Properties

Label 4000.2.c.f.1249.9
Level $4000$
Weight $2$
Character 4000.1249
Analytic conductor $31.940$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4000,2,Mod(1249,4000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4000.1249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4000 = 2^{5} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4000.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.9401608085\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 22x^{10} + 179x^{8} + 646x^{6} + 929x^{4} + 252x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.9
Root \(1.81030i\) of defining polynomial
Character \(\chi\) \(=\) 4000.1249
Dual form 4000.2.c.f.1249.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.81030i q^{3} -4.37760i q^{7} -0.277175 q^{9} -5.82433 q^{11} -5.34625i q^{13} +5.41151i q^{17} -1.59789 q^{19} +7.92476 q^{21} -0.340859i q^{23} +4.92912i q^{27} +4.96428 q^{29} +4.63796 q^{31} -10.5438i q^{33} +8.40977i q^{37} +9.67829 q^{39} -2.34244 q^{41} -7.10407i q^{43} -0.879427i q^{47} -12.1634 q^{49} -9.79645 q^{51} +1.30241i q^{53} -2.89265i q^{57} -11.0726 q^{59} -14.4423 q^{61} +1.21336i q^{63} +3.01420i q^{67} +0.617056 q^{69} -9.37319 q^{71} +13.7157i q^{73} +25.4966i q^{77} -5.85098 q^{79} -9.75470 q^{81} +8.54562i q^{83} +8.98682i q^{87} +18.0227 q^{89} -23.4037 q^{91} +8.39608i q^{93} -10.0919i q^{97} +1.61436 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{9} - 26 q^{11} + 18 q^{19} - 4 q^{29} - 24 q^{31} + 52 q^{39} - 10 q^{41} + 6 q^{49} - 36 q^{51} + 50 q^{59} - 12 q^{61} + 24 q^{69} - 68 q^{71} + 32 q^{79} - 36 q^{81} + 6 q^{89} - 52 q^{91}+ \cdots + 86 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4000\mathbb{Z}\right)^\times\).

\(n\) \(1377\) \(2501\) \(2751\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.81030i 1.04518i 0.852586 + 0.522588i \(0.175033\pi\)
−0.852586 + 0.522588i \(0.824967\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 4.37760i − 1.65458i −0.561777 0.827289i \(-0.689882\pi\)
0.561777 0.827289i \(-0.310118\pi\)
\(8\) 0 0
\(9\) −0.277175 −0.0923916
\(10\) 0 0
\(11\) −5.82433 −1.75610 −0.878051 0.478567i \(-0.841156\pi\)
−0.878051 + 0.478567i \(0.841156\pi\)
\(12\) 0 0
\(13\) − 5.34625i − 1.48278i −0.671073 0.741391i \(-0.734166\pi\)
0.671073 0.741391i \(-0.265834\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.41151i 1.31248i 0.754550 + 0.656242i \(0.227855\pi\)
−0.754550 + 0.656242i \(0.772145\pi\)
\(18\) 0 0
\(19\) −1.59789 −0.366580 −0.183290 0.983059i \(-0.558675\pi\)
−0.183290 + 0.983059i \(0.558675\pi\)
\(20\) 0 0
\(21\) 7.92476 1.72932
\(22\) 0 0
\(23\) − 0.340859i − 0.0710740i −0.999368 0.0355370i \(-0.988686\pi\)
0.999368 0.0355370i \(-0.0113142\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.92912i 0.948610i
\(28\) 0 0
\(29\) 4.96428 0.921844 0.460922 0.887441i \(-0.347519\pi\)
0.460922 + 0.887441i \(0.347519\pi\)
\(30\) 0 0
\(31\) 4.63796 0.833002 0.416501 0.909135i \(-0.363256\pi\)
0.416501 + 0.909135i \(0.363256\pi\)
\(32\) 0 0
\(33\) − 10.5438i − 1.83543i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.40977i 1.38256i 0.722588 + 0.691278i \(0.242952\pi\)
−0.722588 + 0.691278i \(0.757048\pi\)
\(38\) 0 0
\(39\) 9.67829 1.54977
\(40\) 0 0
\(41\) −2.34244 −0.365828 −0.182914 0.983129i \(-0.558553\pi\)
−0.182914 + 0.983129i \(0.558553\pi\)
\(42\) 0 0
\(43\) − 7.10407i − 1.08336i −0.840585 0.541680i \(-0.817788\pi\)
0.840585 0.541680i \(-0.182212\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 0.879427i − 0.128278i −0.997941 0.0641388i \(-0.979570\pi\)
0.997941 0.0641388i \(-0.0204300\pi\)
\(48\) 0 0
\(49\) −12.1634 −1.73763
\(50\) 0 0
\(51\) −9.79645 −1.37178
\(52\) 0 0
\(53\) 1.30241i 0.178900i 0.995991 + 0.0894502i \(0.0285110\pi\)
−0.995991 + 0.0894502i \(0.971489\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 2.89265i − 0.383141i
\(58\) 0 0
\(59\) −11.0726 −1.44153 −0.720767 0.693178i \(-0.756210\pi\)
−0.720767 + 0.693178i \(0.756210\pi\)
\(60\) 0 0
\(61\) −14.4423 −1.84915 −0.924574 0.381003i \(-0.875579\pi\)
