Properties

Label 3971.2.a.t.1.6
Level $3971$
Weight $2$
Character 3971.1
Self dual yes
Analytic conductor $31.709$
Analytic rank $0$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3971,2,Mod(1,3971)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3971, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3971.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3971 = 11 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3971.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.7085946427\)
Analytic rank: \(0\)
Dimension: \(21\)
Twist minimal: no (minimal twist has level 209)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Character \(\chi\) \(=\) 3971.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.40278 q^{2} +2.92541 q^{3} -0.0322206 q^{4} +1.23149 q^{5} -4.10370 q^{6} +3.91477 q^{7} +2.85075 q^{8} +5.55805 q^{9} -1.72751 q^{10} +1.00000 q^{11} -0.0942587 q^{12} +5.37366 q^{13} -5.49155 q^{14} +3.60263 q^{15} -3.93452 q^{16} +2.82070 q^{17} -7.79670 q^{18} -0.0396795 q^{20} +11.4523 q^{21} -1.40278 q^{22} -3.08937 q^{23} +8.33962 q^{24} -3.48342 q^{25} -7.53804 q^{26} +7.48335 q^{27} -0.126136 q^{28} +2.28200 q^{29} -5.05369 q^{30} +5.31111 q^{31} -0.182249 q^{32} +2.92541 q^{33} -3.95681 q^{34} +4.82102 q^{35} -0.179084 q^{36} +2.40677 q^{37} +15.7202 q^{39} +3.51068 q^{40} -10.2660 q^{41} -16.0650 q^{42} +7.91544 q^{43} -0.0322206 q^{44} +6.84471 q^{45} +4.33369 q^{46} -3.81292 q^{47} -11.5101 q^{48} +8.32544 q^{49} +4.88646 q^{50} +8.25172 q^{51} -0.173143 q^{52} -8.12625 q^{53} -10.4975 q^{54} +1.23149 q^{55} +11.1600 q^{56} -3.20113 q^{58} +7.77647 q^{59} -0.116079 q^{60} -9.84295 q^{61} -7.45029 q^{62} +21.7585 q^{63} +8.12470 q^{64} +6.61764 q^{65} -4.10370 q^{66} +2.30646 q^{67} -0.0908847 q^{68} -9.03768 q^{69} -6.76281 q^{70} +9.18711 q^{71} +15.8446 q^{72} -10.1223 q^{73} -3.37615 q^{74} -10.1904 q^{75} +3.91477 q^{77} -22.0519 q^{78} -8.62894 q^{79} -4.84534 q^{80} +5.21776 q^{81} +14.4009 q^{82} -13.3973 q^{83} -0.369001 q^{84} +3.47368 q^{85} -11.1036 q^{86} +6.67579 q^{87} +2.85075 q^{88} -10.3481 q^{89} -9.60159 q^{90} +21.0367 q^{91} +0.0995413 q^{92} +15.5372 q^{93} +5.34866 q^{94} -0.533155 q^{96} -7.25726 q^{97} -11.6787 q^{98} +5.55805 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 21 q + 6 q^{2} + 15 q^{3} + 18 q^{4} + 6 q^{5} - 6 q^{6} + 6 q^{7} + 15 q^{8} + 18 q^{9} - 6 q^{10} + 21 q^{11} + 30 q^{12} + 36 q^{13} + 12 q^{14} + 12 q^{15} + 12 q^{16} + 21 q^{17} + 6 q^{18} + 15 q^{20}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40278 −0.991912 −0.495956 0.868348i \(-0.665182\pi\)
−0.495956 + 0.868348i \(0.665182\pi\)
\(3\) 2.92541 1.68899 0.844494 0.535564i \(-0.179901\pi\)
0.844494 + 0.535564i \(0.179901\pi\)
\(4\) −0.0322206 −0.0161103
\(5\) 1.23149 0.550741 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(6\) −4.10370 −1.67533
\(7\) 3.91477 1.47964 0.739822 0.672802i \(-0.234910\pi\)
0.739822 + 0.672802i \(0.234910\pi\)
\(8\) 2.85075 1.00789
\(9\) 5.55805 1.85268
\(10\) −1.72751 −0.546287
\(11\) 1.00000 0.301511
\(12\) −0.0942587 −0.0272101
\(13\) 5.37366 1.49039 0.745193 0.666849i \(-0.232357\pi\)
0.745193 + 0.666849i \(0.232357\pi\)
\(14\) −5.49155 −1.46768
\(15\) 3.60263 0.930196
\(16\) −3.93452 −0.983630
\(17\) 2.82070 0.684120 0.342060 0.939678i \(-0.388875\pi\)
0.342060 + 0.939678i \(0.388875\pi\)
\(18\) −7.79670 −1.83770
\(19\) 0 0
\(20\) −0.0396795 −0.00887261
\(21\) 11.4523 2.49910
\(22\) −1.40278 −0.299073
\(23\) −3.08937 −0.644178 −0.322089 0.946709i \(-0.604385\pi\)
−0.322089 + 0.946709i \(0.604385\pi\)
\(24\) 8.33962 1.70232
\(25\) −3.48342 −0.696684
\(26\) −7.53804 −1.47833
\(27\) 7.48335 1.44017
\(28\) −0.126136 −0.0238375
\(29\) 2.28200 0.423757 0.211878 0.977296i \(-0.432042\pi\)
0.211878 + 0.977296i \(0.432042\pi\)
\(30\) −5.05369 −0.922672
\(31\) 5.31111 0.953903 0.476952 0.878930i \(-0.341742\pi\)
0.476952 + 0.878930i \(0.341742\pi\)
\(32\) −0.182249 −0.0322175
\(33\) 2.92541 0.509249
\(34\) −3.95681 −0.678587
\(35\) 4.82102 0.814901
\(36\) −0.179084 −0.0298473
\(37\) 2.40677 0.395670 0.197835 0.980235i \(-0.436609\pi\)
0.197835 + 0.980235i \(0.436609\pi\)
\(38\) 0 0
\(39\) 15.7202 2.51724
\(40\) 3.51068 0.555088
\(41\) −10.2660 −1.60328 −0.801642 0.597805i \(-0.796040\pi\)
−0.801642 + 0.597805i \(0.796040\pi\)
\(42\) −16.0650 −2.47889
\(43\) 7.91544 1.20709 0.603547 0.797328i \(-0.293754\pi\)
0.603547 + 0.797328i \(0.293754\pi\)
\(44\) −0.0322206 −0.00485744
\(45\) 6.84471 1.02035
\(46\) 4.33369 0.638968
\(47\) −3.81292 −0.556171 −0.278085 0.960556i \(-0.589700\pi\)
−0.278085 + 0.960556i \(0.589700\pi\)
\(48\) −11.5101 −1.66134
\(49\) 8.32544 1.18935
\(50\) 4.88646 0.691049
\(51\) 8.25172 1.15547
\(52\) −0.173143 −0.0240106
\(53\) −8.12625 −1.11623 −0.558113 0.829765i \(-0.688475\pi\)
−0.558113 + 0.829765i \(0.688475\pi\)
\(54\) −10.4975 −1.42852
\(55\) 1.23149 0.166055
\(56\) 11.1600 1.49132
\(57\) 0 0
\(58\) −3.20113 −0.420329
\(59\) 7.77647 1.01241 0.506205 0.862413i \(-0.331048\pi\)
0.506205 + 0.862413i \(0.331048\pi\)
\(60\) −0.116079 −0.0149857
