Properties

Label 400.6.n.h.207.4
Level $400$
Weight $6$
Character 400.207
Analytic conductor $64.154$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,6,Mod(143,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.143");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 400.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.1535279252\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 207.4
Character \(\chi\) \(=\) 400.207
Dual form 400.6.n.h.143.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-13.2732 - 13.2732i) q^{3} +(25.6490 - 25.6490i) q^{7} +109.358i q^{9} +16.4579i q^{11} +(212.988 - 212.988i) q^{13} +(642.159 + 642.159i) q^{17} -1286.91 q^{19} -680.891 q^{21} +(562.518 + 562.518i) q^{23} +(-1773.86 + 1773.86i) q^{27} +6977.71i q^{29} -5017.46i q^{31} +(218.449 - 218.449i) q^{33} +(10553.8 + 10553.8i) q^{37} -5654.09 q^{39} -10982.2 q^{41} +(5190.60 + 5190.60i) q^{43} +(42.6550 - 42.6550i) q^{47} +15491.3i q^{49} -17047.1i q^{51} +(-1518.50 + 1518.50i) q^{53} +(17081.5 + 17081.5i) q^{57} -28156.2 q^{59} +15802.2 q^{61} +(2804.92 + 2804.92i) q^{63} +(27461.7 - 27461.7i) q^{67} -14932.9i q^{69} -45708.4i q^{71} +(-5310.40 + 5310.40i) q^{73} +(422.128 + 422.128i) q^{77} +45332.5 q^{79} +73663.8 q^{81} +(66159.8 + 66159.8i) q^{83} +(92616.8 - 92616.8i) q^{87} -79364.6i q^{89} -10925.9i q^{91} +(-66598.0 + 66598.0i) q^{93} +(-22001.3 - 22001.3i) q^{97} -1799.80 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 19936 q^{21} + 32568 q^{41} + 454944 q^{61} + 1059176 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −13.2732 13.2732i −0.851479 0.851479i 0.138836 0.990315i \(-0.455664\pi\)
−0.990315 + 0.138836i \(0.955664\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 25.6490 25.6490i 0.197845 0.197845i −0.601231 0.799076i \(-0.705323\pi\)
0.799076 + 0.601231i \(0.205323\pi\)
\(8\) 0 0
\(9\) 109.358i 0.450033i
\(10\) 0 0
\(11\) 16.4579i 0.0410102i 0.999790 + 0.0205051i \(0.00652743\pi\)
−0.999790 + 0.0205051i \(0.993473\pi\)
\(12\) 0 0
\(13\) 212.988 212.988i 0.349540 0.349540i −0.510398 0.859938i \(-0.670502\pi\)
0.859938 + 0.510398i \(0.170502\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 642.159 + 642.159i 0.538915 + 0.538915i 0.923210 0.384295i \(-0.125556\pi\)
−0.384295 + 0.923210i \(0.625556\pi\)
\(18\) 0 0
\(19\) −1286.91 −0.817834 −0.408917 0.912572i \(-0.634094\pi\)
−0.408917 + 0.912572i \(0.634094\pi\)
\(20\) 0 0
\(21\) −680.891 −0.336922
\(22\) 0 0
\(23\) 562.518 + 562.518i 0.221726 + 0.221726i 0.809225 0.587499i \(-0.199887\pi\)
−0.587499 + 0.809225i \(0.699887\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −1773.86 + 1773.86i −0.468286 + 0.468286i
\(28\) 0 0
\(29\) 6977.71i 1.54070i 0.637622 + 0.770349i \(0.279918\pi\)
−0.637622 + 0.770349i \(0.720082\pi\)
\(30\) 0 0
\(31\) 5017.46i 0.937734i −0.883269 0.468867i \(-0.844662\pi\)
0.883269 0.468867i \(-0.155338\pi\)
\(32\) 0 0
\(33\) 218.449 218.449i 0.0349193 0.0349193i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10553.8 + 10553.8i 1.26737 + 1.26737i 0.947440 + 0.319932i \(0.103660\pi\)
0.319932 + 0.947440i \(0.396340\pi\)
\(38\) 0 0
\(39\) −5654.09 −0.595253
\(40\) 0 0
\(41\) −10982.2 −1.02030 −0.510150 0.860085i \(-0.670410\pi\)
−0.510150 + 0.860085i \(0.670410\pi\)
\(42\) 0 0
\(43\) 5190.60 + 5190.60i 0.428101 + 0.428101i 0.887981 0.459880i \(-0.152108\pi\)
−0.459880 + 0.887981i \(0.652108\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 42.6550 42.6550i 0.00281660 0.00281660i −0.705697 0.708514i \(-0.749366\pi\)
0.708514 + 0.705697i \(0.249366\pi\)
\(48\) 0 0
\(49\) 15491.3i 0.921715i
\(50\) 0 0
\(51\) 17047.1i 0.917749i
\(52\) 0 0
\(53\) −1518.50 + 1518.50i −0.0742548 + 0.0742548i −0.743259 0.669004i \(-0.766721\pi\)
0.669004 + 0.743259i \(0.266721\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 17081.5 + 17081.5i 0.696369 + 0.696369i
\(58\) 0 0
\(59\) −28156.2 −1.05304 −0.526520 0.850163i \(-0.676503\pi\)
−0.526520 + 0.850163i \(0.676503\pi\)
\(60\) 0 0
\(61\) 15802.2 0.543741 0.271870 0.962334i \(-0.412358\pi\)
0.271870 + 0.962334i \(0.412358\pi\)
\(62\) 0 0
\(63\) 2804.92 + 2804.92i 0.0890368 + 0.0890368i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 27461.7 27461.7i 0.747379 0.747379i −0.226607 0.973986i \(-0.572763\pi\)
0.973986 + 0.226607i \(0.0727634\pi\)
\(68\) 0 0
\(69\) 14932.9i 0.377590i
\(70\) 0 0
\(71\) 45708.4i 1.07609i −0.842915 0.538047i \(-0.819162\pi\)
0.842915 0.538047i \(-0.180838\pi\)
\(72\) 0 0
\(73\) −5310.40 + 5310.40i −0.116633 + 0.116633i −0.763014 0.646382i \(-0.776281\pi\)
0.646382 + 0.763014i \(0.276281\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 422.128 + 422.128i 0.00811366 + 0.00811366i
\(78\) 0 0
\(79\) 45332.5 0.817225 0.408613 0.912708i \(-0.366013\pi\)
