Properties

Label 56.6.i.a.9.1
Level $56$
Weight $6$
Character 56.9
Analytic conductor $8.981$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [56,6,Mod(9,56)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(56, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("56.9");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 56 = 2^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 56.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.98149390953\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 3 x^{9} - 119 x^{8} - 521 x^{7} - 898 x^{6} + 27806 x^{5} + 657990 x^{4} + 3648839 x^{3} + \cdots + 92895579 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{18}\cdot 3\cdot 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 9.1
Root \(-5.12305 - 3.65205i\) of defining polynomial
Character \(\chi\) \(=\) 56.9
Dual form 56.6.i.a.25.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-12.5967 - 21.8182i) q^{3} +(-40.3290 + 69.8518i) q^{5} +(-8.39664 - 129.370i) q^{7} +(-195.855 + 339.231i) q^{9} +(253.362 + 438.837i) q^{11} +391.283 q^{13} +2032.05 q^{15} +(449.706 + 778.913i) q^{17} +(-168.157 + 291.256i) q^{19} +(-2716.84 + 1812.83i) q^{21} +(-2436.06 + 4219.37i) q^{23} +(-1690.35 - 2927.78i) q^{25} +3746.51 q^{27} +546.591 q^{29} +(-3049.51 - 5281.91i) q^{31} +(6383.07 - 11055.8i) q^{33} +(9375.33 + 4630.82i) q^{35} +(-7404.84 + 12825.6i) q^{37} +(-4928.89 - 8537.08i) q^{39} -9837.31 q^{41} +18661.0 q^{43} +(-15797.3 - 27361.6i) q^{45} +(-699.243 + 1211.12i) q^{47} +(-16666.0 + 2172.54i) q^{49} +(11329.6 - 19623.5i) q^{51} +(9880.41 + 17113.4i) q^{53} -40871.4 q^{55} +8472.89 q^{57} +(-13585.4 - 23530.6i) q^{59} +(-7083.72 + 12269.4i) q^{61} +(45530.6 + 22489.3i) q^{63} +(-15780.1 + 27331.9i) q^{65} +(25223.0 + 43687.6i) q^{67} +122745. q^{69} -45279.2 q^{71} +(3783.41 + 6553.06i) q^{73} +(-42585.8 + 73760.8i) q^{75} +(54644.7 - 36462.2i) q^{77} +(-2414.96 + 4182.83i) q^{79} +(398.990 + 691.071i) q^{81} -14067.3 q^{83} -72544.7 q^{85} +(-6885.25 - 11925.6i) q^{87} +(44776.9 - 77555.9i) q^{89} +(-3285.47 - 50620.2i) q^{91} +(-76827.7 + 133070. i) q^{93} +(-13563.2 - 23492.1i) q^{95} +7209.53 q^{97} -198489. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 13 q^{3} - 31 q^{5} - 92 q^{7} - 230 q^{9} + 351 q^{11} - 108 q^{13} + 1214 q^{15} - 111 q^{17} - 1035 q^{19} - 1365 q^{21} - 3639 q^{23} - 1540 q^{25} + 7214 q^{27} - 1468 q^{29} - 7677 q^{31} + 7439 q^{33}+ \cdots - 600308 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/56\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(29\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −12.5967 21.8182i −0.808080 1.39964i −0.914192 0.405282i \(-0.867173\pi\)
0.106112 0.994354i \(-0.466160\pi\)
\(4\) 0 0
\(5\) −40.3290 + 69.8518i −0.721427 + 1.24955i 0.239001 + 0.971019i \(0.423180\pi\)
−0.960428 + 0.278528i \(0.910153\pi\)
\(6\) 0 0
\(7\) −8.39664 129.370i −0.0647680 0.997900i
\(8\) 0 0
\(9\) −195.855 + 339.231i −0.805987 + 1.39601i
\(10\) 0 0
\(11\) 253.362 + 438.837i 0.631336 + 1.09351i 0.987279 + 0.158998i \(0.0508264\pi\)
−0.355943 + 0.934508i \(0.615840\pi\)
\(12\) 0 0
\(13\) 391.283 0.642145 0.321072 0.947055i \(-0.395957\pi\)
0.321072 + 0.947055i \(0.395957\pi\)
\(14\) 0 0
\(15\) 2032.05 2.33188
\(16\) 0 0
\(17\) 449.706 + 778.913i 0.377404 + 0.653682i 0.990684 0.136183i \(-0.0434836\pi\)
−0.613280 + 0.789866i \(0.710150\pi\)
\(18\) 0 0
\(19\) −168.157 + 291.256i −0.106864 + 0.185093i −0.914498 0.404590i \(-0.867414\pi\)
0.807634 + 0.589684i \(0.200748\pi\)
\(20\) 0 0
\(21\) −2716.84 + 1812.83i −1.34436 + 0.897035i
\(22\) 0 0
\(23\) −2436.06 + 4219.37i −0.960213 + 1.66314i −0.238252 + 0.971203i \(0.576575\pi\)
−0.721960 + 0.691934i \(0.756759\pi\)
\(24\) 0 0
\(25\) −1690.35 2927.78i −0.540913 0.936889i
\(26\) 0 0
\(27\) 3746.51 0.989048
\(28\) 0 0
\(29\) 546.591 0.120689 0.0603444 0.998178i \(-0.480780\pi\)
0.0603444 + 0.998178i \(0.480780\pi\)
\(30\) 0 0
\(31\) −3049.51 5281.91i −0.569936 0.987158i −0.996572 0.0827346i \(-0.973635\pi\)
0.426636 0.904424i \(-0.359699\pi\)
\(32\) 0 0
\(33\) 6383.07 11055.8i 1.02034 1.76728i
\(34\) 0 0
\(35\) 9375.33 + 4630.82i 1.29365 + 0.638981i
\(36\) 0 0
\(37\) −7404.84 + 12825.6i −0.889224 + 1.54018i −0.0484303 + 0.998827i \(0.515422\pi\)
−0.840794 + 0.541355i \(0.817911\pi\)
\(38\) 0 0
\(39\) −4928.89 8537.08i −0.518904 0.898769i
\(40\) 0 0
\(41\) −9837.31 −0.913938 −0.456969 0.889483i \(-0.651065\pi\)
−0.456969 + 0.889483i \(0.651065\pi\)
\(42\) 0 0
\(43\) 18661.0 1.53909 0.769546 0.638591i \(-0.220482\pi\)
0.769546 + 0.638591i \(0.220482\pi\)
\(44\) 0 0
\(45\) −15797.3 27361.6i −1.16292 2.01424i
\(46\) 0 0
\(47\) −699.243 + 1211.12i −0.0461725 + 0.0799731i −0.888188 0.459480i \(-0.848036\pi\)
0.842016 + 0.539453i \(0.181369\pi\)
\(48\) 0 0
\(49\) −16666.0 + 2172.54i −0.991610 + 0.129264i
\(50\) 0 0
\(51\) 11329.6 19623.5i 0.609945 1.05646i
\(52\) 0 0
\(53\) 9880.41 + 17113.4i 0.483154 + 0.836847i 0.999813 0.0193444i \(-0.00615789\pi\)
−0.516659 + 0.856191i \(0.672825\pi\)
\(54\) 0 0
\(55\) −40871.4 −1.82185
\(56\) 0 0
\(57\) 8472.89 0.345418
\(58\) 0 0
\(59\) −13585.4 23530.6i −0.508092 0.880041i −0.999956 0.00936932i \(-0.997018\pi\)
0.491864 0.870672i \(-0.336316\pi\)
\(60\) 0 0
\(61\) −7083.72 + 12269.4i −0.243746 + 0.422180i −0.961778 0.273830i \(-0.911710\pi\)
0.718033 + 0.696009i \(0.245043\pi\)
\(62\) 0 0
\(63\) 45530.6 + 22489.3i 1.44528 + 0.713878i
\(64\) 0 0
