gp: [N,k,chi] = [400,6,Mod(1,400)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(400, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 6, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("400.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,-4,0,0,0,-148,0,500]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − x 3 − 20 x 2 + 33 x − 3 x^{4} - x^{3} - 20x^{2} + 33x - 3 x 4 − x 3 − 2 0 x 2 + 3 3 x − 3
x^4 - x^3 - 20*x^2 + 33*x - 3
:
β 1 \beta_{1} β 1 = = =
− 2 ν 3 + 40 ν − 29 -2\nu^{3} + 40\nu - 29 − 2 ν 3 + 4 0 ν − 2 9
-2*v^3 + 40*v - 29
β 2 \beta_{2} β 2 = = =
( 22 ν 3 + 40 ν 2 − 240 ν − 141 ) / 3 ( 22\nu^{3} + 40\nu^{2} - 240\nu - 141 ) / 3 ( 2 2 ν 3 + 4 0 ν 2 − 2 4 0 ν − 1 4 1 ) / 3
(22*v^3 + 40*v^2 - 240*v - 141) / 3
β 3 \beta_{3} β 3 = = =
( − 8 ν 3 + 40 ν 2 + 120 ν − 516 ) / 3 ( -8\nu^{3} + 40\nu^{2} + 120\nu - 516 ) / 3 ( − 8 ν 3 + 4 0 ν 2 + 1 2 0 ν − 5 1 6 ) / 3
(-8*v^3 + 40*v^2 + 120*v - 516) / 3
ν \nu ν = = =
( − β 3 + β 2 + 5 β 1 + 20 ) / 80 ( -\beta_{3} + \beta_{2} + 5\beta _1 + 20 ) / 80 ( − β 3 + β 2 + 5 β 1 + 2 0 ) / 8 0
(-b3 + b2 + 5*b1 + 20) / 80
ν 2 \nu^{2} ν 2 = = =
( 5 β 3 + β 2 − 3 β 1 + 820 ) / 80 ( 5\beta_{3} + \beta_{2} - 3\beta _1 + 820 ) / 80 ( 5 β 3 + β 2 − 3 β 1 + 8 2 0 ) / 8 0
(5*b3 + b2 - 3*b1 + 820) / 80
ν 3 \nu^{3} ν 3 = = =
( − β 3 + β 2 + 3 β 1 − 38 ) / 4 ( -\beta_{3} + \beta_{2} + 3\beta _1 - 38 ) / 4 ( − β 3 + β 2 + 3 β 1 − 3 8 ) / 4
(-b3 + b2 + 3*b1 - 38) / 4
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
5 5 5
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 4 + 4 T 3 3 − 728 T 3 2 + 432 T 3 + 18000 T_{3}^{4} + 4T_{3}^{3} - 728T_{3}^{2} + 432T_{3} + 18000 T 3 4 + 4 T 3 3 − 7 2 8 T 3 2 + 4 3 2 T 3 + 1 8 0 0 0
T3^4 + 4*T3^3 - 728*T3^2 + 432*T3 + 18000
acting on S 6 n e w ( Γ 0 ( 400 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(400)) S 6 n e w ( Γ 0 ( 4 0 0 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
T 4 + 4 T 3 + ⋯ + 18000 T^{4} + 4 T^{3} + \cdots + 18000 T 4 + 4 T 3 + ⋯ + 1 8 0 0 0
T^4 + 4*T^3 - 728*T^2 + 432*T + 18000
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
T 4 + 148 T 3 + ⋯ − 51222832 T^{4} + 148 T^{3} + \cdots - 51222832 T 4 + 1 4 8 T 3 + ⋯ − 5 1 2 2 2 8 3 2
T^4 + 148*T^3 - 33912*T^2 - 5353360*T - 51222832
11 11 1 1
T 4 + ⋯ + 37397137664 T^{4} + \cdots + 37397137664 T 4 + ⋯ + 3 7 3 9 7 1 3 7 6 6 4
T^4 - 368*T^3 - 468000*T^2 + 126641408*T + 37397137664
13 13 1 3
T 4 + ⋯ + 10683053312 T^{4} + \cdots + 10683053312 T 4 + ⋯ + 1 0 6 8 3 0 5 3 3 1 2
T^4 - 440*T^3 - 599136*T^2 - 74346112*T + 10683053312
17 17 1 7
T 4 + ⋯ + 22118400000 T^{4} + \cdots + 22118400000 T 4 + ⋯ + 2 2 1 1 8 4 0 0 0 0 0
T^4 + 672*T^3 - 2323200*T^2 + 678297600*T + 22118400000
19 19 1 9
T 4 + ⋯ + 1042985883904 T^{4} + \cdots + 1042985883904 T 4 + ⋯ + 1 0 4 2 9 8 5 8 8 3 9 0 4
