0.899250i \(0.355887\pi\)
\(548\) 0 0
\(549\) 2.77476e6 4.80603e6i 0.392911 0.680543i
\(550\) 0 0
\(551\) 91912.9 + 159198.i 0.0128973 + 0.0223387i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −1.50470e7 2.60622e7i −2.07357 3.59152i
\(556\) 0 0
\(557\) 4.76272e6 8.24927e6i 0.650454 1.12662i −0.332559 0.943083i \(-0.607912\pi\)
0.983013 0.183537i \(-0.0587547\pi\)
\(558\) 0 0
\(559\) −7.30176e6 −0.988321
\(560\) 0 0
\(561\) 1.14820e7 1.54032
\(562\) 0 0
\(563\) 4.04958e6 7.01408e6i 0.538442 0.932609i −0.460546 0.887636i \(-0.652346\pi\)
0.998988 0.0449731i \(-0.0143202\pi\)
\(564\) 0 0
\(565\) 2.23908e6 + 3.87819e6i 0.295085 + 0.511103i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.69587e6 + 6.40144e6i 0.478560 + 0.828890i 0.999698 0.0245827i \(-0.00782570\pi\)
−0.521138 + 0.853472i \(0.674492\pi\)
\(570\) 0 0
\(571\) −1.73172e6 + 2.99943e6i −0.222273 + 0.384989i −0.955498 0.294998i \(-0.904681\pi\)
0.733225 + 0.679986i \(0.238014\pi\)
\(572\) 0 0
\(573\) −1.65061e7 −2.10019
\(574\) 0 0
\(575\) 1.64712e7 2.07757
\(576\) 0 0
\(577\) 2.58289e6 4.47369e6i 0.322973 0.559405i −0.658127 0.752907i \(-0.728651\pi\)
0.981100 + 0.193502i \(0.0619845\pi\)
\(578\) 0 0
\(579\) −4.03674e6 6.99184e6i −0.500420 0.866752i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −5.00665e6 8.67177e6i −0.610065 1.05666i
\(584\) 0 0
\(585\) −6.18120e6 + 1.07062e7i −0.746764 + 1.29343i
\(586\) 0 0
\(587\) −4.08305e6 −0.489090 −0.244545 0.969638i \(-0.578639\pi\)
−0.244545 + 0.969638i \(0.578639\pi\)
\(588\) 0 0
\(589\) 2.05118e6 0.243622
\(590\) 0 0
\(591\) 2.54584e6 4.40952e6i 0.299821 0.519305i
\(592\) 0 0
\(593\) −3.91092e6 6.77391e6i −0.456712 0.791048i 0.542073 0.840331i \(-0.317640\pi\)
−0.998785 + 0.0492833i \(0.984306\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −8.04100e6 1.39274e7i −0.923366 1.59932i
\(598\) 0 0
\(599\) 3.15891e6 5.47139e6i 0.359725 0.623061i −0.628190 0.778060i \(-0.716204\pi\)
0.987915 + 0.154999i \(0.0495373\pi\)
\(600\) 0 0
\(601\) 1.68407e6 0.190184 0.0950919 0.995468i \(-0.469685\pi\)
0.0950919 + 0.995468i \(0.469685\pi\)
\(602\) 0 0
\(603\) −1.97602e7 −2.21309
\(604\) 0 0
\(605\) 3.86025e6 6.68615e6i 0.428773 0.742656i
\(606\) 0 0
\(607\) 2.72757e6 + 4.72429e6i 0.300472 + 0.520432i 0.976243 0.216679i \(-0.0695225\pi\)
−0.675771 + 0.737112i \(0.736189\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −273602. 473893.i −0.0296494 0.0513543i
\(612\) 0 0
\(613\) 4.06685e6 7.04399e6i 0.437127 0.757125i −0.560340 0.828263i \(-0.689330\pi\)
0.997467 + 0.0711373i \(0.0226629\pi\)
\(614\) 0 0
\(615\) 1.99899e7 2.13120
\(616\) 0 0
\(617\) 2.83775e6 0.300097 0.150048 0.988679i \(-0.452057\pi\)
0.150048 + 0.988679i \(0.452057\pi\)
\(618\) 0 0
\(619\) 6.19545e6 1.07308e7i 0.649900 1.12566i −0.333247 0.942840i \(-0.608144\pi\)
0.983146 0.182820i \(-0.0585224\pi\)
\(620\) 0 0
