Properties

Label 400.6.a.z
Level $400$
Weight $6$
Character orbit 400.a
Self dual yes
Analytic conductor $64.154$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,6,Mod(1,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.1535279252\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.1595208.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 20x^{2} + 33x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 1) q^{3} + (\beta_{3} - \beta_1 - 37) q^{7} + ( - 2 \beta_{3} - \beta_{2} + \cdots + 125) q^{9} + ( - 2 \beta_{2} - 18 \beta_1 + 92) q^{11} + (3 \beta_{3} - 2 \beta_{2} + 110) q^{13}+ \cdots + ( - 504 \beta_{3} + 426 \beta_{2} + \cdots + 33356) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 148 q^{7} + 500 q^{9} + 368 q^{11} + 440 q^{13} - 672 q^{17} + 688 q^{19} + 992 q^{21} - 4492 q^{23} - 8152 q^{27} - 2936 q^{29} - 2112 q^{31} + 26864 q^{33} + 8792 q^{37} - 1504 q^{39}+ \cdots + 133424 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 20x^{2} + 33x - 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( -2\nu^{3} + 40\nu - 29 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 22\nu^{3} + 40\nu^{2} - 240\nu - 141 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -8\nu^{3} + 40\nu^{2} + 120\nu - 516 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{3} + \beta_{2} + 5\beta _1 + 20 ) / 80 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 5\beta_{3} + \beta_{2} - 3\beta _1 + 820 ) / 80 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{3} + \beta_{2} + 3\beta _1 - 38 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.64654
3.98753
−4.73066
0.0965878
0 −28.9338 0 0 0 −146.828 0 594.165 0
1.2 0 −4.69449 0 0 0 −10.2635 0 −220.962 0
1.3 0 5.49000 0 0 0 188.968 0 −212.860 0
1.4 0 24.1383 0 0 0 −179.876 0 339.657 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.6.a.z 4
4.b odd 2 1 200.6.a.k 4
5.b even 2 1 400.6.a.ba 4
5.c odd 4 2 80.6.c.d 8
15.e even 4 2 720.6.f.n 8
20.d odd 2 1 200.6.a.j 4
20.e even 4 2 40.6.c.a 8
40.i odd 4 2 320.6.c.i 8
40.k even 4 2 320.6.c.j 8
60.l odd 4 2 360.6.f.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.6.c.a 8 20.e even 4 2
80.6.c.d 8 5.c odd 4 2
200.6.a.j 4 20.d odd 2 1
200.6.a.k 4 4.b odd 2 1
320.6.c.i 8 40.i odd 4 2
320.6.c.j 8 40.k even 4 2
360.6.f.b 8 60.l odd 4 2
400.6.a.z 4 1.a even 1 1 trivial
400.6.a.ba 4 5.b even 2 1
720.6.f.n 8 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 4T_{3}^{3} - 728T_{3}^{2} + 432T_{3} + 18000 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(400))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 4 T^{3} + \cdots + 18000 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 148 T^{3} + \cdots - 51222832 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 37397137664 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 10683053312 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 22118400000 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 1042985883904 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots - 5643370924592 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 97147517576176 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 244229603328000 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 16\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 296811236945008 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 74\!\cdots\!72 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 11\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 11\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 11\!\cdots\!48 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 31\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 71\!\cdots\!32 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 15\!\cdots\!32 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 96\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 25\!\cdots\!52 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 93\!\cdots\!76 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 14\!\cdots\!84 \) Copy content Toggle raw display
show more
show less