\(65\) −15780.1 + 27331.9i −0.463260 + 0.802391i
\(66\) 0 0
\(67\) 25223.0 + 43687.6i 0.686453 + 1.18897i 0.972978 + 0.230898i \(0.0741664\pi\)
−0.286525 + 0.958073i \(0.592500\pi\)
\(68\) 0 0
\(69\) 122745. 3.10372
\(70\) 0 0
\(71\) −45279.2 −1.06599 −0.532995 0.846118i \(-0.678934\pi\)
−0.532995 + 0.846118i \(0.678934\pi\)
\(72\) 0 0
\(73\) 3783.41 + 6553.06i 0.0830953 + 0.143925i 0.904578 0.426308i \(-0.140186\pi\)
−0.821483 + 0.570233i \(0.806853\pi\)
\(74\) 0 0
\(75\) −42585.8 + 73760.8i −0.874202 + 1.51416i
\(76\) 0 0
\(77\) 54644.7 36462.2i 1.05032 0.700834i
\(78\) 0 0
\(79\) −2414.96 + 4182.83i −0.0435353 + 0.0754054i −0.886972 0.461823i \(-0.847195\pi\)
0.843437 + 0.537229i \(0.180529\pi\)
\(80\) 0 0
\(81\) 398.990 + 691.071i 0.00675693 + 0.0117033i
\(82\) 0 0
\(83\) −14067.3 −0.224138 −0.112069 0.993700i \(-0.535748\pi\)
−0.112069 + 0.993700i \(0.535748\pi\)
\(84\) 0 0
\(85\) −72544.7 −1.08908
\(86\) 0 0
\(87\) −6885.25 11925.6i −0.0975262 0.168920i
\(88\) 0 0
\(89\) 44776.9 77555.9i 0.599210 1.03786i −0.393727 0.919227i \(-0.628815\pi\)
0.992938 0.118636i \(-0.0378520\pi\)
\(90\) 0 0
\(91\) −3285.47 50620.2i −0.0415904 0.640797i
\(92\) 0 0
\(93\) −76827.7 + 133070.i −0.921108 + 1.59541i
\(94\) 0 0
\(95\) −13563.2 23492.1i −0.154189 0.267063i
\(96\) 0 0
\(97\) 7209.53 0.0777997 0.0388998 0.999243i \(-0.487615\pi\)
0.0388998 + 0.999243i \(0.487615\pi\)
\(98\) 0 0
\(99\) −198489. −2.03539
\(100\) 0 0
\(101\) 97609.2 + 169064.i 0.952110 + 1.64910i 0.740847 + 0.671674i \(0.234424\pi\)
0.211263 + 0.977429i \(0.432242\pi\)
\(102\) 0 0
\(103\) 11816.8 20467.2i 0.109750 0.190093i −0.805919 0.592026i \(-0.798328\pi\)
0.915669 + 0.401933i \(0.131662\pi\)
\(104\) 0 0
\(105\) −17062.4 262886.i −0.151031 2.32699i
\(106\) 0 0
\(107\) 53546.1 92744.5i 0.452135 0.783121i −0.546383 0.837535i \(-0.683996\pi\)
0.998518 + 0.0544144i \(0.0173292\pi\)
\(108\) 0 0
\(109\) −23110.7 40029.0i −0.186315 0.322707i 0.757704 0.652598i \(-0.226321\pi\)
−0.944019 + 0.329892i \(0.892988\pi\)
\(110\) 0 0
\(111\) 373107. 2.87426
\(112\) 0 0
\(113\) 55520.3 0.409030 0.204515 0.978863i \(-0.434438\pi\)
0.204515 + 0.978863i \(0.434438\pi\)
\(114\) 0 0
\(115\) −196487. 340326.i −1.38545 2.39966i
\(116\) 0 0
\(117\) −76634.7 + 132735.i −0.517560 + 0.896441i
\(118\) 0 0
\(119\) 96991.7 64718.5i 0.627866 0.418949i
\(120\) 0 0
\(121\) −47859.5 + 82895.1i −0.297170 + 0.514713i
\(122\) 0 0
\(123\) 123918. + 214632.i 0.738535 + 1.27918i
\(124\) 0 0
\(125\) 20624.8 0.118063
\(126\) 0 0
\(127\) −230185. −1.26639 −0.633195 0.773992i \(-0.718257\pi\)
−0.633195 + 0.773992i \(0.718257\pi\)
\(128\) 0 0
\(129\) −235068. 407150.i −1.24371 2.15417i
\(130\) 0 0
\(131\) −99500.5 + 172340.i −0.506579 + 0.877420i 0.493392 + 0.869807i \(0.335757\pi\)
−0.999971 + 0.00761308i \(0.997577\pi\)
\(132\) 0 0
\(133\) 39091.6 + 19308.8i 0.191626 + 0.0946512i
\(134\) 0 0
\(135\) −151093. + 261701.i −0.713526 + 1.23586i
\(136\) 0 0
\(137\) −63765.5 110445.i −0.290258 0.502741i 0.683613 0.729845i \(-0.260408\pi\)
−0.973871 + 0.227104i \(0.927074\pi\)
\(138\) 0 0
\(139\) 17259.8 0.0757703 0.0378851 0.999282i \(-0.487938\pi\)
0.0378851 + 0.999282i \(0.487938\pi\)
\(140\) 0 0
\(141\) 35232.7 0.149244
\(142\) 0 0
\(143\) 99136.5 + 171709.i 0.405409 + 0.702189i
\(144\) 0 0
\(145\) −22043.4 + 38180.4i −0.0870682 + 0.150806i
\(146\) 0 0
\(147\) 257338. + 336254.i 0.982223 + 1.28344i
\(148\) 0 0
\(149\) 417.263 722.720i 0.00153973 0.00266689i −0.865255 0.501333i \(-0.832843\pi\)
0.866794 + 0.498666i \(0.166177\pi\)
\(150\) 0 0
\(151\) −20469.3 35453.9i −0.0730569 0.126538i 0.827183 0.561933i \(-0.189942\pi\)
−0.900240 + 0.435395i \(0.856609\pi\)
\(152\) 0 0
\(153\) −352308. −1.21673
\(154\) 0 0
\(155\) 491935. 1.64467
\(156\) 0 0
\(157\) −16444.1 28482.0i −0.0532428 0.0922193i 0.838176 0.545400i \(-0.183622\pi\)
−0.891418 + 0.453181i \(0.850289\pi\)
\(158\) 0 0
\(159\) 248922. 431145.i 0.780854 1.35248i
\(160\) 0 0
\(161\) 566313. + 279723.i 1.72184 + 0.850479i
\(162\) 0 0
\(163\) 35149.3 60880.4i 0.103621 0.179477i −0.809553 0.587047i \(-0.800290\pi\)
0.913174 + 0.407570i \(0.133624\pi\)
\(164\) 0 0
\(165\) 514846. + 891739.i 1.47220 + 2.54993i
\(166\) 0 0
\(167\) 227937. 0.632447 0.316224 0.948685i \(-0.397585\pi\)
0.316224 + 0.948685i \(0.397585\pi\)
\(168\) 0 0
\(169\) −218190. −0.587650
\(170\) 0 0
\(171\) −65868.6 114088.i −0.172262 0.298366i
\(172\) 0 0
\(173\) 16895.1 29263.2i 0.0429186 0.0743372i −0.843768 0.536708i \(-0.819668\pi\)
0.886687 + 0.462371i \(0.153001\pi\)
\(174\) 0 0
\(175\) −364572. + 243264.i −0.899888 + 0.600458i
\(176\) 0 0
\(177\) −342263. + 592817.i −0.821158 + 1.42229i
\(178\) 0 0
\(179\) −307606. 532789.i −0.717567 1.24286i −0.961961 0.273186i \(-0.911922\pi\)
0.244394 0.969676i \(-0.421411\pi\)
\(180\) 0 0
\(181\) −678787. −1.54006 −0.770029 0.638008i \(-0.779758\pi\)
−0.770029 + 0.638008i \(0.779758\pi\)
\(182\) 0 0
\(183\) 356927. 0.787864
\(184\) 0 0
\(185\) −597259. 1.03448e6i −1.28302 2.22226i
\(186\) 0 0
\(187\) −227877. + 394695.i −0.476537 + 0.825386i
\(188\) 0 0
\(189\) −31458.1 484684.i −0.0640587 0.986971i
\(190\) 0 0
\(191\) −327588. + 567398.i −0.649747 + 1.12539i 0.333436 + 0.942773i \(0.391792\pi\)
−0.983183 + 0.182622i \(0.941542\pi\)
\(192\) 0 0
\(193\) 160230. + 277526.i 0.309635 + 0.536303i 0.978282 0.207276i \(-0.0664598\pi\)
−0.668648 + 0.743579i \(0.733126\pi\)
\(194\) 0 0
\(195\) 795108. 1.49741