\(61\) −9.84295 −1.26026 −0.630130 0.776489i \(-0.716999\pi\)
−0.630130 + 0.776489i \(0.716999\pi\)
\(62\) −7.45029 −0.946188
\(63\) 21.7585 2.74131
\(64\) 8.12470 1.01559
\(65\) 6.61764 0.820817
\(66\) −4.10370 −0.505131
\(67\) 2.30646 0.281779 0.140889 0.990025i \(-0.455004\pi\)
0.140889 + 0.990025i \(0.455004\pi\)
\(68\) −0.0908847 −0.0110214
\(69\) −9.03768 −1.08801
\(70\) −6.76281 −0.808311
\(71\) 9.18711 1.09031 0.545155 0.838335i \(-0.316471\pi\)
0.545155 + 0.838335i \(0.316471\pi\)
\(72\) 15.8446 1.86730
\(73\) −10.1223 −1.18472 −0.592361 0.805672i \(-0.701804\pi\)
−0.592361 + 0.805672i \(0.701804\pi\)
\(74\) −3.37615 −0.392470
\(75\) −10.1904 −1.17669
\(76\) 0 0
\(77\) 3.91477 0.446130
\(78\) −22.0519 −2.49689
\(79\) −8.62894 −0.970831 −0.485416 0.874283i \(-0.661332\pi\)
−0.485416 + 0.874283i \(0.661332\pi\)
\(80\) −4.84534 −0.541726
\(81\) 5.21776 0.579752
\(82\) 14.4009 1.59032
\(83\) −13.3973 −1.47055 −0.735275 0.677769i \(-0.762947\pi\)
−0.735275 + 0.677769i \(0.762947\pi\)
\(84\) −0.369001 −0.0402613
\(85\) 3.47368 0.376773
\(86\) −11.1036 −1.19733
\(87\) 6.67579 0.715720
\(88\) 2.85075 0.303891
\(89\) −10.3481 −1.09689 −0.548447 0.836185i \(-0.684781\pi\)
−0.548447 + 0.836185i \(0.684781\pi\)
\(90\) −9.60159 −1.01210
\(91\) 21.0367 2.20524
\(92\) 0.0995413 0.0103779
\(93\) 15.5372 1.61113
\(94\) 5.34866 0.551673
\(95\) 0 0
\(96\) −0.533155 −0.0544149
\(97\) −7.25726 −0.736863 −0.368431 0.929655i \(-0.620105\pi\)
−0.368431 + 0.929655i \(0.620105\pi\)
\(98\) −11.6787 −1.17973
\(99\) 5.55805 0.558605
\(100\) 0.112238 0.0112238
\(101\) −14.7770 −1.47037 −0.735185 0.677867i \(-0.762905\pi\)
−0.735185 + 0.677867i \(0.762905\pi\)
\(102\) −11.5753 −1.14613
\(103\) −15.0223 −1.48019 −0.740093 0.672504i \(-0.765219\pi\)
−0.740093 + 0.672504i \(0.765219\pi\)
\(104\) 15.3190 1.50215
\(105\) 14.1035 1.37636
\(106\) 11.3993 1.10720
\(107\) 4.50182 0.435207 0.217604 0.976037i \(-0.430176\pi\)
0.217604 + 0.976037i \(0.430176\pi\)
\(108\) −0.241118 −0.0232016
\(109\) −0.881799 −0.0844610 −0.0422305 0.999108i \(-0.513446\pi\)
−0.0422305 + 0.999108i \(0.513446\pi\)
\(110\) −1.72751 −0.164712
\(111\) 7.04079 0.668282
\(112\) −15.4028 −1.45542
\(113\) 6.85435 0.644803 0.322402 0.946603i \(-0.395510\pi\)
0.322402 + 0.946603i \(0.395510\pi\)
\(114\) 0 0
\(115\) −3.80454 −0.354775
\(116\) −0.0735274 −0.00682685
\(117\) 29.8671 2.76121
\(118\) −10.9086 −1.00422
\(119\) 11.0424 1.01225
\(120\) 10.2702 0.937537
\(121\) 1.00000 0.0909091
\(122\) 13.8075 1.25007
\(123\) −30.0324 −2.70793
\(124\) −0.171127 −0.0153677
\(125\) −10.4473 −0.934434
\(126\) −30.5223 −2.71914
\(127\) −8.87549 −0.787572 −0.393786 0.919202i \(-0.628835\pi\)
−0.393786 + 0.919202i \(0.628835\pi\)
\(128\) −11.0326 −0.975156
\(129\) 23.1559 2.03877
\(130\) −9.28306 −0.814178
\(131\) 3.22314 0.281607 0.140803 0.990038i \(-0.455031\pi\)
0.140803 + 0.990038i \(0.455031\pi\)
\(132\) −0.0942587 −0.00820416
\(133\) 0 0
\(134\) −3.23544 −0.279500
\(135\) 9.21571 0.793162
\(136\) 8.04111 0.689519
\(137\) −16.7290 −1.42925 −0.714626 0.699506i \(-0.753403\pi\)
−0.714626 + 0.699506i \(0.753403\pi\)
\(138\) 12.6778 1.07921
\(139\) −11.1077 −0.942142 −0.471071 0.882095i \(-0.656132\pi\)
−0.471071 + 0.882095i \(0.656132\pi\)
\(140\) −0.155336 −0.0131283
\(141\) −11.1544 −0.939366
\(142\) −12.8875 −1.08149
\(143\) 5.37366 0.449368
\(144\) −21.8683 −1.82235
\(145\) 2.81027 0.233380
\(146\) 14.1993 1.17514
\(147\) 24.3554 2.00880
\(148\) −0.0775475 −0.00637436
\(149\) −22.3503 −1.83101 −0.915505 0.402307i \(-0.868208\pi\)
−0.915505 + 0.402307i \(0.868208\pi\)
\(150\) 14.2949 1.16717
\(151\) −6.65528 −0.541599 −0.270800 0.962636i \(-0.587288\pi\)
−0.270800 + 0.962636i \(0.587288\pi\)
\(152\) 0 0
\(153\) 15.6776 1.26746
\(154\) −5.49155 −0.442521
\(155\) 6.54060 0.525354
\(156\) −0.506514 −0.0405536
\(157\) −10.3795 −0.828377 −0.414189 0.910191i \(-0.635935\pi\)
−0.414189 + 0.910191i \(0.635935\pi\)
\(158\) 12.1045 0.962979
\(159\) −23.7727 −1.88529
\(160\) −0.224439 −0.0177435
\(161\) −12.0942 −0.953154
\(162\) −7.31935 −0.575063
\(163\) −5.15647 −0.403886 −0.201943 0.979397i \(-0.564726\pi\)
−0.201943 + 0.979397i \(0.564726\pi\)
\(164\) 0.330778 0.0258294
\(165\) 3.60263 0.280465
\(166\) 18.7935 1.45866
\(167\) 6.66683 0.515895 0.257948 0.966159i \(-0.416954\pi\)
0.257948 + 0.966159i \(0.416954\pi\)
\(168\) 32.6477 2.51883
\(169\) 15.8762 1.22125
\(170\) −4.87279 −0.373726
\(171\) 0 0
\(172\) −0.255040 −0.0194466
\(173\) 10.3638 0.787947 0.393974 0.919122i \(-0.371100\pi\)
0.393974 + 0.919122i \(0.371100\pi\)
\(174\) −9.36464 −0.709932
\(175\) −13.6368 −1.03084
\(176\) −3.93452 −0.296576
\(177\) 22.7494 1.70995
\(178\) 14.5160 1.08802
\(179\) 14.0614 1.05100 0.525501 0.850793i \(-0.323878\pi\)
0.525501 + 0.850793i \(0.323878\pi\)
\(180\) −0.220541 −0.0164381
\(181\) 13.6259 1.01281 0.506404 0.862296i \(-0.330974\pi\)
0.506404 + 0.862296i \(0.330974\pi\)
\(182\) −29.5097 −2.18741
\(183\) −28.7947 −2.12857
\(184\) −8.80701 −0.649262
\(185\) 2.96392 0.217912
\(186\) −21.7952 −1.59810
\(187\) 2.82070 0.206270
