Properties

Label 4000.2.a.n.1.5
Level $4000$
Weight $2$
Character 4000.1
Self dual yes
Analytic conductor $31.940$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4000,2,Mod(1,4000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4000 = 2^{5} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9401608085\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.30040000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 11x^{4} - 4x^{3} + 29x^{2} + 22x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.81030\) of defining polynomial
Character \(\chi\) \(=\) 4000.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.81030 q^{3} +4.37760 q^{7} +0.277175 q^{9} +O(q^{10})\) \(q+1.81030 q^{3} +4.37760 q^{7} +0.277175 q^{9} +5.82433 q^{11} +5.34625 q^{13} +5.41151 q^{17} -1.59789 q^{19} +7.92476 q^{21} -0.340859 q^{23} -4.92912 q^{27} -4.96428 q^{29} -4.63796 q^{31} +10.5438 q^{33} +8.40977 q^{37} +9.67829 q^{39} -2.34244 q^{41} -7.10407 q^{43} +0.879427 q^{47} +12.1634 q^{49} +9.79645 q^{51} -1.30241 q^{53} -2.89265 q^{57} -11.0726 q^{59} -14.4423 q^{61} +1.21336 q^{63} -3.01420 q^{67} -0.617056 q^{69} +9.37319 q^{71} -13.7157 q^{73} +25.4966 q^{77} -5.85098 q^{79} -9.75470 q^{81} +8.54562 q^{83} -8.98682 q^{87} -18.0227 q^{89} +23.4037 q^{91} -8.39608 q^{93} -10.0919 q^{97} +1.61436 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{7} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{7} + 4 q^{9} + 13 q^{11} + 7 q^{13} - 4 q^{17} + 9 q^{19} + 7 q^{23} - 12 q^{27} + 2 q^{29} + 12 q^{31} - 6 q^{33} + 21 q^{37} + 26 q^{39} - 5 q^{41} - 8 q^{43} + 19 q^{47} - 3 q^{49} + 18 q^{51} + 11 q^{53} - 28 q^{57} + 25 q^{59} - 6 q^{61} - 3 q^{63} - 12 q^{69} + 34 q^{71} - 20 q^{73} + 14 q^{77} + 16 q^{79} - 18 q^{81} - 4 q^{83} - 26 q^{87} - 3 q^{89} + 26 q^{91} + 16 q^{93} - 20 q^{97} + 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.81030 1.04518 0.522588 0.852586i \(-0.324967\pi\)
0.522588 + 0.852586i \(0.324967\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.37760 1.65458 0.827289 0.561777i \(-0.189882\pi\)
0.827289 + 0.561777i \(0.189882\pi\)
\(8\) 0 0
\(9\) 0.277175 0.0923916
\(10\) 0 0
\(11\) 5.82433 1.75610 0.878051 0.478567i \(-0.158844\pi\)
0.878051 + 0.478567i \(0.158844\pi\)
\(12\) 0 0
\(13\) 5.34625 1.48278 0.741391 0.671073i \(-0.234166\pi\)
0.741391 + 0.671073i \(0.234166\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.41151 1.31248 0.656242 0.754550i \(-0.272145\pi\)
0.656242 + 0.754550i \(0.272145\pi\)
\(18\) 0 0
\(19\) −1.59789 −0.366580 −0.183290 0.983059i \(-0.558675\pi\)
−0.183290 + 0.983059i \(0.558675\pi\)
\(20\) 0 0
\(21\) 7.92476 1.72932
\(22\) 0 0
\(23\) −0.340859 −0.0710740 −0.0355370 0.999368i \(-0.511314\pi\)
−0.0355370 + 0.999368i \(0.511314\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −4.92912 −0.948610
\(28\) 0 0
\(29\) −4.96428 −0.921844 −0.460922 0.887441i \(-0.652481\pi\)
−0.460922 + 0.887441i \(0.652481\pi\)
\(30\) 0 0
\(31\) −4.63796 −0.833002 −0.416501 0.909135i \(-0.636744\pi\)
−0.416501 + 0.909135i \(0.636744\pi\)
\(32\) 0 0
\(33\) 10.5438 1.83543
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.40977 1.38256 0.691278 0.722588i \(-0.257048\pi\)
0.691278 + 0.722588i \(0.257048\pi\)
\(38\) 0 0
\(39\) 9.67829 1.54977
\(40\) 0 0
\(41\) −2.34244 −0.365828 −0.182914 0.983129i \(-0.558553\pi\)
−0.182914 + 0.983129i \(0.558553\pi\)
\(42\) 0 0
\(43\) −7.10407 −1.08336 −0.541680 0.840585i \(-0.682212\pi\)
−0.541680 + 0.840585i \(0.682212\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.879427 0.128278 0.0641388 0.997941i \(-0.479570\pi\)
0.0641388 + 0.997941i \(0.479570\pi\)
\(48\) 0 0
\(49\) 12.1634 1.73763
\(50\) 0 0
\(51\) 9.79645 1.37178
\(52\) 0 0
\(53\) −1.30241 −0.178900 −0.0894502 0.995991i \(-0.528511\pi\)
−0.0894502 + 0.995991i \(0.528511\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −2.89265 −0.383141
\(58\) 0 0
\(59\) −11.0726 −1.44153 −0.720767 0.693178i \(-0.756210\pi\)
−0.720767 + 0.693178i \(0.756210\pi\)
\(60\) 0 0
\(61\) −14.4423 −1.84915 −0.924574 0.381003i \(-0.875579\pi\)
−0.924574 + 0.381003i \(0.875579\pi\)
\(62\) 0 0
\(63\) 1.21336 0.152869