\(196\) 0 0
\(197\) 202103. 0.371029 0.185514 0.982642i \(-0.440605\pi\)
0.185514 + 0.982642i \(0.440605\pi\)
\(198\) 0 0
\(199\) −319170. 552819.i −0.571333 0.989578i −0.996429 0.0844301i \(-0.973093\pi\)
0.425096 0.905148i \(-0.360240\pi\)
\(200\) 0 0
\(201\) 635455. 1.10064e6i 1.10942 1.92157i
\(202\) 0 0
\(203\) −4589.53 70712.2i −0.00781678 0.120435i
\(204\) 0 0
\(205\) 396729. 687154.i 0.659339 1.14201i
\(206\) 0 0
\(207\) −954226. 1.65277e6i −1.54784 2.68093i
\(208\) 0 0
\(209\) −170418. −0.269868
\(210\) 0 0
\(211\) −517370. −0.800010 −0.400005 0.916513i \(-0.630992\pi\)
−0.400005 + 0.916513i \(0.630992\pi\)
\(212\) 0 0
\(213\) 570370. + 987909.i 0.861405 + 1.49200i
\(214\) 0 0
\(215\) −752581. + 1.30351e6i −1.11034 + 1.92317i
\(216\) 0 0
\(217\) −657713. + 438865.i −0.948172 + 0.632676i
\(218\) 0 0
\(219\) 95317.2 165094.i 0.134295 0.232606i
\(220\) 0 0
\(221\) 175962. + 304776.i 0.242348 + 0.419759i
\(222\) 0 0
\(223\) 755836. 1.01781 0.508904 0.860824i \(-0.330051\pi\)
0.508904 + 0.860824i \(0.330051\pi\)
\(224\) 0 0
\(225\) 1.32426e6 1.74388
\(226\) 0 0
\(227\) 440624. + 763184.i 0.567550 + 0.983025i 0.996807 + 0.0798426i \(0.0254418\pi\)
−0.429258 + 0.903182i \(0.641225\pi\)
\(228\) 0 0
\(229\) 139756. 242065.i 0.176109 0.305031i −0.764435 0.644701i \(-0.776982\pi\)
0.940545 + 0.339670i \(0.110315\pi\)
\(230\) 0 0
\(231\) −1.48388e6 732944.i −1.82966 0.903734i
\(232\) 0 0
\(233\) 533391. 923860.i 0.643659 1.11485i −0.340950 0.940081i \(-0.610749\pi\)
0.984609 0.174769i \(-0.0559179\pi\)
\(234\) 0 0
\(235\) −56399.5 97686.8i −0.0666201 0.115389i
\(236\) 0 0
\(237\) 121682. 0.140720
\(238\) 0 0
\(239\) −270341. −0.306138 −0.153069 0.988215i \(-0.548916\pi\)
−0.153069 + 0.988215i \(0.548916\pi\)
\(240\) 0 0
\(241\) 657034. + 1.13802e6i 0.728694 + 1.26214i 0.957435 + 0.288648i \(0.0932058\pi\)
−0.228741 + 0.973487i \(0.573461\pi\)
\(242\) 0 0
\(243\) 465253. 805841.i 0.505444 0.875455i
\(244\) 0 0
\(245\) 520367. 1.25177e6i 0.553853 1.33232i
\(246\) 0 0
\(247\) −65796.9 + 113964.i −0.0686220 + 0.118857i
\(248\) 0 0
\(249\) 177202. + 306923.i 0.181122 + 0.313712i
\(250\) 0 0
\(251\) −1.31291e6 −1.31538 −0.657690 0.753289i \(-0.728466\pi\)
−0.657690 + 0.753289i \(0.728466\pi\)
\(252\) 0 0
\(253\) −2.46882e6 −2.42487
\(254\) 0 0
\(255\) 913825. + 1.58279e6i 0.880061 + 1.52431i
\(256\) 0 0
\(257\) −353720. + 612661.i −0.334062 + 0.578612i −0.983304 0.181970i \(-0.941753\pi\)
0.649242 + 0.760582i \(0.275086\pi\)
\(258\) 0 0
\(259\) 1.72141e6 + 850270.i 1.59454 + 0.787603i
\(260\) 0 0
\(261\) −107052. + 185420.i −0.0972736 + 0.168483i
\(262\) 0 0
\(263\) 369721. + 640376.i 0.329598 + 0.570881i 0.982432 0.186620i \(-0.0597534\pi\)
−0.652834 + 0.757501i \(0.726420\pi\)
\(264\) 0 0
\(265\) −1.59387e6 −1.39424
\(266\) 0 0
\(267\) −2.25617e6 −1.93684
\(268\) 0 0
\(269\) 619595. + 1.07317e6i 0.522068 + 0.904249i 0.999670 + 0.0256724i \(0.00817269\pi\)
−0.477602 + 0.878576i \(0.658494\pi\)
\(270\) 0 0
\(271\) 257391. 445815.i 0.212898 0.368749i −0.739723 0.672912i \(-0.765043\pi\)
0.952620 + 0.304163i \(0.0983766\pi\)
\(272\) 0 0
\(273\) −1.06305e6 + 709331.i −0.863273 + 0.576026i
\(274\) 0 0
\(275\) 856544. 1.48358e6i 0.682996 1.18298i
\(276\) 0 0
\(277\) 648520. + 1.12327e6i 0.507837 + 0.879599i 0.999959 + 0.00907261i \(0.00288794\pi\)
−0.492122 + 0.870526i \(0.663779\pi\)
\(278\) 0 0
\(279\) 2.38905e6 1.83744
\(280\) 0 0
\(281\) 2.61884e6 1.97853 0.989265 0.146133i \(-0.0466828\pi\)
0.989265 + 0.146133i \(0.0466828\pi\)
\(282\) 0 0
\(283\) −20922.9 36239.4i −0.0155294 0.0268977i 0.858156 0.513389i \(-0.171610\pi\)
−0.873686 + 0.486491i \(0.838277\pi\)
\(284\) 0 0
\(285\) −341703. + 591847.i −0.249194 + 0.431616i
\(286\) 0 0
\(287\) 82600.4 + 1.27265e6i 0.0591940 + 0.912019i
\(288\) 0 0
\(289\) 305458. 529069.i 0.215133 0.372621i
\(290\) 0 0
\(291\) −90816.5 157299.i −0.0628684 0.108891i
\(292\) 0 0
\(293\) −1.94837e6 −1.32588 −0.662938 0.748674i \(-0.730691\pi\)
−0.662938 + 0.748674i \(0.730691\pi\)
\(294\) 0 0
\(295\) 2.19154e6 1.46620
\(296\) 0 0
\(297\) 949225. + 1.64411e6i 0.624422 + 1.08153i
\(298\) 0 0
\(299\) −953188. + 1.65097e6i −0.616596 + 1.06798i
\(300\) 0 0
\(301\) −156690. 2.41417e6i −0.0996840 1.53586i
\(302\) 0 0
\(303\) 2.45911e6 4.25931e6i 1.53876 2.66521i
\(304\) 0 0
\(305\) −571358. 989622.i −0.351689 0.609143i
\(306\) 0 0
\(307\) −209113. −0.126630 −0.0633149 0.997994i \(-0.520167\pi\)
−0.0633149 + 0.997994i \(0.520167\pi\)
\(308\) 0 0
\(309\) −595410. −0.354748
\(310\) 0 0
\(311\) 46862.0 + 81167.3i 0.0274739 + 0.0475861i 0.879435 0.476018i \(-0.157920\pi\)
−0.851962 + 0.523604i \(0.824587\pi\)
\(312\) 0 0
\(313\) 250057. 433112.i 0.144271 0.249884i −0.784830 0.619711i \(-0.787250\pi\)
0.929101 + 0.369827i \(0.120583\pi\)
\(314\) 0 0
\(315\) −3.40712e6 + 2.27343e6i −1.93469 + 1.29094i
\(316\) 0 0
\(317\) 737146. 1.27677e6i 0.412007 0.713618i −0.583102 0.812399i \(-0.698161\pi\)
0.995109 + 0.0987813i \(0.0314944\pi\)
\(318\) 0 0
\(319\) 138485. + 239864.i 0.0761952 + 0.131974i
\(320\) 0 0
\(321\) −2.69802e6 −1.46145
\(322\) 0 0
\(323\) −302484. −0.161323
\(324\) 0 0
\(325\) −661407. 1.14559e6i −0.347345 0.601618i
\(326\) 0 0
\(327\) −582239. + 1.00847e6i −0.301115 + 0.521546i
\(328\) 0 0
\(329\) 162554. + 80291.4i 0.0827957 + 0.0408958i
\(330\) 0 0
\(331\) 1.18818e6 2.05800e6i 0.596093 1.03246i −0.397299 0.917689i \(-0.630052\pi\)
0.993392 0.114774i \(-0.0366143\pi\)