0.408613 + 0.912708i \(0.366013\pi\)
\(80\) 0 0
\(81\) 73663.8 1.24750
\(82\) 0 0
\(83\) 66159.8 + 66159.8i 1.05414 + 1.05414i 0.998448 + 0.0556935i \(0.0177370\pi\)
0.0556935 + 0.998448i \(0.482263\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 92616.8 92616.8i 1.31187 1.31187i
\(88\) 0 0
\(89\) 79364.6i 1.06207i −0.847351 0.531033i \(-0.821804\pi\)
0.847351 0.531033i \(-0.178196\pi\)
\(90\) 0 0
\(91\) 10925.9i 0.138310i
\(92\) 0 0
\(93\) −66598.0 + 66598.0i −0.798461 + 0.798461i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −22001.3 22001.3i −0.237421 0.237421i 0.578360 0.815781i \(-0.303693\pi\)
−0.815781 + 0.578360i \(0.803693\pi\)
\(98\) 0 0
\(99\) −1799.80 −0.0184559
\(100\) 0 0
\(101\) 123331. 1.20301 0.601503 0.798871i \(-0.294569\pi\)
0.601503 + 0.798871i \(0.294569\pi\)
\(102\) 0 0
\(103\) −8217.57 8217.57i −0.0763221 0.0763221i 0.667915 0.744237i \(-0.267187\pi\)
−0.744237 + 0.667915i \(0.767187\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 149735. 149735.i 1.26434 1.26434i 0.315376 0.948967i \(-0.397869\pi\)
0.948967 0.315376i \(-0.102131\pi\)
\(108\) 0 0
\(109\) 133191.i 1.07376i −0.843657 0.536882i \(-0.819602\pi\)
0.843657 0.536882i \(-0.180398\pi\)
\(110\) 0 0
\(111\) 280166.i 2.15828i
\(112\) 0 0
\(113\) −46530.7 + 46530.7i −0.342802 + 0.342802i −0.857420 0.514618i \(-0.827934\pi\)
0.514618 + 0.857420i \(0.327934\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 23292.0 + 23292.0i 0.157305 + 0.157305i
\(118\) 0 0
\(119\) 32941.5 0.213243
\(120\) 0 0
\(121\) 160780. 0.998318
\(122\) 0 0
\(123\) 145769. + 145769.i 0.868764 + 0.868764i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 144960. 144960.i 0.797516 0.797516i −0.185187 0.982703i \(-0.559289\pi\)
0.982703 + 0.185187i \(0.0592891\pi\)
\(128\) 0 0
\(129\) 137792.i 0.729039i
\(130\) 0 0
\(131\) 8473.48i 0.0431403i 0.999767 + 0.0215702i \(0.00686653\pi\)
−0.999767 + 0.0215702i \(0.993133\pi\)
\(132\) 0 0
\(133\) −33008.0 + 33008.0i −0.161804 + 0.161804i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 209097. + 209097.i 0.951801 + 0.951801i 0.998891 0.0470895i \(-0.0149946\pi\)
−0.0470895 + 0.998891i \(0.514995\pi\)
\(138\) 0 0
\(139\) −239888. −1.05310 −0.526552 0.850143i \(-0.676515\pi\)
−0.526552 + 0.850143i \(0.676515\pi\)
\(140\) 0 0
\(141\) −1132.34 −0.00479656
\(142\) 0 0
\(143\) 3505.33 + 3505.33i 0.0143347 + 0.0143347i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 205619. 205619.i 0.784821 0.784821i
\(148\) 0 0
\(149\) 400371.i 1.47740i 0.674036 + 0.738699i \(0.264559\pi\)
−0.674036 + 0.738699i \(0.735441\pi\)
\(150\) 0 0
\(151\) 496995.i 1.77382i −0.461943 0.886910i \(-0.652848\pi\)
0.461943 0.886910i \(-0.347152\pi\)
\(152\) 0 0
\(153\) −70225.2 + 70225.2i −0.242529 + 0.242529i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 165920. + 165920.i 0.537217 + 0.537217i 0.922710 0.385494i \(-0.125969\pi\)
−0.385494 + 0.922710i \(0.625969\pi\)
\(158\) 0 0
\(159\) 40310.8 0.126453
\(160\) 0 0
\(161\) 28856.0 0.0877348
\(162\) 0 0
\(163\) 399841. + 399841.i 1.17874 + 1.17874i 0.980066 + 0.198675i \(0.0636637\pi\)
0.198675 + 0.980066i \(0.436336\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −152879. + 152879.i −0.424187 + 0.424187i −0.886642 0.462456i \(-0.846968\pi\)
0.462456 + 0.886642i \(0.346968\pi\)
\(168\) 0 0
\(169\) 280565.i 0.755643i
\(170\) 0 0
\(171\) 140734.i 0.368052i
\(172\) 0 0
\(173\) 40227.0 40227.0i 0.102189 0.102189i −0.654164 0.756353i \(-0.726979\pi\)
0.756353 + 0.654164i \(0.226979\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 373725. + 373725.i 0.896641 + 0.896641i
\(178\) 0 0
\(179\) −418256. −0.975685 −0.487843 0.872932i \(-0.662216\pi\)
−0.487843 + 0.872932i \(0.662216\pi\)
\(180\) 0 0
\(181\) 63219.1 0.143434 0.0717170 0.997425i \(-0.477152\pi\)
0.0717170 + 0.997425i \(0.477152\pi\)
\(182\) 0 0
\(183\) −209746. 209746.i −0.462984 0.462984i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −10568.6 + 10568.6i −0.0221010 + 0.0221010i
\(188\) 0 0
\(189\) 90995.6i 0.185296i
\(190\) 0 0
\(191\) 497355.i 0.986467i −0.869897 0.493234i \(-0.835815\pi\)
0.869897 0.493234i \(-0.164185\pi\)
\(192\) 0 0
\(193\) 238746. 238746.i 0.461364 0.461364i −0.437739 0.899102i \(-0.644220\pi\)
0.899102 + 0.437739i \(0.144220\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 64625.8 + 64625.8i 0.118643 + 0.118643i 0.763935 0.645293i \(-0.223265\pi\)
−0.645293 + 0.763935i \(0.723265\pi\)
\(198\) 0 0
\(199\) −133934. −0.239750 −0.119875 0.992789i \(-0.538249\pi\)
−0.119875 + 0.992789i \(0.538249\pi\)
\(200\) 0 0
\(201\) −729012. −1.27275
\(202\) 0 0
\(203\) 178971. + 178971.i 0.304820 + 0.304820i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −61515.8 + 61515.8i −0.0997840 + 0.0997840i