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −3.01420 −0.368243 −0.184122 0.982903i \(-0.558944\pi\)
−0.184122 + 0.982903i \(0.558944\pi\)
\(68\) 0 0
\(69\) −0.617056 −0.0742848
\(70\) 0 0
\(71\) 9.37319 1.11239 0.556197 0.831051i \(-0.312260\pi\)
0.556197 + 0.831051i \(0.312260\pi\)
\(72\) 0 0
\(73\) −13.7157 −1.60530 −0.802649 0.596451i \(-0.796577\pi\)
−0.802649 + 0.596451i \(0.796577\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 25.4966 2.90561
\(78\) 0 0
\(79\) −5.85098 −0.658287 −0.329143 0.944280i \(-0.606760\pi\)
−0.329143 + 0.944280i \(0.606760\pi\)
\(80\) 0 0
\(81\) −9.75470 −1.08386
\(82\) 0 0
\(83\) 8.54562 0.938003 0.469002 0.883197i \(-0.344614\pi\)
0.469002 + 0.883197i \(0.344614\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −8.98682 −0.963488
\(88\) 0 0
\(89\) −18.0227 −1.91040 −0.955202 0.295956i \(-0.904362\pi\)
−0.955202 + 0.295956i \(0.904362\pi\)
\(90\) 0 0
\(91\) 23.4037 2.45338
\(92\) 0 0
\(93\) −8.39608 −0.870633
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −10.0919 −1.02468 −0.512340 0.858783i \(-0.671221\pi\)
−0.512340 + 0.858783i \(0.671221\pi\)
\(98\) 0 0
\(99\) 1.61436 0.162249
\(100\) 0 0
\(101\) −6.64409 −0.661111 −0.330556 0.943787i \(-0.607236\pi\)
−0.330556 + 0.943787i \(0.607236\pi\)
\(102\) 0 0
\(103\) −9.84923 −0.970474 −0.485237 0.874383i \(-0.661267\pi\)
−0.485237 + 0.874383i \(0.661267\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.941408 −0.0910093 −0.0455047 0.998964i \(-0.514490\pi\)
−0.0455047 + 0.998964i \(0.514490\pi\)
\(108\) 0 0
\(109\) 10.2276 0.979627 0.489813 0.871827i \(-0.337065\pi\)
0.489813 + 0.871827i \(0.337065\pi\)
\(110\) 0 0
\(111\) 15.2242 1.44501
\(112\) 0 0
\(113\) −8.90474 −0.837687 −0.418844 0.908058i \(-0.637564\pi\)
−0.418844 + 0.908058i \(0.637564\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.48185 0.136997
\(118\) 0 0
\(119\) 23.6894 2.17161
\(120\) 0 0
\(121\) 22.9228 2.08389
\(122\) 0 0
\(123\) −4.24051 −0.382354
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1.75678 0.155889 0.0779446 0.996958i \(-0.475164\pi\)
0.0779446 + 0.996958i \(0.475164\pi\)
\(128\) 0 0
\(129\) −12.8605 −1.13230
\(130\) 0 0
\(131\) 6.14604 0.536982 0.268491 0.963282i \(-0.413475\pi\)
0.268491 + 0.963282i \(0.413475\pi\)
\(132\) 0 0
\(133\) −6.99491 −0.606535
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.79739 0.153561 0.0767806 0.997048i \(-0.475536\pi\)
0.0767806 + 0.997048i \(0.475536\pi\)
\(138\) 0 0
\(139\) −15.6284 −1.32559 −0.662793 0.748803i \(-0.730629\pi\)
−0.662793 + 0.748803i \(0.730629\pi\)
\(140\) 0 0
\(141\) 1.59202 0.134073
\(142\) 0 0
\(143\) 31.1383 2.60392
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 22.0193 1.81612
\(148\) 0 0
\(149\) 20.3836 1.66989 0.834944 0.550335i \(-0.185500\pi\)
0.834944 + 0.550335i \(0.185500\pi\)
\(150\) 0 0
\(151\) 14.2100 1.15639 0.578196 0.815898i \(-0.303757\pi\)
0.578196 + 0.815898i \(0.303757\pi\)
\(152\) 0 0
\(153\) 1.49994 0.121263
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −6.01209 −0.479817 −0.239908 0.970796i \(-0.577117\pi\)
−0.239908 + 0.970796i \(0.577117\pi\)
\(158\) 0 0
\(159\) −2.35776 −0.186982
\(160\) 0 0
\(161\) −1.49215 −0.117598
\(162\) 0 0
\(163\) 12.5491 0.982920 0.491460 0.870900i \(-0.336463\pi\)
0.491460 + 0.870900i \(0.336463\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.32243 −0.334480 −0.167240 0.985916i \(-0.553485\pi\)
−0.167240 + 0.985916i \(0.553485\pi\)
\(168\) 0 0
\(169\) 15.5824 1.19864
\(170\) 0 0
\(171\) −0.442894 −0.0338689
\(172\) 0 0
\(173\) −8.22242 −0.625139 −0.312570 0.949895i \(-0.601190\pi\)
−0.312570 + 0.949895i \(0.601190\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −20.0447 −1.50666
\(178\) 0 0
\(179\) 2.21704 0.165710 0.0828548 0.996562i \(-0.473596\pi\)
0.0828548 + 0.996562i \(0.473596\pi\)
\(180\) 0 0
\(181\) 15.6084 1.16016 0.580080 0.814559i \(-0.303021\pi\)
0.580080 + 0.814559i \(0.303021\pi\)
\(182\) 0 0
\(183\) −26.1449 −1.93268
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 31.5184 2.30486
\(188\) 0 0
\(189\) −21.5777 −1.56955
\(190\) 0 0
\(191\) −0.823027 −0.0595521 −0.0297761 0.999557i \(-0.509479\pi\)
−0.0297761 + 0.999557i \(0.509479\pi\)