\(188\) 0.122854 0.00896008
\(189\) 29.2956 2.13094
\(190\) 0 0
\(191\) −17.0015 −1.23019 −0.615093 0.788455i \(-0.710881\pi\)
−0.615093 + 0.788455i \(0.710881\pi\)
\(192\) 23.7681 1.71532
\(193\) 23.3659 1.68192 0.840959 0.541099i \(-0.181992\pi\)
0.840959 + 0.541099i \(0.181992\pi\)
\(194\) 10.1803 0.730903
\(195\) 19.3593 1.38635
\(196\) −0.268251 −0.0191608
\(197\) 1.57194 0.111996 0.0559979 0.998431i \(-0.482166\pi\)
0.0559979 + 0.998431i \(0.482166\pi\)
\(198\) −7.79670 −0.554087
\(199\) 12.0279 0.852635 0.426318 0.904573i \(-0.359811\pi\)
0.426318 + 0.904573i \(0.359811\pi\)
\(200\) −9.93036 −0.702182
\(201\) 6.74735 0.475921
\(202\) 20.7289 1.45848
\(203\) 8.93351 0.627009
\(204\) −0.265875 −0.0186150
\(205\) −12.6426 −0.882994
\(206\) 21.0728 1.46821
\(207\) −17.1709 −1.19346
\(208\) −21.1428 −1.46599
\(209\) 0 0
\(210\) −19.7840 −1.36523
\(211\) 2.18051 0.150112 0.0750562 0.997179i \(-0.476086\pi\)
0.0750562 + 0.997179i \(0.476086\pi\)
\(212\) 0.261833 0.0179828
\(213\) 26.8761 1.84152
\(214\) −6.31504 −0.431687
\(215\) 9.74782 0.664796
\(216\) 21.3332 1.45154
\(217\) 20.7918 1.41144
\(218\) 1.23697 0.0837779
\(219\) −29.6119 −2.00098
\(220\) −0.0396795 −0.00267519
\(221\) 15.1575 1.01960
\(222\) −9.87665 −0.662877
\(223\) 18.9897 1.27164 0.635822 0.771836i \(-0.280661\pi\)
0.635822 + 0.771836i \(0.280661\pi\)
\(224\) −0.713465 −0.0476704
\(225\) −19.3610 −1.29073
\(226\) −9.61512 −0.639588
\(227\) −7.88502 −0.523347 −0.261674 0.965156i \(-0.584274\pi\)
−0.261674 + 0.965156i \(0.584274\pi\)
\(228\) 0 0
\(229\) 18.2466 1.20577 0.602886 0.797828i \(-0.294017\pi\)
0.602886 + 0.797828i \(0.294017\pi\)
\(230\) 5.33692 0.351906
\(231\) 11.4523 0.753508
\(232\) 6.50541 0.427101
\(233\) −7.99531 −0.523790 −0.261895 0.965096i \(-0.584347\pi\)
−0.261895 + 0.965096i \(0.584347\pi\)
\(234\) −41.8968 −2.73888
\(235\) −4.69559 −0.306306
\(236\) −0.250563 −0.0163102
\(237\) −25.2432 −1.63972
\(238\) −15.4900 −1.00407
\(239\) 4.41716 0.285722 0.142861 0.989743i \(-0.454370\pi\)
0.142861 + 0.989743i \(0.454370\pi\)
\(240\) −14.1746 −0.914969
\(241\) 15.7501 1.01455 0.507277 0.861783i \(-0.330652\pi\)
0.507277 + 0.861783i \(0.330652\pi\)
\(242\) −1.40278 −0.0901738
\(243\) −7.18594 −0.460978
\(244\) 0.317146 0.0203032
\(245\) 10.2527 0.655023
\(246\) 42.1287 2.68603
\(247\) 0 0
\(248\) 15.1406 0.961431
\(249\) −39.1928 −2.48374
\(250\) 14.6552 0.926876
\(251\) −0.942823 −0.0595105 −0.0297552 0.999557i \(-0.509473\pi\)
−0.0297552 + 0.999557i \(0.509473\pi\)
\(252\) −0.701072 −0.0441634
\(253\) −3.08937 −0.194227
\(254\) 12.4503 0.781203
\(255\) 10.1619 0.636366
\(256\) −0.773093 −0.0483183
\(257\) 21.0419 1.31256 0.656278 0.754519i \(-0.272130\pi\)
0.656278 + 0.754519i \(0.272130\pi\)
\(258\) −32.4826 −2.02228
\(259\) 9.42194 0.585451
\(260\) −0.213224 −0.0132236
\(261\) 12.6835 0.785087
\(262\) −4.52134 −0.279329
\(263\) 3.22056 0.198589 0.0992943 0.995058i \(-0.468341\pi\)
0.0992943 + 0.995058i \(0.468341\pi\)
\(264\) 8.33962 0.513268
\(265\) −10.0074 −0.614752
\(266\) 0 0
\(267\) −30.2724 −1.85264
\(268\) −0.0743155 −0.00453954
\(269\) 0.599650 0.0365613 0.0182806 0.999833i \(-0.494181\pi\)
0.0182806 + 0.999833i \(0.494181\pi\)
\(270\) −12.9276 −0.786747
\(271\) −0.720756 −0.0437828 −0.0218914 0.999760i \(-0.506969\pi\)
−0.0218914 + 0.999760i \(0.506969\pi\)
\(272\) −11.0981 −0.672921
\(273\) 61.5409 3.72463
\(274\) 23.4670 1.41769
\(275\) −3.48342 −0.210058
\(276\) 0.291200 0.0175282
\(277\) 19.4370 1.16786 0.583928 0.811806i \(-0.301515\pi\)
0.583928 + 0.811806i \(0.301515\pi\)
\(278\) 15.5816 0.934522
\(279\) 29.5194 1.76728
\(280\) 13.7435 0.821333
\(281\) −9.44434 −0.563402 −0.281701 0.959502i \(-0.590899\pi\)
−0.281701 + 0.959502i \(0.590899\pi\)
\(282\) 15.6471 0.931769
\(283\) −14.0148 −0.833090 −0.416545 0.909115i \(-0.636759\pi\)
−0.416545 + 0.909115i \(0.636759\pi\)
\(284\) −0.296014 −0.0175652
\(285\) 0 0
\(286\) −7.53804 −0.445734
\(287\) −40.1891 −2.37229
\(288\) −1.01295 −0.0596887
\(289\) −9.04365 −0.531979
\(290\) −3.94218 −0.231493
\(291\) −21.2305 −1.24455
\(292\) 0.326146 0.0190863
\(293\) −16.6707 −0.973915 −0.486957 0.873426i \(-0.661893\pi\)
−0.486957 + 0.873426i \(0.661893\pi\)
\(294\) −34.1651 −1.99255
\(295\) 9.57668 0.557576
\(296\) 6.86109 0.398793
\(297\) 7.48335 0.434228
\(298\) 31.3525 1.81620
\(299\) −16.6012 −0.960073
\(300\) 0.328343 0.0189569
\(301\) 30.9871 1.78607
\(302\) 9.33587 0.537219
\(303\) −43.2289 −2.48344
\(304\) 0 0
\(305\) −12.1215 −0.694078
\(306\) −21.9921 −1.25721
\(307\) 14.5754 0.831863 0.415932 0.909396i \(-0.363456\pi\)
0.415932 + 0.909396i \(0.363456\pi\)
\(308\) −0.126136 −0.00718729
\(309\) −43.9463 −2.50002
\(310\) −9.17500 −0.521105
\(311\) 11.0502 0.626602 0.313301 0.949654i \(-0.398565\pi\)
0.313301 + 0.949654i \(0.398565\pi\)
\(312\) 44.8143 2.53711
\(313\) 1.70007 0.0960934 0.0480467 0.998845i \(-0.484700\pi\)
0.0480467 + 0.998845i \(0.484700\pi\)
\(314\) 14.5602 0.821677
\(315\) 26.7955 1.50975
\(316\) 0.278030 0.0156404
\(317\) 4.73755 0.266088 0.133044 0.991110i \(-0.457525\pi\)