−0.924574 + 0.381003i \(0.875579\pi\)
\(62\) 0 0
\(63\) 1.21336i 0.152869i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 3.01420i 0.368243i 0.982903 + 0.184122i \(0.0589440\pi\)
−0.982903 + 0.184122i \(0.941056\pi\)
\(68\) 0 0
\(69\) 0.617056 0.0742848
\(70\) 0 0
\(71\) −9.37319 −1.11239 −0.556197 0.831051i \(-0.687740\pi\)
−0.556197 + 0.831051i \(0.687740\pi\)
\(72\) 0 0
\(73\) 13.7157i 1.60530i 0.596451 + 0.802649i \(0.296577\pi\)
−0.596451 + 0.802649i \(0.703423\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 25.4966i 2.90561i
\(78\) 0 0
\(79\) −5.85098 −0.658287 −0.329143 0.944280i \(-0.606760\pi\)
−0.329143 + 0.944280i \(0.606760\pi\)
\(80\) 0 0
\(81\) −9.75470 −1.08386
\(82\) 0 0
\(83\) 8.54562i 0.938003i 0.883197 + 0.469002i \(0.155386\pi\)
−0.883197 + 0.469002i \(0.844614\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 8.98682i 0.963488i
\(88\) 0 0
\(89\) 18.0227 1.91040 0.955202 0.295956i \(-0.0956381\pi\)
0.955202 + 0.295956i \(0.0956381\pi\)
\(90\) 0 0
\(91\) −23.4037 −2.45338
\(92\) 0 0
\(93\) 8.39608i 0.870633i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 10.0919i − 1.02468i −0.858783 0.512340i \(-0.828779\pi\)
0.858783 0.512340i \(-0.171221\pi\)
\(98\) 0 0
\(99\) 1.61436 0.162249
\(100\) 0 0
\(101\) −6.64409 −0.661111 −0.330556 0.943787i \(-0.607236\pi\)
−0.330556 + 0.943787i \(0.607236\pi\)
\(102\) 0 0
\(103\) − 9.84923i − 0.970474i −0.874383 0.485237i \(-0.838733\pi\)
0.874383 0.485237i \(-0.161267\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.941408i 0.0910093i 0.998964 + 0.0455047i \(0.0144896\pi\)
−0.998964 + 0.0455047i \(0.985510\pi\)
\(108\) 0 0
\(109\) −10.2276 −0.979627 −0.489813 0.871827i \(-0.662935\pi\)
−0.489813 + 0.871827i \(0.662935\pi\)
\(110\) 0 0
\(111\) −15.2242 −1.44501
\(112\) 0 0
\(113\) 8.90474i 0.837687i 0.908058 + 0.418844i \(0.137564\pi\)
−0.908058 + 0.418844i \(0.862436\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.48185i 0.136997i
\(118\) 0 0
\(119\) 23.6894 2.17161
\(120\) 0 0
\(121\) 22.9228 2.08389
\(122\) 0 0
\(123\) − 4.24051i − 0.382354i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 1.75678i − 0.155889i −0.996958 0.0779446i \(-0.975164\pi\)
0.996958 0.0779446i \(-0.0248357\pi\)
\(128\) 0 0
\(129\) 12.8605 1.13230
\(130\) 0 0
\(131\) −6.14604 −0.536982 −0.268491 0.963282i \(-0.586525\pi\)
−0.268491 + 0.963282i \(0.586525\pi\)
\(132\) 0 0
\(133\) 6.99491i 0.606535i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.79739i 0.153561i 0.997048 + 0.0767806i \(0.0244641\pi\)
−0.997048 + 0.0767806i \(0.975536\pi\)
\(138\) 0 0
\(139\) −15.6284 −1.32559 −0.662793 0.748803i \(-0.730629\pi\)
−0.662793 + 0.748803i \(0.730629\pi\)
\(140\) 0 0
\(141\) 1.59202 0.134073
\(142\) 0 0
\(143\) 31.1383i 2.60392i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 22.0193i − 1.81612i
\(148\) 0 0
\(149\) −20.3836 −1.66989 −0.834944 0.550335i \(-0.814500\pi\)
−0.834944 + 0.550335i \(0.814500\pi\)
\(150\) 0 0
\(151\) −14.2100 −1.15639 −0.578196 0.815898i \(-0.696243\pi\)
−0.578196 + 0.815898i \(0.696243\pi\)
\(152\) 0 0
\(153\) − 1.49994i − 0.121263i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 6.01209i − 0.479817i −0.970796 0.239908i \(-0.922883\pi\)
0.970796 0.239908i \(-0.0771174\pi\)
\(158\) 0 0
\(159\) −2.35776 −0.186982
\(160\) 0 0
\(161\) −1.49215 −0.117598
\(162\) 0 0
\(163\) 12.5491i 0.982920i 0.870900 + 0.491460i \(0.163537\pi\)
−0.870900 + 0.491460i \(0.836463\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.32243i 0.334480i 0.985916 + 0.167240i \(0.0534854\pi\)
−0.985916 + 0.167240i \(0.946515\pi\)
\(168\) 0 0
\(169\) −15.5824 −1.19864
\(170\) 0 0
\(171\) 0.442894 0.0338689
\(172\) 0 0
\(173\) 8.22242i 0.625139i 0.949895 + 0.312570i \(0.101190\pi\)
−0.949895 + 0.312570i \(0.898810\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 20.0447i − 1.50666i
\(178\) 0 0
\(179\) 2.21704 0.165710 0.0828548 0.996562i \(-0.473596\pi\)
0.0828548 + 0.996562i \(0.473596\pi\)
\(180\) 0 0
\(181\) 15.6084 1.16016 0.580080 0.814559i \(-0.303021\pi\)