\(192\) 0 0
\(193\) −4.12278 −0.296764 −0.148382 0.988930i \(-0.547407\pi\)
−0.148382 + 0.988930i \(0.547407\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.3961 1.31067 0.655333 0.755340i \(-0.272528\pi\)
0.655333 + 0.755340i \(0.272528\pi\)
\(198\) 0 0
\(199\) 1.01893 0.0722300 0.0361150 0.999348i \(-0.488502\pi\)
0.0361150 + 0.999348i \(0.488502\pi\)
\(200\) 0 0
\(201\) −5.45660 −0.384879
\(202\) 0 0
\(203\) −21.7316 −1.52526
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.0944776 −0.00656665
\(208\) 0 0
\(209\) −9.30662 −0.643752
\(210\) 0 0
\(211\) −8.14609 −0.560800 −0.280400 0.959883i \(-0.590467\pi\)
−0.280400 + 0.959883i \(0.590467\pi\)
\(212\) 0 0
\(213\) 16.9683 1.16265
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −20.3031 −1.37827
\(218\) 0 0
\(219\) −24.8294 −1.67782
\(220\) 0 0
\(221\) 28.9313 1.94613
\(222\) 0 0
\(223\) −12.4073 −0.830856 −0.415428 0.909626i \(-0.636368\pi\)
−0.415428 + 0.909626i \(0.636368\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −24.5589 −1.63003 −0.815016 0.579438i \(-0.803272\pi\)
−0.815016 + 0.579438i \(0.803272\pi\)
\(228\) 0 0
\(229\) −5.35261 −0.353711 −0.176855 0.984237i \(-0.556592\pi\)
−0.176855 + 0.984237i \(0.556592\pi\)
\(230\) 0 0
\(231\) 46.1564 3.03687
\(232\) 0 0
\(233\) −0.350300 −0.0229489 −0.0114745 0.999934i \(-0.503653\pi\)
−0.0114745 + 0.999934i \(0.503653\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −10.5920 −0.688025
\(238\) 0 0
\(239\) 8.90513 0.576025 0.288012 0.957627i \(-0.407006\pi\)
0.288012 + 0.957627i \(0.407006\pi\)
\(240\) 0 0
\(241\) −8.09465 −0.521422 −0.260711 0.965417i \(-0.583957\pi\)
−0.260711 + 0.965417i \(0.583957\pi\)
\(242\) 0 0
\(243\) −2.87154 −0.184209
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −8.54270 −0.543559
\(248\) 0 0
\(249\) 15.4701 0.980378
\(250\) 0 0
\(251\) 15.0480 0.949821 0.474910 0.880034i \(-0.342480\pi\)
0.474910 + 0.880034i \(0.342480\pi\)
\(252\) 0 0
\(253\) −1.98528 −0.124813
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.1390 −0.819586 −0.409793 0.912179i \(-0.634399\pi\)
−0.409793 + 0.912179i \(0.634399\pi\)
\(258\) 0 0
\(259\) 36.8146 2.28755
\(260\) 0 0
\(261\) −1.37597 −0.0851706
\(262\) 0 0
\(263\) 16.3912 1.01072 0.505362 0.862908i \(-0.331359\pi\)
0.505362 + 0.862908i \(0.331359\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −32.6265 −1.99671
\(268\) 0 0
\(269\) 1.56270 0.0952793 0.0476397 0.998865i \(-0.484830\pi\)
0.0476397 + 0.998865i \(0.484830\pi\)
\(270\) 0 0
\(271\) 30.1625 1.83224 0.916121 0.400902i \(-0.131303\pi\)
0.916121 + 0.400902i \(0.131303\pi\)
\(272\) 0 0
\(273\) 42.3677 2.56421
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −17.9905 −1.08095 −0.540473 0.841361i \(-0.681755\pi\)
−0.540473 + 0.841361i \(0.681755\pi\)
\(278\) 0 0
\(279\) −1.28553 −0.0769624
\(280\) 0 0
\(281\) −1.25760 −0.0750221 −0.0375111 0.999296i \(-0.511943\pi\)
−0.0375111 + 0.999296i \(0.511943\pi\)
\(282\) 0 0
\(283\) 17.4528 1.03746 0.518729 0.854938i \(-0.326405\pi\)
0.518729 + 0.854938i \(0.326405\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −10.2543 −0.605290
\(288\) 0 0
\(289\) 12.2845 0.722616
\(290\) 0 0
\(291\) −18.2694 −1.07097
\(292\) 0 0
\(293\) 24.0216 1.40336 0.701678 0.712494i \(-0.252435\pi\)
0.701678 + 0.712494i \(0.252435\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −28.7088 −1.66586
\(298\) 0 0
\(299\) −1.82232 −0.105387
\(300\) 0 0
\(301\) −31.0988 −1.79250
\(302\) 0 0
\(303\) −12.0278 −0.690977
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −11.1584 −0.636845 −0.318423 0.947949i \(-0.603153\pi\)
−0.318423 + 0.947949i \(0.603153\pi\)
\(308\) 0 0
\(309\) −17.8300 −1.01432
\(310\) 0 0
\(311\) 19.8088 1.12326 0.561628 0.827390i \(-0.310175\pi\)
0.561628 + 0.827390i \(0.310175\pi\)
\(312\) 0 0
\(313\) 3.29732 0.186376 0.0931879 0.995649i \(-0.470294\pi\)
0.0931879 + 0.995649i \(0.470294\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 17.5911 0.988017 0.494009 0.869457i \(-0.335531\pi\)
0.494009 + 0.869457i \(0.335531\pi\)
\(318\) 0 0
\(319\) −28.9136 −1.61885
\(320\) 0 0
\(321\) −1.70423 −0.0951207
\(322\) 0 0
\(323\) −8.64698 −0.481131