\(208\) 0 0
\(209\) 21179.8i 0.0335395i
\(210\) 0 0
\(211\) 892854.i 1.38062i 0.723513 + 0.690310i \(0.242526\pi\)
−0.723513 + 0.690310i \(0.757474\pi\)
\(212\) 0 0
\(213\) −606698. + 606698.i −0.916271 + 0.916271i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −128693. 128693.i −0.185526 0.185526i
\(218\) 0 0
\(219\) 140973. 0.198621
\(220\) 0 0
\(221\) 273545. 0.376745
\(222\) 0 0
\(223\) −460278. 460278.i −0.619809 0.619809i 0.325674 0.945482i \(-0.394409\pi\)
−0.945482 + 0.325674i \(0.894409\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 936.286 936.286i 0.00120599 0.00120599i −0.706504 0.707710i \(-0.749729\pi\)
0.707710 + 0.706504i \(0.249729\pi\)
\(228\) 0 0
\(229\) 94774.2i 0.119427i 0.998216 + 0.0597134i \(0.0190187\pi\)
−0.998216 + 0.0597134i \(0.980981\pi\)
\(230\) 0 0
\(231\) 11206.0i 0.0138172i
\(232\) 0 0
\(233\) 739323. 739323.i 0.892163 0.892163i −0.102563 0.994727i \(-0.532704\pi\)
0.994727 + 0.102563i \(0.0327044\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −601709. 601709.i −0.695850 0.695850i
\(238\) 0 0
\(239\) 917906. 1.03945 0.519725 0.854334i \(-0.326035\pi\)
0.519725 + 0.854334i \(0.326035\pi\)
\(240\) 0 0
\(241\) 481284. 0.533775 0.266888 0.963728i \(-0.414005\pi\)
0.266888 + 0.963728i \(0.414005\pi\)
\(242\) 0 0
\(243\) −546709. 546709.i −0.593937 0.593937i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −274098. + 274098.i −0.285866 + 0.285866i
\(248\) 0 0
\(249\) 1.75631e6i 1.79516i
\(250\) 0 0
\(251\) 1.00677e6i 1.00866i 0.863510 + 0.504331i \(0.168261\pi\)
−0.863510 + 0.504331i \(0.831739\pi\)
\(252\) 0 0
\(253\) −9257.84 + 9257.84i −0.00909303 + 0.00909303i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.13074e6 1.13074e6i −1.06789 1.06789i −0.997521 0.0703733i \(-0.977581\pi\)
−0.0703733 0.997521i \(-0.522419\pi\)
\(258\) 0 0
\(259\) 541388. 0.501487
\(260\) 0 0
\(261\) −763068. −0.693365
\(262\) 0 0
\(263\) 232140. + 232140.i 0.206948 + 0.206948i 0.802969 0.596021i \(-0.203252\pi\)
−0.596021 + 0.802969i \(0.703252\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −1.05343e6 + 1.05343e6i −0.904327 + 0.904327i
\(268\) 0 0
\(269\) 484347.i 0.408109i 0.978960 + 0.204054i \(0.0654119\pi\)
−0.978960 + 0.204054i \(0.934588\pi\)
\(270\) 0 0
\(271\) 2.10660e6i 1.74244i 0.490893 + 0.871220i \(0.336671\pi\)
−0.490893 + 0.871220i \(0.663329\pi\)
\(272\) 0 0
\(273\) −145022. + 145022.i −0.117768 + 0.117768i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.34816e6 1.34816e6i −1.05571 1.05571i −0.998354 0.0573510i \(-0.981735\pi\)
−0.0573510 0.998354i \(-0.518265\pi\)
\(278\) 0 0
\(279\) 548699. 0.422011
\(280\) 0 0
\(281\) 513974. 0.388307 0.194154 0.980971i \(-0.437804\pi\)
0.194154 + 0.980971i \(0.437804\pi\)
\(282\) 0 0
\(283\) −376382. 376382.i −0.279359 0.279359i 0.553494 0.832853i \(-0.313294\pi\)
−0.832853 + 0.553494i \(0.813294\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −281681. + 281681.i −0.201861 + 0.201861i
\(288\) 0 0
\(289\) 595121.i 0.419142i
\(290\) 0 0
\(291\) 584057.i 0.404318i
\(292\) 0 0
\(293\) −124607. + 124607.i −0.0847958 + 0.0847958i −0.748232 0.663437i \(-0.769097\pi\)
0.663437 + 0.748232i \(0.269097\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −29194.0 29194.0i −0.0192045 0.0192045i
\(298\) 0 0
\(299\) 239620. 0.155004
\(300\) 0 0
\(301\) 266267. 0.169395
\(302\) 0 0
\(303\) −1.63700e6 1.63700e6i −1.02433 1.02433i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −295939. + 295939.i −0.179208 + 0.179208i −0.791010 0.611803i \(-0.790445\pi\)
0.611803 + 0.791010i \(0.290445\pi\)
\(308\) 0 0
\(309\) 218148.i 0.129973i
\(310\) 0 0
\(311\) 2.44556e6i 1.43376i 0.697194 + 0.716882i \(0.254432\pi\)
−0.697194 + 0.716882i \(0.745568\pi\)
\(312\) 0 0
\(313\) 2.10337e6 2.10337e6i 1.21354 1.21354i 0.243687 0.969854i \(-0.421643\pi\)
0.969854 0.243687i \(-0.0783570\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −935356. 935356.i −0.522792 0.522792i 0.395622 0.918414i \(-0.370529\pi\)
−0.918414 + 0.395622i \(0.870529\pi\)
\(318\) 0 0
\(319\) −114838. −0.0631843
\(320\) 0 0
\(321\) −3.97495e6 −2.15312
\(322\) 0 0
\(323\) −826403. 826403.i −0.440743 0.440743i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1.76788e6 + 1.76788e6i −0.914287 + 0.914287i
\(328\) 0 0
\(329\) 2188.12i 0.00111450i
\(330\) 0 0
\(331\) 773777.i 0.388191i −0.980983 0.194096i \(-0.937823\pi\)
0.980983 0.194096i \(-0.0621772\pi\)
\(332\) 0 0
\(333\) −1.15414e6 + 1.15414e6i −0.570359 + 0.570359i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.75232e6 + 1.75232e6i 0.840502 + 0.840502i 0.988924 0.148422i \(-0.0474194\pi\)
−0.148422 + 0.988924i \(0.547419\pi\)
\(338\) 0 0
\(339\) 1.23523e6 0.583778
\(340\) 0 0
\(341\) 82576.7 0.0384567
\(342\) 0 0
