Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [400,6,Mod(1,400)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(400, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("400.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 400.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 4.4.1595208.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 40) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | −24.1383 | 0 | 0 | 0 | 179.876 | 0 | 339.657 | 0 | ||||||||||||||||||||||||||||||
1.2 | 0 | −5.49000 | 0 | 0 | 0 | −188.968 | 0 | −212.860 | 0 | |||||||||||||||||||||||||||||||
1.3 | 0 | 4.69449 | 0 | 0 | 0 | 10.2635 | 0 | −220.962 | 0 | |||||||||||||||||||||||||||||||
1.4 | 0 | 28.9338 | 0 | 0 | 0 | 146.828 | 0 | 594.165 | 0 | |||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 400.6.a.ba | 4 | |
4.b | odd | 2 | 1 | 200.6.a.j | 4 | ||
5.b | even | 2 | 1 | 400.6.a.z | 4 | ||
5.c | odd | 4 | 2 | 80.6.c.d | 8 | ||
15.e | even | 4 | 2 | 720.6.f.n | 8 | ||
20.d | odd | 2 | 1 | 200.6.a.k | 4 | ||
20.e | even | 4 | 2 | 40.6.c.a | ✓ | 8 | |
40.i | odd | 4 | 2 | 320.6.c.i | 8 | ||
40.k | even | 4 | 2 | 320.6.c.j | 8 | ||
60.l | odd | 4 | 2 | 360.6.f.b | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
40.6.c.a | ✓ | 8 | 20.e | even | 4 | 2 | |
80.6.c.d | 8 | 5.c | odd | 4 | 2 | ||
200.6.a.j | 4 | 4.b | odd | 2 | 1 | ||
200.6.a.k | 4 | 20.d | odd | 2 | 1 | ||
320.6.c.i | 8 | 40.i | odd | 4 | 2 | ||
320.6.c.j | 8 | 40.k | even | 4 | 2 | ||
360.6.f.b | 8 | 60.l | odd | 4 | 2 | ||
400.6.a.z | 4 | 5.b | even | 2 | 1 | ||
400.6.a.ba | 4 | 1.a | even | 1 | 1 | trivial | |
720.6.f.n | 8 | 15.e | even | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .