Properties

Label 784.6.a.bm.1.5
Level $784$
Weight $6$
Character 784.1
Self dual yes
Analytic conductor $125.741$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,6,Mod(1,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 784.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(125.740914733\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 167x^{3} - 387x^{2} + 1720x + 2340 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{9}\cdot 7 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.20248\) of defining polynomial
Character \(\chi\) \(=\) 784.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+25.1934 q^{3} -80.6580 q^{5} +391.710 q^{9} +506.725 q^{11} -391.283 q^{13} -2032.05 q^{15} +899.411 q^{17} +336.313 q^{19} -4872.11 q^{23} +3380.71 q^{25} +3746.51 q^{27} +546.591 q^{29} +6099.02 q^{31} +12766.1 q^{33} +14809.7 q^{37} -9857.78 q^{39} +9837.31 q^{41} -18661.0 q^{43} -31594.5 q^{45} +1398.49 q^{47} +22659.3 q^{51} -19760.8 q^{53} -40871.4 q^{55} +8472.89 q^{57} +27170.8 q^{59} -14167.4 q^{61} +31560.1 q^{65} +50446.1 q^{67} -122745. q^{69} +45279.2 q^{71} +7566.83 q^{73} +85171.6 q^{75} -4829.92 q^{79} -797.980 q^{81} -14067.3 q^{83} -72544.7 q^{85} +13770.5 q^{87} +89553.9 q^{89} +153655. q^{93} -27126.4 q^{95} -7209.53 q^{97} +198489. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 13 q^{3} - 31 q^{5} + 230 q^{9} + 351 q^{11} + 54 q^{13} - 607 q^{15} - 111 q^{17} + 1035 q^{19} - 3639 q^{23} + 1540 q^{25} + 3607 q^{27} - 734 q^{29} + 7677 q^{31} + 7439 q^{33} + 13595 q^{37} + 1406 q^{39}+ \cdots + 300154 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 25.1934 1.61616 0.808080 0.589073i \(-0.200507\pi\)
0.808080 + 0.589073i \(0.200507\pi\)
\(4\) 0 0
\(5\) −80.6580 −1.44285 −0.721427 0.692491i \(-0.756513\pi\)
−0.721427 + 0.692491i \(0.756513\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 391.710 1.61197
\(10\) 0 0
\(11\) 506.725 1.26267 0.631336 0.775510i \(-0.282507\pi\)
0.631336 + 0.775510i \(0.282507\pi\)
\(12\) 0 0
\(13\) −391.283 −0.642145 −0.321072 0.947055i \(-0.604043\pi\)
−0.321072 + 0.947055i \(0.604043\pi\)
\(14\) 0 0
\(15\) −2032.05 −2.33188
\(16\) 0 0
\(17\) 899.411 0.754807 0.377404 0.926049i \(-0.376817\pi\)
0.377404 + 0.926049i \(0.376817\pi\)
\(18\) 0 0
\(19\) 336.313 0.213727 0.106864 0.994274i \(-0.465919\pi\)
0.106864 + 0.994274i \(0.465919\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4872.11 −1.92043 −0.960213 0.279269i \(-0.909908\pi\)
−0.960213 + 0.279269i \(0.909908\pi\)
\(24\) 0 0
\(25\) 3380.71 1.08183
\(26\) 0 0
\(27\) 3746.51 0.989048
\(28\) 0 0
\(29\) 546.591 0.120689 0.0603444 0.998178i \(-0.480780\pi\)
0.0603444 + 0.998178i \(0.480780\pi\)
\(30\) 0 0
\(31\) 6099.02 1.13987 0.569936 0.821689i \(-0.306968\pi\)
0.569936 + 0.821689i \(0.306968\pi\)
\(32\) 0 0
\(33\) 12766.1 2.04068
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 14809.7 1.77845 0.889224 0.457471i \(-0.151245\pi\)
0.889224 + 0.457471i \(0.151245\pi\)
\(38\) 0 0
\(39\) −9857.78 −1.03781
\(40\) 0 0
\(41\) 9837.31 0.913938 0.456969 0.889483i \(-0.348935\pi\)
0.456969 + 0.889483i \(0.348935\pi\)
\(42\) 0 0
\(43\) −18661.0 −1.53909 −0.769546 0.638591i \(-0.779518\pi\)
−0.769546 + 0.638591i \(0.779518\pi\)
\(44\) 0 0
\(45\) −31594.5 −2.32584
\(46\) 0 0
\(47\) 1398.49 0.0923450 0.0461725 0.998933i \(-0.485298\pi\)
0.0461725 + 0.998933i \(0.485298\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 22659.3 1.21989
\(52\) 0 0
\(53\) −19760.8 −0.966307 −0.483154 0.875536i \(-0.660509\pi\)
−0.483154 + 0.875536i \(0.660509\pi\)
\(54\) 0 0
\(55\) −40871.4 −1.82185
\(56\) 0 0
\(57\) 8472.89 0.345418
\(58\) 0 0
\(59\) 27170.8 1.01618 0.508092 0.861303i \(-0.330351\pi\)
0.508092 + 0.861303i \(0.330351\pi\)
\(60\) 0 0
\(61\) −14167.4 −0.487491 −0.243746 0.969839i \(-0.578376\pi\)
−0.243746 + 0.969839i \(0.578376\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 31560.1 0.926521
\(66\) 0 0
\(67\) 50446.1 1.37291 0.686453 0.727175i \(-0.259167\pi\)
0.686453 + 0.727175i \(0.259167\pi\)
\(68\) 0 0
\(69\) −122745. −3.10372
\(70\) 0 0
\(71\) 45279.2 1.06599 0.532995 0.846118i \(-0.321066\pi\)
0.532995 + 0.846118i \(0.321066\pi\)
\(72\) 0 0
\(73\) 7566.83 0.166191 0.0830953 0.996542i \(-0.473519\pi\)