\(343\) 828418. + 828418.i 0.380202 + 0.380202i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2.22463e6 + 2.22463e6i −0.991821 + 0.991821i −0.999967 0.00814557i \(-0.997407\pi\)
0.00814557 + 0.999967i \(0.497407\pi\)
\(348\) 0 0
\(349\) 4.01834e6i 1.76597i 0.469402 + 0.882985i \(0.344470\pi\)
−0.469402 + 0.882985i \(0.655530\pi\)
\(350\) 0 0
\(351\) 755624.i 0.327369i
\(352\) 0 0
\(353\) 1.24862e6 1.24862e6i 0.533327 0.533327i −0.388234 0.921561i \(-0.626915\pi\)
0.921561 + 0.388234i \(0.126915\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −437240. 437240.i −0.181572 0.181572i
\(358\) 0 0
\(359\) −3.10227e6 −1.27041 −0.635205 0.772344i \(-0.719084\pi\)
−0.635205 + 0.772344i \(0.719084\pi\)
\(360\) 0 0
\(361\) −819953. −0.331147
\(362\) 0 0
\(363\) −2.13407e6 2.13407e6i −0.850047 0.850047i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −288241. + 288241.i −0.111710 + 0.111710i −0.760752 0.649042i \(-0.775170\pi\)
0.649042 + 0.760752i \(0.275170\pi\)
\(368\) 0 0
\(369\) 1.20099e6i 0.459168i
\(370\) 0 0
\(371\) 77895.9i 0.0293819i
\(372\) 0 0
\(373\) −368683. + 368683.i −0.137208 + 0.137208i −0.772375 0.635167i \(-0.780931\pi\)
0.635167 + 0.772375i \(0.280931\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.48617e6 + 1.48617e6i 0.538536 + 0.538536i
\(378\) 0 0
\(379\) −2.00113e6 −0.715612 −0.357806 0.933796i \(-0.616475\pi\)
−0.357806 + 0.933796i \(0.616475\pi\)
\(380\) 0 0
\(381\) −3.84818e6 −1.35814
\(382\) 0 0
\(383\) 3.37971e6 + 3.37971e6i 1.17729 + 1.17729i 0.980433 + 0.196854i \(0.0630724\pi\)
0.196854 + 0.980433i \(0.436928\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −567634. + 567634.i −0.192660 + 0.192660i
\(388\) 0 0
\(389\) 5.00291e6i 1.67629i 0.545449 + 0.838144i \(0.316359\pi\)
−0.545449 + 0.838144i \(0.683641\pi\)
\(390\) 0 0
\(391\) 722452.i 0.238983i
\(392\) 0 0
\(393\) 112471. 112471.i 0.0367331 0.0367331i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −594009. 594009.i −0.189155 0.189155i 0.606176 0.795331i \(-0.292703\pi\)
−0.795331 + 0.606176i \(0.792703\pi\)
\(398\) 0 0
\(399\) 876247. 0.275546
\(400\) 0 0
\(401\) 2.05651e6 0.638661 0.319331 0.947643i \(-0.396542\pi\)
0.319331 + 0.947643i \(0.396542\pi\)
\(402\) 0 0
\(403\) −1.06866e6 1.06866e6i −0.327776 0.327776i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −173693. + 173693.i −0.0519752 + 0.0519752i
\(408\) 0 0
\(409\) 907188.i 0.268157i −0.990971 0.134078i \(-0.957193\pi\)
0.990971 0.134078i \(-0.0428074\pi\)
\(410\) 0 0
\(411\) 5.55079e6i 1.62088i
\(412\) 0 0
\(413\) −722179. + 722179.i −0.208339 + 0.208339i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 3.18409e6 + 3.18409e6i 0.896695 + 0.896695i
\(418\) 0 0
\(419\) 5.24071e6 1.45833 0.729164 0.684339i \(-0.239909\pi\)
0.729164 + 0.684339i \(0.239909\pi\)
\(420\) 0 0
\(421\) 3.20555e6 0.881449 0.440724 0.897642i \(-0.354722\pi\)
0.440724 + 0.897642i \(0.354722\pi\)
\(422\) 0 0
\(423\) 4664.67 + 4664.67i 0.00126756 + 0.00126756i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 405309. 405309.i 0.107576 0.107576i
\(428\) 0 0
\(429\) 93054.3i 0.0244114i
\(430\) 0 0
\(431\) 2.71397e6i 0.703739i 0.936049 + 0.351870i \(0.114454\pi\)
−0.936049 + 0.351870i \(0.885546\pi\)
\(432\) 0 0
\(433\) 4.58234e6 4.58234e6i 1.17454 1.17454i 0.193423 0.981115i \(-0.438041\pi\)
0.981115 0.193423i \(-0.0619590\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −723912. 723912.i −0.181335 0.181335i
\(438\) 0 0
\(439\) −6.01748e6 −1.49023 −0.745115 0.666936i \(-0.767606\pi\)
−0.745115 + 0.666936i \(0.767606\pi\)
\(440\) 0 0
\(441\) −1.69409e6 −0.414802
\(442\) 0 0
\(443\) 960410. + 960410.i 0.232513 + 0.232513i 0.813741 0.581228i \(-0.197427\pi\)
−0.581228 + 0.813741i \(0.697427\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 5.31423e6 5.31423e6i 1.25797 1.25797i
\(448\) 0 0
\(449\) 4.48981e6i 1.05102i −0.850786 0.525512i \(-0.823874\pi\)
0.850786 0.525512i \(-0.176126\pi\)
\(450\) 0 0
\(451\) 180743.i 0.0418427i
\(452\) 0 0
\(453\) −6.59673e6 + 6.59673e6i −1.51037 + 1.51037i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.58302e6 1.58302e6i −0.354565 0.354565i 0.507240 0.861805i \(-0.330666\pi\)
−0.861805 + 0.507240i \(0.830666\pi\)
\(458\) 0 0
\(459\) −2.27820e6 −0.504732
\(460\) 0 0
\(461\) 4.96001e6 1.08700 0.543501 0.839408i \(-0.317098\pi\)
0.543501 + 0.839408i \(0.317098\pi\)
\(462\) 0 0
\(463\) 1.57842e6 + 1.57842e6i 0.342191 + 0.342191i 0.857191 0.514999i \(-0.172208\pi\)
−0.514999 + 0.857191i \(0.672208\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.96940e6 4.96940e6i 1.05441 1.05441i 0.0559831 0.998432i \(-0.482171\pi\)
0.998432 0.0559831i \(-0.0178293\pi\)
\(468\) 0 0
\(469\) 1.40873e6i 0.295730i
\(470\) 0 0
\(471\) 4.40459e6i 0.914857i
\(472\) 0 0
