Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3971,2,Mod(1,3971)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3971, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3971.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3971 = 11 \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3971.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(31.7085946427\) |
Analytic rank: | \(0\) |
Dimension: | \(21\) |
Twist minimal: | no (minimal twist has level 209) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −2.56175 | 2.84434 | 4.56256 | 2.10840 | −7.28650 | −3.15914 | −6.56463 | 5.09029 | −5.40120 | ||||||||||||||||||
1.2 | −2.12376 | 0.453579 | 2.51036 | −0.339819 | −0.963294 | 3.66029 | −1.08389 | −2.79427 | 0.721696 | ||||||||||||||||||
1.3 | −1.78817 | 2.91057 | 1.19754 | 0.686614 | −5.20458 | −2.35697 | 1.43493 | 5.47140 | −1.22778 | ||||||||||||||||||
1.4 | −1.68287 | 0.146409 | 0.832058 | 3.02083 | −0.246387 | −2.73938 | 1.96550 | −2.97856 | −5.08367 | ||||||||||||||||||
1.5 | −1.68098 | 1.09464 | 0.825695 | −0.508118 | −1.84007 | −0.0790567 | 1.97398 | −1.80176 | 0.854136 | ||||||||||||||||||
1.6 | −1.40278 | 2.92541 | −0.0322206 | 1.23149 | −4.10370 | 3.91477 | 2.85075 | 5.55805 | −1.72751 | ||||||||||||||||||
1.7 | −0.480744 | −2.58126 | −1.76889 | 1.32013 | 1.24092 | −3.77419 | 1.81187 | 3.66289 | −0.634645 | ||||||||||||||||||
1.8 | −0.382798 | 0.191200 | −1.85347 | −2.09484 | −0.0731910 | 0.573305 | 1.47510 | −2.96344 | 0.801899 | ||||||||||||||||||
1.9 | −0.264769 | −2.12939 | −1.92990 | −3.70704 | 0.563796 | 3.17316 | 1.04051 | 1.53431 | 0.981509 | ||||||||||||||||||
1.10 | −0.0299525 | 1.47813 | −1.99910 | −2.92924 | −0.0442738 | 4.42920 | 0.119783 | −0.815126 | 0.0877383 | ||||||||||||||||||
1.11 | 0.0844003 | 0.666890 | −1.99288 | 2.36299 | 0.0562858 | 0.533060 | −0.337000 | −2.55526 | 0.199437 | ||||||||||||||||||
1.12 | 0.874945 | −1.41672 | −1.23447 | 1.02010 | −1.23955 | 3.79602 | −2.82998 | −0.992901 | 0.892534 | ||||||||||||||||||
1.13 | 1.07764 | 1.92290 | −0.838690 | 3.18383 | 2.07219 | −3.17241 | −3.05909 | 0.697526 | 3.43103 | ||||||||||||||||||
1.14 | 1.22492 | 1.35788 | −0.499565 | −2.26081 | 1.66330 | −4.47757 | −3.06177 | −1.15617 | −2.76932 | ||||||||||||||||||
1.15 | 1.23754 | 2.23273 | −0.468490 | 3.48025 | 2.76309 | 1.94207 | −3.05486 | 1.98507 | 4.30695 | ||||||||||||||||||
1.16 | 1.80744 | −1.47121 | 1.26686 | 2.08596 | −2.65913 | −2.59855 | −1.32512 | −0.835544 | 3.77026 | ||||||||||||||||||
1.17 | 2.09359 | 2.89261 | 2.38311 | −3.61022 | 6.05593 | 0.264846 | 0.802085 | 5.36718 | −7.55832 | ||||||||||||||||||
1.18 | 2.38505 | 3.05691 | 3.68846 | −1.11454 | 7.29087 | 0.620030 | 4.02705 | 6.34468 | −2.65824 | ||||||||||||||||||
1.19 | 2.41158 | −1.42647 | 3.81570 | 0.442094 | −3.44003 | 3.70721 | 4.37870 | −0.965195 | 1.06614 | ||||||||||||||||||
1.20 | 2.53856 | 1.67696 | 4.44428 | 2.98943 | 4.25705 | 1.55085 | 6.20496 | −0.187815 | 7.58884 | ||||||||||||||||||
See all 21 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(11\) | \( -1 \) |
\(19\) | \( +1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3971.2.a.t | 21 | |
19.b | odd | 2 | 1 | 3971.2.a.s | 21 | ||
19.e | even | 9 | 2 | 209.2.j.b | ✓ | 42 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
209.2.j.b | ✓ | 42 | 19.e | even | 9 | 2 | |
3971.2.a.s | 21 | 19.b | odd | 2 | 1 | ||
3971.2.a.t | 21 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3971))\):
\( T_{2}^{21} - 6 T_{2}^{20} - 12 T_{2}^{19} + 131 T_{2}^{18} - 30 T_{2}^{17} - 1149 T_{2}^{16} + 1169 T_{2}^{15} + \cdots - 1 \) |
\( T_{3}^{21} - 15 T_{3}^{20} + 72 T_{3}^{19} + 7 T_{3}^{18} - 1185 T_{3}^{17} + 3141 T_{3}^{16} + \cdots - 856 \) |