\(332\) 0 0
\(333\) −2.90055e6 5.02390e6i −1.43341 2.48273i
\(334\) 0 0
\(335\) −4.06888e6 −1.98090
\(336\) 0 0
\(337\) 2.56857e6 1.23202 0.616008 0.787740i \(-0.288749\pi\)
0.616008 + 0.787740i \(0.288749\pi\)
\(338\) 0 0
\(339\) −699374. 1.21135e6i −0.330529 0.572494i
\(340\) 0 0
\(341\) 1.54526e6 2.67647e6i 0.719642 1.24646i
\(342\) 0 0
\(343\) 420999. + 2.13783e6i 0.193217 + 0.981156i
\(344\) 0 0
\(345\) −4.95019e6 + 8.57398e6i −2.23910 + 3.87824i
\(346\) 0 0
\(347\) 306273. + 530480.i 0.136548 + 0.236508i 0.926188 0.377063i \(-0.123066\pi\)
−0.789640 + 0.613571i \(0.789733\pi\)
\(348\) 0 0
\(349\) 3.83323e6 1.68462 0.842310 0.538994i \(-0.181195\pi\)
0.842310 + 0.538994i \(0.181195\pi\)
\(350\) 0 0
\(351\) 1.46595e6 0.635112
\(352\) 0 0
\(353\) −1.42925e6 2.47554e6i −0.610481 1.05738i −0.991159 0.132676i \(-0.957643\pi\)
0.380679 0.924707i \(-0.375690\pi\)
\(354\) 0 0
\(355\) 1.82606e6 3.16284e6i 0.769034 1.33201i
\(356\) 0 0
\(357\) −2.63382e6 1.30094e6i −1.09374 0.540239i
\(358\) 0 0
\(359\) −193874. + 335800.i −0.0793933 + 0.137513i −0.902988 0.429665i \(-0.858632\pi\)
0.823595 + 0.567178i \(0.191965\pi\)
\(360\) 0 0
\(361\) 1.18150e6 + 2.04641e6i 0.477160 + 0.826466i
\(362\) 0 0
\(363\) 2.41149e6 0.960549
\(364\) 0 0
\(365\) −610325. −0.239789
\(366\) 0 0
\(367\) −96154.9 166545.i −0.0372654 0.0645456i 0.846791 0.531926i \(-0.178531\pi\)
−0.884057 + 0.467380i \(0.845198\pi\)
\(368\) 0 0
\(369\) 1.92669e6 3.33712e6i 0.736622 1.27587i
\(370\) 0 0
\(371\) 2.13099e6 1.42192e6i 0.803797 0.536340i
\(372\) 0 0
\(373\) 1.13262e6 1.96175e6i 0.421514 0.730083i −0.574574 0.818453i \(-0.694832\pi\)
0.996088 + 0.0883694i \(0.0281656\pi\)
\(374\) 0 0
\(375\) −259805. 449995.i −0.0954044 0.165245i
\(376\) 0 0
\(377\) 213872. 0.0774997
\(378\) 0 0
\(379\) 4.46258e6 1.59583 0.797917 0.602767i \(-0.205935\pi\)
0.797917 + 0.602767i \(0.205935\pi\)
\(380\) 0 0
\(381\) 2.89957e6 + 5.02221e6i 1.02334 + 1.77248i
\(382\) 0 0
\(383\) 902218. 1.56269e6i 0.314279 0.544346i −0.665005 0.746839i \(-0.731571\pi\)
0.979284 + 0.202492i \(0.0649041\pi\)
\(384\) 0 0
\(385\) 343182. + 5.28752e6i 0.117998 + 1.81803i
\(386\) 0 0
\(387\) −3.65486e6 + 6.33040e6i −1.24049 + 2.14859i
\(388\) 0 0
\(389\) −55455.6 96051.9i −0.0185811 0.0321834i 0.856585 0.516005i \(-0.172582\pi\)
−0.875166 + 0.483822i \(0.839248\pi\)
\(390\) 0 0
\(391\) −4.38203e6 −1.44955
\(392\) 0 0
\(393\) 5.01352e6 1.63742
\(394\) 0 0
\(395\) −194786. 337379.i −0.0628151 0.108799i
\(396\) 0 0
\(397\) −2.74389e6 + 4.75256e6i −0.873758 + 1.51339i −0.0156779 + 0.999877i \(0.504991\pi\)
−0.858080 + 0.513516i \(0.828343\pi\)
\(398\) 0 0
\(399\) −71143.9 1.09614e6i −0.0223720 0.344692i
\(400\) 0 0
\(401\) −467219. + 809247.i −0.145097 + 0.251316i −0.929409 0.369051i \(-0.879683\pi\)
0.784312 + 0.620367i \(0.213016\pi\)
\(402\) 0 0
\(403\) −1.19322e6 2.06672e6i −0.365982 0.633899i
\(404\) 0 0
\(405\) −64363.4 −0.0194985
\(406\) 0 0
\(407\) −7.50443e6 −2.24560
\(408\) 0 0
\(409\) 738463. + 1.27905e6i 0.218283 + 0.378078i 0.954283 0.298904i \(-0.0966210\pi\)
−0.736000 + 0.676981i \(0.763288\pi\)
\(410\) 0 0
\(411\) −1.60647e6 + 2.78249e6i −0.469103 + 0.812511i
\(412\) 0 0
\(413\) −2.93007e6 + 1.95512e6i −0.845285 + 0.564024i
\(414\) 0 0
\(415\) 567320. 982627.i 0.161699 0.280071i
\(416\) 0 0
\(417\) −217417. 376577.i −0.0612285 0.106051i
\(418\) 0 0
\(419\) 2.66235e6 0.740849 0.370424 0.928863i \(-0.379212\pi\)
0.370424 + 0.928863i \(0.379212\pi\)
\(420\) 0 0
\(421\) −1.02032e6 −0.280563 −0.140282 0.990112i \(-0.544801\pi\)
−0.140282 + 0.990112i \(0.544801\pi\)
\(422\) 0 0
\(423\) −273900. 474409.i −0.0744288 0.128915i
\(424\) 0 0
\(425\) 1.52032e6 2.63328e6i 0.408285 0.707170i
\(426\) 0 0
\(427\) 1.64676e6 + 813396.i 0.437080 + 0.215890i
\(428\) 0 0
\(429\) 2.49759e6 4.32595e6i 0.655206 1.13485i
\(430\) 0 0
\(431\) 100134. + 173436.i 0.0259649 + 0.0449725i 0.878716 0.477345i \(-0.158401\pi\)
−0.852751 + 0.522318i \(0.825068\pi\)
\(432\) 0 0
\(433\) 5.84752e6 1.49883 0.749415 0.662101i \(-0.230335\pi\)
0.749415 + 0.662101i \(0.230335\pi\)
\(434\) 0 0
\(435\) 1.11070e6 0.281432
\(436\) 0 0
\(437\) −819278. 1.41903e6i −0.205224 0.355458i
\(438\) 0 0
\(439\) −3.16278e6 + 5.47809e6i −0.783262 + 1.35665i 0.146769 + 0.989171i \(0.453112\pi\)
−0.930032 + 0.367479i \(0.880221\pi\)
\(440\) 0 0
\(441\) 2.52712e6 6.07912e6i 0.618771 1.48848i
\(442\) 0 0
\(443\) −1.10193e6 + 1.90859e6i −0.266774 + 0.462066i −0.968027 0.250846i \(-0.919291\pi\)
0.701253 + 0.712913i \(0.252624\pi\)
\(444\) 0 0
\(445\) 3.61162e6 + 6.25550e6i 0.864573 + 1.49748i
\(446\) 0 0
\(447\) −21024.6 −0.00497689
\(448\) 0 0
\(449\) −2.66634e6 −0.624166 −0.312083 0.950055i \(-0.601027\pi\)
−0.312083 + 0.950055i \(0.601027\pi\)
\(450\) 0 0
\(451\) −2.49241e6 4.31697e6i −0.577002 0.999397i
\(452\) 0 0
\(453\) −515693. + 893206.i −0.118072 + 0.204506i
\(454\) 0 0
\(455\) 3.66841e6 + 1.81196e6i 0.830710 + 0.410319i
\(456\) 0 0
\(457\) 3.04406e6 5.27247e6i 0.681809 1.18093i −0.292619 0.956229i \(-0.594527\pi\)
0.974428 0.224699i \(-0.0721400\pi\)
\(458\) 0 0
\(459\) 1.68483e6 + 2.91820e6i 0.373270 + 0.646523i
\(460\) 0 0
\(461\) 381317. 0.0835668 0.0417834 0.999127i \(-0.486696\pi\)
0.0417834 + 0.999127i \(0.486696\pi\)
\(462\) 0 0
\(463\) −99697.8 −0.0216139 −0.0108069 0.999942i \(-0.503440\pi\)
−0.0108069 + 0.999942i \(0.503440\pi\)
\(464\) 0 0
\(465\) −6.19677e6 1.07331e7i −1.32902 2.30194i
\(466\) 0 0