\(473\) −85426.2 + 85426.2i −0.0175565 + 0.0175565i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −166060. 166060.i −0.0334171 0.0334171i
\(478\) 0 0
\(479\) 4.17103e6 0.830624 0.415312 0.909679i \(-0.363672\pi\)
0.415312 + 0.909679i \(0.363672\pi\)
\(480\) 0 0
\(481\) 4.49567e6 0.885996
\(482\) 0 0
\(483\) −383013. 383013.i −0.0747044 0.0747044i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 794960. 794960.i 0.151888 0.151888i −0.627073 0.778961i \(-0.715747\pi\)
0.778961 + 0.627073i \(0.215747\pi\)
\(488\) 0 0
\(489\) 1.06144e7i 2.00734i
\(490\) 0 0
\(491\) 6.37894e6i 1.19411i −0.802200 0.597056i \(-0.796337\pi\)
0.802200 0.597056i \(-0.203663\pi\)
\(492\) 0 0
\(493\) −4.48080e6 + 4.48080e6i −0.830305 + 0.830305i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.17237e6 1.17237e6i −0.212900 0.212900i
\(498\) 0 0
\(499\) 4.38308e6 0.788004 0.394002 0.919110i \(-0.371090\pi\)
0.394002 + 0.919110i \(0.371090\pi\)
\(500\) 0 0
\(501\) 4.05840e6 0.722372
\(502\) 0 0
\(503\) 4.18594e6 + 4.18594e6i 0.737689 + 0.737689i 0.972130 0.234441i \(-0.0753261\pi\)
−0.234441 + 0.972130i \(0.575326\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 3.72401e6 3.72401e6i 0.643414 0.643414i
\(508\) 0 0
\(509\) 3.23786e6i 0.553941i 0.960878 + 0.276971i \(0.0893305\pi\)
−0.960878 + 0.276971i \(0.910670\pi\)
\(510\) 0 0
\(511\) 272413.i 0.0461504i
\(512\) 0 0
\(513\) 2.28281e6 2.28281e6i 0.382980 0.382980i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 702.011 + 702.011i 0.000115509 + 0.000115509i
\(518\) 0 0
\(519\) −1.06789e6 −0.174023
\(520\) 0 0
\(521\) 2.14080e6 0.345528 0.172764 0.984963i \(-0.444730\pi\)
0.172764 + 0.984963i \(0.444730\pi\)
\(522\) 0 0
\(523\) 1.54020e6 + 1.54020e6i 0.246220 + 0.246220i 0.819417 0.573197i \(-0.194297\pi\)
−0.573197 + 0.819417i \(0.694297\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.22201e6 3.22201e6i 0.505359 0.505359i
\(528\) 0 0
\(529\) 5.80349e6i 0.901675i
\(530\) 0 0
\(531\) 3.07911e6i 0.473902i
\(532\) 0 0
\(533\) −2.33907e6 + 2.33907e6i −0.356636 + 0.356636i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 5.55162e6 + 5.55162e6i 0.830776 + 0.830776i
\(538\) 0 0
\(539\) −254953. −0.0377997
\(540\) 0 0
\(541\) 4.84343e6 0.711475 0.355737 0.934586i \(-0.384230\pi\)
0.355737 + 0.934586i \(0.384230\pi\)
\(542\) 0 0
\(543\) −839123. 839123.i −0.122131 0.122131i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 8.29695e6 8.29695e6i 1.18563 1.18563i 0.207371 0.978262i \(-0.433509\pi\)
0.978262 0.207371i \(-0.0664907\pi\)
\(548\) 0 0
\(549\) 1.72809e6i 0.244701i
\(550\) 0 0
\(551\) 8.97970e6i 1.26004i
\(552\) 0 0
\(553\) 1.16273e6 1.16273e6i 0.161684 0.161684i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.77544e6 5.77544e6i −0.788764 0.788764i 0.192527 0.981292i \(-0.438332\pi\)
−0.981292 + 0.192527i \(0.938332\pi\)
\(558\) 0 0
\(559\) 2.21108e6 0.299278
\(560\) 0 0
\(561\) 280558. 0.0376371
\(562\) 0 0
\(563\) 6.21187e6 + 6.21187e6i 0.825945 + 0.825945i 0.986953 0.161008i \(-0.0514745\pi\)
−0.161008 + 0.986953i \(0.551475\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.88940e6 1.88940e6i 0.246812 0.246812i
\(568\) 0 0
\(569\) 4.01294e6i 0.519615i 0.965660 + 0.259808i \(0.0836592\pi\)
−0.965660 + 0.259808i \(0.916341\pi\)
\(570\) 0 0
\(571\) 628249.i 0.0806383i 0.999187 + 0.0403191i \(0.0128375\pi\)
−0.999187 + 0.0403191i \(0.987163\pi\)
\(572\) 0 0
\(573\) −6.60151e6 + 6.60151e6i −0.839956 + 0.839956i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1.02324e7 + 1.02324e7i 1.27949 + 1.27949i 0.940953 + 0.338537i \(0.109932\pi\)
0.338537 + 0.940953i \(0.390068\pi\)
\(578\) 0 0
\(579\) −6.33787e6 −0.785683
\(580\) 0 0
\(581\) 3.39386e6 0.417113
\(582\) 0 0
\(583\) −24991.2 24991.2i −0.00304520 0.00304520i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −8.55551e6 + 8.55551e6i −1.02483 + 1.02483i −0.0251433 + 0.999684i \(0.508004\pi\)
−0.999684 + 0.0251433i \(0.991996\pi\)
\(588\) 0 0
\(589\) 6.45704e6i 0.766911i
\(590\) 0 0
\(591\) 1.71559e6i 0.202043i
\(592\) 0 0
\(593\) 863723. 863723.i 0.100864 0.100864i −0.654874 0.755738i \(-0.727278\pi\)
0.755738 + 0.654874i \(0.227278\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.77774e6 + 1.77774e6i 0.204142 + 0.204142i
\(598\) 0 0
\(599\) −5.41077e6 −0.616158 −0.308079 0.951361i \(-0.599686\pi\)
−0.308079 + 0.951361i \(0.599686\pi\)
\(600\) 0 0
\(601\) −6.50235e6 −0.734318 −0.367159 0.930158i \(-0.619670\pi\)
−0.367159 + 0.930158i \(0.619670\pi\)
\(602\) 0 0
\(603\) 3.00316e6 + 3.00316e6i 0.336345 + 0.336345i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 7.08603e6 7.08603e6i 0.780604 0.780604i −0.199328 0.979933i \(-0.563876\pi\)
0.979933 + 0.199328i \(0.0638760\pi\)
\(608\) 0 0
\(609\) 4.75105e6i 0.519095i
\(610\) 0 0