0.0830953 + 0.996542i \(0.473519\pi\)
\(74\) 0 0
\(75\) 85171.6 1.74840
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −4829.92 −0.0870707 −0.0435353 0.999052i \(-0.513862\pi\)
−0.0435353 + 0.999052i \(0.513862\pi\)
\(80\) 0 0
\(81\) −797.980 −0.0135139
\(82\) 0 0
\(83\) −14067.3 −0.224138 −0.112069 0.993700i \(-0.535748\pi\)
−0.112069 + 0.993700i \(0.535748\pi\)
\(84\) 0 0
\(85\) −72544.7 −1.08908
\(86\) 0 0
\(87\) 13770.5 0.195052
\(88\) 0 0
\(89\) 89553.9 1.19842 0.599210 0.800592i \(-0.295481\pi\)
0.599210 + 0.800592i \(0.295481\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 153655. 1.84222
\(94\) 0 0
\(95\) −27126.4 −0.308377
\(96\) 0 0
\(97\) −7209.53 −0.0777997 −0.0388998 0.999243i \(-0.512385\pi\)
−0.0388998 + 0.999243i \(0.512385\pi\)
\(98\) 0 0
\(99\) 198489. 2.03539
\(100\) 0 0
\(101\) 195218. 1.90422 0.952110 0.305756i \(-0.0989091\pi\)
0.952110 + 0.305756i \(0.0989091\pi\)
\(102\) 0 0
\(103\) −23633.5 −0.219500 −0.109750 0.993959i \(-0.535005\pi\)
−0.109750 + 0.993959i \(0.535005\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 107092. 0.904270 0.452135 0.891950i \(-0.350663\pi\)
0.452135 + 0.891950i \(0.350663\pi\)
\(108\) 0 0
\(109\) 46221.5 0.372630 0.186315 0.982490i \(-0.440346\pi\)
0.186315 + 0.982490i \(0.440346\pi\)
\(110\) 0 0
\(111\) 373107. 2.87426
\(112\) 0 0
\(113\) 55520.3 0.409030 0.204515 0.978863i \(-0.434438\pi\)
0.204515 + 0.978863i \(0.434438\pi\)
\(114\) 0 0
\(115\) 392974. 2.77089
\(116\) 0 0
\(117\) −153269. −1.03512
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 95719.0 0.594340
\(122\) 0 0
\(123\) 247836. 1.47707
\(124\) 0 0
\(125\) −20624.8 −0.118063
\(126\) 0 0
\(127\) 230185. 1.26639 0.633195 0.773992i \(-0.281743\pi\)
0.633195 + 0.773992i \(0.281743\pi\)
\(128\) 0 0
\(129\) −470136. −2.48742
\(130\) 0 0
\(131\) 199001. 1.01316 0.506579 0.862194i \(-0.330910\pi\)
0.506579 + 0.862194i \(0.330910\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −302186. −1.42705
\(136\) 0 0
\(137\) 127531. 0.580516 0.290258 0.956948i \(-0.406259\pi\)
0.290258 + 0.956948i \(0.406259\pi\)
\(138\) 0 0
\(139\) 17259.8 0.0757703 0.0378851 0.999282i \(-0.487938\pi\)
0.0378851 + 0.999282i \(0.487938\pi\)
\(140\) 0 0
\(141\) 35232.7 0.149244
\(142\) 0 0
\(143\) −198273. −0.810818
\(144\) 0 0
\(145\) −44086.9 −0.174136
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −834.526 −0.00307946 −0.00153973 0.999999i \(-0.500490\pi\)
−0.00153973 + 0.999999i \(0.500490\pi\)
\(150\) 0 0
\(151\) −40938.6 −0.146114 −0.0730569 0.997328i \(-0.523275\pi\)
−0.0730569 + 0.997328i \(0.523275\pi\)
\(152\) 0 0
\(153\) 352308. 1.21673
\(154\) 0 0
\(155\) −491935. −1.64467
\(156\) 0 0
\(157\) −32888.2 −0.106486 −0.0532428 0.998582i \(-0.516956\pi\)
−0.0532428 + 0.998582i \(0.516956\pi\)
\(158\) 0 0
\(159\) −497843. −1.56171
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 70298.6 0.207242 0.103621 0.994617i \(-0.466957\pi\)
0.103621 + 0.994617i \(0.466957\pi\)
\(164\) 0 0
\(165\) −1.02969e6 −2.94440
\(166\) 0 0
\(167\) 227937. 0.632447 0.316224 0.948685i \(-0.397585\pi\)
0.316224 + 0.948685i \(0.397585\pi\)
\(168\) 0 0
\(169\) −218190. −0.587650
\(170\) 0 0
\(171\) 131737. 0.344523
\(172\) 0 0
\(173\) 33790.2 0.0858372 0.0429186 0.999079i \(-0.486334\pi\)
0.0429186 + 0.999079i \(0.486334\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 684526. 1.64232
\(178\) 0 0
\(179\) −615212. −1.43513 −0.717567 0.696490i \(-0.754744\pi\)
−0.717567 + 0.696490i \(0.754744\pi\)
\(180\) 0 0
\(181\) 678787. 1.54006 0.770029 0.638008i \(-0.220242\pi\)
0.770029 + 0.638008i \(0.220242\pi\)
\(182\) 0 0
\(183\) −356927. −0.787864
\(184\) 0 0
\(185\) −1.19452e6 −2.56604
\(186\) 0 0
\(187\) 455754. 0.953074
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −655175. −1.29949 −0.649747 0.760151i \(-0.725125\pi\)
−0.649747 + 0.760151i \(0.725125\pi\)
\(192\) 0 0
\(193\) −320460. −0.619270 −0.309635 0.950856i \(-0.600207\pi\)
−0.309635 + 0.950856i \(0.600207\pi\)
\(194\) 0 0
\(195\) 795108. 1.49741
\(196\) 0 0
\(197\) 202103. 0.371029 0.185514 0.982642i \(-0.440605\pi\)
0.185514 + 0.982642i \(0.440605\pi\)
\(198\) 0 0
\(199\) 638340. 1.14267 0.571333 0.820718i \(-0.306426\pi\)