\(621\) 9.12670e6 + 1.58079e7i 0.949697 + 1.64492i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 4.45058e6 + 7.70863e6i 0.455739 + 0.789363i
\(626\) 0 0
\(627\) 2.14671e6 3.71822e6i 0.218075 0.377716i
\(628\) 0 0
\(629\) 1.33200e7 1.34239
\(630\) 0 0
\(631\) 3.25659e6 0.325604 0.162802 0.986659i \(-0.447947\pi\)
0.162802 + 0.986659i \(0.447947\pi\)
\(632\) 0 0
\(633\) −6.51717e6 + 1.12881e7i −0.646472 + 1.11972i
\(634\) 0 0
\(635\) −9.28312e6 1.60788e7i −0.913608 1.58241i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 8.86815e6 + 1.53601e7i 0.859174 + 1.48813i
\(640\) 0 0
\(641\) −1.15075e6 + 1.99316e6i −0.110621 + 0.191601i −0.916021 0.401131i \(-0.868617\pi\)
0.805400 + 0.592732i \(0.201951\pi\)
\(642\) 0 0
\(643\) 8.68991e6 0.828872 0.414436 0.910078i \(-0.363979\pi\)
0.414436 + 0.910078i \(0.363979\pi\)
\(644\) 0 0
\(645\) 3.79202e7 3.58898
\(646\) 0 0
\(647\) −1.14216e6 + 1.97828e6i −0.107267 + 0.185792i −0.914662 0.404219i \(-0.867543\pi\)
0.807395 + 0.590011i \(0.200877\pi\)
\(648\) 0 0
\(649\) −6.88406e6 1.19235e7i −0.641554 1.11120i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.08384e6 1.87726e6i −0.0994674 0.172283i 0.811997 0.583662i \(-0.198381\pi\)
−0.911464 + 0.411379i \(0.865047\pi\)
\(654\) 0 0
\(655\) −8.02550e6 + 1.39006e7i −0.730919 + 1.26599i
\(656\) 0 0
\(657\) 2.96400e6 0.267895
\(658\) 0 0
\(659\) 1.18596e7 1.06380 0.531898 0.846809i \(-0.321479\pi\)
0.531898 + 0.846809i \(0.321479\pi\)
\(660\) 0 0
\(661\) 713359. 1.23557e6i 0.0635045 0.109993i −0.832525 0.553987i \(-0.813106\pi\)
0.896030 + 0.443994i \(0.146439\pi\)
\(662\) 0 0
\(663\) −4.43310e6 7.67835e6i −0.391673 0.678397i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.33152e6 2.30627e6i −0.115887 0.200722i
\(668\) 0 0
\(669\) −9.52106e6 + 1.64910e7i −0.822470 + 1.42456i
\(670\) 0 0
\(671\) 7.17899e6 0.615541
\(672\) 0 0
\(673\) −2.07459e7 −1.76561 −0.882806 0.469738i \(-0.844348\pi\)
−0.882806 + 0.469738i \(0.844348\pi\)
\(674\) 0 0
\(675\) 6.33292e6 1.09689e7i 0.534989 0.926628i
\(676\) 0 0
\(677\) −6.42895e6 1.11353e7i −0.539098 0.933746i −0.998953 0.0457516i \(-0.985432\pi\)
0.459854 0.887994i \(-0.347902\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.11008e7 + 1.92272e7i 0.917251 + 1.58873i
\(682\) 0 0
\(683\) 9.64820e6 1.67112e7i 0.791397 1.37074i −0.133705 0.991021i \(-0.542687\pi\)
0.925102 0.379719i \(-0.123979\pi\)
\(684\) 0 0
\(685\) −1.02864e7 −0.837599
\(686\) 0 0
\(687\) −7.04189e6 −0.569242
\(688\) 0 0
\(689\) −3.86604e6 + 6.69618e6i −0.310255 + 0.537377i
\(690\) 0 0
\(691\) 9.14995e6 + 1.58482e7i 0.728993 + 1.26265i 0.957309 + 0.289066i \(0.0933448\pi\)
−0.228316 + 0.973587i \(0.573322\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −696070. 1.20563e6i −0.0546627 0.0946786i
\(696\) 0 0
\(697\) −4.42389e6 + 7.66241e6i −0.344924 + 0.597425i
\(698\) 0 0
\(699\) 2.68759e7 2.08051
\(700\) 0 0
\(701\) −1.61515e7 −1.24142 −0.620710 0.784040i \(-0.713156\pi\)
−0.620710 + 0.784040i \(0.713156\pi\)
