Properties

Label 4000.1.bf.a.1599.2
Level 40004000
Weight 11
Character 4000.1599
Analytic conductor 1.9961.996
Analytic rank 00
Dimension 88
Projective image A5A_{5}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4000,1,Mod(799,4000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4000, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 0, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4000.799");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 4000=2553 4000 = 2^{5} \cdot 5^{3}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 4000.bf (of order 1010, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.996260050531.99626005053
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: Q(ζ20)\Q(\zeta_{20})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x6+x4x2+1 x^{8} - x^{6} + x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 800)
Projective image: A5A_{5}
Projective field: Galois closure of 5.1.25000000.2

Embedding invariants

Embedding label 1599.2
Root 0.951057+0.309017i-0.951057 + 0.309017i of defining polynomial
Character χ\chi == 4000.1599
Dual form 4000.1.bf.a.2399.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.809017+0.587785i)q30.618034q7+(0.587785+0.190983i)q13+(0.9510571.30902i)q19+(0.5000000.363271i)q21+(0.309017+0.951057i)q23+(0.3090170.951057i)q27+(1.309020.951057i)q29+(0.587785+0.809017i)q31+(0.951057+0.309017i)q37+(0.587785+0.190983i)q391.61803q43+(0.500000+0.363271i)q470.618034q49+(0.587785+0.809017i)q53+1.61803iq57+(1.53884+0.500000i)q59+(0.309017+0.951057i)q61+(0.8090170.587785i)q69+(0.363271+0.500000i)q71+(0.951057+0.309017i)q73+(0.951057+1.30902i)q79+(0.809017+0.587785i)q81+(0.809017+0.587785i)q83+(0.500000+1.53884i)q87+(0.3632710.118034i)q911.00000iq93+(0.3632710.500000i)q97+O(q100)q+(-0.809017 + 0.587785i) q^{3} -0.618034 q^{7} +(0.587785 + 0.190983i) q^{13} +(0.951057 - 1.30902i) q^{19} +(0.500000 - 0.363271i) q^{21} +(0.309017 + 0.951057i) q^{23} +(-0.309017 - 0.951057i) q^{27} +(1.30902 - 0.951057i) q^{29} +(-0.587785 + 0.809017i) q^{31} +(0.951057 + 0.309017i) q^{37} +(-0.587785 + 0.190983i) q^{39} -1.61803 q^{43} +(-0.500000 + 0.363271i) q^{47} -0.618034 q^{49} +(0.587785 + 0.809017i) q^{53} +1.61803i q^{57} +(1.53884 + 0.500000i) q^{59} +(0.309017 + 0.951057i) q^{61} +(-0.809017 - 0.587785i) q^{69} +(0.363271 + 0.500000i) q^{71} +(-0.951057 + 0.309017i) q^{73} +(0.951057 + 1.30902i) q^{79} +(0.809017 + 0.587785i) q^{81} +(0.809017 + 0.587785i) q^{83} +(-0.500000 + 1.53884i) q^{87} +(-0.363271 - 0.118034i) q^{91} -1.00000i q^{93} +(-0.363271 - 0.500000i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q2q3+4q7+4q212q23+2q27+6q294q434q47+4q492q612q69+2q81+2q834q87+O(q100) 8 q - 2 q^{3} + 4 q^{7} + 4 q^{21} - 2 q^{23} + 2 q^{27} + 6 q^{29} - 4 q^{43} - 4 q^{47} + 4 q^{49} - 2 q^{61} - 2 q^{69} + 2 q^{81} + 2 q^{83} - 4 q^{87}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4000Z)×\left(\mathbb{Z}/4000\mathbb{Z}\right)^\times.