0.133044 + 0.991110i \(0.457525\pi\)
\(318\) 33.3477 1.87005
\(319\) 2.28200 0.127767
\(320\) 10.0055 0.559326
\(321\) 13.1697 0.735060
\(322\) 16.9654 0.945445
\(323\) 0 0
\(324\) −0.168120 −0.00933998
\(325\) −18.7187 −1.03833
\(326\) 7.23337 0.400619
\(327\) −2.57963 −0.142654
\(328\) −29.2659 −1.61594
\(329\) −14.9267 −0.822935
\(330\) −5.05369 −0.278196
\(331\) −4.16549 −0.228956 −0.114478 0.993426i \(-0.536520\pi\)
−0.114478 + 0.993426i \(0.536520\pi\)
\(332\) 0.431671 0.0236910
\(333\) 13.3769 0.733051
\(334\) −9.35207 −0.511723
\(335\) 2.84039 0.155187
\(336\) −45.0594 −2.45819
\(337\) −17.7615 −0.967531 −0.483765 0.875198i \(-0.660731\pi\)
−0.483765 + 0.875198i \(0.660731\pi\)
\(338\) −22.2708 −1.21137
\(339\) 20.0518 1.08907
\(340\) −0.111924 −0.00606993
\(341\) 5.31111 0.287613
\(342\) 0 0
\(343\) 5.18879 0.280168
\(344\) 22.5649 1.21662
\(345\) −11.1299 −0.599211
\(346\) −14.5381 −0.781574
\(347\) 15.4698 0.830463 0.415232 0.909716i \(-0.363700\pi\)
0.415232 + 0.909716i \(0.363700\pi\)
\(348\) −0.215098 −0.0115305
\(349\) −33.4319 −1.78957 −0.894783 0.446500i \(-0.852670\pi\)
−0.894783 + 0.446500i \(0.852670\pi\)
\(350\) 19.1294 1.02251
\(351\) 40.2130 2.14641
\(352\) −0.182249 −0.00971393
\(353\) 22.4639 1.19563 0.597815 0.801634i \(-0.296036\pi\)
0.597815 + 0.801634i \(0.296036\pi\)
\(354\) −31.9123 −1.69612
\(355\) 11.3139 0.600478
\(356\) 0.333422 0.0176713
\(357\) 32.3036 1.70969
\(358\) −19.7251 −1.04250
\(359\) −10.3166 −0.544490 −0.272245 0.962228i \(-0.587766\pi\)
−0.272245 + 0.962228i \(0.587766\pi\)
\(360\) 19.5126 1.02840
\(361\) 0 0
\(362\) −19.1141 −1.00462
\(363\) 2.92541 0.153544
\(364\) −0.677814 −0.0355271
\(365\) −12.4655 −0.652476
\(366\) 40.3925 2.11135
\(367\) 35.9073 1.87434 0.937172 0.348867i \(-0.113433\pi\)
0.937172 + 0.348867i \(0.113433\pi\)
\(368\) 12.1552 0.633633
\(369\) −57.0591 −2.97038
\(370\) −4.15771 −0.216149
\(371\) −31.8124 −1.65162
\(372\) −0.500618 −0.0259558
\(373\) −21.8700 −1.13238 −0.566192 0.824273i \(-0.691584\pi\)
−0.566192 + 0.824273i \(0.691584\pi\)
\(374\) −3.95681 −0.204602
\(375\) −30.5626 −1.57825
\(376\) −10.8697 −0.560560
\(377\) 12.2627 0.631561
\(378\) −41.0952 −2.11371
\(379\) −17.9961 −0.924400 −0.462200 0.886776i \(-0.652940\pi\)
−0.462200 + 0.886776i \(0.652940\pi\)
\(380\) 0 0
\(381\) −25.9645 −1.33020
\(382\) 23.8493 1.22024
\(383\) −27.3586 −1.39796 −0.698980 0.715142i \(-0.746362\pi\)
−0.698980 + 0.715142i \(0.746362\pi\)
\(384\) −32.2750 −1.64703
\(385\) 4.82102 0.245702
\(386\) −32.7772 −1.66831
\(387\) 43.9944 2.23636
\(388\) 0.233833 0.0118711
\(389\) −7.48438 −0.379473 −0.189737 0.981835i \(-0.560763\pi\)
−0.189737 + 0.981835i \(0.560763\pi\)
\(390\) −27.1568 −1.37514
\(391\) −8.71418 −0.440695
\(392\) 23.7337 1.19873
\(393\) 9.42901 0.475631
\(394\) −2.20507 −0.111090
\(395\) −10.6265 −0.534677
\(396\) −0.179084 −0.00899930
\(397\) 23.0994 1.15933 0.579663 0.814856i \(-0.303184\pi\)
0.579663 + 0.814856i \(0.303184\pi\)
\(398\) −16.8724 −0.845739
\(399\) 0 0
\(400\) 13.7056 0.685279
\(401\) 6.62056 0.330615 0.165307 0.986242i \(-0.447138\pi\)
0.165307 + 0.986242i \(0.447138\pi\)
\(402\) −9.46501 −0.472072
\(403\) 28.5401 1.42168
\(404\) 0.476125 0.0236881
\(405\) 6.42565 0.319293
\(406\) −12.5317 −0.621938
\(407\) 2.40677 0.119299
\(408\) 23.5236 1.16459
\(409\) 20.9494 1.03588 0.517942 0.855416i \(-0.326698\pi\)
0.517942 + 0.855416i \(0.326698\pi\)
\(410\) 17.7347 0.875853
\(411\) −48.9392 −2.41399
\(412\) 0.484026 0.0238463
\(413\) 30.4431 1.49801
\(414\) 24.0869 1.18380
\(415\) −16.4988 −0.809892
\(416\) −0.979347 −0.0480164
\(417\) −32.4946 −1.59127
\(418\) 0 0
\(419\) −6.91321 −0.337732 −0.168866 0.985639i \(-0.554011\pi\)
−0.168866 + 0.985639i \(0.554011\pi\)
\(420\) −0.454423 −0.0221736
\(421\) 11.0499 0.538538 0.269269 0.963065i \(-0.413218\pi\)
0.269269 + 0.963065i \(0.413218\pi\)
\(422\) −3.05876 −0.148898
\(423\) −21.1924 −1.03041
\(424\) −23.1659 −1.12504
\(425\) −9.82568 −0.476616
\(426\) −37.7011 −1.82663
\(427\) −38.5329 −1.86474
\(428\) −0.145051 −0.00701132
\(429\) 15.7202 0.758978
\(430\) −13.6740 −0.659419
\(431\) −5.22802 −0.251825 −0.125912 0.992041i \(-0.540186\pi\)
−0.125912 + 0.992041i \(0.540186\pi\)
\(432\) −29.4434 −1.41660
\(433\) 30.7094 1.47580 0.737900 0.674910i \(-0.235818\pi\)
0.737900 + 0.674910i \(0.235818\pi\)
\(434\) −29.1662 −1.40002
\(435\) 8.22121 0.394177
\(436\) 0.0284121 0.00136069
\(437\) 0 0
\(438\) 41.5388 1.98480
\(439\) 25.5773 1.22074 0.610368 0.792118i \(-0.291022\pi\)
0.610368 + 0.792118i \(0.291022\pi\)
\(440\) 3.51068 0.167365
\(441\) 46.2732 2.20349
\(442\) −21.2626 −1.01136
\(443\) 38.9565 1.85088 0.925438 0.378898i \(-0.123697\pi\)
0.925438 + 0.378898i \(0.123697\pi\)
\(444\) −0.226859 −0.0107662
\(445\) −12.7436 −0.604105
\(446\) −26.6383 −1.26136
\(447\) −65.3839 −3.09255
\(448\) 31.8063 1.50271
\(449\) 23.7119 1.11903 0.559517 0.828819i \(-0.310987\pi\)
0.559517 + 0.828819i \(0.310987\pi\)
\(450\) 27.1592 1.28030
\(451\) −10.2660 −0.483408
\(452\) −0.220852 −0.0103880
\(453\) −19.4695 −0.914755
\(454\) 11.0609 0.519114