\(702\) 0 0
\(703\) 2.49035e6 4.31341e6i 0.190052 0.329179i
\(704\) 0 0
\(705\) 1.42090e6 + 2.46107e6i 0.107669 + 0.186488i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −749950. 1.29895e6i −0.0560295 0.0970459i 0.836650 0.547738i \(-0.184511\pi\)
−0.892680 + 0.450692i \(0.851177\pi\)
\(710\) 0 0
\(711\) −945963. + 1.63846e6i −0.0701778 + 0.121552i
\(712\) 0 0
\(713\) −2.97151e7 −2.18904
\(714\) 0 0
\(715\) −1.59923e7 −1.16989
\(716\) 0 0
\(717\) −3.40541e6 + 5.89835e6i −0.247384 + 0.428482i
\(718\) 0 0
\(719\) 8.78693e6 + 1.52194e7i 0.633892 + 1.09793i 0.986749 + 0.162255i \(0.0518768\pi\)
−0.352857 + 0.935677i \(0.614790\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1.65530e7 + 2.86706e7i 1.17769 + 2.03981i
\(724\) 0 0
\(725\) −923931. + 1.60030e6i −0.0652822 + 0.113072i
\(726\) 0 0
\(727\) 2.16304e7 1.51785 0.758923 0.651180i \(-0.225726\pi\)
0.758923 + 0.651180i \(0.225726\pi\)
\(728\) 0 0
\(729\) −2.32487e7 −1.62024
\(730\) 0 0
\(731\) −8.39198e6 + 1.45353e7i −0.580859 + 1.00608i
\(732\) 0 0
\(733\) −6.27682e6 1.08718e7i −0.431499 0.747378i 0.565504 0.824746i \(-0.308682\pi\)
−0.997003 + 0.0773678i \(0.975348\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.27811e7 2.21376e7i −0.866764 1.50128i
\(738\) 0 0
\(739\) 378866. 656215.i 0.0255196 0.0442013i −0.852984 0.521938i \(-0.825209\pi\)
0.878503 + 0.477737i \(0.158543\pi\)
\(740\) 0 0
\(741\) −3.31530e6 −0.221808
\(742\) 0 0
\(743\) 2.40878e7 1.60075 0.800377 0.599497i \(-0.204633\pi\)
0.800377 + 0.599497i \(0.204633\pi\)
\(744\) 0 0
\(745\) −33655.6 + 58293.2i −0.00222160 + 0.00384793i
\(746\) 0 0
\(747\) −2.75515e6 4.77206e6i −0.180652 0.312899i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 6.88436e6 + 1.19241e7i 0.445414 + 0.771480i 0.998081 0.0619225i \(-0.0197232\pi\)
−0.552667 + 0.833402i \(0.686390\pi\)
\(752\) 0 0
\(753\) 1.65384e7 2.86453e7i 1.06293 1.84105i
\(754\) 0 0
\(755\) −3.30203e6 −0.210821
\(756\) 0 0
\(757\) 2.43930e7 1.54713 0.773564 0.633718i \(-0.218472\pi\)
0.773564 + 0.633718i \(0.218472\pi\)
\(758\) 0 0
\(759\) −3.10990e7 + 5.38651e7i −1.95949 + 3.39393i
\(760\) 0 0
\(761\) 1.28001e7 + 2.21704e7i 0.801220 + 1.38775i 0.918814 + 0.394692i \(0.129149\pi\)
−0.117594 + 0.993062i \(0.537518\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.42082e7 + 2.46094e7i 0.877781 + 1.52036i
\(766\) 0 0
\(767\) −5.31574e6 + 9.20713e6i −0.326269 + 0.565114i
\(768\) 0 0
\(769\) −2.09807e7 −1.27939 −0.639697 0.768627i \(-0.720940\pi\)
−0.639697 + 0.768627i \(0.720940\pi\)
\(770\) 0 0
\(771\) 1.78229e7 1.07979
\(772\) 0 0
\(773\) −5.64645e6 + 9.77993e6i −0.339881 + 0.588691i −0.984410 0.175889i \(-0.943720\pi\)
0.644529 + 0.764580i \(0.277053\pi\)
\(774\) 0 0
\(775\) 1.03095e7 + 1.78566e7i 0.616572 + 1.06793i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.65421e6 + 2.86518e6i 0.0976668 + 0.169164i
\(780\) 0 0
\(781\) −1.14721e7 + 1.98702e7i −0.672998 + 1.16567i