nn 13771377 25012501 27512751
χ(n)\chi(n) e(910)e\left(\frac{9}{10}\right) 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
44 0 0
55 0 0
66 0 0
77 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
88 0 0
99 0 0
1010 0 0
1111 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
1212 0 0
1313 0.587785 + 0.190983i 0.587785 + 0.190983i 0.587785 0.809017i 0.300000π-0.300000\pi
1.00000i 0.5π0.5\pi
1414 0 0
1515 0 0
1616 0 0
1717 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
1818 0 0
1919 0.951057 1.30902i 0.951057 1.30902i 1.00000i 0.5π-0.5\pi
0.951057 0.309017i 0.100000π-0.100000\pi
2020 0 0
2121 0.500000 0.363271i 0.500000 0.363271i
2222 0 0
2323 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
2424 0 0
2525 0 0
2626 0 0
2727 −0.309017 0.951057i −0.309017 0.951057i
2828 0 0
2929 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
1.00000 00
3030 0 0
3131 −0.587785 + 0.809017i −0.587785 + 0.809017i −0.994522 0.104528i 0.966667π-0.966667\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 0.951057 + 0.309017i 0.951057 + 0.309017i 0.743145 0.669131i 0.233333π-0.233333\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
3838 0 0
3939 −0.587785 + 0.190983i −0.587785 + 0.190983i
4040 0 0
4141 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
4242 0 0
4343 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
4444 0 0
4545 0 0
4646 0 0
4747 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
4848 0 0
4949 −0.618034 −0.618034
5050 0 0
5151 0 0
5252 0 0
5353 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
5454 0 0
5555 0 0
5656 0 0
5757 1.61803i 1.61803i
5858 0 0
5959 1.53884 + 0.500000i 1.53884 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
6060 0 0
6161 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
6262 0 0
6363 0 0
6464 0 0
6565 0 0
6666 0 0
6767 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
6868 0 0
6969 −0.809017 0.587785i −0.809017 0.587785i
7070 0 0
7171 0.363271 + 0.500000i 0.363271 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
7272 0 0
7373 −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i 0.766667π-0.766667\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0.951057 + 1.30902i 0.951057 + 1.30902i 0.951057 + 0.309017i 0.100000π0.100000\pi
1.00000i 0.5π0.5\pi
8080 0 0
8181 0.809017 + 0.587785i 0.809017 + 0.587785i
8282 0 0
8383 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
8484 0 0
8585 0 0
8686 0 0
8787 −0.500000 + 1.53884i −0.500000 + 1.53884i
8888 0 0
8989 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
9090 0 0
9191 −0.363271 0.118034i −0.363271 0.118034i
9292 0 0
9393 1.00000i 1.00000i
9494 0 0
9595 0 0
9696 0 0
9797 −0.363271 0.500000i −0.363271 0.500000i 0.587785 0.809017i 0.300000π-0.300000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
9898 0 0
9999 0 0
100100 0 0
101101 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
102102 0 0
103103 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
1.00000 00
104104 0 0
105105 0 0
106106 0 0
107107 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
108108 0 0
109109 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
110110 0 0
111111 −0.951057 + 0.309017i −0.951057 + 0.309017i
112112 0 0
113113 1.53884 + 0.500000i 1.53884 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −0.809017 + 0.587785i −0.809017 + 0.587785i
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
128128 0 0
129129 1.30902 0.951057i 1.30902 0.951057i
130130 0 0
131131 0.363271 0.500000i 0.363271 0.500000i −0.587785 0.809017i 0.700000π-0.700000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
132132 0 0
133133 −0.587785 + 0.809017i −0.587785 + 0.809017i
134134 0 0
135135 0 0
136136 0 0
137137 0.951057 + 0.309017i 0.951057 + 0.309017i 0.743145 0.669131i 0.233333π-0.233333\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
138138 0 0
139139 −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i 0.766667π-0.766667\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
140140 0 0
141141 0.190983 0.587785i 0.190983 0.587785i
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0.500000 0.363271i 0.500000 0.363271i
148148 0 0
149149 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
150150 0 0