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 18.5150 1.02388
\(328\) 0 0
\(329\) 3.84978 0.212245
\(330\) 0 0
\(331\) 15.0330 0.826288 0.413144 0.910666i \(-0.364431\pi\)
0.413144 + 0.910666i \(0.364431\pi\)
\(332\) 0 0
\(333\) 2.33098 0.127737
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −31.7741 −1.73084 −0.865422 0.501043i \(-0.832950\pi\)
−0.865422 + 0.501043i \(0.832950\pi\)
\(338\) 0 0
\(339\) −16.1202 −0.875530
\(340\) 0 0
\(341\) −27.0130 −1.46284
\(342\) 0 0
\(343\) 22.6032 1.22046
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 26.6632 1.43136 0.715679 0.698430i \(-0.246118\pi\)
0.715679 + 0.698430i \(0.246118\pi\)
\(348\) 0 0
\(349\) 4.44619 0.237999 0.119000 0.992894i \(-0.462031\pi\)
0.119000 + 0.992894i \(0.462031\pi\)
\(350\) 0 0
\(351\) −26.3523 −1.40658
\(352\) 0 0
\(353\) 0.316976 0.0168710 0.00843548 0.999964i \(-0.497315\pi\)
0.00843548 + 0.999964i \(0.497315\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 42.8849 2.26971
\(358\) 0 0
\(359\) 22.0361 1.16302 0.581509 0.813540i \(-0.302462\pi\)
0.581509 + 0.813540i \(0.302462\pi\)
\(360\) 0 0
\(361\) −16.4468 −0.865619
\(362\) 0 0
\(363\) 41.4971 2.17803
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −4.44627 −0.232093 −0.116047 0.993244i \(-0.537022\pi\)
−0.116047 + 0.993244i \(0.537022\pi\)
\(368\) 0 0
\(369\) −0.649266 −0.0337994
\(370\) 0 0
\(371\) −5.70145 −0.296005
\(372\) 0 0
\(373\) 23.3308 1.20802 0.604012 0.796975i \(-0.293568\pi\)
0.604012 + 0.796975i \(0.293568\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −26.5403 −1.36689
\(378\) 0 0
\(379\) 19.0905 0.980614 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(380\) 0 0
\(381\) 3.18030 0.162932
\(382\) 0 0
\(383\) 0.371944 0.0190055 0.00950273 0.999955i \(-0.496975\pi\)
0.00950273 + 0.999955i \(0.496975\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.96907 −0.100093
\(388\) 0 0
\(389\) −22.9338 −1.16279 −0.581395 0.813621i \(-0.697493\pi\)
−0.581395 + 0.813621i \(0.697493\pi\)
\(390\) 0 0
\(391\) −1.84456 −0.0932836
\(392\) 0 0
\(393\) 11.1262 0.561240
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 14.2189 0.713628 0.356814 0.934176i \(-0.383863\pi\)
0.356814 + 0.934176i \(0.383863\pi\)
\(398\) 0 0
\(399\) −12.6629 −0.633936
\(400\) 0 0
\(401\) 0.847710 0.0423326 0.0211663 0.999776i \(-0.493262\pi\)
0.0211663 + 0.999776i \(0.493262\pi\)
\(402\) 0 0
\(403\) −24.7957 −1.23516
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 48.9813 2.42791
\(408\) 0 0
\(409\) −32.7324 −1.61851 −0.809256 0.587457i \(-0.800129\pi\)
−0.809256 + 0.587457i \(0.800129\pi\)
\(410\) 0 0
\(411\) 3.25381 0.160498
\(412\) 0 0
\(413\) −48.4715 −2.38513
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −28.2921 −1.38547
\(418\) 0 0
\(419\) 24.3482 1.18949 0.594743 0.803916i \(-0.297254\pi\)
0.594743 + 0.803916i \(0.297254\pi\)
\(420\) 0 0
\(421\) −5.79282 −0.282325 −0.141162 0.989986i \(-0.545084\pi\)
−0.141162 + 0.989986i \(0.545084\pi\)
\(422\) 0 0
\(423\) 0.243755 0.0118518
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −63.2226 −3.05956
\(428\) 0 0
\(429\) 56.3696 2.72155
\(430\) 0 0
\(431\) −27.0917 −1.30496 −0.652480 0.757806i \(-0.726272\pi\)
−0.652480 + 0.757806i \(0.726272\pi\)
\(432\) 0 0
\(433\) −35.6206 −1.71182 −0.855908 0.517129i \(-0.827001\pi\)
−0.855908 + 0.517129i \(0.827001\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.544654 0.0260543
\(438\) 0 0
\(439\) −35.2574 −1.68275 −0.841373 0.540455i \(-0.818252\pi\)
−0.841373 + 0.540455i \(0.818252\pi\)
\(440\) 0 0
\(441\) 3.37138 0.160542
\(442\) 0 0
\(443\) −33.9602 −1.61350 −0.806748 0.590896i \(-0.798775\pi\)
−0.806748 + 0.590896i \(0.798775\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 36.9003 1.74533
\(448\) 0 0
\(449\) 13.2446 0.625050 0.312525 0.949910i \(-0.398825\pi\)
0.312525 + 0.949910i \(0.398825\pi\)
\(450\) 0 0
\(451\) −13.6432 −0.642431
\(452\) 0 0
\(453\) 25.7243 1.20863
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2.86349 −0.133949 −0.0669743 0.997755i \(-0.521335\pi\)
−0.0669743 + 0.997755i \(0.521335\pi\)
\(458\) 0 0
\(459\) −26.6740 −1.24504
\(460\) 0 0
\(461\) 22.8968 1.06641 0.533206 0.845986i \(-0.320987\pi\)