\(782\) 0 0
\(783\) −2.04781e6 −0.119367
\(784\) 0 0
\(785\) 2.65270e6 0.153643
\(786\) 0 0
\(787\) −1.18585e7 + 2.05395e7i −0.682482 + 1.18209i 0.291739 + 0.956498i \(0.405766\pi\)
−0.974221 + 0.225596i \(0.927567\pi\)
\(788\) 0 0
\(789\) −9.31455e6 1.61333e7i −0.532683 0.922635i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.77174e6 4.80080e6i −0.156520 0.271101i
\(794\) 0 0
\(795\) 2.00775e7 3.47753e7i 1.12666 1.95143i
\(796\) 0 0
\(797\) 2.73492e7 1.52510 0.762550 0.646929i \(-0.223947\pi\)
0.762550 + 0.646929i \(0.223947\pi\)
\(798\) 0 0
\(799\) −1.25781e6 −0.0697026
\(800\) 0 0
\(801\) −1.75396e7 + 3.03794e7i −0.965912 + 1.67301i
\(802\) 0 0
\(803\) 1.91715e6 + 3.32060e6i 0.104922 + 0.181730i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.56097e7 + 2.70369e7i 0.843746 + 1.46141i
\(808\) 0 0
\(809\) 5.46781e6 9.47052e6i 0.293726 0.508748i −0.680962 0.732319i \(-0.738438\pi\)
0.974688 + 0.223571i \(0.0717714\pi\)
\(810\) 0 0
\(811\) −3.14053e7 −1.67668 −0.838342 0.545144i \(-0.816475\pi\)
−0.838342 + 0.545144i \(0.816475\pi\)
\(812\) 0 0
\(813\) −1.29691e7 −0.688153
\(814\) 0 0
\(815\) −2.83507e6 + 4.91049e6i −0.149510 + 0.258959i
\(816\) 0 0
\(817\) 3.13798e6 + 5.43514e6i 0.164473 + 0.284876i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.56250e7 2.70634e7i −0.809028 1.40128i −0.913538 0.406754i \(-0.866661\pi\)
0.104510 0.994524i \(-0.466673\pi\)
\(822\) 0 0
\(823\) −1.83382e7 + 3.17627e7i −0.943749 + 1.63462i −0.185513 + 0.982642i \(0.559395\pi\)
−0.758236 + 0.651980i \(0.773939\pi\)
\(824\) 0 0
\(825\) 4.31586e7 2.20766
\(826\) 0 0
\(827\) −1.67620e7 −0.852242 −0.426121 0.904666i \(-0.640120\pi\)
−0.426121 + 0.904666i \(0.640120\pi\)
\(828\) 0 0
\(829\) −595242. + 1.03099e6i −0.0300820 + 0.0521036i −0.880674 0.473722i \(-0.842910\pi\)
0.850592 + 0.525826i \(0.176244\pi\)
\(830\) 0 0
\(831\) −1.63385e7 2.82990e7i −0.820745 1.42157i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −9.19248e6 1.59218e7i −0.456264 0.790273i
\(836\) 0 0
\(837\) −1.14250e7 + 1.97887e7i −0.563694 + 0.976347i
\(838\) 0 0
\(839\) −8.21562e6 −0.402935 −0.201468 0.979495i \(-0.564571\pi\)
−0.201468 + 0.979495i \(0.564571\pi\)
\(840\) 0 0
\(841\) −2.02124e7 −0.985434
\(842\) 0 0
\(843\) 3.29888e7 5.71382e7i 1.59881 2.76922i
\(844\) 0 0
\(845\) −8.79939e6 1.52410e7i −0.423946 0.734297i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −527119. 912996.i −0.0250980 0.0434710i
\(850\) 0 0
\(851\) −3.60772e7 + 6.24875e7i −1.70769 + 2.95780i
\(852\) 0 0
\(853\) −2.55133e7 −1.20059 −0.600295 0.799779i \(-0.704950\pi\)
−0.600295 + 0.799779i \(0.704950\pi\)
\(854\) 0 0
\(855\) 1.06257e7 0.497096
\(856\) 0 0
\(857\) −1.43863e7 + 2.49178e7i −0.669109 + 1.15893i 0.309044 + 0.951048i \(0.399991\pi\)
−0.978154 + 0.207884i \(0.933342\pi\)
\(858\) 0 0
\(859\) 5.17972e6 + 8.97154e6i 0.239510 + 0.414843i 0.960574 0.278025i \(-0.0896799\pi\)
