Properties

Label 3971.2.a.t
Level 39713971
Weight 22
Character orbit 3971.a
Self dual yes
Analytic conductor 31.70931.709
Analytic rank 00
Dimension 2121
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3971,2,Mod(1,3971)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3971, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3971.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3971=11192 3971 = 11 \cdot 19^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3971.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 31.708594642731.7085946427
Analytic rank: 00
Dimension: 2121
Twist minimal: no (minimal twist has level 209)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 21q+6q2+15q3+18q4+6q56q6+6q7+15q8+18q96q10+21q11+30q12+36q13+12q14+12q15+12q16+21q17+6q18+15q20++18q99+O(q100) 21 q + 6 q^{2} + 15 q^{3} + 18 q^{4} + 6 q^{5} - 6 q^{6} + 6 q^{7} + 15 q^{8} + 18 q^{9} - 6 q^{10} + 21 q^{11} + 30 q^{12} + 36 q^{13} + 12 q^{14} + 12 q^{15} + 12 q^{16} + 21 q^{17} + 6 q^{18} + 15 q^{20}+ \cdots + 18 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 −2.56175 2.84434 4.56256 2.10840 −7.28650 −3.15914 −6.56463 5.09029 −5.40120
1.2 −2.12376 0.453579 2.51036 −0.339819 −0.963294 3.66029 −1.08389 −2.79427 0.721696
1.3 −1.78817 2.91057 1.19754 0.686614 −5.20458 −2.35697 1.43493 5.47140 −1.22778
1.4 −1.68287 0.146409 0.832058 3.02083 −0.246387 −2.73938 1.96550 −2.97856 −5.08367
1.5 −1.68098 1.09464 0.825695 −0.508118 −1.84007 −0.0790567 1.97398 −1.80176 0.854136
1.6 −1.40278 2.92541 −0.0322206 1.23149 −4.10370 3.91477 2.85075 5.55805 −1.72751
1.7 −0.480744 −2.58126 −1.76889 1.32013 1.24092 −3.77419 1.81187 3.66289 −0.634645
1.8 −0.382798 0.191200 −1.85347 −2.09484 −0.0731910 0.573305 1.47510 −2.96344 0.801899
1.9 −0.264769 −2.12939 −1.92990 −3.70704 0.563796 3.17316 1.04051 1.53431 0.981509
1.10 −0.0299525 1.47813 −1.99910 −2.92924 −0.0442738 4.42920 0.119783 −0.815126 0.0877383
1.11 0.0844003 0.666890 −1.99288 2.36299 0.0562858 0.533060 −0.337000 −2.55526 0.199437
1.12 0.874945 −1.41672 −1.23447 1.02010 −1.23955 3.79602 −2.82998 −0.992901 0.892534
1.13 1.07764 1.92290 −0.838690 3.18383 2.07219 −3.17241 −3.05909 0.697526 3.43103
1.14 1.22492 1.35788 −0.499565 −2.26081 1.66330 −4.47757 −3.06177 −1.15617 −2.76932
1.15 1.23754 2.23273 −0.468490 3.48025 2.76309 1.94207 −3.05486 1.98507 4.30695
1.16 1.80744 −1.47121 1.26686 2.08596 −2.65913 −2.59855 −1.32512 −0.835544 3.77026
1.17 2.09359 2.89261 2.38311 −3.61022 6.05593 0.264846 0.802085 5.36718 −7.55832
1.18 2.38505 3.05691 3.68846 −1.11454 7.29087 0.620030 4.02705 6.34468 −2.65824
1.19 2.41158 −1.42647 3.81570 0.442094 −3.44003 3.70721 4.37870 −0.965195 1.06614
1.20 2.53856 1.67696 4.44428 2.98943 4.25705 1.55085 6.20496 −0.187815 7.58884
See all 21 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.21
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
1111 1 -1
1919 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3971.2.a.t 21
19.b odd 2 1 3971.2.a.s 21
19.e even 9 2 209.2.j.b 42
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
209.2.j.b 42 19.e even 9 2
3971.2.a.s 21 19.b odd 2 1
3971.2.a.t 21 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(3971))S_{2}^{\mathrm{new}}(\Gamma_0(3971)):

T2216T22012T219+131T21830T2171149T216+1169T215+1 T_{2}^{21} - 6 T_{2}^{20} - 12 T_{2}^{19} + 131 T_{2}^{18} - 30 T_{2}^{17} - 1149 T_{2}^{16} + 1169 T_{2}^{15} + \cdots - 1 Copy content Toggle raw display
T32115T320+72T319+7T3181185T317+3141T316+856 T_{3}^{21} - 15 T_{3}^{20} + 72 T_{3}^{19} + 7 T_{3}^{18} - 1185 T_{3}^{17} + 3141 T_{3}^{16} + \cdots - 856 Copy content Toggle raw display