\(455\) 25.9065 1.21452
\(456\) 0 0
\(457\) 41.3053 1.93218 0.966090 0.258205i \(-0.0831310\pi\)
0.966090 + 0.258205i \(0.0831310\pi\)
\(458\) −25.5959 −1.19602
\(459\) 21.1083 0.985251
\(460\) 0.122585 0.00571554
\(461\) 0.545980 0.0254288 0.0127144 0.999919i \(-0.495953\pi\)
0.0127144 + 0.999919i \(0.495953\pi\)
\(462\) −16.0650 −0.747414
\(463\) −3.52927 −0.164019 −0.0820095 0.996632i \(-0.526134\pi\)
−0.0820095 + 0.996632i \(0.526134\pi\)
\(464\) −8.97857 −0.416820
\(465\) 19.1340 0.887317
\(466\) 11.2156 0.519554
\(467\) 6.72604 0.311244 0.155622 0.987817i \(-0.450262\pi\)
0.155622 + 0.987817i \(0.450262\pi\)
\(468\) −0.962336 −0.0444840
\(469\) 9.02926 0.416932
\(470\) 6.58685 0.303829
\(471\) −30.3644 −1.39912
\(472\) 22.1688 1.02040
\(473\) 7.91544 0.363952
\(474\) 35.4106 1.62646
\(475\) 0 0
\(476\) −0.355793 −0.0163077
\(477\) −45.1661 −2.06801
\(478\) −6.19628 −0.283411
\(479\) −16.1469 −0.737768 −0.368884 0.929475i \(-0.620260\pi\)
−0.368884 + 0.929475i \(0.620260\pi\)
\(480\) −0.656578 −0.0299685
\(481\) 12.9331 0.589701
\(482\) −22.0939 −1.00635
\(483\) −35.3805 −1.60987
\(484\) −0.0322206 −0.00146457
\(485\) −8.93727 −0.405821
\(486\) 10.0803 0.457250
\(487\) 35.5726 1.61195 0.805975 0.591949i \(-0.201641\pi\)
0.805975 + 0.591949i \(0.201641\pi\)
\(488\) −28.0598 −1.27021
\(489\) −15.0848 −0.682159
\(490\) −14.3823 −0.649725
\(491\) 7.45209 0.336308 0.168154 0.985761i \(-0.446219\pi\)
0.168154 + 0.985761i \(0.446219\pi\)
\(492\) 0.967662 0.0436256
\(493\) 6.43684 0.289901
\(494\) 0 0
\(495\) 6.84471 0.307647
\(496\) −20.8967 −0.938288
\(497\) 35.9654 1.61327
\(498\) 54.9787 2.46365
\(499\) 7.99022 0.357691 0.178846 0.983877i \(-0.442764\pi\)
0.178846 + 0.983877i \(0.442764\pi\)
\(500\) 0.336618 0.0150540
\(501\) 19.5033 0.871341
\(502\) 1.32257 0.0590291
\(503\) 35.3181 1.57476 0.787379 0.616469i \(-0.211437\pi\)
0.787379 + 0.616469i \(0.211437\pi\)
\(504\) 62.0280 2.76295
\(505\) −18.1978 −0.809793
\(506\) 4.33369 0.192656
\(507\) 46.4446 2.06268
\(508\) 0.285974 0.0126880
\(509\) −5.05595 −0.224101 −0.112050 0.993703i \(-0.535742\pi\)
−0.112050 + 0.993703i \(0.535742\pi\)
\(510\) −14.2549 −0.631219
\(511\) −39.6264 −1.75297
\(512\) 23.1497 1.02308
\(513\) 0 0
\(514\) −29.5170 −1.30194
\(515\) −18.4998 −0.815200
\(516\) −0.746099 −0.0328452
\(517\) −3.81292 −0.167692
\(518\) −13.2169 −0.580716
\(519\) 30.3185 1.33083
\(520\) 18.8652 0.827295
\(521\) −22.5556 −0.988178 −0.494089 0.869411i \(-0.664498\pi\)
−0.494089 + 0.869411i \(0.664498\pi\)
\(522\) −17.7921 −0.778737
\(523\) −6.22268 −0.272099 −0.136049 0.990702i \(-0.543441\pi\)
−0.136049 + 0.990702i \(0.543441\pi\)
\(524\) −0.103851 −0.00453677
\(525\) −39.8933 −1.74109
\(526\) −4.51773 −0.196982
\(527\) 14.9810 0.652584
\(528\) −11.5101 −0.500913
\(529\) −13.4558 −0.585035
\(530\) 14.0382 0.609780
\(531\) 43.2220 1.87567
\(532\) 0 0
\(533\) −55.1661 −2.38951
\(534\) 42.4654 1.83766
\(535\) 5.54397 0.239687
\(536\) 6.57513 0.284003
\(537\) 41.1356 1.77513
\(538\) −0.841174 −0.0362656
\(539\) 8.32544 0.358602
\(540\) −0.296936 −0.0127781
\(541\) −1.01541 −0.0436559 −0.0218280 0.999762i \(-0.506949\pi\)
−0.0218280 + 0.999762i \(0.506949\pi\)
\(542\) 1.01106 0.0434287
\(543\) 39.8615 1.71062
\(544\) −0.514071 −0.0220406
\(545\) −1.08593 −0.0465162
\(546\) −86.3281 −3.69450
\(547\) 9.95547 0.425665 0.212833 0.977089i \(-0.431731\pi\)
0.212833 + 0.977089i \(0.431731\pi\)
\(548\) 0.539018 0.0230257
\(549\) −54.7076 −2.33486
\(550\) 4.88646 0.208359
\(551\) 0 0
\(552\) −25.7642 −1.09660
\(553\) −33.7803 −1.43649
\(554\) −27.2657 −1.15841
\(555\) 8.67069 0.368050
\(556\) 0.357897 0.0151782
\(557\) −20.6689 −0.875770 −0.437885 0.899031i \(-0.644272\pi\)
−0.437885 + 0.899031i \(0.644272\pi\)
\(558\) −41.4091 −1.75299
\(559\) 42.5349 1.79903
\(560\) −18.9684 −0.801562
\(561\) 8.25172 0.348388
\(562\) 13.2483 0.558845
\(563\) 24.5283 1.03374 0.516872 0.856063i \(-0.327096\pi\)
0.516872 + 0.856063i \(0.327096\pi\)
\(564\) 0.359400 0.0151335
\(565\) 8.44110 0.355120
\(566\) 19.6596 0.826353
\(567\) 20.4264 0.857826
\(568\) 26.1902 1.09891
\(569\) −14.2252 −0.596350 −0.298175 0.954511i \(-0.596378\pi\)
−0.298175 + 0.954511i \(0.596378\pi\)
\(570\) 0 0
\(571\) 34.1997 1.43121 0.715607 0.698503i \(-0.246150\pi\)
0.715607 + 0.698503i \(0.246150\pi\)
\(572\) −0.173143 −0.00723946
\(573\) −49.7364 −2.07777
\(574\) 56.3764 2.35310
\(575\) 10.7616 0.448788
\(576\) 45.1575 1.88156
\(577\) −32.2034 −1.34064 −0.670322 0.742070i \(-0.733844\pi\)
−0.670322 + 0.742070i \(0.733844\pi\)
\(578\) 12.6862 0.527677
\(579\) 68.3551 2.84074
\(580\) −0.0905487 −0.00375983
\(581\) −52.4475 −2.17589
\(582\) 29.7816 1.23449
\(583\) −8.12625 −0.336555
\(584\) −28.8561 −1.19407
\(585\) 36.7811 1.52071
\(586\) 23.3853 0.966038
\(587\) 5.77516 0.238366 0.119183 0.992872i \(-0.461972\pi\)
0.119183 + 0.992872i \(0.461972\pi\)
\(588\) −0.784745 −0.0323623
\(589\) 0 0
\(590\) −13.4339 −0.553066
\(591\) 4.59857 0.189160
\(592\) −9.46947 −0.389193
\(593\) −14.6792 −0.602802 −0.301401 0.953498i \(-0.597454\pi\)