−0.721064 + 0.692869i \(0.756347\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −2.87161e6 4.97377e6i −0.131250 0.227331i 0.792909 0.609340i \(-0.208566\pi\)
−0.924159 + 0.382009i \(0.875232\pi\)
\(864\) 0 0
\(865\) 1.36272e6 2.36031e6i 0.0619253 0.107258i
\(866\) 0 0
\(867\) 1.53911e7 0.695379
\(868\) 0 0
\(869\) −2.44744e6 −0.109942
\(870\) 0 0
\(871\) −9.86936e6 + 1.70942e7i −0.440802 + 0.763491i
\(872\) 0 0
\(873\) 1.41202e6 + 2.44569e6i 0.0627055 + 0.108609i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.80935e7 + 3.13389e7i 0.794372 + 1.37589i 0.923237 + 0.384230i \(0.125533\pi\)
−0.128866 + 0.991662i \(0.541134\pi\)
\(878\) 0 0
\(879\) 2.45431e7 4.25099e7i 1.07141 1.85574i
\(880\) 0 0
\(881\) 2.20285e7 0.956192 0.478096 0.878308i \(-0.341327\pi\)
0.478096 + 0.878308i \(0.341327\pi\)
\(882\) 0 0
\(883\) −3.82050e7 −1.64899 −0.824497 0.565867i \(-0.808542\pi\)
−0.824497 + 0.565867i \(0.808542\pi\)
\(884\) 0 0
\(885\) 2.76062e7 4.78154e7i 1.18481 2.05215i
\(886\) 0 0
\(887\) −1.87196e7 3.24233e7i −0.798890 1.38372i −0.920339 0.391121i \(-0.872087\pi\)
0.121449 0.992598i \(-0.461246\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −202178. 350183.i −0.00853178 0.0147775i
\(892\) 0 0
\(893\) −235165. + 407317.i −0.00986832 + 0.0170924i
\(894\) 0 0
\(895\) −4.96218e7 −2.07069
\(896\) 0 0
\(897\) 4.80282e7 1.99304
\(898\) 0 0
\(899\) 1.66683e6 2.88704e6i 0.0687849 0.119139i
\(900\) 0 0
\(901\) 8.88655e6 + 1.53920e7i 0.364688 + 0.631658i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.73748e7 + 4.74145e7i 1.11104 + 1.92438i
\(906\) 0 0
\(907\) 1.19207e7 2.06473e7i 0.481154 0.833383i −0.518612 0.855010i \(-0.673551\pi\)
0.999766 + 0.0216263i \(0.00688439\pi\)
\(908\) 0 0
\(909\) 7.64689e7 3.06955
\(910\) 0 0
\(911\) 1.78434e7 0.712332 0.356166 0.934423i \(-0.384084\pi\)
0.356166 + 0.934423i \(0.384084\pi\)
\(912\) 0 0
\(913\) 3.56413e6 6.17325e6i 0.141506 0.245096i
\(914\) 0 0
\(915\) 1.43945e7 + 2.49320e7i 0.568386 + 0.984473i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −8.21451e6 1.42280e7i −0.320843 0.555717i 0.659819 0.751425i \(-0.270633\pi\)
−0.980662 + 0.195708i \(0.937300\pi\)
\(920\) 0 0
\(921\) 2.63414e6 4.56247e6i 0.102327 0.177236i
\(922\) 0 0
\(923\) 1.77170e7 0.684520
\(924\) 0 0
\(925\) 5.00672e7 1.92397
\(926\) 0 0
\(927\) −4.62874e6 + 8.01721e6i −0.176915 + 0.306425i
\(928\) 0 0
\(929\) −6.82722e6 1.18251e7i −0.259540 0.449537i 0.706579 0.707635i \(-0.250238\pi\)
−0.966119 + 0.258098i \(0.916904\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1.18061e6 + 2.04489e6i 0.0444022 + 0.0769068i
\(934\) 0 0
\(935\) −1.83801e7 + 3.18353e7i −0.687573 + 1.19091i
\(936\) 0 0
\(937\) −3.81848e7 −1.42083 −0.710414 0.703784i \(-0.751492\pi\)
−0.710414 + 0.703784i \(0.751492\pi\)
\(938\) 0 0
\(939\) −1.25996e7 −0.466330
\(940\) 0 0
\(941\) 3.51554e6 6.08909e6i 0.129425 0.224170i −0.794029 0.607880i \(-0.792020\pi\)