0.580080 + 0.814559i \(0.303021\pi\)
\(182\) 0 0
\(183\) − 26.1449i − 1.93268i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 31.5184i − 2.30486i
\(188\) 0 0
\(189\) 21.5777 1.56955
\(190\) 0 0
\(191\) 0.823027 0.0595521 0.0297761 0.999557i \(-0.490521\pi\)
0.0297761 + 0.999557i \(0.490521\pi\)
\(192\) 0 0
\(193\) 4.12278i 0.296764i 0.988930 + 0.148382i \(0.0474066\pi\)
−0.988930 + 0.148382i \(0.952593\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.3961i 1.31067i 0.755340 + 0.655333i \(0.227472\pi\)
−0.755340 + 0.655333i \(0.772528\pi\)
\(198\) 0 0
\(199\) 1.01893 0.0722300 0.0361150 0.999348i \(-0.488502\pi\)
0.0361150 + 0.999348i \(0.488502\pi\)
\(200\) 0 0
\(201\) −5.45660 −0.384879
\(202\) 0 0
\(203\) − 21.7316i − 1.52526i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0.0944776i 0.00656665i
\(208\) 0 0
\(209\) 9.30662 0.643752
\(210\) 0 0
\(211\) 8.14609 0.560800 0.280400 0.959883i \(-0.409533\pi\)
0.280400 + 0.959883i \(0.409533\pi\)
\(212\) 0 0
\(213\) − 16.9683i − 1.16265i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 20.3031i − 1.37827i
\(218\) 0 0
\(219\) −24.8294 −1.67782
\(220\) 0 0
\(221\) 28.9313 1.94613
\(222\) 0 0
\(223\) − 12.4073i − 0.830856i −0.909626 0.415428i \(-0.863632\pi\)
0.909626 0.415428i \(-0.136368\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 24.5589i 1.63003i 0.579438 + 0.815016i \(0.303272\pi\)
−0.579438 + 0.815016i \(0.696728\pi\)
\(228\) 0 0
\(229\) 5.35261 0.353711 0.176855 0.984237i \(-0.443408\pi\)
0.176855 + 0.984237i \(0.443408\pi\)
\(230\) 0 0
\(231\) −46.1564 −3.03687
\(232\) 0 0
\(233\) 0.350300i 0.0229489i 0.999934 + 0.0114745i \(0.00365252\pi\)
−0.999934 + 0.0114745i \(0.996347\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 10.5920i − 0.688025i
\(238\) 0 0
\(239\) 8.90513 0.576025 0.288012 0.957627i \(-0.407006\pi\)
0.288012 + 0.957627i \(0.407006\pi\)
\(240\) 0 0
\(241\) −8.09465 −0.521422 −0.260711 0.965417i \(-0.583957\pi\)
−0.260711 + 0.965417i \(0.583957\pi\)
\(242\) 0 0
\(243\) − 2.87154i − 0.184209i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.54270i 0.543559i
\(248\) 0 0
\(249\) −15.4701 −0.980378
\(250\) 0 0
\(251\) −15.0480 −0.949821 −0.474910 0.880034i \(-0.657520\pi\)
−0.474910 + 0.880034i \(0.657520\pi\)
\(252\) 0 0
\(253\) 1.98528i 0.124813i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 13.1390i − 0.819586i −0.912179 0.409793i \(-0.865601\pi\)
0.912179 0.409793i \(-0.134399\pi\)
\(258\) 0 0
\(259\) 36.8146 2.28755
\(260\) 0 0
\(261\) −1.37597 −0.0851706
\(262\) 0 0
\(263\) 16.3912i 1.01072i 0.862908 + 0.505362i \(0.168641\pi\)
−0.862908 + 0.505362i \(0.831359\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 32.6265i 1.99671i
\(268\) 0 0
\(269\) −1.56270 −0.0952793 −0.0476397 0.998865i \(-0.515170\pi\)
−0.0476397 + 0.998865i \(0.515170\pi\)
\(270\) 0 0
\(271\) −30.1625 −1.83224 −0.916121 0.400902i \(-0.868697\pi\)
−0.916121 + 0.400902i \(0.868697\pi\)
\(272\) 0 0
\(273\) − 42.3677i − 2.56421i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 17.9905i − 1.08095i −0.841361 0.540473i \(-0.818245\pi\)
0.841361 0.540473i \(-0.181755\pi\)
\(278\) 0 0
\(279\) −1.28553 −0.0769624
\(280\) 0 0
\(281\) −1.25760 −0.0750221 −0.0375111 0.999296i \(-0.511943\pi\)
−0.0375111 + 0.999296i \(0.511943\pi\)
\(282\) 0 0
\(283\) 17.4528i 1.03746i 0.854938 + 0.518729i \(0.173595\pi\)
−0.854938 + 0.518729i \(0.826405\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.2543i 0.605290i
\(288\) 0 0
\(289\) −12.2845 −0.722616
\(290\) 0 0
\(291\) 18.2694 1.07097
\(292\) 0 0
\(293\) − 24.0216i − 1.40336i −0.712494 0.701678i \(-0.752435\pi\)
0.712494 0.701678i \(-0.247565\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 28.7088i − 1.66586i
\(298\) 0 0
\(299\) −1.82232 −0.105387
\(300\) 0 0
\(301\) −31.0988 −1.79250
\(302\) 0 0
\(303\) − 12.0278i − 0.690977i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 11.1584i 0.636845i 0.947949 + 0.318423i \(0.103153\pi\)
−0.947949 + 0.318423i \(0.896847\pi\)
\(308\) 0 0
\(309\) 17.8300 1.01432