0.571333 + 0.820718i \(0.306426\pi\)
\(200\) 0 0
\(201\) 1.27091e6 2.21883
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −793458. −1.31868
\(206\) 0 0
\(207\) −1.90845e6 −3.09568
\(208\) 0 0
\(209\) 170418. 0.269868
\(210\) 0 0
\(211\) 517370. 0.800010 0.400005 0.916513i \(-0.369008\pi\)
0.400005 + 0.916513i \(0.369008\pi\)
\(212\) 0 0
\(213\) 1.14074e6 1.72281
\(214\) 0 0
\(215\) 1.50516e6 2.22069
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 190634. 0.268591
\(220\) 0 0
\(221\) −351925. −0.484696
\(222\) 0 0
\(223\) 755836. 1.01781 0.508904 0.860824i \(-0.330051\pi\)
0.508904 + 0.860824i \(0.330051\pi\)
\(224\) 0 0
\(225\) 1.32426e6 1.74388
\(226\) 0 0
\(227\) −881248. −1.13510 −0.567550 0.823339i \(-0.692108\pi\)
−0.567550 + 0.823339i \(0.692108\pi\)
\(228\) 0 0
\(229\) 279513. 0.352219 0.176109 0.984371i \(-0.443649\pi\)
0.176109 + 0.984371i \(0.443649\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.06678e6 −1.28732 −0.643659 0.765312i \(-0.722585\pi\)
−0.643659 + 0.765312i \(0.722585\pi\)
\(234\) 0 0
\(235\) −112799. −0.133240
\(236\) 0 0
\(237\) −121682. −0.140720
\(238\) 0 0
\(239\) 270341. 0.306138 0.153069 0.988215i \(-0.451084\pi\)
0.153069 + 0.988215i \(0.451084\pi\)
\(240\) 0 0
\(241\) 1.31407e6 1.45739 0.728694 0.684839i \(-0.240128\pi\)
0.728694 + 0.684839i \(0.240128\pi\)
\(242\) 0 0
\(243\) −930506. −1.01089
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −131594. −0.137244
\(248\) 0 0
\(249\) −354404. −0.362243
\(250\) 0 0
\(251\) −1.31291e6 −1.31538 −0.657690 0.753289i \(-0.728466\pi\)
−0.657690 + 0.753289i \(0.728466\pi\)
\(252\) 0 0
\(253\) −2.46882e6 −2.42487
\(254\) 0 0
\(255\) −1.82765e6 −1.76012
\(256\) 0 0
\(257\) −707440. −0.668124 −0.334062 0.942551i \(-0.608419\pi\)
−0.334062 + 0.942551i \(0.608419\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 214105. 0.194547
\(262\) 0 0
\(263\) 739442. 0.659196 0.329598 0.944121i \(-0.393087\pi\)
0.329598 + 0.944121i \(0.393087\pi\)
\(264\) 0 0
\(265\) 1.59387e6 1.39424
\(266\) 0 0
\(267\) 2.25617e6 1.93684
\(268\) 0 0
\(269\) 1.23919e6 1.04414 0.522068 0.852904i \(-0.325161\pi\)
0.522068 + 0.852904i \(0.325161\pi\)
\(270\) 0 0
\(271\) −514783. −0.425795 −0.212898 0.977075i \(-0.568290\pi\)
−0.212898 + 0.977075i \(0.568290\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.71309e6 1.36599
\(276\) 0 0
\(277\) −1.29704e6 −1.01567 −0.507837 0.861453i \(-0.669555\pi\)
−0.507837 + 0.861453i \(0.669555\pi\)
\(278\) 0 0
\(279\) 2.38905e6 1.83744
\(280\) 0 0
\(281\) 2.61884e6 1.97853 0.989265 0.146133i \(-0.0466828\pi\)
0.989265 + 0.146133i \(0.0466828\pi\)
\(282\) 0 0
\(283\) 41845.7 0.0310588 0.0155294 0.999879i \(-0.495057\pi\)
0.0155294 + 0.999879i \(0.495057\pi\)
\(284\) 0 0
\(285\) −683406. −0.498387
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −610916. −0.430266
\(290\) 0 0
\(291\) −181633. −0.125737
\(292\) 0 0
\(293\) 1.94837e6 1.32588 0.662938 0.748674i \(-0.269309\pi\)
0.662938 + 0.748674i \(0.269309\pi\)
\(294\) 0 0
\(295\) −2.19154e6 −1.46620
\(296\) 0 0
\(297\) 1.89845e6 1.24884
\(298\) 0 0
\(299\) 1.90638e6 1.23319
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 4.91822e6 3.07752
\(304\) 0 0
\(305\) 1.14272e6 0.703378
\(306\) 0 0
\(307\) −209113. −0.126630 −0.0633149 0.997994i \(-0.520167\pi\)
−0.0633149 + 0.997994i \(0.520167\pi\)
\(308\) 0 0
\(309\) −595410. −0.354748
\(310\) 0 0
\(311\) −93724.0 −0.0549477 −0.0274739 0.999623i \(-0.508746\pi\)
−0.0274739 + 0.999623i \(0.508746\pi\)
\(312\) 0 0
\(313\) 500114. 0.288542 0.144271 0.989538i \(-0.453916\pi\)
0.144271 + 0.989538i \(0.453916\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.47429e6 −0.824015 −0.412007 0.911180i \(-0.635172\pi\)
−0.412007 + 0.911180i \(0.635172\pi\)
\(318\) 0 0
\(319\) 276971. 0.152390
\(320\) 0 0
\(321\) 2.69802e6 1.46145
\(322\) 0 0
\(323\) 302484. 0.161323
\(324\) 0 0
\(325\) −1.32281e6 −0.694689
\(326\) 0 0
\(327\) 1.16448e6 0.602229
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.37637e6 1.19219 0.596093 0.802916i \(-0.296719\pi\)
0.596093 + 0.802916i \(0.296719\pi\)
\(332\) 0 0
\(333\) 5.80109e6 2.86681
\(334\) 0 0
\(335\) −4.06888e6 −1.98090
\(336\) 0 0
\(337\) 2.56857e6 1.23202 0.616008 0.787740i \(-0.288749\pi\)