0.533206 + 0.845986i \(0.320987\pi\)
\(462\) 0 0
\(463\) −15.0334 −0.698659 −0.349330 0.937000i \(-0.613591\pi\)
−0.349330 + 0.937000i \(0.613591\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 16.2490 0.751913 0.375957 0.926637i \(-0.377314\pi\)
0.375957 + 0.926637i \(0.377314\pi\)
\(468\) 0 0
\(469\) −13.1950 −0.609287
\(470\) 0 0
\(471\) −10.8837 −0.501493
\(472\) 0 0
\(473\) −41.3764 −1.90249
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −0.360997 −0.0165289
\(478\) 0 0
\(479\) 16.8024 0.767722 0.383861 0.923391i \(-0.374594\pi\)
0.383861 + 0.923391i \(0.374594\pi\)
\(480\) 0 0
\(481\) 44.9607 2.05003
\(482\) 0 0
\(483\) −2.70123 −0.122910
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −17.0426 −0.772276 −0.386138 0.922441i \(-0.626191\pi\)
−0.386138 + 0.922441i \(0.626191\pi\)
\(488\) 0 0
\(489\) 22.7176 1.02732
\(490\) 0 0
\(491\) 25.5972 1.15518 0.577592 0.816326i \(-0.303993\pi\)
0.577592 + 0.816326i \(0.303993\pi\)
\(492\) 0 0
\(493\) −26.8643 −1.20991
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 41.0321 1.84054
\(498\) 0 0
\(499\) 2.10330 0.0941565 0.0470783 0.998891i \(-0.485009\pi\)
0.0470783 + 0.998891i \(0.485009\pi\)
\(500\) 0 0
\(501\) −7.82489 −0.349590
\(502\) 0 0
\(503\) −1.80566 −0.0805105 −0.0402552 0.999189i \(-0.512817\pi\)
−0.0402552 + 0.999189i \(0.512817\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 28.2087 1.25279
\(508\) 0 0
\(509\) −16.5594 −0.733980 −0.366990 0.930225i \(-0.619612\pi\)
−0.366990 + 0.930225i \(0.619612\pi\)
\(510\) 0 0
\(511\) −60.0417 −2.65609
\(512\) 0 0
\(513\) 7.87618 0.347742
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 5.12207 0.225269
\(518\) 0 0
\(519\) −14.8850 −0.653380
\(520\) 0 0
\(521\) −22.9830 −1.00690 −0.503452 0.864023i \(-0.667937\pi\)
−0.503452 + 0.864023i \(0.667937\pi\)
\(522\) 0 0
\(523\) 9.47128 0.414150 0.207075 0.978325i \(-0.433606\pi\)
0.207075 + 0.978325i \(0.433606\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −25.0984 −1.09330
\(528\) 0 0
\(529\) −22.8838 −0.994948
\(530\) 0 0
\(531\) −3.06905 −0.133186
\(532\) 0 0
\(533\) −12.5233 −0.542443
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 4.01351 0.173196
\(538\) 0 0
\(539\) 70.8436 3.05145
\(540\) 0 0
\(541\) 13.2203 0.568386 0.284193 0.958767i \(-0.408274\pi\)
0.284193 + 0.958767i \(0.408274\pi\)
\(542\) 0 0
\(543\) 28.2558 1.21257
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 33.1211 1.41616 0.708079 0.706133i \(-0.249562\pi\)
0.708079 + 0.706133i \(0.249562\pi\)
\(548\) 0 0
\(549\) −4.00304 −0.170846
\(550\) 0 0
\(551\) 7.93236 0.337930
\(552\) 0 0
\(553\) −25.6133 −1.08919
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.75852 0.371110 0.185555 0.982634i \(-0.440592\pi\)
0.185555 + 0.982634i \(0.440592\pi\)
\(558\) 0 0
\(559\) −37.9801 −1.60639
\(560\) 0 0
\(561\) 57.0577 2.40898
\(562\) 0 0
\(563\) 1.05986 0.0446678 0.0223339 0.999751i \(-0.492890\pi\)
0.0223339 + 0.999751i \(0.492890\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −42.7022 −1.79332
\(568\) 0 0
\(569\) 38.9002 1.63078 0.815390 0.578912i \(-0.196523\pi\)
0.815390 + 0.578912i \(0.196523\pi\)
\(570\) 0 0
\(571\) 33.4842 1.40127 0.700635 0.713520i \(-0.252900\pi\)
0.700635 + 0.713520i \(0.252900\pi\)
\(572\) 0 0
\(573\) −1.48992 −0.0622424
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 17.5217 0.729436 0.364718 0.931118i \(-0.381165\pi\)
0.364718 + 0.931118i \(0.381165\pi\)
\(578\) 0 0
\(579\) −7.46346 −0.310171
\(580\) 0 0
\(581\) 37.4093 1.55200
\(582\) 0 0
\(583\) −7.58569 −0.314167
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 21.6889 0.895195 0.447598 0.894235i \(-0.352280\pi\)
0.447598 + 0.894235i \(0.352280\pi\)
\(588\) 0 0
\(589\) 7.41093 0.305362
\(590\) 0 0
\(591\) 33.3024 1.36988
\(592\) 0 0
\(593\) 34.8683 1.43187 0.715935 0.698167i \(-0.246001\pi\)
0.715935 + 0.698167i \(0.246001\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.84456 0.0754930
\(598\) 0 0
\(599\) 14.6435 0.598317 0.299158 0.954203i \(-0.403294\pi\)
0.299158 + 0.954203i \(0.403294\pi\)
\(600\) 0 0
\(601\) −9.69821 −0.395598 −0.197799 0.980243i \(-0.563379\pi\)
−0.197799 + 0.980243i \(0.563379\pi\)