151151 1.61803i 1.61803i 0.587785 + 0.809017i 0.300000π0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
158158 0 0
159159 −0.951057 0.309017i −0.951057 0.309017i
160160 0 0
161161 −0.190983 0.587785i −0.190983 0.587785i
162162 0 0
163163 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
164164 0 0
165165 0 0
166166 0 0
167167 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 00
0.309017 + 0.951057i 0.400000π0.400000\pi
168168 0 0
169169 −0.500000 0.363271i −0.500000 0.363271i
170170 0 0
171171 0 0
172172 0 0
173173 0.951057 0.309017i 0.951057 0.309017i 0.207912 0.978148i 0.433333π-0.433333\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
174174 0 0
175175 0 0
176176 0 0
177177 −1.53884 + 0.500000i −1.53884 + 0.500000i
178178 0 0
179179 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
180180 0 0
181181 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
182182 0 0
183183 −0.809017 0.587785i −0.809017 0.587785i
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0.190983 + 0.587785i 0.190983 + 0.587785i
190190 0 0
191191 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
192192 0 0
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0 0
195195 0 0
196196 0 0
197197 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
198198 0 0
199199 0.618034i 0.618034i −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
200200 0 0
201201 0 0
202202 0 0
203203 −0.809017 + 0.587785i −0.809017 + 0.587785i
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0.951057 0.309017i 0.951057 0.309017i 0.207912 0.978148i 0.433333π-0.433333\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
212212 0 0
213213 −0.587785 0.190983i −0.587785 0.190983i
214214 0 0
215215 0 0
216216 0 0
217217 0.363271 0.500000i 0.363271 0.500000i
218218 0 0
219219 0.587785 0.809017i 0.587785 0.809017i
220220 0 0
221221 0 0
222222 0 0
223223 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
224224 0 0
225225 0 0
226226 0 0
227227 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
228228 0 0
229229 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
234234 0 0
235235 0 0
236236 0 0
237237 −1.53884 0.500000i −1.53884 0.500000i
238238 0 0
239239 −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i 0.766667π-0.766667\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
240240 0 0
241241 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
242242 0 0
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0.809017 0.587785i 0.809017 0.587785i
248248 0 0
249249 −1.00000 −1.00000
250250 0 0
251251 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 1.61803i 1.61803i −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
258258 0 0
259259 −0.587785 0.190983i −0.587785 0.190983i
260260 0 0
261261 0 0
262262 0 0
263263 −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i 0.200000π0.200000\pi
−1.00000 π\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
270270 0 0
271271 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
272272 0 0
273273 0.363271 0.118034i 0.363271 0.118034i
274274 0 0
275275 0 0
276276 0 0
277277 −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i 0.766667π-0.766667\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
278278 0 0
279279 0 0
280280 0 0
281281 −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i 0.600000π-0.600000\pi
−1.00000 π\pi
282282 0 0
283283 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i 0.200000π-0.200000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 0.309017 + 0.951057i 0.309017 + 0.951057i
290290 0 0
291291 0.587785 + 0.190983i 0.587785 + 0.190983i
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0.618034i 0.618034i
300300 0 0
301301 1.00000 1.00000
302302 0 0
303303 0.809017 0.587785i 0.809017 0.587785i
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 −0.500000 + 1.53884i −0.500000 + 1.53884i
310310 0 0
311311 0.587785 0.190983i 0.587785 0.190983i 1.00000i 0.5π-0.5\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
312312 0 0
313313 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
314314 0 0
315315 0 0
316316 0 0
317317 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i 0.633333π-0.633333\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