\(310\) 0 0
\(311\) −19.8088 −1.12326 −0.561628 0.827390i \(-0.689825\pi\)
−0.561628 + 0.827390i \(0.689825\pi\)
\(312\) 0 0
\(313\) − 3.29732i − 0.186376i −0.995649 0.0931879i \(-0.970294\pi\)
0.995649 0.0931879i \(-0.0297057\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 17.5911i 0.988017i 0.869457 + 0.494009i \(0.164469\pi\)
−0.869457 + 0.494009i \(0.835531\pi\)
\(318\) 0 0
\(319\) −28.9136 −1.61885
\(320\) 0 0
\(321\) −1.70423 −0.0951207
\(322\) 0 0
\(323\) − 8.64698i − 0.481131i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 18.5150i − 1.02388i
\(328\) 0 0
\(329\) −3.84978 −0.212245
\(330\) 0 0
\(331\) −15.0330 −0.826288 −0.413144 0.910666i \(-0.635569\pi\)
−0.413144 + 0.910666i \(0.635569\pi\)
\(332\) 0 0
\(333\) − 2.33098i − 0.127737i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 31.7741i − 1.73084i −0.501043 0.865422i \(-0.667050\pi\)
0.501043 0.865422i \(-0.332950\pi\)
\(338\) 0 0
\(339\) −16.1202 −0.875530
\(340\) 0 0
\(341\) −27.0130 −1.46284
\(342\) 0 0
\(343\) 22.6032i 1.22046i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 26.6632i − 1.43136i −0.698430 0.715679i \(-0.746118\pi\)
0.698430 0.715679i \(-0.253882\pi\)
\(348\) 0 0
\(349\) −4.44619 −0.237999 −0.119000 0.992894i \(-0.537969\pi\)
−0.119000 + 0.992894i \(0.537969\pi\)
\(350\) 0 0
\(351\) 26.3523 1.40658
\(352\) 0 0
\(353\) − 0.316976i − 0.0168710i −0.999964 0.00843548i \(-0.997315\pi\)
0.999964 0.00843548i \(-0.00268513\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 42.8849i 2.26971i
\(358\) 0 0
\(359\) 22.0361 1.16302 0.581509 0.813540i \(-0.302462\pi\)
0.581509 + 0.813540i \(0.302462\pi\)
\(360\) 0 0
\(361\) −16.4468 −0.865619
\(362\) 0 0
\(363\) 41.4971i 2.17803i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 4.44627i 0.232093i 0.993244 + 0.116047i \(0.0370222\pi\)
−0.993244 + 0.116047i \(0.962978\pi\)
\(368\) 0 0
\(369\) 0.649266 0.0337994
\(370\) 0 0
\(371\) 5.70145 0.296005
\(372\) 0 0
\(373\) − 23.3308i − 1.20802i −0.796975 0.604012i \(-0.793568\pi\)
0.796975 0.604012i \(-0.206432\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 26.5403i − 1.36689i
\(378\) 0 0
\(379\) 19.0905 0.980614 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(380\) 0 0
\(381\) 3.18030 0.162932
\(382\) 0 0
\(383\) 0.371944i 0.0190055i 0.999955 + 0.00950273i \(0.00302486\pi\)
−0.999955 + 0.00950273i \(0.996975\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.96907i 0.100093i
\(388\) 0 0
\(389\) 22.9338 1.16279 0.581395 0.813621i \(-0.302507\pi\)
0.581395 + 0.813621i \(0.302507\pi\)
\(390\) 0 0
\(391\) 1.84456 0.0932836
\(392\) 0 0
\(393\) − 11.1262i − 0.561240i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 14.2189i 0.713628i 0.934176 + 0.356814i \(0.116137\pi\)
−0.934176 + 0.356814i \(0.883863\pi\)
\(398\) 0 0
\(399\) −12.6629 −0.633936
\(400\) 0 0
\(401\) 0.847710 0.0423326 0.0211663 0.999776i \(-0.493262\pi\)
0.0211663 + 0.999776i \(0.493262\pi\)
\(402\) 0 0
\(403\) − 24.7957i − 1.23516i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 48.9813i − 2.42791i
\(408\) 0 0
\(409\) 32.7324 1.61851 0.809256 0.587457i \(-0.199871\pi\)
0.809256 + 0.587457i \(0.199871\pi\)
\(410\) 0 0
\(411\) −3.25381 −0.160498
\(412\) 0 0
\(413\) 48.4715i 2.38513i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 28.2921i − 1.38547i
\(418\) 0 0
\(419\) 24.3482 1.18949 0.594743 0.803916i \(-0.297254\pi\)
0.594743 + 0.803916i \(0.297254\pi\)
\(420\) 0 0
\(421\) −5.79282 −0.282325 −0.141162 0.989986i \(-0.545084\pi\)
−0.141162 + 0.989986i \(0.545084\pi\)
\(422\) 0 0
\(423\) 0.243755i 0.0118518i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 63.2226i 3.05956i
\(428\) 0 0
\(429\) −56.3696 −2.72155
\(430\) 0 0
\(431\) 27.0917 1.30496 0.652480 0.757806i \(-0.273728\pi\)
0.652480 + 0.757806i \(0.273728\pi\)
\(432\) 0 0
\(433\) 35.6206i 1.71182i 0.517129 + 0.855908i \(0.327001\pi\)
−0.517129 + 0.855908i \(0.672999\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.544654i 0.0260543i
\(438\) 0 0
\(439\) −35.2574 −1.68275 −0.841373 0.540455i \(-0.818252\pi\)