\(611\) 18170.0i 0.00196903i
\(612\) 0 0
\(613\) 5.00318e6 5.00318e6i 0.537768 0.537768i −0.385105 0.922873i \(-0.625835\pi\)
0.922873 + 0.385105i \(0.125835\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.51301e6 + 5.51301e6i 0.583010 + 0.583010i 0.935729 0.352719i \(-0.114743\pi\)
−0.352719 + 0.935729i \(0.614743\pi\)
\(618\) 0 0
\(619\) −1.61540e7 −1.69454 −0.847272 0.531159i \(-0.821757\pi\)
−0.847272 + 0.531159i \(0.821757\pi\)
\(620\) 0 0
\(621\) −1.99566e6 −0.207662
\(622\) 0 0
\(623\) −2.03562e6 2.03562e6i −0.210125 0.210125i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −281125. + 281125.i −0.0285582 + 0.0285582i
\(628\) 0 0
\(629\) 1.35544e7i 1.36601i
\(630\) 0 0
\(631\) 1.40737e7i 1.40713i −0.710630 0.703566i \(-0.751590\pi\)
0.710630 0.703566i \(-0.248410\pi\)
\(632\) 0 0
\(633\) 1.18511e7 1.18511e7i 1.17557 1.17557i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 3.29946e6 + 3.29946e6i 0.322177 + 0.322177i
\(638\) 0 0
\(639\) 4.99857e6 0.484277
\(640\) 0 0
\(641\) −3.06380e6 −0.294521 −0.147260 0.989098i \(-0.547046\pi\)
−0.147260 + 0.989098i \(0.547046\pi\)
\(642\) 0 0
\(643\) −4.04269e6 4.04269e6i −0.385605 0.385605i 0.487511 0.873117i \(-0.337905\pi\)
−0.873117 + 0.487511i \(0.837905\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.27161e7 + 1.27161e7i −1.19424 + 1.19424i −0.218376 + 0.975865i \(0.570076\pi\)
−0.975865 + 0.218376i \(0.929924\pi\)
\(648\) 0 0
\(649\) 463392.i 0.0431854i
\(650\) 0 0
\(651\) 3.41634e6i 0.315943i
\(652\) 0 0
\(653\) −7.98493e6 + 7.98493e6i −0.732804 + 0.732804i −0.971174 0.238370i \(-0.923387\pi\)
0.238370 + 0.971174i \(0.423387\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −580735. 580735.i −0.0524885 0.0524885i
\(658\) 0 0
\(659\) 1.36581e7 1.22511 0.612556 0.790427i \(-0.290141\pi\)
0.612556 + 0.790427i \(0.290141\pi\)
\(660\) 0 0
\(661\) −8.73171e6 −0.777312 −0.388656 0.921383i \(-0.627061\pi\)
−0.388656 + 0.921383i \(0.627061\pi\)
\(662\) 0 0
\(663\) −3.63082e6 3.63082e6i −0.320790 0.320790i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −3.92508e6 + 3.92508e6i −0.341613 + 0.341613i
\(668\) 0 0
\(669\) 1.22188e7i 1.05551i
\(670\) 0 0
\(671\) 260070.i 0.0222989i
\(672\) 0 0
\(673\) −6.67754e6 + 6.67754e6i −0.568301 + 0.568301i −0.931652 0.363351i \(-0.881633\pi\)
0.363351 + 0.931652i \(0.381633\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5.82288e6 + 5.82288e6i 0.488277 + 0.488277i 0.907762 0.419485i \(-0.137789\pi\)
−0.419485 + 0.907762i \(0.637789\pi\)
\(678\) 0 0
\(679\) −1.12862e6 −0.0939451
\(680\) 0 0
\(681\) −24855.1 −0.00205375
\(682\) 0 0
\(683\) 1.44034e7 + 1.44034e7i 1.18144 + 1.18144i 0.979371 + 0.202071i \(0.0647671\pi\)
0.202071 + 0.979371i \(0.435233\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1.25796e6 1.25796e6i 0.101689 0.101689i
\(688\) 0 0
\(689\) 646845.i 0.0519101i
\(690\) 0 0
\(691\) 1.83585e7i 1.46266i 0.682026 + 0.731328i \(0.261099\pi\)
−0.682026 + 0.731328i \(0.738901\pi\)
\(692\) 0 0
\(693\) −46163.0 + 46163.0i −0.00365141 + 0.00365141i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −7.05229e6 7.05229e6i −0.549855 0.549855i
\(698\) 0 0
\(699\) −1.96264e7 −1.51932
\(700\) 0 0
\(701\) −1.22419e7 −0.940921 −0.470461 0.882421i \(-0.655912\pi\)
−0.470461 + 0.882421i \(0.655912\pi\)
\(702\) 0 0
\(703\) −1.35818e7 1.35818e7i −1.03650 1.03650i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.16331e6 3.16331e6i 0.238009 0.238009i
\(708\) 0 0
\(709\) 4.19642e6i 0.313519i −0.987637 0.156759i \(-0.949895\pi\)
0.987637 0.156759i \(-0.0501047\pi\)
\(710\) 0 0
\(711\) 4.95747e6i 0.367778i
\(712\) 0 0
\(713\) 2.82241e6 2.82241e6i 0.207920 0.207920i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −1.21836e7 1.21836e7i −0.885069 0.885069i
\(718\) 0 0
\(719\) 2.36234e7 1.70420 0.852098 0.523382i \(-0.175330\pi\)
0.852098 + 0.523382i \(0.175330\pi\)
\(720\) 0 0
\(721\) −421545. −0.0301999
\(722\) 0 0
\(723\) −6.38819e6 6.38819e6i −0.454498 0.454498i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −1.69585e7 + 1.69585e7i −1.19001 + 1.19001i −0.212950 + 0.977063i \(0.568307\pi\)
−0.977063 + 0.212950i \(0.931693\pi\)
\(728\) 0 0
\(729\) 3.38711e6i 0.236053i
\(730\) 0 0
\(731\) 6.66638e6i 0.461420i
\(732\) 0 0
\(733\) 1.02325e7 1.02325e7i 0.703429 0.703429i −0.261716 0.965145i \(-0.584288\pi\)
0.965145 + 0.261716i \(0.0842884\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 451961. + 451961.i 0.0306502 + 0.0306502i
\(738\) 0 0
\(739\) 4.74454e6 0.319582 0.159791 0.987151i \(-0.448918\pi\)
0.159791 + 0.987151i \(0.448918\pi\)
\(740\) 0 0
\(741\) 7.27633e6 0.486818
\(742\) 0 0
\(743\) −2.11501e6 2.11501e6i −0.140553 0.140553i 0.633329 0.773882i \(-0.281688\pi\)