0.616008 + 0.787740i \(0.288749\pi\)
\(338\) 0 0
\(339\) 1.39875e6 0.661059
\(340\) 0 0
\(341\) 3.09053e6 1.43928
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 9.90038e6 4.47821
\(346\) 0 0
\(347\) 612545. 0.273095 0.136548 0.990633i \(-0.456399\pi\)
0.136548 + 0.990633i \(0.456399\pi\)
\(348\) 0 0
\(349\) −3.83323e6 −1.68462 −0.842310 0.538994i \(-0.818805\pi\)
−0.842310 + 0.538994i \(0.818805\pi\)
\(350\) 0 0
\(351\) −1.46595e6 −0.635112
\(352\) 0 0
\(353\) −2.85850e6 −1.22096 −0.610481 0.792031i \(-0.709024\pi\)
−0.610481 + 0.792031i \(0.709024\pi\)
\(354\) 0 0
\(355\) −3.65213e6 −1.53807
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −387748. −0.158787 −0.0793933 0.996843i \(-0.525298\pi\)
−0.0793933 + 0.996843i \(0.525298\pi\)
\(360\) 0 0
\(361\) −2.36299e6 −0.954321
\(362\) 0 0
\(363\) 2.41149e6 0.960549
\(364\) 0 0
\(365\) −610325. −0.239789
\(366\) 0 0
\(367\) 192310. 0.0745309 0.0372654 0.999305i \(-0.488135\pi\)
0.0372654 + 0.999305i \(0.488135\pi\)
\(368\) 0 0
\(369\) 3.85337e6 1.47324
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −2.26524e6 −0.843027 −0.421514 0.906822i \(-0.638501\pi\)
−0.421514 + 0.906822i \(0.638501\pi\)
\(374\) 0 0
\(375\) −519609. −0.190809
\(376\) 0 0
\(377\) −213872. −0.0774997
\(378\) 0 0
\(379\) −4.46258e6 −1.59583 −0.797917 0.602767i \(-0.794065\pi\)
−0.797917 + 0.602767i \(0.794065\pi\)
\(380\) 0 0
\(381\) 5.79915e6 2.04669
\(382\) 0 0
\(383\) −1.80444e6 −0.628557 −0.314279 0.949331i \(-0.601763\pi\)
−0.314279 + 0.949331i \(0.601763\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −7.30971e6 −2.48098
\(388\) 0 0
\(389\) 110911. 0.0371622 0.0185811 0.999827i \(-0.494085\pi\)
0.0185811 + 0.999827i \(0.494085\pi\)
\(390\) 0 0
\(391\) −4.38203e6 −1.44955
\(392\) 0 0
\(393\) 5.01352e6 1.63742
\(394\) 0 0
\(395\) 389571. 0.125630
\(396\) 0 0
\(397\) −5.48779e6 −1.74752 −0.873758 0.486361i \(-0.838324\pi\)
−0.873758 + 0.486361i \(0.838324\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 934438. 0.290195 0.145097 0.989417i \(-0.453650\pi\)
0.145097 + 0.989417i \(0.453650\pi\)
\(402\) 0 0
\(403\) −2.38645e6 −0.731963
\(404\) 0 0
\(405\) 64363.4 0.0194985
\(406\) 0 0
\(407\) 7.50443e6 2.24560
\(408\) 0 0
\(409\) 1.47693e6 0.436566 0.218283 0.975885i \(-0.429954\pi\)
0.218283 + 0.975885i \(0.429954\pi\)
\(410\) 0 0
\(411\) 3.21294e6 0.938207
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.13464e6 0.323398
\(416\) 0 0
\(417\) 434834. 0.122457
\(418\) 0 0
\(419\) 2.66235e6 0.740849 0.370424 0.928863i \(-0.379212\pi\)
0.370424 + 0.928863i \(0.379212\pi\)
\(420\) 0 0
\(421\) −1.02032e6 −0.280563 −0.140282 0.990112i \(-0.544801\pi\)
−0.140282 + 0.990112i \(0.544801\pi\)
\(422\) 0 0
\(423\) 547800. 0.148858
\(424\) 0 0
\(425\) 3.04065e6 0.816570
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −4.99518e6 −1.31041
\(430\) 0 0
\(431\) 200267. 0.0519298 0.0259649 0.999663i \(-0.491734\pi\)
0.0259649 + 0.999663i \(0.491734\pi\)
\(432\) 0 0
\(433\) −5.84752e6 −1.49883 −0.749415 0.662101i \(-0.769665\pi\)
−0.749415 + 0.662101i \(0.769665\pi\)
\(434\) 0 0
\(435\) −1.11070e6 −0.281432
\(436\) 0 0
\(437\) −1.63856e6 −0.410448
\(438\) 0 0
\(439\) 6.32555e6 1.56652 0.783262 0.621691i \(-0.213554\pi\)
0.783262 + 0.621691i \(0.213554\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.20386e6 −0.533548 −0.266774 0.963759i \(-0.585958\pi\)
−0.266774 + 0.963759i \(0.585958\pi\)
\(444\) 0 0
\(445\) −7.22323e6 −1.72915
\(446\) 0 0
\(447\) −21024.6 −0.00497689
\(448\) 0 0
\(449\) −2.66634e6 −0.624166 −0.312083 0.950055i \(-0.601027\pi\)
−0.312083 + 0.950055i \(0.601027\pi\)
\(450\) 0 0
\(451\) 4.98481e6 1.15400
\(452\) 0 0
\(453\) −1.03139e6 −0.236143
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6.08812e6 −1.36362 −0.681809 0.731530i \(-0.738807\pi\)
−0.681809 + 0.731530i \(0.738807\pi\)
\(458\) 0 0
\(459\) 3.36965e6 0.746541
\(460\) 0 0
\(461\) −381317. −0.0835668 −0.0417834 0.999127i \(-0.513304\pi\)
−0.0417834 + 0.999127i \(0.513304\pi\)
\(462\) 0 0
\(463\) 99697.8 0.0216139 0.0108069 0.999942i \(-0.496560\pi\)
0.0108069 + 0.999942i \(0.496560\pi\)
\(464\) 0 0
\(465\) −1.23935e7 −2.65805
\(466\) 0 0
\(467\) 5.63778e6 1.19623 0.598116 0.801409i \(-0.295916\pi\)