−0.841373 + 0.540455i \(0.818252\pi\)
\(440\) 0 0
\(441\) 3.37138 0.160542
\(442\) 0 0
\(443\) − 33.9602i − 1.61350i −0.590896 0.806748i \(-0.701225\pi\)
0.590896 0.806748i \(-0.298775\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 36.9003i − 1.74533i
\(448\) 0 0
\(449\) −13.2446 −0.625050 −0.312525 0.949910i \(-0.601175\pi\)
−0.312525 + 0.949910i \(0.601175\pi\)
\(450\) 0 0
\(451\) 13.6432 0.642431
\(452\) 0 0
\(453\) − 25.7243i − 1.20863i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 2.86349i − 0.133949i −0.997755 0.0669743i \(-0.978665\pi\)
0.997755 0.0669743i \(-0.0213345\pi\)
\(458\) 0 0
\(459\) −26.6740 −1.24504
\(460\) 0 0
\(461\) 22.8968 1.06641 0.533206 0.845986i \(-0.320987\pi\)
0.533206 + 0.845986i \(0.320987\pi\)
\(462\) 0 0
\(463\) − 15.0334i − 0.698659i −0.937000 0.349330i \(-0.886409\pi\)
0.937000 0.349330i \(-0.113591\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 16.2490i − 0.751913i −0.926637 0.375957i \(-0.877314\pi\)
0.926637 0.375957i \(-0.122686\pi\)
\(468\) 0 0
\(469\) 13.1950 0.609287
\(470\) 0 0
\(471\) 10.8837 0.501493
\(472\) 0 0
\(473\) 41.3764i 1.90249i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 0.360997i − 0.0165289i
\(478\) 0 0
\(479\) 16.8024 0.767722 0.383861 0.923391i \(-0.374594\pi\)
0.383861 + 0.923391i \(0.374594\pi\)
\(480\) 0 0
\(481\) 44.9607 2.05003
\(482\) 0 0
\(483\) − 2.70123i − 0.122910i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 17.0426i 0.772276i 0.922441 + 0.386138i \(0.126191\pi\)
−0.922441 + 0.386138i \(0.873809\pi\)
\(488\) 0 0
\(489\) −22.7176 −1.02732
\(490\) 0 0
\(491\) −25.5972 −1.15518 −0.577592 0.816326i \(-0.696007\pi\)
−0.577592 + 0.816326i \(0.696007\pi\)
\(492\) 0 0
\(493\) 26.8643i 1.20991i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 41.0321i 1.84054i
\(498\) 0 0
\(499\) 2.10330 0.0941565 0.0470783 0.998891i \(-0.485009\pi\)
0.0470783 + 0.998891i \(0.485009\pi\)
\(500\) 0 0
\(501\) −7.82489 −0.349590
\(502\) 0 0
\(503\) − 1.80566i − 0.0805105i −0.999189 0.0402552i \(-0.987183\pi\)
0.999189 0.0402552i \(-0.0128171\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 28.2087i − 1.25279i
\(508\) 0 0
\(509\) 16.5594 0.733980 0.366990 0.930225i \(-0.380388\pi\)
0.366990 + 0.930225i \(0.380388\pi\)
\(510\) 0 0
\(511\) 60.0417 2.65609
\(512\) 0 0
\(513\) − 7.87618i − 0.347742i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 5.12207i 0.225269i
\(518\) 0 0
\(519\) −14.8850 −0.653380
\(520\) 0 0
\(521\) −22.9830 −1.00690 −0.503452 0.864023i \(-0.667937\pi\)
−0.503452 + 0.864023i \(0.667937\pi\)
\(522\) 0 0
\(523\) 9.47128i 0.414150i 0.978325 + 0.207075i \(0.0663944\pi\)
−0.978325 + 0.207075i \(0.933606\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 25.0984i 1.09330i
\(528\) 0 0
\(529\) 22.8838 0.994948
\(530\) 0 0
\(531\) 3.06905 0.133186
\(532\) 0 0
\(533\) 12.5233i 0.542443i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 4.01351i 0.173196i
\(538\) 0 0
\(539\) 70.8436 3.05145
\(540\) 0 0
\(541\) 13.2203 0.568386 0.284193 0.958767i \(-0.408274\pi\)
0.284193 + 0.958767i \(0.408274\pi\)
\(542\) 0 0
\(543\) 28.2558i 1.21257i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 33.1211i − 1.41616i −0.706133 0.708079i \(-0.749562\pi\)
0.706133 0.708079i \(-0.250438\pi\)
\(548\) 0 0
\(549\) 4.00304 0.170846
\(550\) 0 0
\(551\) −7.93236 −0.337930
\(552\) 0 0
\(553\) 25.6133i 1.08919i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.75852i 0.371110i 0.982634 + 0.185555i \(0.0594083\pi\)
−0.982634 + 0.185555i \(0.940592\pi\)
\(558\) 0 0
\(559\) −37.9801 −1.60639
\(560\) 0 0
\(561\) 57.0577 2.40898
\(562\) 0 0
\(563\) 1.05986i 0.0446678i 0.999751 + 0.0223339i \(0.00710970\pi\)
−0.999751 + 0.0223339i \(0.992890\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 42.7022i 1.79332i
\(568\) 0 0
\(569\) −38.9002 −1.63078 −0.815390 0.578912i \(-0.803477\pi\)
−0.815390 + 0.578912i \(0.803477\pi\)
\(570\) 0 0
\(571\) −33.4842 −1.40127 −0.700635 0.713520i \(-0.747100\pi\)
−0.700635 + 0.713520i \(0.747100\pi\)
\(572\) 0 0