\(602\) 0 0
\(603\) −0.835460 −0.0340226
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −2.94086 −0.119366 −0.0596829 0.998217i \(-0.519009\pi\)
−0.0596829 + 0.998217i \(0.519009\pi\)
\(608\) 0 0
\(609\) −39.3407 −1.59417
\(610\) 0 0
\(611\) 4.70163 0.190208
\(612\) 0 0
\(613\) −17.0019 −0.686702 −0.343351 0.939207i \(-0.611562\pi\)
−0.343351 + 0.939207i \(0.611562\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17.7996 0.716583 0.358292 0.933610i \(-0.383359\pi\)
0.358292 + 0.933610i \(0.383359\pi\)
\(618\) 0 0
\(619\) 27.5237 1.10627 0.553135 0.833092i \(-0.313431\pi\)
0.553135 + 0.833092i \(0.313431\pi\)
\(620\) 0 0
\(621\) 1.68014 0.0674215
\(622\) 0 0
\(623\) −78.8962 −3.16091
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −16.8477 −0.672834
\(628\) 0 0
\(629\) 45.5096 1.81458
\(630\) 0 0
\(631\) −47.3515 −1.88503 −0.942517 0.334158i \(-0.891548\pi\)
−0.942517 + 0.334158i \(0.891548\pi\)
\(632\) 0 0
\(633\) −14.7468 −0.586134
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 65.0285 2.57652
\(638\) 0 0
\(639\) 2.59801 0.102776
\(640\) 0 0
\(641\) −15.3183 −0.605037 −0.302518 0.953144i \(-0.597827\pi\)
−0.302518 + 0.953144i \(0.597827\pi\)
\(642\) 0 0
\(643\) 38.4573 1.51661 0.758304 0.651901i \(-0.226028\pi\)
0.758304 + 0.651901i \(0.226028\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3.46190 −0.136101 −0.0680507 0.997682i \(-0.521678\pi\)
−0.0680507 + 0.997682i \(0.521678\pi\)
\(648\) 0 0
\(649\) −64.4906 −2.53148
\(650\) 0 0
\(651\) −36.7547 −1.44053
\(652\) 0 0
\(653\) −37.9039 −1.48329 −0.741647 0.670790i \(-0.765955\pi\)
−0.741647 + 0.670790i \(0.765955\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −3.80164 −0.148316
\(658\) 0 0
\(659\) −22.2876 −0.868203 −0.434102 0.900864i \(-0.642934\pi\)
−0.434102 + 0.900864i \(0.642934\pi\)
\(660\) 0 0
\(661\) −10.1877 −0.396257 −0.198129 0.980176i \(-0.563486\pi\)
−0.198129 + 0.980176i \(0.563486\pi\)
\(662\) 0 0
\(663\) 52.3742 2.03405
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.69212 0.0655192
\(668\) 0 0
\(669\) −22.4609 −0.868390
\(670\) 0 0
\(671\) −84.1168 −3.24729
\(672\) 0 0
\(673\) 22.6737 0.874008 0.437004 0.899460i \(-0.356040\pi\)
0.437004 + 0.899460i \(0.356040\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8.30011 −0.318999 −0.159500 0.987198i \(-0.550988\pi\)
−0.159500 + 0.987198i \(0.550988\pi\)
\(678\) 0 0
\(679\) −44.1784 −1.69541
\(680\) 0 0
\(681\) −44.4589 −1.70367
\(682\) 0 0
\(683\) 8.62826 0.330151 0.165076 0.986281i \(-0.447213\pi\)
0.165076 + 0.986281i \(0.447213\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −9.68982 −0.369690
\(688\) 0 0
\(689\) −6.96303 −0.265270
\(690\) 0 0
\(691\) −42.6346 −1.62190 −0.810949 0.585117i \(-0.801049\pi\)
−0.810949 + 0.585117i \(0.801049\pi\)
\(692\) 0 0
\(693\) 7.06701 0.268454
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −12.6762 −0.480143
\(698\) 0 0
\(699\) −0.634147 −0.0239857
\(700\) 0 0
\(701\) −38.4312 −1.45153 −0.725763 0.687945i \(-0.758513\pi\)
−0.725763 + 0.687945i \(0.758513\pi\)
\(702\) 0 0
\(703\) −13.4379 −0.506818
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −29.0852 −1.09386
\(708\) 0 0
\(709\) 19.9047 0.747537 0.373769 0.927522i \(-0.378065\pi\)
0.373769 + 0.927522i \(0.378065\pi\)
\(710\) 0 0
\(711\) −1.62175 −0.0608202
\(712\) 0 0
\(713\) 1.58089 0.0592048
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 16.1209 0.602047
\(718\) 0 0
\(719\) 14.9260 0.556644 0.278322 0.960488i \(-0.410222\pi\)
0.278322 + 0.960488i \(0.410222\pi\)
\(720\) 0 0
\(721\) −43.1160 −1.60572
\(722\) 0 0
\(723\) −14.6537 −0.544978
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −25.6583 −0.951615 −0.475808 0.879549i \(-0.657844\pi\)
−0.475808 + 0.879549i \(0.657844\pi\)
\(728\) 0 0
\(729\) 24.0658 0.891325
\(730\) 0 0
\(731\) −38.4437 −1.42189
\(732\) 0 0
\(733\) 45.1247 1.66672 0.833360 0.552731i \(-0.186414\pi\)
0.833360 + 0.552731i \(0.186414\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −17.5557 −0.646672
\(738\) 0 0
\(739\) −4.88625 −0.179743 −0.0898717 0.995953i \(-0.528646\pi\)
−0.0898717 + 0.995953i \(0.528646\pi\)
\(740\) 0 0
\(741\) −15.4648 −0.568114
\(742\) 0 0