T^4 - 688*T^3 - 4596000*T^2 - 947468032*T + 1042985883904
23 23 2 3
T 4 + ⋯ − 5643370924592 T^{4} + \cdots - 5643370924592 T 4 + ⋯ − 5 6 4 3 3 7 0 9 2 4 5 9 2
T^4 + 4492*T^3 + 1681608*T^2 - 7543501040*T - 5643370924592
29 29 2 9
T 4 + ⋯ − 97147517576176 T^{4} + \cdots - 97147517576176 T 4 + ⋯ − 9 7 1 4 7 5 1 7 5 7 6 1 7 6
T^4 + 2936*T^3 - 23418600*T^2 - 102710226464*T - 97147517576176
31 31 3 1
T 4 + ⋯ + 244229603328000 T^{4} + \cdots + 244229603328000 T 4 + ⋯ + 2 4 4 2 2 9 6 0 3 3 2 8 0 0 0
T^4 + 2112*T^3 - 34329600*T^2 - 18314035200*T + 244229603328000
37 37 3 7
T 4 + ⋯ − 16 ⋯ 36 T^{4} + \cdots - 16\!\cdots\!36 T 4 + ⋯ − 1 6 ⋯ 3 6
T^4 - 8792*T^3 - 112838880*T^2 + 1175662197632*T - 1678428346606336
41 41 4 1
T 4 + ⋯ − 296811236945008 T^{4} + \cdots - 296811236945008 T 4 + ⋯ − 2 9 6 8 1 1 2 3 6 9 4 5 0 0 8
T^4 - 11800*T^3 - 125515464*T^2 + 1158289390624*T - 296811236945008
43 43 4 3
T 4 + ⋯ − 74 ⋯ 72 T^{4} + \cdots - 74\!\cdots\!72 T 4 + ⋯ − 7 4 ⋯ 7 2
T^4 + 48276*T^3 + 718858152*T^2 + 2811703952880*T - 7418615241277872
47 47 4 7
T 4 + ⋯ + 11 ⋯ 96 T^{4} + \cdots + 11\!\cdots\!96 T 4 + ⋯ + 1 1 ⋯ 9 6
T^4 + 14724*T^3 - 327305784*T^2 - 2375278166736*T + 11549492655826896
53 53 5 3
T 4 + ⋯ + 11 ⋯ 76 T^{4} + \cdots + 11\!\cdots\!76 T 4 + ⋯ + 1 1 ⋯ 7 6
T^4 - 84296*T^3 + 2471818656*T^2 - 29314195239296*T + 117733297666053376
59 59 5 9
T 4 + ⋯ − 11 ⋯ 48 T^{4} + \cdots - 11\!\cdots\!48 T 4 + ⋯ − 1 1 ⋯ 4 8
T^4 - 45840*T^3 + 204589536*T^2 + 3595104117504*T - 11122897833416448
61 61 6 1
T 4 + ⋯ + 31 ⋯ 00 T^{4} + \cdots + 31\!\cdots\!00 T 4 + ⋯ + 3 1 ⋯ 0 0
T^4 - 61928*T^3 + 524629560*T^2 + 11624772421600*T + 31896100546906000
67 67 6 7
T 4 + ⋯ + 71 ⋯ 32 T^{4} + \cdots + 71\!\cdots\!32 T 4 + ⋯ + 7 1 ⋯ 3 2
T^4 + 72700*T^3 + 1883104104*T^2 + 20158765938512*T + 71865220992337232
71 71 7 1
T 4 + ⋯ + 25 ⋯ 00 T^{4} + \cdots + 25\!\cdots\!00 T 4 + ⋯ + 2 5 ⋯ 0 0
T^4 - 62816*T^3 - 3818130048*T^2 + 155979328612352*T + 2599399853623808000
73 73 7 3
T 4 + ⋯ − 15 ⋯ 32 T^{4} + \cdots - 15\!\cdots\!32 T 4 + ⋯ − 1 5 ⋯ 3 2
T^4 - 133072*T^3 + 5132131968*T^2 - 18775878179840*T - 1503282909430853632
79 79 7 9
T 4 + ⋯ − 96 ⋯ 00 T^{4} + \cdots - 96\!\cdots\!00 T 4 + ⋯ − 9 6 ⋯ 0 0
T^4 - 21632*T^3 - 5155348992*T^2 - 132927966838784*T - 961157665139916800
83 83 8 3
T 4 + ⋯ + 25 ⋯ 52 T^{4} + \cdots + 25\!\cdots\!52 T 4 + ⋯ + 2 5 ⋯ 5 2
T^4 + 74660*T^3 - 9589155864*T^2 - 327499484863696*T + 25322368900512073552
89 89 8 9
T 4 + ⋯ − 93 ⋯ 76 T^{4} + \cdots - 93\!\cdots\!76 T 4 + ⋯ − 9 3 ⋯ 7 6
T^4 - 20952*T^3 - 6218073000*T^2 - 146924355735648*T - 934147741563457776
97 97 9 7
T 4 + ⋯ − 14 ⋯ 84 T^{4} + \cdots - 14\!\cdots\!84 T 4 + ⋯ − 1 4 ⋯ 8 4
T^4 - 59456*T^3 - 9949895424*T^2 + 847593856385024*T - 14794835008591888384
show more
show less