0.598116 + 0.801409i \(0.295916\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −828568. −0.172098
\(472\) 0 0
\(473\) −9.45602e6 −1.94337
\(474\) 0 0
\(475\) 1.13698e6 0.231216
\(476\) 0 0
\(477\) −7.74051e6 −1.55766
\(478\) 0 0
\(479\) −1.74079e6 −0.346663 −0.173331 0.984864i \(-0.555453\pi\)
−0.173331 + 0.984864i \(0.555453\pi\)
\(480\) 0 0
\(481\) −5.79478e6 −1.14202
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 581506. 0.112254
\(486\) 0 0
\(487\) −4.82471e6 −0.921825 −0.460913 0.887446i \(-0.652478\pi\)
−0.460913 + 0.887446i \(0.652478\pi\)
\(488\) 0 0
\(489\) 1.77106e6 0.334936
\(490\) 0 0
\(491\) 4.46085e6 0.835053 0.417527 0.908665i \(-0.362897\pi\)
0.417527 + 0.908665i \(0.362897\pi\)
\(492\) 0 0
\(493\) 491610. 0.0910968
\(494\) 0 0
\(495\) −1.60097e7 −2.93678
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 740756. 0.133175 0.0665876 0.997781i \(-0.478789\pi\)
0.0665876 + 0.997781i \(0.478789\pi\)
\(500\) 0 0
\(501\) 5.74253e6 1.02214
\(502\) 0 0
\(503\) −3.74899e6 −0.660686 −0.330343 0.943861i \(-0.607164\pi\)
−0.330343 + 0.943861i \(0.607164\pi\)
\(504\) 0 0
\(505\) −1.57459e7 −2.74751
\(506\) 0 0
\(507\) −5.49697e6 −0.949737
\(508\) 0 0
\(509\) 2.66456e6 0.455859 0.227929 0.973678i \(-0.426804\pi\)
0.227929 + 0.973678i \(0.426804\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 1.26000e6 0.211387
\(514\) 0 0
\(515\) 1.90623e6 0.316707
\(516\) 0 0
\(517\) 708647. 0.116601
\(518\) 0 0
\(519\) 851292. 0.138727
\(520\) 0 0
\(521\) −832623. −0.134386 −0.0671930 0.997740i \(-0.521404\pi\)
−0.0671930 + 0.997740i \(0.521404\pi\)
\(522\) 0 0
\(523\) −1.87301e6 −0.299424 −0.149712 0.988730i \(-0.547835\pi\)
−0.149712 + 0.988730i \(0.547835\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.48553e6 0.860384
\(528\) 0 0
\(529\) 1.73011e7 2.68804
\(530\) 0 0
\(531\) 1.06431e7 1.63806
\(532\) 0 0
\(533\) −3.84918e6 −0.586881
\(534\) 0 0
\(535\) −8.63783e6 −1.30473
\(536\) 0 0
\(537\) −1.54993e7 −2.31941
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.47586e6 0.657481 0.328741 0.944420i \(-0.393376\pi\)
0.328741 + 0.944420i \(0.393376\pi\)
\(542\) 0 0
\(543\) 1.71010e7 2.48898
\(544\) 0 0
\(545\) −3.72813e6 −0.537650
\(546\) 0 0
\(547\) −6.12226e6 −0.874869 −0.437435 0.899250i \(-0.644113\pi\)
−0.437435 + 0.899250i \(0.644113\pi\)
\(548\) 0 0
\(549\) −5.54952e6 −0.785823
\(550\) 0 0
\(551\) 183826. 0.0257945
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −3.00940e7 −4.14713
\(556\) 0 0
\(557\) −9.52543e6 −1.30091 −0.650454 0.759546i \(-0.725421\pi\)
−0.650454 + 0.759546i \(0.725421\pi\)
\(558\) 0 0
\(559\) 7.30176e6 0.988321
\(560\) 0 0
\(561\) 1.14820e7 1.54032
\(562\) 0 0
\(563\) 8.09916e6 1.07688 0.538442 0.842663i \(-0.319013\pi\)
0.538442 + 0.842663i \(0.319013\pi\)
\(564\) 0 0
\(565\) −4.47815e6 −0.590171
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7.39174e6 −0.957119 −0.478560 0.878055i \(-0.658841\pi\)
−0.478560 + 0.878055i \(0.658841\pi\)
\(570\) 0 0
\(571\) −3.46344e6 −0.444546 −0.222273 0.974984i \(-0.571348\pi\)
−0.222273 + 0.974984i \(0.571348\pi\)
\(572\) 0 0
\(573\) −1.65061e7 −2.10019
\(574\) 0 0
\(575\) −1.64712e7 −2.07757
\(576\) 0 0
\(577\) −5.16577e6 −0.645945 −0.322973 0.946408i \(-0.604682\pi\)
−0.322973 + 0.946408i \(0.604682\pi\)
\(578\) 0 0
\(579\) −8.07348e6 −1.00084
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.00133e7 −1.22013
\(584\) 0 0
\(585\) 1.23624e7 1.49353
\(586\) 0 0
\(587\) 4.08305e6 0.489090 0.244545 0.969638i \(-0.421361\pi\)
0.244545 + 0.969638i \(0.421361\pi\)
\(588\) 0 0
\(589\) 2.05118e6 0.243622
\(590\) 0 0
\(591\) 5.09168e6 0.599642
\(592\) 0 0
\(593\) 7.82184e6 0.913424 0.456712 0.889615i \(-0.349027\pi\)
0.456712 + 0.889615i \(0.349027\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.60820e7 1.84673
\(598\) 0 0
\(599\) 6.31782e6 0.719449 0.359725 0.933059i \(-0.382871\pi\)
0.359725 + 0.933059i \(0.382871\pi\)
\(600\) 0 0
\(601\) 1.68407e6 0.190184 0.0950919 0.995468i \(-0.469685\pi\)
0.0950919 + 0.995468i \(0.469685\pi\)
\(602\) 0 0
\(603\) 1.97602e7 2.21309
\(604\) 0 0
\(605\) −7.72050e6 −0.857545
\(606\) 0 0
\(607\) 5.45513e6 0.600944 0.300472 0.953791i \(-0.402856\pi\)