\(743\) 31.3357 1.14960 0.574798 0.818295i \(-0.305081\pi\)
0.574798 + 0.818295i \(0.305081\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.36863 0.0866637
\(748\) 0 0
\(749\) −4.12111 −0.150582
\(750\) 0 0
\(751\) 2.75676 0.100596 0.0502978 0.998734i \(-0.483983\pi\)
0.0502978 + 0.998734i \(0.483983\pi\)
\(752\) 0 0
\(753\) 27.2413 0.992729
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 27.7888 1.01000 0.505000 0.863119i \(-0.331492\pi\)
0.505000 + 0.863119i \(0.331492\pi\)
\(758\) 0 0
\(759\) −3.59394 −0.130452
\(760\) 0 0
\(761\) 38.2357 1.38604 0.693022 0.720916i \(-0.256279\pi\)
0.693022 + 0.720916i \(0.256279\pi\)
\(762\) 0 0
\(763\) 44.7724 1.62087
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −59.1970 −2.13748
\(768\) 0 0
\(769\) 41.3417 1.49082 0.745409 0.666607i \(-0.232254\pi\)
0.745409 + 0.666607i \(0.232254\pi\)
\(770\) 0 0
\(771\) −23.7854 −0.856611
\(772\) 0 0
\(773\) 4.31886 0.155339 0.0776693 0.996979i \(-0.475252\pi\)
0.0776693 + 0.996979i \(0.475252\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 66.6453 2.39089
\(778\) 0 0
\(779\) 3.74296 0.134105
\(780\) 0 0
\(781\) 54.5926 1.95348
\(782\) 0 0
\(783\) 24.4695 0.874470
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 8.48163 0.302337 0.151169 0.988508i \(-0.451696\pi\)
0.151169 + 0.988508i \(0.451696\pi\)
\(788\) 0 0
\(789\) 29.6729 1.05638
\(790\) 0 0
\(791\) −38.9814 −1.38602
\(792\) 0 0
\(793\) −77.2121 −2.74188
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13.6851 −0.484750 −0.242375 0.970183i \(-0.577926\pi\)
−0.242375 + 0.970183i \(0.577926\pi\)
\(798\) 0 0
\(799\) 4.75903 0.168362
\(800\) 0 0
\(801\) −4.99544 −0.176505
\(802\) 0 0
\(803\) −79.8846 −2.81907
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2.82895 0.0995836
\(808\) 0 0
\(809\) −5.08132 −0.178650 −0.0893249 0.996003i \(-0.528471\pi\)
−0.0893249 + 0.996003i \(0.528471\pi\)
\(810\) 0 0
\(811\) 24.9990 0.877834 0.438917 0.898528i \(-0.355362\pi\)
0.438917 + 0.898528i \(0.355362\pi\)
\(812\) 0 0
\(813\) 54.6031 1.91501
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 11.3515 0.397138
\(818\) 0 0
\(819\) 6.48693 0.226672
\(820\) 0 0
\(821\) −25.8738 −0.903002 −0.451501 0.892271i \(-0.649111\pi\)
−0.451501 + 0.892271i \(0.649111\pi\)
\(822\) 0 0
\(823\) 11.0152 0.383965 0.191982 0.981398i \(-0.438508\pi\)
0.191982 + 0.981398i \(0.438508\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.5502 0.471185 0.235592 0.971852i \(-0.424297\pi\)
0.235592 + 0.971852i \(0.424297\pi\)
\(828\) 0 0
\(829\) −38.5707 −1.33962 −0.669808 0.742534i \(-0.733624\pi\)
−0.669808 + 0.742534i \(0.733624\pi\)
\(830\) 0 0
\(831\) −32.5682 −1.12978
\(832\) 0 0
\(833\) 65.8223 2.28061
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 22.8611 0.790194
\(838\) 0 0
\(839\) −4.38927 −0.151535 −0.0757673 0.997126i \(-0.524141\pi\)
−0.0757673 + 0.997126i \(0.524141\pi\)
\(840\) 0 0
\(841\) −4.35591 −0.150204
\(842\) 0 0
\(843\) −2.27663 −0.0784113
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 100.347 3.44796
\(848\) 0 0
\(849\) 31.5947 1.08433
\(850\) 0 0
\(851\) −2.86655 −0.0982639
\(852\) 0 0
\(853\) 35.3589 1.21067 0.605333 0.795972i \(-0.293040\pi\)
0.605333 + 0.795972i \(0.293040\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −56.4133 −1.92704 −0.963520 0.267636i \(-0.913758\pi\)
−0.963520 + 0.267636i \(0.913758\pi\)
\(858\) 0 0
\(859\) 28.2629 0.964319 0.482160 0.876083i \(-0.339853\pi\)
0.482160 + 0.876083i \(0.339853\pi\)
\(860\) 0 0
\(861\) −18.5633 −0.632635
\(862\) 0 0
\(863\) 11.3915 0.387772 0.193886 0.981024i \(-0.437891\pi\)
0.193886 + 0.981024i \(0.437891\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 22.2385 0.755261
\(868\) 0 0
\(869\) −34.0781 −1.15602
\(870\) 0 0
\(871\) −16.1147 −0.546024
\(872\) 0 0
\(873\) −2.79723 −0.0946718
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 17.1016 0.577479 0.288740 0.957408i \(-0.406764\pi\)
0.288740 + 0.957408i \(0.406764\pi\)
\(878\) 0 0
\(879\) 43.4862 1.46675
\(880\) 0 0
\(881\) −53.3569 −1.79764 −0.898821 0.438317i \(-0.855575\pi\)
−0.898821 + 0.438317i \(0.855575\pi\)
\(882\) 0 0
\(883\) −35.9395 −1.20946 −0.604730 0.796430i \(-0.706719\pi\)