\(573\) 1.48992i 0.0622424i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 17.5217i 0.729436i 0.931118 + 0.364718i \(0.118835\pi\)
−0.931118 + 0.364718i \(0.881165\pi\)
\(578\) 0 0
\(579\) −7.46346 −0.310171
\(580\) 0 0
\(581\) 37.4093 1.55200
\(582\) 0 0
\(583\) − 7.58569i − 0.314167i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 21.6889i − 0.895195i −0.894235 0.447598i \(-0.852280\pi\)
0.894235 0.447598i \(-0.147720\pi\)
\(588\) 0 0
\(589\) −7.41093 −0.305362
\(590\) 0 0
\(591\) −33.3024 −1.36988
\(592\) 0 0
\(593\) − 34.8683i − 1.43187i −0.698167 0.715935i \(-0.746001\pi\)
0.698167 0.715935i \(-0.253999\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.84456i 0.0754930i
\(598\) 0 0
\(599\) 14.6435 0.598317 0.299158 0.954203i \(-0.403294\pi\)
0.299158 + 0.954203i \(0.403294\pi\)
\(600\) 0 0
\(601\) −9.69821 −0.395598 −0.197799 0.980243i \(-0.563379\pi\)
−0.197799 + 0.980243i \(0.563379\pi\)
\(602\) 0 0
\(603\) − 0.835460i − 0.0340226i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 2.94086i 0.119366i 0.998217 + 0.0596829i \(0.0190090\pi\)
−0.998217 + 0.0596829i \(0.980991\pi\)
\(608\) 0 0
\(609\) 39.3407 1.59417
\(610\) 0 0
\(611\) −4.70163 −0.190208
\(612\) 0 0
\(613\) 17.0019i 0.686702i 0.939207 + 0.343351i \(0.111562\pi\)
−0.939207 + 0.343351i \(0.888438\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17.7996i 0.716583i 0.933610 + 0.358292i \(0.116641\pi\)
−0.933610 + 0.358292i \(0.883359\pi\)
\(618\) 0 0
\(619\) 27.5237 1.10627 0.553135 0.833092i \(-0.313431\pi\)
0.553135 + 0.833092i \(0.313431\pi\)
\(620\) 0 0
\(621\) 1.68014 0.0674215
\(622\) 0 0
\(623\) − 78.8962i − 3.16091i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 16.8477i 0.672834i
\(628\) 0 0
\(629\) −45.5096 −1.81458
\(630\) 0 0
\(631\) 47.3515 1.88503 0.942517 0.334158i \(-0.108452\pi\)
0.942517 + 0.334158i \(0.108452\pi\)
\(632\) 0 0
\(633\) 14.7468i 0.586134i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 65.0285i 2.57652i
\(638\) 0 0
\(639\) 2.59801 0.102776
\(640\) 0 0
\(641\) −15.3183 −0.605037 −0.302518 0.953144i \(-0.597827\pi\)
−0.302518 + 0.953144i \(0.597827\pi\)
\(642\) 0 0
\(643\) 38.4573i 1.51661i 0.651901 + 0.758304i \(0.273972\pi\)
−0.651901 + 0.758304i \(0.726028\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.46190i 0.136101i 0.997682 + 0.0680507i \(0.0216780\pi\)
−0.997682 + 0.0680507i \(0.978322\pi\)
\(648\) 0 0
\(649\) 64.4906 2.53148
\(650\) 0 0
\(651\) 36.7547 1.44053
\(652\) 0 0
\(653\) 37.9039i 1.48329i 0.670790 + 0.741647i \(0.265955\pi\)
−0.670790 + 0.741647i \(0.734045\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 3.80164i − 0.148316i
\(658\) 0 0
\(659\) −22.2876 −0.868203 −0.434102 0.900864i \(-0.642934\pi\)
−0.434102 + 0.900864i \(0.642934\pi\)
\(660\) 0 0
\(661\) −10.1877 −0.396257 −0.198129 0.980176i \(-0.563486\pi\)
−0.198129 + 0.980176i \(0.563486\pi\)
\(662\) 0 0
\(663\) 52.3742i 2.03405i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 1.69212i − 0.0655192i
\(668\) 0 0
\(669\) 22.4609 0.868390
\(670\) 0 0
\(671\) 84.1168 3.24729
\(672\) 0 0
\(673\) − 22.6737i − 0.874008i −0.899460 0.437004i \(-0.856040\pi\)
0.899460 0.437004i \(-0.143960\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 8.30011i − 0.318999i −0.987198 0.159500i \(-0.949012\pi\)
0.987198 0.159500i \(-0.0509881\pi\)
\(678\) 0 0
\(679\) −44.1784 −1.69541
\(680\) 0 0
\(681\) −44.4589 −1.70367
\(682\) 0 0
\(683\) 8.62826i 0.330151i 0.986281 + 0.165076i \(0.0527868\pi\)
−0.986281 + 0.165076i \(0.947213\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 9.68982i 0.369690i
\(688\) 0 0
\(689\) 6.96303 0.265270
\(690\) 0 0
\(691\) 42.6346 1.62190 0.810949 0.585117i \(-0.198951\pi\)
0.810949 + 0.585117i \(0.198951\pi\)
\(692\) 0 0
\(693\) − 7.06701i − 0.268454i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 12.6762i − 0.480143i
\(698\) 0 0
\(699\) −0.634147 −0.0239857
\(700\) 0 0
\(701\) −38.4312 −1.45153 −0.725763 0.687945i \(-0.758513\pi\)
−0.725763 + 0.687945i \(0.758513\pi\)
\(702\) 0 0