−0.773882 + 0.633329i \(0.781688\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −7.23510e6 + 7.23510e6i −0.474398 + 0.474398i
\(748\) 0 0
\(749\) 7.68112e6i 0.500288i
\(750\) 0 0
\(751\) 6.32400e6i 0.409159i 0.978850 + 0.204579i \(0.0655827\pi\)
−0.978850 + 0.204579i \(0.934417\pi\)
\(752\) 0 0
\(753\) 1.33631e7 1.33631e7i 0.858855 0.858855i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.52793e7 1.52793e7i −0.969087 0.969087i 0.0304496 0.999536i \(-0.490306\pi\)
−0.999536 + 0.0304496i \(0.990306\pi\)
\(758\) 0 0
\(759\) 245763. 0.0154850
\(760\) 0 0
\(761\) −1.62820e6 −0.101917 −0.0509583 0.998701i \(-0.516228\pi\)
−0.0509583 + 0.998701i \(0.516228\pi\)
\(762\) 0 0
\(763\) −3.41622e6 3.41622e6i −0.212439 0.212439i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −5.99695e6 + 5.99695e6i −0.368080 + 0.368080i
\(768\) 0 0
\(769\) 1.89046e7i 1.15280i −0.817169 0.576398i \(-0.804458\pi\)
0.817169 0.576398i \(-0.195542\pi\)
\(770\) 0 0
\(771\) 3.00170e7i 1.81858i
\(772\) 0 0
\(773\) −2.31771e7 + 2.31771e7i −1.39511 + 1.39511i −0.581738 + 0.813376i \(0.697627\pi\)
−0.813376 + 0.581738i \(0.802373\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −7.18598e6 7.18598e6i −0.427005 0.427005i
\(778\) 0 0
\(779\) 1.41331e7 0.834437
\(780\) 0 0
\(781\) 752262. 0.0441308
\(782\) 0 0
\(783\) −1.23775e7 1.23775e7i −0.721487 0.721487i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 4.39692e6 4.39692e6i 0.253053 0.253053i −0.569168 0.822221i \(-0.692735\pi\)
0.822221 + 0.569168i \(0.192735\pi\)
\(788\) 0 0
\(789\) 6.16251e6i 0.352424i
\(790\) 0 0
\(791\) 2.38693e6i 0.135643i
\(792\) 0 0
\(793\) 3.36568e6 3.36568e6i 0.190059 0.190059i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.19165e7 2.19165e7i −1.22215 1.22215i −0.966865 0.255289i \(-0.917829\pi\)
−0.255289 0.966865i \(-0.582171\pi\)
\(798\) 0 0
\(799\) 54782.6 0.00303582
\(800\) 0 0
\(801\) 8.67915e6 0.477965
\(802\) 0 0
\(803\) −87397.9 87397.9i −0.00478313 0.00478313i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 6.42886e6 6.42886e6i 0.347496 0.347496i
\(808\) 0 0
\(809\) 8.04847e6i 0.432356i 0.976354 + 0.216178i \(0.0693592\pi\)
−0.976354 + 0.216178i \(0.930641\pi\)
\(810\) 0 0
\(811\) 7.60133e6i 0.405824i 0.979197 + 0.202912i \(0.0650405\pi\)
−0.979197 + 0.202912i \(0.934959\pi\)
\(812\) 0 0
\(813\) 2.79613e7 2.79613e7i 1.48365 1.48365i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −6.67986e6 6.67986e6i −0.350116 0.350116i
\(818\) 0 0
\(819\) 1.19483e6 0.0622439
\(820\) 0 0
\(821\) −503676. −0.0260791 −0.0130396 0.999915i \(-0.504151\pi\)
−0.0130396 + 0.999915i \(0.504151\pi\)
\(822\) 0 0
\(823\) −1.77317e7 1.77317e7i −0.912536 0.912536i 0.0839356 0.996471i \(-0.473251\pi\)
−0.996471 + 0.0839356i \(0.973251\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.80164e7 + 1.80164e7i −0.916019 + 0.916019i −0.996737 0.0807182i \(-0.974279\pi\)
0.0807182 + 0.996737i \(0.474279\pi\)
\(828\) 0 0
\(829\) 1.51603e7i 0.766163i −0.923715 0.383081i \(-0.874863\pi\)
0.923715 0.383081i \(-0.125137\pi\)
\(830\) 0 0
\(831\) 3.57890e7i 1.79782i
\(832\) 0 0
\(833\) −9.94785e6 + 9.94785e6i −0.496726 + 0.496726i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 8.90029e6 + 8.90029e6i 0.439127 + 0.439127i
\(838\) 0 0
\(839\) 9.14635e6 0.448583 0.224292 0.974522i \(-0.427993\pi\)
0.224292 + 0.974522i \(0.427993\pi\)
\(840\) 0 0
\(841\) −2.81772e7 −1.37375
\(842\) 0 0
\(843\) −6.82210e6 6.82210e6i −0.330635 0.330635i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 4.12385e6 4.12385e6i 0.197512 0.197512i
\(848\) 0 0
\(849\) 9.99162e6i 0.475737i
\(850\) 0 0
\(851\) 1.18734e7i 0.562019i
\(852\) 0 0
\(853\) −9.93591e6 + 9.93591e6i −0.467558 + 0.467558i −0.901122 0.433565i \(-0.857256\pi\)
0.433565 + 0.901122i \(0.357256\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.56795e7 2.56795e7i −1.19436 1.19436i −0.975831 0.218529i \(-0.929874\pi\)
−0.218529 0.975831i \(-0.570126\pi\)
\(858\) 0 0
\(859\) 2.67501e6 0.123692 0.0618462 0.998086i \(-0.480301\pi\)
0.0618462 + 0.998086i \(0.480301\pi\)
\(860\) 0 0
\(861\) 7.47765e6 0.343761
\(862\) 0 0
\(863\) 2.64990e7 + 2.64990e7i 1.21116 + 1.21116i 0.970644 + 0.240519i \(0.0773177\pi\)
0.240519 + 0.970644i \(0.422682\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −7.89919e6 + 7.89919e6i −0.356890 + 0.356890i
\(868\) 0 0
\(869\) 746076.i 0.0335146i
\(870\) 0 0
\(871\) 1.16981e7i 0.522478i
\(872\) 0 0
\(873\) 2.40602e6 2.40602e6i 0.106847 0.106847i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.38294e7 + 2.38294e7i 1.04620 + 1.04620i 0.998880 + 0.0473169i \(0.0150671\pi\)
0.0473169 + 0.998880i \(0.484933\pi\)
\(878\) 0 0
\(879\) 3.30789e6 0.144404
\(880\) 0 0
\(881\) −1.24233e7 −0.539261 −0.269630 0.962964i \(-0.586902\pi\)
−0.269630 + 0.962964i \(0.586902\pi\)