−0.301401 + 0.953498i \(0.597454\pi\)
\(594\) −10.4975 −0.430716
\(595\) 13.5987 0.557491
\(596\) 0.720141 0.0294981
\(597\) 35.1866 1.44009
\(598\) 23.2878 0.952308
\(599\) −10.6836 −0.436520 −0.218260 0.975891i \(-0.570038\pi\)
−0.218260 + 0.975891i \(0.570038\pi\)
\(600\) −29.0504 −1.18598
\(601\) 34.6301 1.41259 0.706295 0.707917i \(-0.250365\pi\)
0.706295 + 0.707917i \(0.250365\pi\)
\(602\) −43.4680 −1.77162
\(603\) 12.8194 0.522047
\(604\) 0.214437 0.00872533
\(605\) 1.23149 0.0500674
\(606\) 60.6405 2.46335
\(607\) 34.9573 1.41887 0.709436 0.704770i \(-0.248950\pi\)
0.709436 + 0.704770i \(0.248950\pi\)
\(608\) 0 0
\(609\) 26.1342 1.05901
\(610\) 17.0038 0.688464
\(611\) −20.4893 −0.828909
\(612\) −0.505142 −0.0204191
\(613\) −21.3740 −0.863289 −0.431645 0.902044i \(-0.642067\pi\)
−0.431645 + 0.902044i \(0.642067\pi\)
\(614\) −20.4460 −0.825135
\(615\) −36.9847 −1.49137
\(616\) 11.1600 0.449651
\(617\) 42.2937 1.70268 0.851341 0.524613i \(-0.175790\pi\)
0.851341 + 0.524613i \(0.175790\pi\)
\(618\) 61.6468 2.47980
\(619\) 9.79343 0.393631 0.196816 0.980441i \(-0.436940\pi\)
0.196816 + 0.980441i \(0.436940\pi\)
\(620\) −0.210742 −0.00846361
\(621\) −23.1188 −0.927727
\(622\) −15.5010 −0.621534
\(623\) −40.5104 −1.62301
\(624\) −61.8514 −2.47604
\(625\) 4.55132 0.182053
\(626\) −2.38481 −0.0953162
\(627\) 0 0
\(628\) 0.334435 0.0133454
\(629\) 6.78877 0.270686
\(630\) −37.5880 −1.49754
\(631\) 29.9291 1.19146 0.595729 0.803186i \(-0.296863\pi\)
0.595729 + 0.803186i \(0.296863\pi\)
\(632\) −24.5989 −0.978493
\(633\) 6.37889 0.253538
\(634\) −6.64573 −0.263935
\(635\) −10.9301 −0.433749
\(636\) 0.765970 0.0303727
\(637\) 44.7381 1.77259
\(638\) −3.20113 −0.126734
\(639\) 51.0624 2.02000
\(640\) −13.5866 −0.537058
\(641\) −3.14428 −0.124192 −0.0620958 0.998070i \(-0.519778\pi\)
−0.0620958 + 0.998070i \(0.519778\pi\)
\(642\) −18.4741 −0.729115
\(643\) −5.55270 −0.218977 −0.109489 0.993988i \(-0.534921\pi\)
−0.109489 + 0.993988i \(0.534921\pi\)
\(644\) 0.389682 0.0153556
\(645\) 28.5164 1.12283
\(646\) 0 0
\(647\) 7.16024 0.281498 0.140749 0.990045i \(-0.455049\pi\)
0.140749 + 0.990045i \(0.455049\pi\)
\(648\) 14.8745 0.584327
\(649\) 7.77647 0.305253
\(650\) 26.2582 1.02993
\(651\) 60.8246 2.38390
\(652\) 0.166145 0.00650673
\(653\) 17.8855 0.699915 0.349957 0.936766i \(-0.386196\pi\)
0.349957 + 0.936766i \(0.386196\pi\)
\(654\) 3.61864 0.141500
\(655\) 3.96928 0.155093
\(656\) 40.3919 1.57704
\(657\) −56.2601 −2.19492
\(658\) 20.9388 0.816279
\(659\) −38.7207 −1.50834 −0.754172 0.656677i \(-0.771962\pi\)
−0.754172 + 0.656677i \(0.771962\pi\)
\(660\) −0.116079 −0.00451837
\(661\) 47.7529 1.85737 0.928686 0.370867i \(-0.120939\pi\)
0.928686 + 0.370867i \(0.120939\pi\)
\(662\) 5.84325 0.227104
\(663\) 44.3419 1.72210
\(664\) −38.1925 −1.48216
\(665\) 0 0
\(666\) −18.7648 −0.727122
\(667\) −7.04994 −0.272975
\(668\) −0.214809 −0.00831123
\(669\) 55.5527 2.14779
\(670\) −3.98443 −0.153932
\(671\) −9.84295 −0.379983
\(672\) −2.08718 −0.0805148
\(673\) 29.4901 1.13676 0.568380 0.822766i \(-0.307570\pi\)
0.568380 + 0.822766i \(0.307570\pi\)
\(674\) 24.9154 0.959705
\(675\) −26.0677 −1.00335
\(676\) −0.511542 −0.0196747
\(677\) −2.54519 −0.0978194 −0.0489097 0.998803i \(-0.515575\pi\)
−0.0489097 + 0.998803i \(0.515575\pi\)
\(678\) −28.1282 −1.08026
\(679\) −28.4105 −1.09030
\(680\) 9.90259 0.379747
\(681\) −23.0670 −0.883928
\(682\) −7.45029 −0.285286
\(683\) −34.3857 −1.31573 −0.657866 0.753135i \(-0.728541\pi\)
−0.657866 + 0.753135i \(0.728541\pi\)
\(684\) 0 0
\(685\) −20.6016 −0.787148
\(686\) −7.27871 −0.277902
\(687\) 53.3790 2.03653
\(688\) −31.1435 −1.18733
\(689\) −43.6677 −1.66361
\(690\) 15.6127 0.594365
\(691\) −39.5183 −1.50335 −0.751674 0.659535i \(-0.770753\pi\)
−0.751674 + 0.659535i \(0.770753\pi\)
\(692\) −0.333929 −0.0126941
\(693\) 21.7585 0.826537
\(694\) −21.7007 −0.823747
\(695\) −13.6791 −0.518876
\(696\) 19.0310 0.721369
\(697\) −28.9574 −1.09684
\(698\) 46.8974 1.77509
\(699\) −23.3896 −0.884676
\(700\) 0.439386 0.0166072
\(701\) −9.85853 −0.372352 −0.186176 0.982516i \(-0.559609\pi\)
−0.186176 + 0.982516i \(0.559609\pi\)
\(702\) −56.4098 −2.12905
\(703\) 0 0
\(704\) 8.12470 0.306211
\(705\) −13.7365 −0.517348
\(706\) −31.5118 −1.18596
\(707\) −57.8487 −2.17562
\(708\) −0.732999 −0.0275478
\(709\) 7.08012 0.265900 0.132950 0.991123i \(-0.457555\pi\)
0.132950 + 0.991123i \(0.457555\pi\)
\(710\) −15.8708 −0.595622
\(711\) −47.9601 −1.79864
\(712\) −29.4998 −1.10555
\(713\) −16.4080 −0.614483
\(714\) −45.3147 −1.69586
\(715\) 6.61764 0.247486
\(716\) −0.453069 −0.0169320
\(717\) 12.9220 0.482581
\(718\) 14.4719 0.540086
\(719\) 3.26599 0.121801 0.0609005 0.998144i \(-0.480603\pi\)
0.0609005 + 0.998144i \(0.480603\pi\)
\(720\) −26.9306 −1.00365
\(721\) −58.8087 −2.19015
\(722\) 0 0
\(723\) 46.0756 1.71357
\(724\) −0.439036 −0.0163167
\(725\) −7.94916 −0.295225
\(726\) −4.10370 −0.152303
\(727\) 11.6227 0.431060 0.215530 0.976497i \(-0.430852\pi\)
0.215530 + 0.976497i \(0.430852\pi\)
\(728\) 59.9702 2.22265
\(729\) −36.6751 −1.35834
\(730\) 17.4863 0.647199