\(467\) −2.81889e6 + 4.88246e6i −0.598116 + 1.03597i 0.394983 + 0.918689i \(0.370751\pi\)
−0.993099 + 0.117279i \(0.962583\pi\)
\(468\) 0 0
\(469\) 5.44006e6 3.62993e6i 1.14201 0.762019i
\(470\) 0 0
\(471\) −414284. + 717561.i −0.0860490 + 0.149041i
\(472\) 0 0
\(473\) 4.72801e6 + 8.18915e6i 0.971685 + 1.68301i
\(474\) 0 0
\(475\) 1.13698e6 0.231216
\(476\) 0 0
\(477\) −7.74051e6 −1.55766
\(478\) 0 0
\(479\) 870394. + 1.50757e6i 0.173331 + 0.300219i 0.939583 0.342322i \(-0.111213\pi\)
−0.766251 + 0.642541i \(0.777880\pi\)
\(480\) 0 0
\(481\) −2.89739e6 + 5.01843e6i −0.571011 + 0.989020i
\(482\) 0 0
\(483\) −1.03065e6 1.58795e7i −0.201022 3.09720i
\(484\) 0 0
\(485\) −290753. + 503599.i −0.0561268 + 0.0972144i
\(486\) 0 0
\(487\) −2.41235e6 4.17832e6i −0.460913 0.798324i 0.538094 0.842885i \(-0.319145\pi\)
−0.999007 + 0.0445607i \(0.985811\pi\)
\(488\) 0 0
\(489\) −1.77106e6 −0.334936
\(490\) 0 0
\(491\) −4.46085e6 −0.835053 −0.417527 0.908665i \(-0.637103\pi\)
−0.417527 + 0.908665i \(0.637103\pi\)
\(492\) 0 0
\(493\) 245805. + 425746.i 0.0455484 + 0.0788921i
\(494\) 0 0
\(495\) 8.00486e6 1.38648e7i 1.46839 2.54332i
\(496\) 0 0
\(497\) 380193. + 5.85775e6i 0.0690420 + 1.06375i
\(498\) 0 0
\(499\) 370378. 641513.i 0.0665876 0.115333i −0.830810 0.556557i \(-0.812122\pi\)
0.897397 + 0.441224i \(0.145455\pi\)
\(500\) 0 0
\(501\) −2.87126e6 4.97317e6i −0.511068 0.885196i
\(502\) 0 0
\(503\) −3.74899e6 −0.660686 −0.330343 0.943861i \(-0.607164\pi\)
−0.330343 + 0.943861i \(0.607164\pi\)
\(504\) 0 0
\(505\) −1.57459e7 −2.74751
\(506\) 0 0
\(507\) 2.74848e6 + 4.76051e6i 0.474868 + 0.822496i
\(508\) 0 0
\(509\) 1.33228e6 2.30757e6i 0.227929 0.394785i −0.729265 0.684231i \(-0.760138\pi\)
0.957194 + 0.289446i \(0.0934711\pi\)
\(510\) 0 0
\(511\) 815999. 544482.i 0.138241 0.0922426i
\(512\) 0 0
\(513\) −630001. + 1.09119e6i −0.105693 + 0.183066i
\(514\) 0 0
\(515\) 953116. + 1.65085e6i 0.158353 + 0.274276i
\(516\) 0 0
\(517\) −708647. −0.116601
\(518\) 0 0
\(519\) −851292. −0.138727
\(520\) 0 0
\(521\) −416312. 721073.i −0.0671930 0.116382i 0.830472 0.557061i \(-0.188071\pi\)
−0.897665 + 0.440679i \(0.854738\pi\)
\(522\) 0 0
\(523\) 936507. 1.62208e6i 0.149712 0.259309i −0.781409 0.624019i \(-0.785499\pi\)
0.931121 + 0.364710i \(0.118832\pi\)
\(524\) 0 0
\(525\) 9.89999e6 + 4.88997e6i 1.56760 + 0.774297i
\(526\) 0 0
\(527\) 2.74277e6 4.75061e6i 0.430192 0.745114i
\(528\) 0 0
\(529\) −8.65056e6 1.49832e7i −1.34402 2.32791i
\(530\) 0 0
\(531\) 1.06431e7 1.63806
\(532\) 0 0
\(533\) −3.84918e6 −0.586881
\(534\) 0 0
\(535\) 4.31892e6 + 7.48058e6i 0.652364 + 1.12993i
\(536\) 0 0
\(537\) −7.74966e6 + 1.34228e7i −1.15970 + 2.00866i
\(538\) 0 0
\(539\) −5.17593e6 6.76321e6i −0.767390 1.00272i
\(540\) 0 0
\(541\) −2.23793e6 + 3.87621e6i −0.328741 + 0.569395i −0.982262 0.187512i \(-0.939958\pi\)
0.653522 + 0.756908i \(0.273291\pi\)
\(542\) 0 0
\(543\) 8.55050e6 + 1.48099e7i 1.24449 + 2.15552i
\(544\) 0 0
\(545\) 3.72813e6 0.537650
\(546\) 0 0
\(547\) 6.12226e6 0.874869 0.437435 0.899250i \(-0.355887\pi\)
0.437435 + 0.899250i \(0.355887\pi\)
\(548\) 0 0
\(549\) −2.77476e6 4.80603e6i −0.392911 0.680543i
\(550\) 0 0
\(551\) −91912.9 + 159198.i −0.0128973 + 0.0223387i
\(552\) 0 0
\(553\) 561409. + 277300.i 0.0780668 + 0.0385601i
\(554\) 0 0
\(555\) −1.50470e7 + 2.60622e7i −2.07357 + 3.59152i
\(556\) 0 0
\(557\) 4.76272e6 + 8.24927e6i 0.650454 + 1.12662i 0.983013 + 0.183537i \(0.0587547\pi\)
−0.332559 + 0.943083i \(0.607912\pi\)
\(558\) 0 0
\(559\) 7.30176e6 0.988321
\(560\) 0 0
\(561\) 1.14820e7 1.54032
\(562\) 0 0
\(563\) −4.04958e6 7.01408e6i −0.538442 0.932609i −0.998988 0.0449731i \(-0.985680\pi\)
0.460546 0.887636i \(-0.347654\pi\)
\(564\) 0 0
\(565\) −2.23908e6 + 3.87819e6i −0.295085 + 0.511103i
\(566\) 0 0
\(567\) 86053.4 57419.8i 0.0112411 0.00750074i
\(568\) 0 0
\(569\) 3.69587e6 6.40144e6i 0.478560 0.828890i −0.521138 0.853472i \(-0.674492\pi\)
0.999698 + 0.0245827i \(0.00782570\pi\)
\(570\) 0 0
\(571\) −1.73172e6 2.99943e6i −0.222273 0.384989i 0.733225 0.679986i \(-0.238014\pi\)
−0.955498 + 0.294998i \(0.904681\pi\)
\(572\) 0 0
\(573\) 1.65061e7 2.10019
\(574\) 0 0
\(575\) 1.64712e7 2.07757
\(576\) 0 0
\(577\) −2.58289e6 4.47369e6i −0.322973 0.559405i 0.658127 0.752907i \(-0.271349\pi\)
−0.981100 + 0.193502i \(0.938015\pi\)
\(578\) 0 0
\(579\) 4.03674e6 6.99184e6i 0.500420 0.866752i
\(580\) 0 0
\(581\) 118118. + 1.81988e6i 0.0145170 + 0.223667i
\(582\) 0 0
\(583\) −5.00665e6 + 8.67177e6i −0.610065 + 1.05666i
\(584\) 0 0
\(585\) −6.18120e6 1.07062e7i −0.746764 1.29343i
\(586\) 0 0
\(587\) 4.08305e6 0.489090 0.244545 0.969638i \(-0.421361\pi\)
0.244545 + 0.969638i \(0.421361\pi\)
\(588\) 0 0
\(589\) 2.05118e6 0.243622
\(590\) 0 0
\(591\) −2.54584e6 4.40952e6i −0.299821 0.519305i
\(592\) 0 0
\(593\) 3.91092e6 6.77391e6i 0.456712 0.791048i −0.542073 0.840331i \(-0.682360\pi\)
0.998785 + 0.0492833i \(0.0156937\pi\)
\(594\) 0 0
\(595\) 609132. + 9.38508e6i 0.0705373 + 1.08679i
\(596\) 0 0
\(597\) −8.04100e6 + 1.39274e7i −0.923366 + 1.59932i
\(598\) 0 0
\(599\) 3.15891e6 + 5.47139e6i 0.359725 + 0.623061i 0.987915 0.154999i \(-0.0495373\pi\)
−0.628190 + 0.778060i \(0.716204\pi\)
\(600\) 0 0
\(601\) −1.68407e6 −0.190184 −0.0950919 0.995468i \(-0.530315\pi\)
−0.0950919 + 0.995468i \(0.530315\pi\)
\(602\) 0 0
\(603\) −1.97602e7 −2.21309
\(604\) 0 0
\(605\) −3.86025e6 6.68615e6i −0.428773 0.742656i
\(606\) 0 0