318318 0 0
319319 0 0
320320 0 0
321321 0.809017 0.587785i 0.809017 0.587785i
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0.309017 0.224514i 0.309017 0.224514i
330330 0 0
331331 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0.587785 + 0.190983i 0.587785 + 0.190983i 0.587785 0.809017i 0.300000π-0.300000\pi
1.00000i 0.5π0.5\pi
338338 0 0
339339 −1.53884 + 0.500000i −1.53884 + 0.500000i
340340 0 0
341341 0 0
342342 0 0
343343 1.00000 1.00000
344344 0 0
345345 0 0
346346 0 0
347347 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
1.00000 00
348348 0 0
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 0 0
351351 0.618034i 0.618034i
352352 0 0
353353 −0.363271 0.500000i −0.363271 0.500000i 0.587785 0.809017i 0.300000π-0.300000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 −0.587785 0.190983i −0.587785 0.190983i 1.00000i 0.5π-0.5\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
360360 0 0
361361 −0.500000 1.53884i −0.500000 1.53884i
362362 0 0
363363 0.309017 0.951057i 0.309017 0.951057i
364364 0 0
365365 0 0
366366 0 0
367367 −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
368368 0 0
369369 0 0
370370 0 0
371371 −0.363271 0.500000i −0.363271 0.500000i
372372 0 0
373373 −1.53884 + 0.500000i −1.53884 + 0.500000i −0.951057 0.309017i 0.900000π-0.900000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
374374 0 0
375375 0 0
376376 0 0
377377 0.951057 0.309017i 0.951057 0.309017i
378378 0 0
379379 −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i 0.366667π-0.366667\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
380380 0 0
381381 0 0
382382 0 0
383383 −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i 0.466667π-0.466667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
390390 0 0
391391 0 0
392392 0 0
393393 0.618034i 0.618034i
394394 0 0
395395 0 0
396396 0 0
397397 −0.951057 1.30902i −0.951057 1.30902i −0.951057 0.309017i 0.900000π-0.900000\pi
1.00000i 0.5π-0.5\pi
398398 0 0
399399 1.00000i 1.00000i
400400 0 0
401401 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
402402 0 0
403403 −0.500000 + 0.363271i −0.500000 + 0.363271i
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
410410 0 0
411411 −0.951057 + 0.309017i −0.951057 + 0.309017i
412412 0 0
413413 −0.951057 0.309017i −0.951057 0.309017i
414414 0 0
415415 0 0
416416 0 0
417417 0.587785 0.809017i 0.587785 0.809017i
418418 0 0
419419 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i 0.633333π-0.633333\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
420420 0 0
421421 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 −0.190983 0.587785i −0.190983 0.587785i
428428 0 0
429429 0 0
430430 0 0
431431 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i 0.633333π-0.633333\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
432432 0 0
433433 0.951057 1.30902i 0.951057 1.30902i 1.00000i 0.5π-0.5\pi
0.951057 0.309017i 0.100000π-0.100000\pi
434434 0 0
435435 0 0
436436 0 0
437437 1.53884 + 0.500000i 1.53884 + 0.500000i
438438 0 0
439439 0.587785 0.190983i 0.587785 0.190983i 1.00000i 0.5π-0.5\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
440440 0 0
441441 0 0
442442 0 0
443443 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
444444 0 0
445445 0 0
446446 0 0
447447 0.809017 0.587785i 0.809017 0.587785i
448448 0 0
449449 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
450450 0 0
451451 0 0
452452 0 0
453453 −0.951057 1.30902i −0.951057 1.30902i
454454 0 0
455455 0 0
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 0 0
459459 0 0
460460 0 0
461461 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
462462 0 0
463463 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
464464 0 0
465465 0 0
466466 0 0
467467 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i 0.200000π-0.200000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
468468 0 0
469469 0 0
470470 0 0
471471 −0.587785 0.809017i −0.587785 0.809017i
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0.951057 + 1.30902i 0.951057 + 1.30902i 0.951057 + 0.309017i 0.100000π0.100000\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 0.500000 + 0.363271i 0.500000 + 0.363271i
482482 0 0
483483 0.500000 + 0.363271i 0.500000 + 0.363271i