\(731\) 22.3271 0.825797
\(732\) 0.927783 0.0342919
\(733\) −2.35950 −0.0871502 −0.0435751 0.999050i \(-0.513875\pi\)
−0.0435751 + 0.999050i \(0.513875\pi\)
\(734\) −50.3699 −1.85919
\(735\) 29.9935 1.10633
\(736\) 0.563036 0.0207538
\(737\) 2.30646 0.0849595
\(738\) 80.0411 2.94635
\(739\) −30.3769 −1.11743 −0.558716 0.829359i \(-0.688706\pi\)
−0.558716 + 0.829359i \(0.688706\pi\)
\(740\) −0.0954993 −0.00351063
\(741\) 0 0
\(742\) 44.6257 1.63826
\(743\) 31.7192 1.16366 0.581832 0.813309i \(-0.302336\pi\)
0.581832 + 0.813309i \(0.302336\pi\)
\(744\) 44.2926 1.62385
\(745\) −27.5243 −1.00841
\(746\) 30.6787 1.12323
\(747\) −74.4631 −2.72446
\(748\) −0.0908847 −0.00332307
\(749\) 17.6236 0.643952
\(750\) 42.8725 1.56548
\(751\) −14.1710 −0.517108 −0.258554 0.965997i \(-0.583246\pi\)
−0.258554 + 0.965997i \(0.583246\pi\)
\(752\) 15.0020 0.547066
\(753\) −2.75815 −0.100512
\(754\) −17.2018 −0.626453
\(755\) −8.19595 −0.298281
\(756\) −0.943923 −0.0343301
\(757\) −24.3944 −0.886628 −0.443314 0.896366i \(-0.646197\pi\)
−0.443314 + 0.896366i \(0.646197\pi\)
\(758\) 25.2446 0.916924
\(759\) −9.03768 −0.328047
\(760\) 0 0
\(761\) 39.7159 1.43970 0.719851 0.694129i \(-0.244210\pi\)
0.719851 + 0.694129i \(0.244210\pi\)
\(762\) 36.4223 1.31944
\(763\) −3.45204 −0.124972
\(764\) 0.547799 0.0198187
\(765\) 19.3069 0.698041
\(766\) 38.3780 1.38665
\(767\) 41.7881 1.50888
\(768\) −2.26162 −0.0816091
\(769\) −1.90327 −0.0686337 −0.0343169 0.999411i \(-0.510926\pi\)
−0.0343169 + 0.999411i \(0.510926\pi\)
\(770\) −6.76281 −0.243715
\(771\) 61.5562 2.21689
\(772\) −0.752865 −0.0270962
\(773\) 30.1296 1.08369 0.541843 0.840479i \(-0.317727\pi\)
0.541843 + 0.840479i \(0.317727\pi\)
\(774\) −61.7143 −2.21827
\(775\) −18.5008 −0.664569
\(776\) −20.6886 −0.742678
\(777\) 27.5631 0.988820
\(778\) 10.4989 0.376404
\(779\) 0 0
\(780\) −0.623769 −0.0223345
\(781\) 9.18711 0.328741
\(782\) 12.2240 0.437131
\(783\) 17.0770 0.610283
\(784\) −32.7566 −1.16988
\(785\) −12.7823 −0.456221
\(786\) −13.2268 −0.471784
\(787\) 0.630871 0.0224881 0.0112441 0.999937i \(-0.496421\pi\)
0.0112441 + 0.999937i \(0.496421\pi\)
\(788\) −0.0506488 −0.00180429
\(789\) 9.42149 0.335414
\(790\) 14.9066 0.530352
\(791\) 26.8332 0.954080
\(792\) 15.8446 0.563014
\(793\) −52.8927 −1.87827
\(794\) −32.4033 −1.14995
\(795\) −29.2759 −1.03831
\(796\) −0.387546 −0.0137362
\(797\) 23.7794 0.842310 0.421155 0.906989i \(-0.361625\pi\)
0.421155 + 0.906989i \(0.361625\pi\)
\(798\) 0 0
\(799\) −10.7551 −0.380488
\(800\) 0.634852 0.0224454
\(801\) −57.5152 −2.03220
\(802\) −9.28715 −0.327941
\(803\) −10.1223 −0.357207
\(804\) −0.217404 −0.00766723
\(805\) −14.8939 −0.524941
\(806\) −40.0353 −1.41018
\(807\) 1.75422 0.0617516
\(808\) −42.1256 −1.48197
\(809\) 5.05779 0.177822 0.0889112 0.996040i \(-0.471661\pi\)
0.0889112 + 0.996040i \(0.471661\pi\)
\(810\) −9.01374 −0.316711
\(811\) 4.91387 0.172549 0.0862746 0.996271i \(-0.472504\pi\)
0.0862746 + 0.996271i \(0.472504\pi\)
\(812\) −0.287843 −0.0101013
\(813\) −2.10851 −0.0739486
\(814\) −3.37615 −0.118334
\(815\) −6.35017 −0.222437
\(816\) −32.4666 −1.13656
\(817\) 0 0
\(818\) −29.3874 −1.02751
\(819\) 116.923 4.08561
\(820\) 0.407351 0.0142253
\(821\) 11.3250 0.395244 0.197622 0.980278i \(-0.436678\pi\)
0.197622 + 0.980278i \(0.436678\pi\)
\(822\) 68.6507 2.39447
\(823\) 29.7292 1.03630 0.518148 0.855291i \(-0.326622\pi\)
0.518148 + 0.855291i \(0.326622\pi\)
\(824\) −42.8247 −1.49187
\(825\) −10.1904 −0.354786
\(826\) −42.7048 −1.48589
\(827\) −43.9845 −1.52949 −0.764746 0.644332i \(-0.777135\pi\)
−0.764746 + 0.644332i \(0.777135\pi\)
\(828\) 0.553256 0.0192270
\(829\) 18.7590 0.651528 0.325764 0.945451i \(-0.394379\pi\)
0.325764 + 0.945451i \(0.394379\pi\)
\(830\) 23.1441 0.803342
\(831\) 56.8613 1.97250
\(832\) 43.6594 1.51362
\(833\) 23.4836 0.813657
\(834\) 45.5826 1.57840
\(835\) 8.21017 0.284125
\(836\) 0 0
\(837\) 39.7449 1.37378
\(838\) 9.69768 0.335001
\(839\) −16.9384 −0.584779 −0.292390 0.956299i \(-0.594450\pi\)
−0.292390 + 0.956299i \(0.594450\pi\)
\(840\) 40.2055 1.38722
\(841\) −23.7925 −0.820430
\(842\) −15.5005 −0.534183
\(843\) −27.6286 −0.951580
\(844\) −0.0702573 −0.00241836
\(845\) 19.5515 0.672592
\(846\) 29.7281 1.02207
\(847\) 3.91477 0.134513
\(848\) 31.9729 1.09795
\(849\) −40.9990 −1.40708
\(850\) 13.7832 0.472761
\(851\) −7.43539 −0.254882
\(852\) −0.865965 −0.0296675
\(853\) −41.5873 −1.42392 −0.711961 0.702219i \(-0.752193\pi\)
−0.711961 + 0.702219i \(0.752193\pi\)
\(854\) 54.0530 1.84966
\(855\) 0 0
\(856\) 12.8336 0.438642
\(857\) 36.1838 1.23601 0.618007 0.786172i \(-0.287940\pi\)
0.618007 + 0.786172i \(0.287940\pi\)
\(858\) −22.0519 −0.752839
\(859\) 23.2464 0.793157 0.396578 0.918001i \(-0.370198\pi\)
0.396578 + 0.918001i \(0.370198\pi\)
\(860\) −0.314081 −0.0107101
\(861\) −117.570 −4.00677
\(862\) 7.33374 0.249788
\(863\) −10.9135 −0.371500 −0.185750 0.982597i \(-0.559471\pi\)
−0.185750 + 0.982597i \(0.559471\pi\)
\(864\) −1.36384 −0.0463987
\(865\) 12.7630 0.433955
\(866\) −43.0784 −1.46386
\(867\) −26.4564 −0.898507