\(607\) −2.72757e6 + 4.72429e6i −0.300472 + 0.520432i −0.976243 0.216679i \(-0.930477\pi\)
0.675771 + 0.737112i \(0.263811\pi\)
\(608\) 0 0
\(609\) −1.48500e6 + 990877.i −0.162249 + 0.108262i
\(610\) 0 0
\(611\) −273602. + 473893.i −0.0296494 + 0.0513543i
\(612\) 0 0
\(613\) 4.06685e6 + 7.04399e6i 0.437127 + 0.757125i 0.997467 0.0711373i \(-0.0226629\pi\)
−0.560340 + 0.828263i \(0.689330\pi\)
\(614\) 0 0
\(615\) −1.99899e7 −2.13120
\(616\) 0 0
\(617\) 2.83775e6 0.300097 0.150048 0.988679i \(-0.452057\pi\)
0.150048 + 0.988679i \(0.452057\pi\)
\(618\) 0 0
\(619\) −6.19545e6 1.07308e7i −0.649900 1.12566i −0.983146 0.182820i \(-0.941478\pi\)
0.333247 0.942840i \(-0.391856\pi\)
\(620\) 0 0
\(621\) −9.12670e6 + 1.58079e7i −0.949697 + 1.64492i
\(622\) 0 0
\(623\) −1.04094e7 5.14157e6i −1.07449 0.530732i
\(624\) 0 0
\(625\) 4.45058e6 7.70863e6i 0.455739 0.789363i
\(626\) 0 0
\(627\) 2.14671e6 + 3.71822e6i 0.218075 + 0.377716i
\(628\) 0 0
\(629\) −1.33200e7 −1.34239
\(630\) 0 0
\(631\) 3.25659e6 0.325604 0.162802 0.986659i \(-0.447947\pi\)
0.162802 + 0.986659i \(0.447947\pi\)
\(632\) 0 0
\(633\) 6.51717e6 + 1.12881e7i 0.646472 + 1.11972i
\(634\) 0 0
\(635\) 9.28312e6 1.60788e7i 0.913608 1.58241i
\(636\) 0 0
\(637\) −6.52113e6 + 850079.i −0.636757 + 0.0830062i
\(638\) 0 0
\(639\) 8.86815e6 1.53601e7i 0.859174 1.48813i
\(640\) 0 0
\(641\) −1.15075e6 1.99316e6i −0.110621 0.191601i 0.805400 0.592732i \(-0.201951\pi\)
−0.916021 + 0.401131i \(0.868617\pi\)
\(642\) 0 0
\(643\) −8.68991e6 −0.828872 −0.414436 0.910078i \(-0.636021\pi\)
−0.414436 + 0.910078i \(0.636021\pi\)
\(644\) 0 0
\(645\) 3.79202e7 3.58898
\(646\) 0 0
\(647\) 1.14216e6 + 1.97828e6i 0.107267 + 0.185792i 0.914662 0.404219i \(-0.132457\pi\)
−0.807395 + 0.590011i \(0.799123\pi\)
\(648\) 0 0
\(649\) 6.88406e6 1.19235e7i 0.641554 1.11120i
\(650\) 0 0
\(651\) 1.78602e7 + 8.82184e6i 1.65171 + 0.815843i
\(652\) 0 0
\(653\) −1.08384e6 + 1.87726e6i −0.0994674 + 0.172283i −0.911464 0.411379i \(-0.865047\pi\)
0.811997 + 0.583662i \(0.198381\pi\)
\(654\) 0 0
\(655\) −8.02550e6 1.39006e7i −0.730919 1.26599i
\(656\) 0 0
\(657\) −2.96400e6 −0.267895
\(658\) 0 0
\(659\) 1.18596e7 1.06380 0.531898 0.846809i \(-0.321479\pi\)
0.531898 + 0.846809i \(0.321479\pi\)
\(660\) 0 0
\(661\) −713359. 1.23557e6i −0.0635045 0.109993i 0.832525 0.553987i \(-0.186894\pi\)
−0.896030 + 0.443994i \(0.853561\pi\)
\(662\) 0 0
\(663\) 4.43310e6 7.67835e6i 0.391673 0.678397i
\(664\) 0 0
\(665\) −2.92528e6 + 1.95192e6i −0.256515 + 0.171162i
\(666\) 0 0
\(667\) −1.33152e6 + 2.30627e6i −0.115887 + 0.200722i
\(668\) 0 0
\(669\) −9.52106e6 1.64910e7i −0.822470 1.42456i
\(670\) 0 0
\(671\) −7.17899e6 −0.615541
\(672\) 0 0
\(673\) −2.07459e7 −1.76561 −0.882806 0.469738i \(-0.844348\pi\)
−0.882806 + 0.469738i \(0.844348\pi\)
\(674\) 0 0
\(675\) −6.33292e6 1.09689e7i −0.534989 0.926628i
\(676\) 0 0
\(677\) 6.42895e6 1.11353e7i 0.539098 0.933746i −0.459854 0.887994i \(-0.652098\pi\)
0.998953 0.0457516i \(-0.0145683\pi\)
\(678\) 0 0
\(679\) −60535.9 932695.i −0.00503893 0.0776363i
\(680\) 0 0
\(681\) 1.11008e7 1.92272e7i 0.917251 1.58873i
\(682\) 0 0
\(683\) 9.64820e6 + 1.67112e7i 0.791397 + 1.37074i 0.925102 + 0.379719i \(0.123979\pi\)
−0.133705 + 0.991021i \(0.542687\pi\)
\(684\) 0 0
\(685\) 1.02864e7 0.837599
\(686\) 0 0
\(687\) −7.04189e6 −0.569242
\(688\) 0 0
\(689\) 3.86604e6 + 6.69618e6i 0.310255 + 0.537377i
\(690\) 0 0
\(691\) −9.14995e6 + 1.58482e7i −0.728993 + 1.26265i 0.228316 + 0.973587i \(0.426678\pi\)
−0.957309 + 0.289066i \(0.906655\pi\)
\(692\) 0 0
\(693\) 1.66664e6 + 2.56784e7i 0.131828 + 2.03112i
\(694\) 0 0
\(695\) −696070. + 1.20563e6i −0.0546627 + 0.0946786i
\(696\) 0 0
\(697\) −4.42389e6 7.66241e6i −0.344924 0.597425i
\(698\) 0 0
\(699\) −2.68759e7 −2.08051
\(700\) 0 0
\(701\) −1.61515e7 −1.24142 −0.620710 0.784040i \(-0.713156\pi\)
−0.620710 + 0.784040i \(0.713156\pi\)
\(702\) 0 0
\(703\) −2.49035e6 4.31341e6i −0.190052 0.329179i
\(704\) 0 0
\(705\) −1.42090e6 + 2.46107e6i −0.107669 + 0.186488i
\(706\) 0 0
\(707\) 2.10522e7 1.40472e7i 1.58397 1.05692i
\(708\) 0 0
\(709\) −749950. + 1.29895e6i −0.0560295 + 0.0970459i −0.892680 0.450692i \(-0.851177\pi\)
0.836650 + 0.547738i \(0.184511\pi\)
\(710\) 0 0
\(711\) −945963. 1.63846e6i −0.0701778 0.121552i
\(712\) 0 0
\(713\) 2.97151e7 2.18904
\(714\) 0 0
\(715\) −1.59923e7 −1.16989
\(716\) 0 0
\(717\) 3.40541e6 + 5.89835e6i 0.247384 + 0.428482i
\(718\) 0 0
\(719\) −8.78693e6 + 1.52194e7i −0.633892 + 1.09793i 0.352857 + 0.935677i \(0.385210\pi\)
−0.986749 + 0.162255i \(0.948123\pi\)
\(720\) 0 0
\(721\) −2.74706e6 1.35687e6i −0.196802 0.0972078i
\(722\) 0 0
\(723\) 1.65530e7 2.86706e7i 1.17769 2.03981i
\(724\) 0 0
\(725\) −923931. 1.60030e6i −0.0652822 0.113072i
\(726\) 0 0
\(727\) −2.16304e7 −1.51785 −0.758923 0.651180i \(-0.774274\pi\)
−0.758923 + 0.651180i \(0.774274\pi\)
\(728\) 0 0
\(729\) −2.32487e7 −1.62024
\(730\) 0 0
\(731\) 8.39198e6 + 1.45353e7i 0.580859 + 1.00608i
\(732\) 0 0
\(733\) 6.27682e6 1.08718e7i 0.431499 0.747378i −0.565504 0.824746i \(-0.691318\pi\)
0.997003 + 0.0773678i \(0.0246516\pi\)
\(734\) 0 0
\(735\) −3.38662e7 + 4.41472e6i −2.31232 + 0.301429i
\(736\) 0 0
\(737\) −1.27811e7 + 2.21376e7i −0.866764 + 1.50128i
\(738\) 0 0
\(739\) 378866. + 656215.i 0.0255196 + 0.0442013i 0.878503 0.477737i \(-0.158543\pi\)
−0.852984 + 0.521938i \(0.825209\pi\)
\(740\) 0 0
\(741\) 3.31530e6 0.221808
\(742\) 0 0