484484 0 0
485485 0 0
486486 0 0
487487 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
488488 0 0
489489 0.309017 + 0.951057i 0.309017 + 0.951057i
490490 0 0
491491 0.951057 + 0.309017i 0.951057 + 0.309017i 0.743145 0.669131i 0.233333π-0.233333\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 −0.224514 0.309017i −0.224514 0.309017i
498498 0 0
499499 0.618034i 0.618034i −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
500500 0 0
501501 −1.61803 −1.61803
502502 0 0
503503 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
504504 0 0
505505 0 0
506506 0 0
507507 0.618034 0.618034
508508 0 0
509509 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i 0.800000π-0.800000\pi
1.00000 00
510510 0 0
511511 0.587785 0.190983i 0.587785 0.190983i
512512 0 0
513513 −1.53884 0.500000i −1.53884 0.500000i
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 −0.587785 + 0.809017i −0.587785 + 0.809017i
520520 0 0
521521 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
522522 0 0
523523 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 0 0
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 −0.951057 0.309017i −0.951057 0.309017i
538538 0 0
539539 0 0
540540 0 0
541541 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
548548 0 0
549549 0 0
550550 0 0
551551 2.61803i 2.61803i
552552 0 0
553553 −0.587785 0.809017i −0.587785 0.809017i
554554 0 0
555555 0 0
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 −0.951057 0.309017i −0.951057 0.309017i
560560 0 0
561561 0 0
562562 0 0
563563 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i 0.800000π-0.800000\pi
1.00000 00
564564 0 0
565565 0 0
566566 0 0
567567 −0.500000 0.363271i −0.500000 0.363271i
568568 0 0
569569 −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i 0.466667π-0.466667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
570570 0 0
571571 −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i 0.366667π-0.366667\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
578578 0 0
579579 0 0
580580 0 0
581581 −0.500000 0.363271i −0.500000 0.363271i
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
588588 0 0
589589 0.500000 + 1.53884i 0.500000 + 1.53884i
590590 0 0
591591 0 0
592592 0 0
593593 0.618034i 0.618034i −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
594594 0 0
595595 0 0
596596 0 0
597597 0.363271 + 0.500000i 0.363271 + 0.500000i
598598 0 0
599599 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
600600 0 0
601601 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
608608 0 0
609609 0.309017 0.951057i 0.309017 0.951057i
610610 0 0
611611 −0.363271 + 0.118034i −0.363271 + 0.118034i
612612 0 0
613613 −0.587785 0.190983i −0.587785 0.190983i 1.00000i 0.5π-0.5\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
614614 0 0
615615 0 0
616616 0 0
617617 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i 0.633333π-0.633333\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
618618 0 0
619619 −0.587785 + 0.809017i −0.587785 + 0.809017i −0.994522 0.104528i 0.966667π-0.966667\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
620620 0 0
621621 0.809017 0.587785i 0.809017 0.587785i
622622 0 0
623623 0 0
624624 0 0
625625 0 0
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i 0.633333π-0.633333\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
632632 0 0
633633 −0.587785 + 0.809017i −0.587785 + 0.809017i
634634 0 0
635635 0 0
636636 0 0
637637 −0.363271 0.118034i −0.363271 0.118034i
638638 0 0
639639 0 0
640640 0 0
641641 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i 0.800000π-0.800000\pi
1.00000 00
642642 0 0
643643 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
648648 0 0
649649 0 0
650650 0 0
651651 0.618034i 0.618034i
652652 0 0
653653 0.363271 + 0.500000i 0.363271 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
660660 0 0
661661 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 1.30902 + 0.951057i 1.30902 + 0.951057i
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
674674 0 0
675675 0 0
676676 0 0
677677 −0.587785 + 0.190983i −0.587785 + 0.190983i −0.587785 0.809017i 0.700000π-0.700000\pi
1.00000i 0.5π0.5\pi
678678 0 0
679679 0.224514 + 0.309017i 0.224514 + 0.309017i