\(882\) 0 0
\(883\) −9.67869e6 9.67869e6i −0.417749 0.417749i 0.466678 0.884427i \(-0.345451\pi\)
−0.884427 + 0.466678i \(0.845451\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.87959e7 + 2.87959e7i −1.22891 + 1.22891i −0.264540 + 0.964375i \(0.585220\pi\)
−0.964375 + 0.264540i \(0.914780\pi\)
\(888\) 0 0
\(889\) 7.43617e6i 0.315569i
\(890\) 0 0
\(891\) 1.21235e6i 0.0511603i
\(892\) 0 0
\(893\) −54893.3 + 54893.3i −0.00230351 + 0.00230351i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −3.18053e6 3.18053e6i −0.131983 0.131983i
\(898\) 0 0
\(899\) 3.50104e7 1.44477
\(900\) 0 0
\(901\) −1.95023e6 −0.0800340
\(902\) 0 0
\(903\) −3.53423e6 3.53423e6i −0.144237 0.144237i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 3.03420e6 3.03420e6i 0.122469 0.122469i −0.643216 0.765685i \(-0.722400\pi\)
0.765685 + 0.643216i \(0.222400\pi\)
\(908\) 0 0
\(909\) 1.34872e7i 0.541392i
\(910\) 0 0
\(911\) 2.56728e7i 1.02489i −0.858720 0.512446i \(-0.828740\pi\)
0.858720 0.512446i \(-0.171260\pi\)
\(912\) 0 0
\(913\) −1.08885e6 + 1.08885e6i −0.0432305 + 0.0432305i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 217336. + 217336.i 0.00853510 + 0.00853510i
\(918\) 0 0
\(919\) −3.64653e7 −1.42427 −0.712134 0.702044i \(-0.752271\pi\)
−0.712134 + 0.702044i \(0.752271\pi\)
\(920\) 0 0
\(921\) 7.85615e6 0.305183
\(922\) 0 0
\(923\) −9.73535e6 9.73535e6i −0.376138 0.376138i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 898657. 898657.i 0.0343475 0.0343475i
\(928\) 0 0
\(929\) 3.44216e7i 1.30855i 0.756255 + 0.654277i \(0.227027\pi\)
−0.756255 + 0.654277i \(0.772973\pi\)
\(930\) 0 0
\(931\) 1.99359e7i 0.753810i
\(932\) 0 0
\(933\) 3.24606e7 3.24606e7i 1.22082 1.22082i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.93428e7 + 1.93428e7i 0.719733 + 0.719733i 0.968550 0.248818i \(-0.0800420\pi\)
−0.248818 + 0.968550i \(0.580042\pi\)
\(938\) 0 0
\(939\) −5.58370e7 −2.06661
\(940\) 0 0
\(941\) −3.46051e7 −1.27399 −0.636996 0.770867i \(-0.719823\pi\)
−0.636996 + 0.770867i \(0.719823\pi\)
\(942\) 0 0
\(943\) −6.17766e6 6.17766e6i −0.226227 0.226227i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.98661e6 2.98661e6i 0.108219 0.108219i −0.650924 0.759143i \(-0.725618\pi\)
0.759143 + 0.650924i \(0.225618\pi\)
\(948\) 0 0
\(949\) 2.26211e6i 0.0815357i
\(950\) 0 0
\(951\) 2.48304e7i 0.890292i
\(952\) 0 0
\(953\) −2.44213e7 + 2.44213e7i −0.871035 + 0.871035i −0.992585 0.121550i \(-0.961214\pi\)
0.121550 + 0.992585i \(0.461214\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1.52427e6 + 1.52427e6i 0.0538001 + 0.0538001i
\(958\) 0 0
\(959\) 1.07263e7 0.376618
\(960\) 0 0
\(961\) 3.45424e6 0.120655
\(962\) 0 0
\(963\) 1.63747e7 + 1.63747e7i 0.568996 + 0.568996i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 6.51546e6 6.51546e6i 0.224067 0.224067i −0.586141 0.810209i \(-0.699354\pi\)
0.810209 + 0.586141i \(0.199354\pi\)
\(968\) 0 0
\(969\) 2.19381e7i 0.750567i
\(970\) 0 0
\(971\) 3.00564e7i 1.02303i −0.859274 0.511516i \(-0.829084\pi\)
0.859274 0.511516i \(-0.170916\pi\)
\(972\) 0 0
\(973\) −6.15288e6 + 6.15288e6i −0.208351 + 0.208351i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.00560e7 + 3.00560e7i 1.00738 + 1.00738i 0.999973 + 0.00740945i \(0.00235852\pi\)
0.00740945 + 0.999973i \(0.497641\pi\)
\(978\) 0 0
\(979\) 1.30617e6 0.0435556
\(980\) 0 0
\(981\) 1.45655e7 0.483229
\(982\) 0 0
\(983\) 3.74910e7 + 3.74910e7i 1.23749 + 1.23749i 0.961022 + 0.276473i \(0.0891656\pi\)
0.276473 + 0.961022i \(0.410834\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −29043.4 + 29043.4i −0.000948975 + 0.000948975i
\(988\) 0 0
\(989\) 5.83961e6i 0.189842i
\(990\) 0 0
\(991\) 2.70332e7i 0.874408i 0.899362 + 0.437204i \(0.144031\pi\)
−0.899362 + 0.437204i \(0.855969\pi\)
\(992\) 0 0
\(993\) −1.02705e7 + 1.02705e7i −0.330537 + 0.330537i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 2.60732e7 + 2.60732e7i 0.830725 + 0.830725i 0.987616 0.156891i \(-0.0501471\pi\)
−0.156891 + 0.987616i \(0.550147\pi\)
\(998\) 0 0
\(999\) −3.74420e7 −1.18698
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.6.n.h.207.4 yes 24
4.3 odd 2 inner 400.6.n.h.207.9 yes 24
5.2 odd 4 inner 400.6.n.h.143.3 24
5.3 odd 4 inner 400.6.n.h.143.9 yes 24
5.4 even 2 inner 400.6.n.h.207.10 yes 24
20.3 even 4 inner 400.6.n.h.143.4 yes 24
20.7 even 4 inner 400.6.n.h.143.10 yes 24
20.19 odd 2 inner 400.6.n.h.207.3 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.6.n.h.143.3 24 5.2 odd 4 inner
400.6.n.h.143.4 yes 24 20.3 even 4 inner
400.6.n.h.143.9 yes 24 5.3 odd 4 inner
400.6.n.h.143.10 yes 24 20.7 even 4 inner
400.6.n.h.207.3 yes 24 20.19 odd 2 inner
400.6.n.h.207.4 yes 24 1.1 even 1 trivial
400.6.n.h.207.9 yes 24 4.3 odd 2 inner
400.6.n.h.207.10 yes 24 5.4 even 2 inner