\(743\) 2.40878e7 1.60075 0.800377 0.599497i \(-0.204633\pi\)
0.800377 + 0.599497i \(0.204633\pi\)
\(744\) 0 0
\(745\) 33655.6 + 58293.2i 0.00222160 + 0.00384793i
\(746\) 0 0
\(747\) 2.75515e6 4.77206e6i 0.180652 0.312899i
\(748\) 0 0
\(749\) −1.24479e7 6.14849e6i −0.810760 0.400464i
\(750\) 0 0
\(751\) 6.88436e6 1.19241e7i 0.445414 0.771480i −0.552667 0.833402i \(-0.686390\pi\)
0.998081 + 0.0619225i \(0.0197232\pi\)
\(752\) 0 0
\(753\) 1.65384e7 + 2.86453e7i 1.06293 + 1.84105i
\(754\) 0 0
\(755\) 3.30203e6 0.210821
\(756\) 0 0
\(757\) 2.43930e7 1.54713 0.773564 0.633718i \(-0.218472\pi\)
0.773564 + 0.633718i \(0.218472\pi\)
\(758\) 0 0
\(759\) 3.10990e7 + 5.38651e7i 1.95949 + 3.39393i
\(760\) 0 0
\(761\) −1.28001e7 + 2.21704e7i −0.801220 + 1.38775i 0.117594 + 0.993062i \(0.462482\pi\)
−0.918814 + 0.394692i \(0.870851\pi\)
\(762\) 0 0
\(763\) −4.98448e6 + 3.32594e6i −0.309962 + 0.206825i
\(764\) 0 0
\(765\) 1.42082e7 2.46094e7i 0.877781 1.52036i
\(766\) 0 0
\(767\) −5.31574e6 9.20713e6i −0.326269 0.565114i
\(768\) 0 0
\(769\) 2.09807e7 1.27939 0.639697 0.768627i \(-0.279060\pi\)
0.639697 + 0.768627i \(0.279060\pi\)
\(770\) 0 0
\(771\) 1.78229e7 1.07979
\(772\) 0 0
\(773\) 5.64645e6 + 9.77993e6i 0.339881 + 0.588691i 0.984410 0.175889i \(-0.0562800\pi\)
−0.644529 + 0.764580i \(0.722947\pi\)
\(774\) 0 0
\(775\) −1.03095e7 + 1.78566e7i −0.616572 + 1.06793i
\(776\) 0 0
\(777\) −3.13284e6 4.82687e7i −0.186160 2.86822i
\(778\) 0 0
\(779\) 1.65421e6 2.86518e6i 0.0976668 0.169164i
\(780\) 0 0
\(781\) −1.14721e7 1.98702e7i −0.672998 1.16567i
\(782\) 0 0
\(783\) 2.04781e6 0.119367
\(784\) 0 0
\(785\) 2.65270e6 0.153643
\(786\) 0 0
\(787\) 1.18585e7 + 2.05395e7i 0.682482 + 1.18209i 0.974221 + 0.225596i \(0.0724329\pi\)
−0.291739 + 0.956498i \(0.594234\pi\)
\(788\) 0 0
\(789\) 9.31455e6 1.61333e7i 0.532683 0.922635i
\(790\) 0 0
\(791\) −466184. 7.18264e6i −0.0264921 0.408172i
\(792\) 0 0
\(793\) −2.77174e6 + 4.80080e6i −0.156520 + 0.271101i
\(794\) 0 0
\(795\) 2.00775e7 + 3.47753e7i 1.12666 + 1.95143i
\(796\) 0 0
\(797\) −2.73492e7 −1.52510 −0.762550 0.646929i \(-0.776053\pi\)
−0.762550 + 0.646929i \(0.776053\pi\)
\(798\) 0 0
\(799\) −1.25781e6 −0.0697026
\(800\) 0 0
\(801\) 1.75396e7 + 3.03794e7i 0.965912 + 1.67301i
\(802\) 0 0
\(803\) −1.91715e6 + 3.32060e6i −0.104922 + 0.181730i
\(804\) 0 0
\(805\) −4.23780e7 + 2.82771e7i −2.30489 + 1.53796i
\(806\) 0 0
\(807\) 1.56097e7 2.70369e7i 0.843746 1.46141i
\(808\) 0 0
\(809\) 5.46781e6 + 9.47052e6i 0.293726 + 0.508748i 0.974688 0.223571i \(-0.0717714\pi\)
−0.680962 + 0.732319i \(0.738438\pi\)
\(810\) 0 0
\(811\) 3.14053e7 1.67668 0.838342 0.545144i \(-0.183525\pi\)
0.838342 + 0.545144i \(0.183525\pi\)
\(812\) 0 0
\(813\) −1.29691e7 −0.688153
\(814\) 0 0
\(815\) 2.83507e6 + 4.91049e6i 0.149510 + 0.258959i
\(816\) 0 0
\(817\) −3.13798e6 + 5.43514e6i −0.164473 + 0.284876i
\(818\) 0 0
\(819\) 1.78154e7 + 8.79968e6i 0.928080 + 0.458413i
\(820\) 0 0
\(821\) −1.56250e7 + 2.70634e7i −0.809028 + 1.40128i 0.104510 + 0.994524i \(0.466673\pi\)
−0.913538 + 0.406754i \(0.866661\pi\)
\(822\) 0 0
\(823\) −1.83382e7 3.17627e7i −0.943749 1.63462i −0.758236 0.651980i \(-0.773939\pi\)
−0.185513 0.982642i \(-0.559395\pi\)
\(824\) 0 0
\(825\) −4.31586e7 −2.20766
\(826\) 0 0
\(827\) −1.67620e7 −0.852242 −0.426121 0.904666i \(-0.640120\pi\)
−0.426121 + 0.904666i \(0.640120\pi\)
\(828\) 0 0
\(829\) 595242. + 1.03099e6i 0.0300820 + 0.0521036i 0.880674 0.473722i \(-0.157090\pi\)
−0.850592 + 0.525826i \(0.823756\pi\)
\(830\) 0 0
\(831\) 1.63385e7 2.82990e7i 0.820745 1.42157i
\(832\) 0 0
\(833\) −9.18701e6 1.20044e7i −0.458735 0.599413i
\(834\) 0 0
\(835\) −9.19248e6 + 1.59218e7i −0.456264 + 0.790273i
\(836\) 0 0
\(837\) −1.14250e7 1.97887e7i −0.563694 0.976347i
\(838\) 0 0
\(839\) 8.21562e6 0.402935 0.201468 0.979495i \(-0.435429\pi\)
0.201468 + 0.979495i \(0.435429\pi\)
\(840\) 0 0
\(841\) −2.02124e7 −0.985434
\(842\) 0 0
\(843\) −3.29888e7 5.71382e7i −1.59881 2.76922i
\(844\) 0 0
\(845\) 8.79939e6 1.52410e7i 0.423946 0.734297i
\(846\) 0 0
\(847\) 1.11260e7 + 5.49553e6i 0.532880 + 0.263209i
\(848\) 0 0
\(849\) −527119. + 912996.i −0.0250980 + 0.0434710i
\(850\) 0 0
\(851\) −3.60772e7 6.24875e7i −1.70769 2.95780i
\(852\) 0 0
\(853\) 2.55133e7 1.20059 0.600295 0.799779i \(-0.295050\pi\)
0.600295 + 0.799779i \(0.295050\pi\)
\(854\) 0 0
\(855\) 1.06257e7 0.497096
\(856\) 0 0
\(857\) 1.43863e7 + 2.49178e7i 0.669109 + 1.15893i 0.978154 + 0.207884i \(0.0666576\pi\)
−0.309044 + 0.951048i \(0.600009\pi\)
\(858\) 0 0
\(859\) −5.17972e6 + 8.97154e6i −0.239510 + 0.414843i −0.960574 0.278025i \(-0.910320\pi\)
0.721064 + 0.692869i \(0.243653\pi\)
\(860\) 0 0
\(861\) 2.67264e7 1.78334e7i 1.22866 0.819835i
\(862\) 0 0
\(863\) −2.87161e6 + 4.97377e6i −0.131250 + 0.227331i −0.924159 0.382009i \(-0.875232\pi\)
0.792909 + 0.609340i \(0.208566\pi\)
\(864\) 0 0
\(865\) 1.36272e6 + 2.36031e6i 0.0619253 + 0.107258i
\(866\) 0 0
\(867\) −1.53911e7 −0.695379
\(868\) 0 0
\(869\) −2.44744e6 −0.109942
\(870\) 0 0
\(871\) 9.86936e6 + 1.70942e7i 0.440802 + 0.763491i
\(872\) 0 0
\(873\) −1.41202e6 + 2.44569e6i −0.0627055 + 0.108609i
\(874\) 0 0
\(875\) −173179. 2.66822e6i −0.00764671 0.117815i
\(876\) 0 0
\(877\) 1.80935e7 3.13389e7i 0.794372 1.37589i −0.128866 0.991662i \(-0.541134\pi\)
0.923237 0.384230i \(-0.125533\pi\)
\(878\) 0 0
\(879\) 2.45431e7 + 4.25099e7i 1.07141 + 1.85574i
\(880\) 0 0