680680 0 0
681681 0 0
682682 0 0
683683 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0.190983 + 0.587785i 0.190983 + 0.587785i
690690 0 0
691691 −1.53884 0.500000i −1.53884 0.500000i −0.587785 0.809017i 0.700000π-0.700000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 1.30902 0.951057i 1.30902 0.951057i
704704 0 0
705705 0 0
706706 0 0
707707 0.618034 0.618034
708708 0 0
709709 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
710710 0 0
711711 0 0
712712 0 0
713713 −0.951057 0.309017i −0.951057 0.309017i
714714 0 0
715715 0 0
716716 0 0
717717 0.587785 0.809017i 0.587785 0.809017i
718718 0 0
719719 0.587785 0.809017i 0.587785 0.809017i −0.406737 0.913545i 0.633333π-0.633333\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
720720 0 0
721721 −0.809017 + 0.587785i −0.809017 + 0.587785i
722722 0 0
723723 −0.309017 0.951057i −0.309017 0.951057i
724724 0 0
725725 0 0
726726 0 0
727727 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
728728 0 0
729729 −0.809017 + 0.587785i −0.809017 + 0.587785i
730730 0 0
731731 0 0
732732 0 0
733733 0.951057 1.30902i 0.951057 1.30902i 1.00000i 0.5π-0.5\pi
0.951057 0.309017i 0.100000π-0.100000\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 −1.53884 + 0.500000i −1.53884 + 0.500000i −0.951057 0.309017i 0.900000π-0.900000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
740740 0 0
741741 −0.309017 + 0.951057i −0.309017 + 0.951057i
742742 0 0
743743 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0.618034 0.618034
750750 0 0
751751 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
752752 0 0
753753 0.587785 + 0.809017i 0.587785 + 0.809017i
754754 0 0
755755 0 0
756756 0 0
757757 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
758758 0 0
759759 0 0
760760 0 0
761761 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0.809017 + 0.587785i 0.809017 + 0.587785i
768768 0 0
769769 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
770770 0 0
771771 0.951057 + 1.30902i 0.951057 + 1.30902i
772772 0 0
773773 1.53884 0.500000i 1.53884 0.500000i 0.587785 0.809017i 0.300000π-0.300000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
774774 0 0
775775 0 0
776776 0 0
777777 0.587785 0.190983i 0.587785 0.190983i
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 −1.30902 0.951057i −1.30902 0.951057i
784784 0 0
785785 0 0
786786 0 0
787787 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
788788 0 0
789789 −0.190983 0.587785i −0.190983 0.587785i
790790 0 0
791791 −0.951057 0.309017i −0.951057 0.309017i
792792 0 0
793793 0.618034i 0.618034i
794794 0 0
795795 0 0
796796 0 0
797797 −0.587785 0.809017i −0.587785 0.809017i 0.406737 0.913545i 0.366667π-0.366667\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i 0.200000π0.200000\pi
−1.00000 π\pi
810810 0 0
811811 0.951057 0.309017i 0.951057 0.309017i 0.207912 0.978148i 0.433333π-0.433333\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 −1.53884 + 2.11803i −1.53884 + 2.11803i
818818 0 0
819819 0 0
820820 0 0
821821 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
822822 0 0
823823 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
824824 0 0
825825 0 0
826826 0 0
827827 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
828828 0 0
829829 −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
830830 0 0
831831 0.587785 0.809017i 0.587785 0.809017i
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0.951057 + 0.309017i 0.951057 + 0.309017i
838838 0 0
839839 1.53884 0.500000i 1.53884 0.500000i 0.587785 0.809017i 0.300000π-0.300000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
840840 0 0
841841 0.500000 1.53884i 0.500000 1.53884i
842842 0 0
843843 1.61803 1.61803
844844 0 0
845845 0 0
846846 0 0
847847 0.500000 0.363271i 0.500000 0.363271i
848848 0 0
849849 −0.618034 −0.618034
850850 0 0
851851 1.00000i 1.00000i
852852 0 0
853853 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
854854 0 0
855855 0 0
856856 0 0
857857 1.61803i 1.61803i 0.587785 + 0.809017i 0.300000π0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
858858 0 0
859859 −0.951057 0.309017i −0.951057 0.309017i −0.207912 0.978148i 0.566667π-0.566667\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