0.923454 + 0.383709i \(0.125354\pi\)
\(942\) 0 0
\(943\) −2.39642e7 4.15073e7i −0.877575 1.52000i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.10099e7 1.90698e7i −0.398942 0.690988i 0.594653 0.803982i \(-0.297289\pi\)
−0.993596 + 0.112994i \(0.963956\pi\)
\(948\) 0 0
\(949\) 1.48039e6 2.56410e6i 0.0533592 0.0924209i
\(950\) 0 0
\(951\) 3.71425e7 1.33174
\(952\) 0 0
\(953\) 578419. 0.0206305 0.0103153 0.999947i \(-0.496716\pi\)
0.0103153 + 0.999947i \(0.496716\pi\)
\(954\) 0 0
\(955\) 2.64226e7 4.57652e7i 0.937489 1.62378i
\(956\) 0 0
\(957\) −3.48893e6 6.04300e6i −0.123144 0.213291i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −4.28447e6 7.42093e6i −0.149654 0.259209i
\(962\) 0 0
\(963\) 2.09745e7 3.63289e7i 0.728830 1.26237i
\(964\) 0 0
\(965\) 2.58476e7 0.893516
\(966\) 0 0
\(967\) 2.00036e7 0.687925 0.343963 0.938983i \(-0.388231\pi\)
0.343963 + 0.938983i \(0.388231\pi\)
\(968\) 0 0
\(969\) −3.81031e6 + 6.59965e6i −0.130362 + 0.225793i
\(970\) 0 0
\(971\) 2.54560e7 + 4.40910e7i 0.866446 + 1.50073i 0.865605 + 0.500728i \(0.166934\pi\)
0.000840840 1.00000i \(0.499732\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −1.66631e7 2.88614e7i −0.561364 0.972312i
\(976\) 0 0
\(977\) 8.69359e6 1.50577e7i 0.291382 0.504688i −0.682755 0.730648i \(-0.739218\pi\)
0.974137 + 0.225959i \(0.0725516\pi\)
\(978\) 0 0
\(979\) −4.53792e7 −1.51321
\(980\) 0 0
\(981\) 1.81054e7 0.600670
\(982\) 0 0
\(983\) 5.54285e6 9.60050e6i 0.182957 0.316891i −0.759929 0.650006i \(-0.774766\pi\)
0.942886 + 0.333115i \(0.108100\pi\)
\(984\) 0 0
\(985\) 8.15062e6 + 1.41173e7i 0.267670 + 0.463618i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.54593e7 7.87379e7i −1.47786 2.55972i
\(990\) 0 0
\(991\) −1.91462e7 + 3.31622e7i −0.619297 + 1.07265i 0.370317 + 0.928905i \(0.379249\pi\)
−0.989614 + 0.143749i \(0.954084\pi\)
\(992\) 0 0
\(993\) 5.98689e7 1.92676
\(994\) 0 0
\(995\) 5.14872e7 1.64870
\(996\) 0 0
\(997\) 2.63586e7 4.56545e7i 0.839818 1.45461i −0.0502293 0.998738i \(-0.515995\pi\)
0.890047 0.455869i \(-0.150671\pi\)
\(998\) 0 0
\(999\) 2.77423e7 + 4.80511e7i 0.879486 + 1.52331i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 392.6.i.p.361.5 10
7.2 even 3 inner 392.6.i.p.177.5 10
7.3 odd 6 392.6.a.l.1.5 5
7.4 even 3 392.6.a.i.1.1 5
7.5 odd 6 56.6.i.a.9.1 10
7.6 odd 2 56.6.i.a.25.1 yes 10
21.5 even 6 504.6.s.d.289.5 10
21.20 even 2 504.6.s.d.361.5 10
28.3 even 6 784.6.a.bj.1.1 5
28.11 odd 6 784.6.a.bm.1.5 5
28.19 even 6 112.6.i.g.65.5 10
28.27 even 2 112.6.i.g.81.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.6.i.a.9.1 10 7.5 odd 6
56.6.i.a.25.1 yes 10 7.6 odd 2
112.6.i.g.65.5 10 28.19 even 6
112.6.i.g.81.5 10 28.27 even 2
392.6.a.i.1.1 5 7.4 even 3
392.6.a.l.1.5 5 7.3 odd 6
392.6.i.p.177.5 10 7.2 even 3 inner
392.6.i.p.361.5 10 1.1 even 1 trivial
504.6.s.d.289.5 10 21.5 even 6
504.6.s.d.361.5 10 21.20 even 2
784.6.a.bj.1.1 5 28.3 even 6
784.6.a.bm.1.5 5 28.11 odd 6