\(881\) −2.20285e7 −0.956192 −0.478096 0.878308i \(-0.658673\pi\)
−0.478096 + 0.878308i \(0.658673\pi\)
\(882\) 0 0
\(883\) −3.82050e7 −1.64899 −0.824497 0.565867i \(-0.808542\pi\)
−0.824497 + 0.565867i \(0.808542\pi\)
\(884\) 0 0
\(885\) −2.76062e7 4.78154e7i −1.18481 2.05215i
\(886\) 0 0
\(887\) 1.87196e7 3.24233e7i 0.798890 1.38372i −0.121449 0.992598i \(-0.538754\pi\)
0.920339 0.391121i \(-0.127913\pi\)
\(888\) 0 0
\(889\) 1.93278e6 + 2.97789e7i 0.0820216 + 1.26373i
\(890\) 0 0
\(891\) −202178. + 350183.i −0.00853178 + 0.0147775i
\(892\) 0 0
\(893\) −235165. 407317.i −0.00986832 0.0170924i
\(894\) 0 0
\(895\) 4.96218e7 2.07069
\(896\) 0 0
\(897\) 4.80282e7 1.99304
\(898\) 0 0
\(899\) −1.66683e6 2.88704e6i −0.0687849 0.119139i
\(900\) 0 0
\(901\) −8.88655e6 + 1.53920e7i −0.364688 + 0.631658i
\(902\) 0 0
\(903\) −5.06990e7 + 3.38294e7i −2.06909 + 1.38062i
\(904\) 0 0
\(905\) 2.73748e7 4.74145e7i 1.11104 1.92438i
\(906\) 0 0
\(907\) 1.19207e7 + 2.06473e7i 0.481154 + 0.833383i 0.999766 0.0216263i \(-0.00688439\pi\)
−0.518612 + 0.855010i \(0.673551\pi\)
\(908\) 0 0
\(909\) −7.64689e7 −3.06955
\(910\) 0 0
\(911\) 1.78434e7 0.712332 0.356166 0.934423i \(-0.384084\pi\)
0.356166 + 0.934423i \(0.384084\pi\)
\(912\) 0 0
\(913\) −3.56413e6 6.17325e6i −0.141506 0.245096i
\(914\) 0 0
\(915\) −1.43945e7 + 2.49320e7i −0.568386 + 0.984473i
\(916\) 0 0
\(917\) 2.31310e7 + 1.14253e7i 0.908388 + 0.448686i
\(918\) 0 0
\(919\) −8.21451e6 + 1.42280e7i −0.320843 + 0.555717i −0.980662 0.195708i \(-0.937300\pi\)
0.659819 + 0.751425i \(0.270633\pi\)
\(920\) 0 0
\(921\) 2.63414e6 + 4.56247e6i 0.102327 + 0.177236i
\(922\) 0 0
\(923\) −1.77170e7 −0.684520
\(924\) 0 0
\(925\) 5.00672e7 1.92397
\(926\) 0 0
\(927\) 4.62874e6 + 8.01721e6i 0.176915 + 0.306425i
\(928\) 0 0
\(929\) 6.82722e6 1.18251e7i 0.259540 0.449537i −0.706579 0.707635i \(-0.749762\pi\)
0.966119 + 0.258098i \(0.0830957\pi\)
\(930\) 0 0
\(931\) 2.16973e6 5.21940e6i 0.0820412 0.197354i
\(932\) 0 0
\(933\) 1.18061e6 2.04489e6i 0.0444022 0.0769068i
\(934\) 0 0
\(935\) −1.83801e7 3.18353e7i −0.687573 1.19091i
\(936\) 0 0
\(937\) 3.81848e7 1.42083 0.710414 0.703784i \(-0.248508\pi\)
0.710414 + 0.703784i \(0.248508\pi\)
\(938\) 0 0
\(939\) −1.25996e7 −0.466330
\(940\) 0 0
\(941\) −3.51554e6 6.08909e6i −0.129425 0.224170i 0.794029 0.607880i \(-0.207980\pi\)
−0.923454 + 0.383709i \(0.874646\pi\)
\(942\) 0 0
\(943\) 2.39642e7 4.15073e7i 0.877575 1.52000i
\(944\) 0 0
\(945\) 3.51248e7 + 1.73494e7i 1.27948 + 0.631983i
\(946\) 0 0
\(947\) −1.10099e7 + 1.90698e7i −0.398942 + 0.690988i −0.993596 0.112994i \(-0.963956\pi\)
0.594653 + 0.803982i \(0.297289\pi\)
\(948\) 0 0
\(949\) 1.48039e6 + 2.56410e6i 0.0533592 + 0.0924209i
\(950\) 0 0
\(951\) −3.71425e7 −1.33174
\(952\) 0 0
\(953\) 578419. 0.0206305 0.0103153 0.999947i \(-0.496716\pi\)
0.0103153 + 0.999947i \(0.496716\pi\)
\(954\) 0 0
\(955\) −2.64226e7 4.57652e7i −0.937489 1.62378i
\(956\) 0 0
\(957\) 3.48893e6 6.04300e6i 0.123144 0.213291i
\(958\) 0 0
\(959\) −1.37528e7 + 9.17668e6i −0.482886 + 0.322210i
\(960\) 0 0
\(961\) −4.28447e6 + 7.42093e6i −0.149654 + 0.259209i
\(962\) 0 0
\(963\) 2.09745e7 + 3.63289e7i 0.728830 + 1.26237i
\(964\) 0 0
\(965\) −2.58476e7 −0.893516
\(966\) 0 0
\(967\) 2.00036e7 0.687925 0.343963 0.938983i \(-0.388231\pi\)
0.343963 + 0.938983i \(0.388231\pi\)
\(968\) 0 0
\(969\) 3.81031e6 + 6.59965e6i 0.130362 + 0.225793i
\(970\) 0 0
\(971\) −2.54560e7 + 4.40910e7i −0.866446 + 1.50073i −0.000840840 1.00000i \(0.500268\pi\)
−0.865605 + 0.500728i \(0.833066\pi\)
\(972\) 0 0
\(973\) −144924. 2.23289e6i −0.00490749 0.0756112i
\(974\) 0 0
\(975\) −1.66631e7 + 2.88614e7i −0.561364 + 0.972312i
\(976\) 0 0
\(977\) 8.69359e6 + 1.50577e7i 0.291382 + 0.504688i 0.974137 0.225959i \(-0.0725516\pi\)
−0.682755 + 0.730648i \(0.739218\pi\)
\(978\) 0 0
\(979\) 4.53792e7 1.51321
\(980\) 0 0
\(981\) 1.81054e7 0.600670
\(982\) 0 0
\(983\) −5.54285e6 9.60050e6i −0.182957 0.316891i 0.759929 0.650006i \(-0.225234\pi\)
−0.942886 + 0.333115i \(0.891900\pi\)
\(984\) 0 0
\(985\) −8.15062e6 + 1.41173e7i −0.267670 + 0.463618i
\(986\) 0 0
\(987\) −295836. 4.55804e6i −0.00966625 0.148931i
\(988\) 0 0
\(989\) −4.54593e7 + 7.87379e7i −1.47786 + 2.55972i
\(990\) 0 0
\(991\) −1.91462e7 3.31622e7i −0.619297 1.07265i −0.989614 0.143749i \(-0.954084\pi\)
0.370317 0.928905i \(-0.379249\pi\)
\(992\) 0 0
\(993\) −5.98689e7 −1.92676
\(994\) 0 0
\(995\) 5.14872e7 1.64870
\(996\) 0 0
\(997\) −2.63586e7 4.56545e7i −0.839818 1.45461i −0.890047 0.455869i \(-0.849329\pi\)
0.0502293 0.998738i \(-0.484005\pi\)
\(998\) 0 0
\(999\) −2.77423e7 + 4.80511e7i −0.879486 + 1.52331i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 56.6.i.a.9.1 10
3.2 odd 2 504.6.s.d.289.5 10
4.3 odd 2 112.6.i.g.65.5 10
7.2 even 3 392.6.a.l.1.5 5
7.3 odd 6 392.6.i.p.361.5 10
7.4 even 3 inner 56.6.i.a.25.1 yes 10
7.5 odd 6 392.6.a.i.1.1 5
7.6 odd 2 392.6.i.p.177.5 10
21.11 odd 6 504.6.s.d.361.5 10
28.11 odd 6 112.6.i.g.81.5 10
28.19 even 6 784.6.a.bm.1.5 5
28.23 odd 6 784.6.a.bj.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.6.i.a.9.1 10 1.1 even 1 trivial
56.6.i.a.25.1 yes 10 7.4 even 3 inner
112.6.i.g.65.5 10 4.3 odd 2
112.6.i.g.81.5 10 28.11 odd 6
392.6.a.i.1.1 5 7.5 odd 6
392.6.a.l.1.5 5 7.2 even 3
392.6.i.p.177.5 10 7.6 odd 2
392.6.i.p.361.5 10 7.3 odd 6
504.6.s.d.289.5 10 3.2 odd 2
504.6.s.d.361.5 10 21.11 odd 6
784.6.a.bj.1.1 5 28.23 odd 6
784.6.a.bm.1.5 5 28.19 even 6