\(703\) − 13.4379i − 0.506818i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 29.0852i 1.09386i
\(708\) 0 0
\(709\) −19.9047 −0.747537 −0.373769 0.927522i \(-0.621935\pi\)
−0.373769 + 0.927522i \(0.621935\pi\)
\(710\) 0 0
\(711\) 1.62175 0.0608202
\(712\) 0 0
\(713\) − 1.58089i − 0.0592048i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 16.1209i 0.602047i
\(718\) 0 0
\(719\) 14.9260 0.556644 0.278322 0.960488i \(-0.410222\pi\)
0.278322 + 0.960488i \(0.410222\pi\)
\(720\) 0 0
\(721\) −43.1160 −1.60572
\(722\) 0 0
\(723\) − 14.6537i − 0.544978i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 25.6583i 0.951615i 0.879549 + 0.475808i \(0.157844\pi\)
−0.879549 + 0.475808i \(0.842156\pi\)
\(728\) 0 0
\(729\) −24.0658 −0.891325
\(730\) 0 0
\(731\) 38.4437 1.42189
\(732\) 0 0
\(733\) − 45.1247i − 1.66672i −0.552731 0.833360i \(-0.686414\pi\)
0.552731 0.833360i \(-0.313586\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 17.5557i − 0.646672i
\(738\) 0 0
\(739\) −4.88625 −0.179743 −0.0898717 0.995953i \(-0.528646\pi\)
−0.0898717 + 0.995953i \(0.528646\pi\)
\(740\) 0 0
\(741\) −15.4648 −0.568114
\(742\) 0 0
\(743\) 31.3357i 1.14960i 0.818295 + 0.574798i \(0.194919\pi\)
−0.818295 + 0.574798i \(0.805081\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 2.36863i − 0.0866637i
\(748\) 0 0
\(749\) 4.12111 0.150582
\(750\) 0 0
\(751\) −2.75676 −0.100596 −0.0502978 0.998734i \(-0.516017\pi\)
−0.0502978 + 0.998734i \(0.516017\pi\)
\(752\) 0 0
\(753\) − 27.2413i − 0.992729i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 27.7888i 1.01000i 0.863119 + 0.505000i \(0.168508\pi\)
−0.863119 + 0.505000i \(0.831492\pi\)
\(758\) 0 0
\(759\) −3.59394 −0.130452
\(760\) 0 0
\(761\) 38.2357 1.38604 0.693022 0.720916i \(-0.256279\pi\)
0.693022 + 0.720916i \(0.256279\pi\)
\(762\) 0 0
\(763\) 44.7724i 1.62087i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 59.1970i 2.13748i
\(768\) 0 0
\(769\) −41.3417 −1.49082 −0.745409 0.666607i \(-0.767746\pi\)
−0.745409 + 0.666607i \(0.767746\pi\)
\(770\) 0 0
\(771\) 23.7854 0.856611
\(772\) 0 0
\(773\) − 4.31886i − 0.155339i −0.996979 0.0776693i \(-0.975252\pi\)
0.996979 0.0776693i \(-0.0247478\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 66.6453i 2.39089i
\(778\) 0 0
\(779\) 3.74296 0.134105
\(780\) 0 0
\(781\) 54.5926 1.95348
\(782\) 0 0
\(783\) 24.4695i 0.874470i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 8.48163i − 0.302337i −0.988508 0.151169i \(-0.951696\pi\)
0.988508 0.151169i \(-0.0483037\pi\)
\(788\) 0 0
\(789\) −29.6729 −1.05638
\(790\) 0 0
\(791\) 38.9814 1.38602
\(792\) 0 0
\(793\) 77.2121i 2.74188i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 13.6851i − 0.484750i −0.970183 0.242375i \(-0.922074\pi\)
0.970183 0.242375i \(-0.0779265\pi\)
\(798\) 0 0
\(799\) 4.75903 0.168362
\(800\) 0 0
\(801\) −4.99544 −0.176505
\(802\) 0 0
\(803\) − 79.8846i − 2.81907i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 2.82895i − 0.0995836i
\(808\) 0 0
\(809\) 5.08132 0.178650 0.0893249 0.996003i \(-0.471529\pi\)
0.0893249 + 0.996003i \(0.471529\pi\)
\(810\) 0 0
\(811\) −24.9990 −0.877834 −0.438917 0.898528i \(-0.644638\pi\)
−0.438917 + 0.898528i \(0.644638\pi\)
\(812\) 0 0
\(813\) − 54.6031i − 1.91501i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 11.3515i 0.397138i
\(818\) 0 0
\(819\) 6.48693 0.226672
\(820\) 0 0
\(821\) −25.8738 −0.903002 −0.451501 0.892271i \(-0.649111\pi\)
−0.451501 + 0.892271i \(0.649111\pi\)
\(822\) 0 0
\(823\) 11.0152i 0.383965i 0.981398 + 0.191982i \(0.0614916\pi\)
−0.981398 + 0.191982i \(0.938508\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 13.5502i − 0.471185i −0.971852 0.235592i \(-0.924297\pi\)
0.971852 0.235592i \(-0.0757031\pi\)
\(828\) 0 0
\(829\) 38.5707 1.33962 0.669808 0.742534i \(-0.266376\pi\)
0.669808 + 0.742534i \(0.266376\pi\)
\(830\) 0 0
\(831\) 32.5682 1.12978
\(832\) 0 0
\(833\) − 65.8223i − 2.28061i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 22.8611i 0.790194i
\(838\) 0 0
\(839\) −4.38927 −0.151535 −0.0757673 0.997126i \(-0.524141\pi\)