0.300472 + 0.953791i \(0.402856\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −547204. −0.0592988
\(612\) 0 0
\(613\) −8.13370e6 −0.874253 −0.437127 0.899400i \(-0.644004\pi\)
−0.437127 + 0.899400i \(0.644004\pi\)
\(614\) 0 0
\(615\) −1.99899e7 −2.13120
\(616\) 0 0
\(617\) 2.83775e6 0.300097 0.150048 0.988679i \(-0.452057\pi\)
0.150048 + 0.988679i \(0.452057\pi\)
\(618\) 0 0
\(619\) 1.23909e7 1.29980 0.649900 0.760020i \(-0.274811\pi\)
0.649900 + 0.760020i \(0.274811\pi\)
\(620\) 0 0
\(621\) −1.82534e7 −1.89939
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −8.90116e6 −0.911478
\(626\) 0 0
\(627\) 4.29343e6 0.436149
\(628\) 0 0
\(629\) 1.33200e7 1.34239
\(630\) 0 0
\(631\) −3.25659e6 −0.325604 −0.162802 0.986659i \(-0.552053\pi\)
−0.162802 + 0.986659i \(0.552053\pi\)
\(632\) 0 0
\(633\) 1.30343e7 1.29294
\(634\) 0 0
\(635\) −1.85662e7 −1.82722
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.77363e7 1.71835
\(640\) 0 0
\(641\) 2.30150e6 0.221241 0.110621 0.993863i \(-0.464716\pi\)
0.110621 + 0.993863i \(0.464716\pi\)
\(642\) 0 0
\(643\) −8.68991e6 −0.828872 −0.414436 0.910078i \(-0.636021\pi\)
−0.414436 + 0.910078i \(0.636021\pi\)
\(644\) 0 0
\(645\) 3.79202e7 3.58898
\(646\) 0 0
\(647\) −2.28432e6 −0.214534 −0.107267 0.994230i \(-0.534210\pi\)
−0.107267 + 0.994230i \(0.534210\pi\)
\(648\) 0 0
\(649\) 1.37681e7 1.28311
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.16767e6 0.198935 0.0994674 0.995041i \(-0.468286\pi\)
0.0994674 + 0.995041i \(0.468286\pi\)
\(654\) 0 0
\(655\) −1.60510e7 −1.46184
\(656\) 0 0
\(657\) 2.96400e6 0.267895
\(658\) 0 0
\(659\) −1.18596e7 −1.06380 −0.531898 0.846809i \(-0.678521\pi\)
−0.531898 + 0.846809i \(0.678521\pi\)
\(660\) 0 0
\(661\) −1.42672e6 −0.127009 −0.0635045 0.997982i \(-0.520228\pi\)
−0.0635045 + 0.997982i \(0.520228\pi\)
\(662\) 0 0
\(663\) −8.86619e6 −0.783346
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.66305e6 −0.231774
\(668\) 0 0
\(669\) 1.90421e7 1.64494
\(670\) 0 0
\(671\) −7.17899e6 −0.615541
\(672\) 0 0
\(673\) −2.07459e7 −1.76561 −0.882806 0.469738i \(-0.844348\pi\)
−0.882806 + 0.469738i \(0.844348\pi\)
\(674\) 0 0
\(675\) 1.26658e7 1.06998
\(676\) 0 0
\(677\) 1.28579e7 1.07820 0.539098 0.842243i \(-0.318765\pi\)
0.539098 + 0.842243i \(0.318765\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −2.22017e7 −1.83450
\(682\) 0 0
\(683\) 1.92964e7 1.58279 0.791397 0.611302i \(-0.209354\pi\)
0.791397 + 0.611302i \(0.209354\pi\)
\(684\) 0 0
\(685\) −1.02864e7 −0.837599
\(686\) 0 0
\(687\) 7.04189e6 0.569242
\(688\) 0 0
\(689\) 7.73208e6 0.620509
\(690\) 0 0
\(691\) 1.82999e7 1.45799 0.728993 0.684521i \(-0.239989\pi\)
0.728993 + 0.684521i \(0.239989\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.39214e6 −0.109325
\(696\) 0 0
\(697\) 8.84779e6 0.689847
\(698\) 0 0
\(699\) −2.68759e7 −2.08051
\(700\) 0 0
\(701\) −1.61515e7 −1.24142 −0.620710 0.784040i \(-0.713156\pi\)
−0.620710 + 0.784040i \(0.713156\pi\)
\(702\) 0 0
\(703\) 4.98069e6 0.380103
\(704\) 0 0
\(705\) −2.84179e6 −0.215338
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.49990e6 0.112059 0.0560295 0.998429i \(-0.482156\pi\)
0.0560295 + 0.998429i \(0.482156\pi\)
\(710\) 0 0
\(711\) −1.89193e6 −0.140356
\(712\) 0 0
\(713\) −2.97151e7 −2.18904
\(714\) 0 0
\(715\) 1.59923e7 1.16989
\(716\) 0 0
\(717\) 6.81083e6 0.494769
\(718\) 0 0
\(719\) 1.75739e7 1.26778 0.633892 0.773422i \(-0.281457\pi\)
0.633892 + 0.773422i \(0.281457\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 3.31059e7 2.35537
\(724\) 0 0
\(725\) 1.84786e6 0.130564
\(726\) 0 0
\(727\) −2.16304e7 −1.51785 −0.758923 0.651180i \(-0.774274\pi\)
−0.758923 + 0.651180i \(0.774274\pi\)
\(728\) 0 0
\(729\) −2.32487e7 −1.62024
\(730\) 0 0
\(731\) −1.67840e7 −1.16172
\(732\) 0 0
\(733\) 1.25536e7 0.862998 0.431499 0.902114i \(-0.357985\pi\)
0.431499 + 0.902114i \(0.357985\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.55623e7 1.73353
\(738\) 0 0
\(739\) 757732. 0.0510392 0.0255196 0.999674i \(-0.491876\pi\)
0.0255196 + 0.999674i \(0.491876\pi\)
\(740\) 0 0
\(741\) −3.31530e6 −0.221808
\(742\) 0 0
\(743\) −2.40878e7 −1.60075 −0.800377 0.599497i \(-0.795367\pi\)
−0.800377 + 0.599497i \(0.795367\pi\)