860860 0 0
861861 0 0
862862 0 0
863863 −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
864864 0 0
865865 0 0
866866 0 0
867867 −0.809017 0.587785i −0.809017 0.587785i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
882882 0 0
883883 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 1.00000i 1.00000i
894894 0 0
895895 0 0
896896 0 0
897897 −0.363271 0.500000i −0.363271 0.500000i
898898 0 0
899899 1.61803i 1.61803i
900900 0 0
901901 0 0
902902 0 0
903903 −0.809017 + 0.587785i −0.809017 + 0.587785i
904904 0 0
905905 0 0
906906 0 0
907907 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
908908 0 0
909909 0 0
910910 0 0
911911 0.951057 0.309017i 0.951057 0.309017i 0.207912 0.978148i 0.433333π-0.433333\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 −0.224514 + 0.309017i −0.224514 + 0.309017i
918918 0 0
919919 −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i 0.5π0.5\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
920920 0 0
921921 0 0
922922 0 0
923923 0.118034 + 0.363271i 0.118034 + 0.363271i
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i 0.600000π-0.600000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
930930 0 0
931931 −0.587785 + 0.809017i −0.587785 + 0.809017i
932932 0 0
933933 −0.363271 + 0.500000i −0.363271 + 0.500000i
934934 0 0
935935 0 0
936936 0 0
937937 −1.53884 0.500000i −1.53884 0.500000i −0.587785 0.809017i 0.700000π-0.700000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
938938 0 0
939939 0 0
940940 0 0
941941 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
948948 0 0
949949 −0.618034 −0.618034
950950 0 0
951951 1.00000i 1.00000i
952952 0 0
953953 0.363271 + 0.500000i 0.363271 + 0.500000i 0.951057 0.309017i 0.100000π-0.100000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 −0.587785 0.190983i −0.587785 0.190983i
960960 0 0
961961 0 0
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
968968 0 0
969969 0 0
970970 0 0
971971 0.951057 + 1.30902i 0.951057 + 1.30902i 0.951057 + 0.309017i 0.100000π0.100000\pi
1.00000i 0.5π0.5\pi
972972 0 0
973973 0.587785 0.190983i 0.587785 0.190983i
974974 0 0
975975 0 0
976976 0 0
977977 −0.951057 + 0.309017i −0.951057 + 0.309017i −0.743145 0.669131i 0.766667π-0.766667\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i 0.600000π-0.600000\pi
−1.00000 π\pi
984984 0 0
985985 0 0
986986 0 0
987987 −0.118034 + 0.363271i −0.118034 + 0.363271i
988988 0 0
989989 −0.500000 1.53884i −0.500000 1.53884i
990990 0 0
991991 0.951057 + 0.309017i 0.951057 + 0.309017i 0.743145 0.669131i 0.233333π-0.233333\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0.587785 + 0.809017i 0.587785 + 0.809017i 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
998998 0 0
999999 1.00000i 1.00000i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4000.1.bf.a.1599.2 8
4.3 odd 2 4000.1.bf.b.1599.2 8
5.2 odd 4 800.1.bh.a.31.2 yes 8
5.3 odd 4 4000.1.bh.a.1151.1 8
5.4 even 2 4000.1.bf.b.1599.1 8
20.3 even 4 4000.1.bh.a.1151.2 8
20.7 even 4 800.1.bh.a.31.1 8
20.19 odd 2 inner 4000.1.bf.a.1599.1 8
25.3 odd 20 4000.1.bh.a.351.2 8
25.4 even 10 4000.1.bf.b.2399.2 8
25.21 even 5 inner 4000.1.bf.a.2399.1 8
25.22 odd 20 800.1.bh.a.671.1 yes 8
40.27 even 4 1600.1.bh.b.831.2 8
40.37 odd 4 1600.1.bh.b.831.1 8
100.3 even 20 4000.1.bh.a.351.1 8
100.47 even 20 800.1.bh.a.671.2 yes 8
100.71 odd 10 4000.1.bf.b.2399.1 8
100.79 odd 10 inner 4000.1.bf.a.2399.2 8
200.147 even 20 1600.1.bh.b.1471.1 8
200.197 odd 20 1600.1.bh.b.1471.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
800.1.bh.a.31.1 8 20.7 even 4
800.1.bh.a.31.2 yes 8 5.2 odd 4
800.1.bh.a.671.1 yes 8 25.22 odd 20
800.1.bh.a.671.2 yes 8 100.47 even 20
1600.1.bh.b.831.1 8 40.37 odd 4
1600.1.bh.b.831.2 8 40.27 even 4
1600.1.bh.b.1471.1 8 200.147 even 20
1600.1.bh.b.1471.2 8 200.197 odd 20
4000.1.bf.a.1599.1 8 20.19 odd 2 inner
4000.1.bf.a.1599.2 8 1.1 even 1 trivial
4000.1.bf.a.2399.1 8 25.21 even 5 inner
4000.1.bf.a.2399.2 8 100.79 odd 10 inner
4000.1.bf.b.1599.1 8 5.4 even 2
4000.1.bf.b.1599.2 8 4.3 odd 2
4000.1.bf.b.2399.1 8 100.71 odd 10
4000.1.bf.b.2399.2 8 25.4 even 10
4000.1.bh.a.351.1 8 100.3 even 20
4000.1.bh.a.351.2 8 25.3 odd 20
4000.1.bh.a.1151.1 8 5.3 odd 4
4000.1.bh.a.1151.2 8 20.3 even 4