−0.604730 + 0.796430i \(0.706719\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 48.4603 1.62714 0.813569 0.581468i \(-0.197521\pi\)
0.813569 + 0.581468i \(0.197521\pi\)
\(888\) 0 0
\(889\) 7.69049 0.257931
\(890\) 0 0
\(891\) −56.8146 −1.90336
\(892\) 0 0
\(893\) −1.40522 −0.0470241
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −3.29894 −0.110148
\(898\) 0 0
\(899\) 23.0241 0.767898
\(900\) 0 0
\(901\) −7.04803 −0.234804
\(902\) 0 0
\(903\) −56.2980 −1.87348
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 21.2305 0.704948 0.352474 0.935822i \(-0.385341\pi\)
0.352474 + 0.935822i \(0.385341\pi\)
\(908\) 0 0
\(909\) −1.84157 −0.0610811
\(910\) 0 0
\(911\) 23.2599 0.770634 0.385317 0.922784i \(-0.374092\pi\)
0.385317 + 0.922784i \(0.374092\pi\)
\(912\) 0 0
\(913\) 49.7725 1.64723
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 26.9049 0.888478
\(918\) 0 0
\(919\) −43.5439 −1.43638 −0.718191 0.695846i \(-0.755029\pi\)
−0.718191 + 0.695846i \(0.755029\pi\)
\(920\) 0 0
\(921\) −20.2001 −0.665615
\(922\) 0 0
\(923\) 50.1114 1.64944
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −2.72996 −0.0896637
\(928\) 0 0
\(929\) 1.93781 0.0635776 0.0317888 0.999495i \(-0.489880\pi\)
0.0317888 + 0.999495i \(0.489880\pi\)
\(930\) 0 0
\(931\) −19.4357 −0.636980
\(932\) 0 0
\(933\) 35.8599 1.17400
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 12.2146 0.399032 0.199516 0.979895i \(-0.436063\pi\)
0.199516 + 0.979895i \(0.436063\pi\)
\(938\) 0 0
\(939\) 5.96913 0.194795
\(940\) 0 0
\(941\) 19.4761 0.634902 0.317451 0.948275i \(-0.397173\pi\)
0.317451 + 0.948275i \(0.397173\pi\)
\(942\) 0 0
\(943\) 0.798442 0.0260009
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.77050 −0.0575335 −0.0287667 0.999586i \(-0.509158\pi\)
−0.0287667 + 0.999586i \(0.509158\pi\)
\(948\) 0 0
\(949\) −73.3274 −2.38031
\(950\) 0 0
\(951\) 31.8452 1.03265
\(952\) 0 0
\(953\) 26.4519 0.856860 0.428430 0.903575i \(-0.359067\pi\)
0.428430 + 0.903575i \(0.359067\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −52.3422 −1.69198
\(958\) 0 0
\(959\) 7.86824 0.254079
\(960\) 0 0
\(961\) −9.48935 −0.306108
\(962\) 0 0
\(963\) −0.260935 −0.00840850
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −29.5985 −0.951822 −0.475911 0.879493i \(-0.657882\pi\)
−0.475911 + 0.879493i \(0.657882\pi\)
\(968\) 0 0
\(969\) −15.6536 −0.502866
\(970\) 0 0
\(971\) 3.26775 0.104867 0.0524335 0.998624i \(-0.483302\pi\)
0.0524335 + 0.998624i \(0.483302\pi\)
\(972\) 0 0
\(973\) −68.4150 −2.19328
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −11.6591 −0.373009 −0.186504 0.982454i \(-0.559716\pi\)
−0.186504 + 0.982454i \(0.559716\pi\)
\(978\) 0 0
\(979\) −104.970 −3.35486
\(980\) 0 0
\(981\) 2.83483 0.0905093
\(982\) 0 0
\(983\) −37.8109 −1.20598 −0.602990 0.797749i \(-0.706024\pi\)
−0.602990 + 0.797749i \(0.706024\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 6.96925 0.221834
\(988\) 0 0
\(989\) 2.42149 0.0769988
\(990\) 0 0
\(991\) −10.0303 −0.318623 −0.159311 0.987228i \(-0.550927\pi\)
−0.159311 + 0.987228i \(0.550927\pi\)
\(992\) 0 0
\(993\) 27.2142 0.863616
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −45.2025 −1.43158 −0.715788 0.698317i \(-0.753933\pi\)
−0.715788 + 0.698317i \(0.753933\pi\)
\(998\) 0 0
\(999\) −41.4528 −1.31151
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4000.2.a.n.1.5 yes 6
4.3 odd 2 4000.2.a.k.1.2 6
5.2 odd 4 4000.2.c.g.1249.4 12
5.3 odd 4 4000.2.c.g.1249.9 12
5.4 even 2 4000.2.a.l.1.2 yes 6
8.3 odd 2 8000.2.a.bv.1.5 6
8.5 even 2 8000.2.a.bw.1.2 6
20.3 even 4 4000.2.c.f.1249.4 12
20.7 even 4 4000.2.c.f.1249.9 12
20.19 odd 2 4000.2.a.m.1.5 yes 6
40.19 odd 2 8000.2.a.bx.1.2 6
40.29 even 2 8000.2.a.bu.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4000.2.a.k.1.2 6 4.3 odd 2
4000.2.a.l.1.2 yes 6 5.4 even 2
4000.2.a.m.1.5 yes 6 20.19 odd 2
4000.2.a.n.1.5 yes 6 1.1 even 1 trivial
4000.2.c.f.1249.4 12 20.3 even 4
4000.2.c.f.1249.9 12 20.7 even 4
4000.2.c.g.1249.4 12 5.2 odd 4
4000.2.c.g.1249.9 12 5.3 odd 4
8000.2.a.bu.1.5 6 40.29 even 2
8000.2.a.bv.1.5 6 8.3 odd 2
8000.2.a.bw.1.2 6 8.5 even 2
8000.2.a.bx.1.2 6 40.19 odd 2