\(744\) 0 0
\(745\) 67311.1 0.00444320
\(746\) 0 0
\(747\) −5.51030e6 −0.361305
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.37687e7 0.890828 0.445414 0.895325i \(-0.353056\pi\)
0.445414 + 0.895325i \(0.353056\pi\)
\(752\) 0 0
\(753\) −3.30768e7 −2.12586
\(754\) 0 0
\(755\) 3.30203e6 0.210821
\(756\) 0 0
\(757\) 2.43930e7 1.54713 0.773564 0.633718i \(-0.218472\pi\)
0.773564 + 0.633718i \(0.218472\pi\)
\(758\) 0 0
\(759\) −6.21981e7 −3.91897
\(760\) 0 0
\(761\) −2.56002e7 −1.60244 −0.801220 0.598370i \(-0.795815\pi\)
−0.801220 + 0.598370i \(0.795815\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −2.84165e7 −1.75556
\(766\) 0 0
\(767\) −1.06315e7 −0.652537
\(768\) 0 0
\(769\) −2.09807e7 −1.27939 −0.639697 0.768627i \(-0.720940\pi\)
−0.639697 + 0.768627i \(0.720940\pi\)
\(770\) 0 0
\(771\) −1.78229e7 −1.07979
\(772\) 0 0
\(773\) 1.12929e7 0.679761 0.339881 0.940469i \(-0.389613\pi\)
0.339881 + 0.940469i \(0.389613\pi\)
\(774\) 0 0
\(775\) 2.06190e7 1.23314
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.30842e6 0.195334
\(780\) 0 0
\(781\) 2.29441e7 1.34600
\(782\) 0 0
\(783\) 2.04781e6 0.119367
\(784\) 0 0
\(785\) 2.65270e6 0.153643
\(786\) 0 0
\(787\) −2.37169e7 −1.36496 −0.682482 0.730902i \(-0.739100\pi\)
−0.682482 + 0.730902i \(0.739100\pi\)
\(788\) 0 0
\(789\) 1.86291e7 1.06537
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 5.54348e6 0.313040
\(794\) 0 0
\(795\) 4.01550e7 2.25332
\(796\) 0 0
\(797\) 2.73492e7 1.52510 0.762550 0.646929i \(-0.223947\pi\)
0.762550 + 0.646929i \(0.223947\pi\)
\(798\) 0 0
\(799\) 1.25781e6 0.0697026
\(800\) 0 0
\(801\) 3.50791e7 1.93182
\(802\) 0 0
\(803\) 3.83430e6 0.209844
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 3.12195e7 1.68749
\(808\) 0 0
\(809\) −1.09356e7 −0.587452 −0.293726 0.955890i \(-0.594895\pi\)
−0.293726 + 0.955890i \(0.594895\pi\)
\(810\) 0 0
\(811\) 3.14053e7 1.67668 0.838342 0.545144i \(-0.183525\pi\)
0.838342 + 0.545144i \(0.183525\pi\)
\(812\) 0 0
\(813\) −1.29691e7 −0.688153
\(814\) 0 0
\(815\) −5.67014e6 −0.299020
\(816\) 0 0
\(817\) −6.27596e6 −0.328946
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.12501e7 1.61806 0.809028 0.587770i \(-0.199994\pi\)
0.809028 + 0.587770i \(0.199994\pi\)
\(822\) 0 0
\(823\) −3.66764e7 −1.88750 −0.943749 0.330662i \(-0.892728\pi\)
−0.943749 + 0.330662i \(0.892728\pi\)
\(824\) 0 0
\(825\) 4.31586e7 2.20766
\(826\) 0 0
\(827\) 1.67620e7 0.852242 0.426121 0.904666i \(-0.359880\pi\)
0.426121 + 0.904666i \(0.359880\pi\)
\(828\) 0 0
\(829\) 1.19048e6 0.0601640 0.0300820 0.999547i \(-0.490423\pi\)
0.0300820 + 0.999547i \(0.490423\pi\)
\(830\) 0 0
\(831\) −3.26769e7 −1.64149
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −1.83850e7 −0.912529
\(836\) 0 0
\(837\) 2.28501e7 1.12739
\(838\) 0 0
\(839\) 8.21562e6 0.402935 0.201468 0.979495i \(-0.435429\pi\)
0.201468 + 0.979495i \(0.435429\pi\)
\(840\) 0 0
\(841\) −2.02124e7 −0.985434
\(842\) 0 0
\(843\) 6.59775e7 3.19762
\(844\) 0 0
\(845\) 1.75988e7 0.847893
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.05424e6 0.0501960
\(850\) 0 0
\(851\) −7.21544e7 −3.41538
\(852\) 0 0
\(853\) −2.55133e7 −1.20059 −0.600295 0.799779i \(-0.704950\pi\)
−0.600295 + 0.799779i \(0.704950\pi\)
\(854\) 0 0
\(855\) −1.06257e7 −0.497096
\(856\) 0 0
\(857\) 2.87726e7 1.33822 0.669109 0.743164i \(-0.266676\pi\)
0.669109 + 0.743164i \(0.266676\pi\)
\(858\) 0 0
\(859\) 1.03594e7 0.479020 0.239510 0.970894i \(-0.423013\pi\)
0.239510 + 0.970894i \(0.423013\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −5.74322e6 −0.262499 −0.131250 0.991349i \(-0.541899\pi\)
−0.131250 + 0.991349i \(0.541899\pi\)
\(864\) 0 0
\(865\) −2.72545e6 −0.123851
\(866\) 0 0
\(867\) −1.53911e7 −0.695379
\(868\) 0 0
\(869\) −2.44744e6 −0.109942
\(870\) 0 0
\(871\) −1.97387e7 −0.881604
\(872\) 0 0
\(873\) −2.82404e6 −0.125411
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −3.61870e7 −1.58874 −0.794372 0.607432i \(-0.792200\pi\)
−0.794372 + 0.607432i \(0.792200\pi\)
\(878\) 0 0
\(879\) 4.90862e7 2.14283
\(880\) 0 0
\(881\) 2.20285e7 0.956192 0.478096 0.878308i \(-0.341327\pi\)
0.478096 + 0.878308i \(0.341327\pi\)
\(882\) 0 0
\(883\) 3.82050e7 1.64899 0.824497 0.565867i \(-0.191458\pi\)