\(868\) −0.669924 −0.0227387
\(869\) −8.62894 −0.292717
\(870\) −11.5325 −0.390989
\(871\) 12.3941 0.419959
\(872\) −2.51379 −0.0851276
\(873\) −40.3362 −1.36517
\(874\) 0 0
\(875\) −40.8988 −1.38263
\(876\) 0.954112 0.0322365
\(877\) −28.8304 −0.973534 −0.486767 0.873532i \(-0.661824\pi\)
−0.486767 + 0.873532i \(0.661824\pi\)
\(878\) −35.8792 −1.21086
\(879\) −48.7688 −1.64493
\(880\) −4.84534 −0.163336
\(881\) 53.7267 1.81010 0.905049 0.425307i \(-0.139834\pi\)
0.905049 + 0.425307i \(0.139834\pi\)
\(882\) −64.9109 −2.18566
\(883\) 30.1116 1.01334 0.506669 0.862141i \(-0.330877\pi\)
0.506669 + 0.862141i \(0.330877\pi\)
\(884\) −0.488384 −0.0164261
\(885\) 28.0158 0.941739
\(886\) −54.6472 −1.83591
\(887\) −4.34515 −0.145896 −0.0729479 0.997336i \(-0.523241\pi\)
−0.0729479 + 0.997336i \(0.523241\pi\)
\(888\) 20.0715 0.673556
\(889\) −34.7455 −1.16533
\(890\) 17.8764 0.599219
\(891\) 5.21776 0.174802
\(892\) −0.611860 −0.0204866
\(893\) 0 0
\(894\) 91.7190 3.06754
\(895\) 17.3166 0.578830
\(896\) −43.1902 −1.44288
\(897\) −48.5654 −1.62155
\(898\) −33.2625 −1.10998
\(899\) 12.1199 0.404223
\(900\) 0.623824 0.0207941
\(901\) −22.9217 −0.763633
\(902\) 14.4009 0.479498
\(903\) 90.6502 3.01665
\(904\) 19.5400 0.649892
\(905\) 16.7803 0.557795
\(906\) 27.3113 0.907357
\(907\) −16.0197 −0.531926 −0.265963 0.963983i \(-0.585690\pi\)
−0.265963 + 0.963983i \(0.585690\pi\)
\(908\) 0.254060 0.00843129
\(909\) −82.1315 −2.72413
\(910\) −36.3411 −1.20469
\(911\) 36.9160 1.22308 0.611540 0.791213i \(-0.290550\pi\)
0.611540 + 0.791213i \(0.290550\pi\)
\(912\) 0 0
\(913\) −13.3973 −0.443387
\(914\) −57.9421 −1.91655
\(915\) −35.4605 −1.17229
\(916\) −0.587918 −0.0194254
\(917\) 12.6178 0.416678
\(918\) −29.6102 −0.977282
\(919\) 20.0040 0.659872 0.329936 0.944003i \(-0.392973\pi\)
0.329936 + 0.944003i \(0.392973\pi\)
\(920\) −10.8458 −0.357575
\(921\) 42.6391 1.40501
\(922\) −0.765888 −0.0252232
\(923\) 49.3684 1.62498
\(924\) −0.369001 −0.0121392
\(925\) −8.38378 −0.275657
\(926\) 4.95077 0.162692
\(927\) −83.4944 −2.74232
\(928\) −0.415893 −0.0136524
\(929\) −37.1159 −1.21773 −0.608867 0.793273i \(-0.708375\pi\)
−0.608867 + 0.793273i \(0.708375\pi\)
\(930\) −26.8407 −0.880140
\(931\) 0 0
\(932\) 0.257614 0.00843842
\(933\) 32.3265 1.05832
\(934\) −9.43513 −0.308727
\(935\) 3.47368 0.113601
\(936\) 85.1435 2.78300
\(937\) 26.7942 0.875328 0.437664 0.899138i \(-0.355806\pi\)
0.437664 + 0.899138i \(0.355806\pi\)
\(938\) −12.6660 −0.413560
\(939\) 4.97340 0.162301
\(940\) 0.151295 0.00493469
\(941\) −42.4832 −1.38491 −0.692457 0.721459i \(-0.743472\pi\)
−0.692457 + 0.721459i \(0.743472\pi\)
\(942\) 42.5945 1.38780
\(943\) 31.7155 1.03280
\(944\) −30.5967 −0.995837
\(945\) 36.0774 1.17360
\(946\) −11.1036 −0.361009
\(947\) 15.3699 0.499454 0.249727 0.968316i \(-0.419659\pi\)
0.249727 + 0.968316i \(0.419659\pi\)
\(948\) 0.813352 0.0264164
\(949\) −54.3937 −1.76569
\(950\) 0 0
\(951\) 13.8593 0.449419
\(952\) 31.4791 1.02024
\(953\) −20.8377 −0.675000 −0.337500 0.941326i \(-0.609581\pi\)
−0.337500 + 0.941326i \(0.609581\pi\)
\(954\) 63.3579 2.05129
\(955\) −20.9373 −0.677514
\(956\) −0.142323 −0.00460307
\(957\) 6.67579 0.215798
\(958\) 22.6504 0.731802
\(959\) −65.4901 −2.11479
\(960\) 29.2703 0.944695
\(961\) −2.79214 −0.0900690
\(962\) −18.1423 −0.584931
\(963\) 25.0213 0.806301
\(964\) −0.507478 −0.0163448
\(965\) 28.7750 0.926301
\(966\) 49.6308 1.59685
\(967\) 19.1383 0.615447 0.307723 0.951476i \(-0.400433\pi\)
0.307723 + 0.951476i \(0.400433\pi\)
\(968\) 2.85075 0.0916266
\(969\) 0 0
\(970\) 12.5370 0.402539
\(971\) −35.3028 −1.13292 −0.566460 0.824089i \(-0.691687\pi\)
−0.566460 + 0.824089i \(0.691687\pi\)
\(972\) 0.231535 0.00742650
\(973\) −43.4841 −1.39404
\(974\) −49.9004 −1.59891
\(975\) −54.7600 −1.75372
\(976\) 38.7273 1.23963
\(977\) −49.5200 −1.58429 −0.792143 0.610336i \(-0.791035\pi\)
−0.792143 + 0.610336i \(0.791035\pi\)
\(978\) 21.1606 0.676642
\(979\) −10.3481 −0.330726
\(980\) −0.330349 −0.0105526
\(981\) −4.90108 −0.156479
\(982\) −10.4536 −0.333588
\(983\) −43.5302 −1.38840 −0.694199 0.719783i \(-0.744241\pi\)
−0.694199 + 0.719783i \(0.744241\pi\)
\(984\) −85.6148 −2.72930
\(985\) 1.93583 0.0616807
\(986\) −9.02944 −0.287556
\(987\) −43.6668 −1.38993
\(988\) 0 0
\(989\) −24.4537 −0.777582
\(990\) −9.60159 −0.305159
\(991\) −17.9848 −0.571306 −0.285653 0.958333i \(-0.592210\pi\)
−0.285653 + 0.958333i \(0.592210\pi\)
\(992\) −0.967947 −0.0307323
\(993\) −12.1858 −0.386704
\(994\) −50.4514 −1.60022
\(995\) 14.8123 0.469582
\(996\) 1.26282 0.0400138
\(997\) 7.98108 0.252763 0.126382 0.991982i \(-0.459664\pi\)
0.126382 + 0.991982i \(0.459664\pi\)
\(998\) −11.2085 −0.354798
\(999\) 18.0107 0.569833
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3971.2.a.t.1.6 21
19.6 even 9 209.2.j.b.188.2 42
19.16 even 9 209.2.j.b.199.2 yes 42
19.18 odd 2 3971.2.a.s.1.16 21
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.2.j.b.188.2 42 19.6 even 9
209.2.j.b.199.2 yes 42 19.16 even 9
3971.2.a.s.1.16 21 19.18 odd 2
3971.2.a.t.1.6 21 1.1 even 1 trivial