0.824497 + 0.565867i \(0.191458\pi\)
\(884\) 0 0
\(885\) −5.52125e7 −2.36962
\(886\) 0 0
\(887\) −3.74392e7 −1.59778 −0.798890 0.601477i \(-0.794579\pi\)
−0.798890 + 0.601477i \(0.794579\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −404356. −0.0170636
\(892\) 0 0
\(893\) 470329. 0.0197366
\(894\) 0 0
\(895\) 4.96218e7 2.07069
\(896\) 0 0
\(897\) 4.80282e7 1.99304
\(898\) 0 0
\(899\) 3.33367e6 0.137570
\(900\) 0 0
\(901\) −1.77731e7 −0.729376
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.47496e7 −2.22208
\(906\) 0 0
\(907\) 2.38414e7 0.962308 0.481154 0.876636i \(-0.340218\pi\)
0.481154 + 0.876636i \(0.340218\pi\)
\(908\) 0 0
\(909\) 7.64689e7 3.06955
\(910\) 0 0
\(911\) −1.78434e7 −0.712332 −0.356166 0.934423i \(-0.615916\pi\)
−0.356166 + 0.934423i \(0.615916\pi\)
\(912\) 0 0
\(913\) −7.12825e6 −0.283013
\(914\) 0 0
\(915\) 2.87890e7 1.13677
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.64290e7 −0.641687 −0.320843 0.947132i \(-0.603966\pi\)
−0.320843 + 0.947132i \(0.603966\pi\)
\(920\) 0 0
\(921\) −5.26829e6 −0.204654
\(922\) 0 0
\(923\) −1.77170e7 −0.684520
\(924\) 0 0
\(925\) 5.00672e7 1.92397
\(926\) 0 0
\(927\) −9.25748e6 −0.353829
\(928\) 0 0
\(929\) 1.36544e7 0.519080 0.259540 0.965732i \(-0.416429\pi\)
0.259540 + 0.965732i \(0.416429\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −2.36123e6 −0.0888043
\(934\) 0 0
\(935\) −3.67602e7 −1.37515
\(936\) 0 0
\(937\) −3.81848e7 −1.42083 −0.710414 0.703784i \(-0.751492\pi\)
−0.710414 + 0.703784i \(0.751492\pi\)
\(938\) 0 0
\(939\) 1.25996e7 0.466330
\(940\) 0 0
\(941\) −7.03108e6 −0.258850 −0.129425 0.991589i \(-0.541313\pi\)
−0.129425 + 0.991589i \(0.541313\pi\)
\(942\) 0 0
\(943\) −4.79285e7 −1.75515
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −2.20199e7 −0.797885 −0.398942 0.916976i \(-0.630623\pi\)
−0.398942 + 0.916976i \(0.630623\pi\)
\(948\) 0 0
\(949\) −2.96077e6 −0.106718
\(950\) 0 0
\(951\) −3.71425e7 −1.33174
\(952\) 0 0
\(953\) 578419. 0.0206305 0.0103153 0.999947i \(-0.496716\pi\)
0.0103153 + 0.999947i \(0.496716\pi\)
\(954\) 0 0
\(955\) 5.28451e7 1.87498
\(956\) 0 0
\(957\) 6.97785e6 0.246287
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 8.56895e6 0.299309
\(962\) 0 0
\(963\) 4.19490e7 1.45766
\(964\) 0 0
\(965\) 2.58476e7 0.893516
\(966\) 0 0
\(967\) −2.00036e7 −0.687925 −0.343963 0.938983i \(-0.611769\pi\)
−0.343963 + 0.938983i \(0.611769\pi\)
\(968\) 0 0
\(969\) 7.62062e6 0.260724
\(970\) 0 0
\(971\) 5.09119e7 1.73289 0.866446 0.499272i \(-0.166399\pi\)
0.866446 + 0.499272i \(0.166399\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −3.33262e7 −1.12273
\(976\) 0 0
\(977\) −1.73872e7 −0.582764 −0.291382 0.956607i \(-0.594115\pi\)
−0.291382 + 0.956607i \(0.594115\pi\)
\(978\) 0 0
\(979\) 4.53792e7 1.51321
\(980\) 0 0
\(981\) 1.81054e7 0.600670
\(982\) 0 0
\(983\) 1.10857e7 0.365914 0.182957 0.983121i \(-0.441433\pi\)
0.182957 + 0.983121i \(0.441433\pi\)
\(984\) 0 0
\(985\) −1.63012e7 −0.535340
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 9.09187e7 2.95571
\(990\) 0 0
\(991\) −3.82925e7 −1.23859 −0.619297 0.785157i \(-0.712582\pi\)
−0.619297 + 0.785157i \(0.712582\pi\)
\(992\) 0 0
\(993\) 5.98689e7 1.92676
\(994\) 0 0
\(995\) −5.14872e7 −1.64870
\(996\) 0 0
\(997\) −5.27173e7 −1.67964 −0.839818 0.542869i \(-0.817338\pi\)
−0.839818 + 0.542869i \(0.817338\pi\)
\(998\) 0 0
\(999\) 5.54846e7 1.75897
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.6.a.bm.1.5 5
4.3 odd 2 392.6.a.i.1.1 5
7.3 odd 6 112.6.i.g.65.5 10
7.5 odd 6 112.6.i.g.81.5 10
7.6 odd 2 784.6.a.bj.1.1 5
28.3 even 6 56.6.i.a.9.1 10
28.11 odd 6 392.6.i.p.177.5 10
28.19 even 6 56.6.i.a.25.1 yes 10
28.23 odd 6 392.6.i.p.361.5 10
28.27 even 2 392.6.a.l.1.5 5
84.47 odd 6 504.6.s.d.361.5 10
84.59 odd 6 504.6.s.d.289.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.6.i.a.9.1 10 28.3 even 6
56.6.i.a.25.1 yes 10 28.19 even 6
112.6.i.g.65.5 10 7.3 odd 6
112.6.i.g.81.5 10 7.5 odd 6
392.6.a.i.1.1 5 4.3 odd 2
392.6.a.l.1.5 5 28.27 even 2
392.6.i.p.177.5 10 28.11 odd 6
392.6.i.p.361.5 10 28.23 odd 6
504.6.s.d.289.5 10 84.59 odd 6
504.6.s.d.361.5 10 84.47 odd 6
784.6.a.bj.1.1 5 7.6 odd 2
784.6.a.bm.1.5 5 1.1 even 1 trivial