−0.0757673 + 0.997126i \(0.524141\pi\)
\(840\) 0 0
\(841\) −4.35591 −0.150204
\(842\) 0 0
\(843\) − 2.27663i − 0.0784113i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 100.347i − 3.44796i
\(848\) 0 0
\(849\) −31.5947 −1.08433
\(850\) 0 0
\(851\) 2.86655 0.0982639
\(852\) 0 0
\(853\) − 35.3589i − 1.21067i −0.795972 0.605333i \(-0.793040\pi\)
0.795972 0.605333i \(-0.206960\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 56.4133i − 1.92704i −0.267636 0.963520i \(-0.586242\pi\)
0.267636 0.963520i \(-0.413758\pi\)
\(858\) 0 0
\(859\) 28.2629 0.964319 0.482160 0.876083i \(-0.339853\pi\)
0.482160 + 0.876083i \(0.339853\pi\)
\(860\) 0 0
\(861\) −18.5633 −0.632635
\(862\) 0 0
\(863\) 11.3915i 0.387772i 0.981024 + 0.193886i \(0.0621092\pi\)
−0.981024 + 0.193886i \(0.937891\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 22.2385i − 0.755261i
\(868\) 0 0
\(869\) 34.0781 1.15602
\(870\) 0 0
\(871\) 16.1147 0.546024
\(872\) 0 0
\(873\) 2.79723i 0.0946718i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 17.1016i 0.577479i 0.957408 + 0.288740i \(0.0932362\pi\)
−0.957408 + 0.288740i \(0.906764\pi\)
\(878\) 0 0
\(879\) 43.4862 1.46675
\(880\) 0 0
\(881\) −53.3569 −1.79764 −0.898821 0.438317i \(-0.855575\pi\)
−0.898821 + 0.438317i \(0.855575\pi\)
\(882\) 0 0
\(883\) − 35.9395i − 1.20946i −0.796430 0.604730i \(-0.793281\pi\)
0.796430 0.604730i \(-0.206719\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 48.4603i − 1.62714i −0.581468 0.813569i \(-0.697521\pi\)
0.581468 0.813569i \(-0.302479\pi\)
\(888\) 0 0
\(889\) −7.69049 −0.257931
\(890\) 0 0
\(891\) 56.8146 1.90336
\(892\) 0 0
\(893\) 1.40522i 0.0470241i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 3.29894i − 0.110148i
\(898\) 0 0
\(899\) 23.0241 0.767898
\(900\) 0 0
\(901\) −7.04803 −0.234804
\(902\) 0 0
\(903\) − 56.2980i − 1.87348i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 21.2305i − 0.704948i −0.935822 0.352474i \(-0.885341\pi\)
0.935822 0.352474i \(-0.114659\pi\)
\(908\) 0 0
\(909\) 1.84157 0.0610811
\(910\) 0 0
\(911\) −23.2599 −0.770634 −0.385317 0.922784i \(-0.625908\pi\)
−0.385317 + 0.922784i \(0.625908\pi\)
\(912\) 0 0
\(913\) − 49.7725i − 1.64723i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 26.9049i 0.888478i
\(918\) 0 0
\(919\) −43.5439 −1.43638 −0.718191 0.695846i \(-0.755029\pi\)
−0.718191 + 0.695846i \(0.755029\pi\)
\(920\) 0 0
\(921\) −20.2001 −0.665615
\(922\) 0 0
\(923\) 50.1114i 1.64944i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 2.72996i 0.0896637i
\(928\) 0 0
\(929\) −1.93781 −0.0635776 −0.0317888 0.999495i \(-0.510120\pi\)
−0.0317888 + 0.999495i \(0.510120\pi\)
\(930\) 0 0
\(931\) 19.4357 0.636980
\(932\) 0 0
\(933\) − 35.8599i − 1.17400i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 12.2146i 0.399032i 0.979895 + 0.199516i \(0.0639370\pi\)
−0.979895 + 0.199516i \(0.936063\pi\)
\(938\) 0 0
\(939\) 5.96913 0.194795
\(940\) 0 0
\(941\) 19.4761 0.634902 0.317451 0.948275i \(-0.397173\pi\)
0.317451 + 0.948275i \(0.397173\pi\)
\(942\) 0 0
\(943\) 0.798442i 0.0260009i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.77050i 0.0575335i 0.999586 + 0.0287667i \(0.00915800\pi\)
−0.999586 + 0.0287667i \(0.990842\pi\)
\(948\) 0 0
\(949\) 73.3274 2.38031
\(950\) 0 0
\(951\) −31.8452 −1.03265
\(952\) 0 0
\(953\) − 26.4519i − 0.856860i −0.903575 0.428430i \(-0.859067\pi\)
0.903575 0.428430i \(-0.140933\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 52.3422i − 1.69198i
\(958\) 0 0
\(959\) 7.86824 0.254079
\(960\) 0 0
\(961\) −9.48935 −0.306108
\(962\) 0 0
\(963\) − 0.260935i − 0.00840850i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 29.5985i 0.951822i 0.879493 + 0.475911i \(0.157882\pi\)
−0.879493 + 0.475911i \(0.842118\pi\)
\(968\) 0 0
\(969\) 15.6536 0.502866
\(970\) 0 0
\(971\) −3.26775 −0.104867 −0.0524335 0.998624i \(-0.516698\pi\)
−0.0524335 + 0.998624i \(0.516698\pi\)
\(972\) 0 0
\(973\) 68.4150i 2.19328i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 11.6591i − 0.373009i −0.982454 0.186504i \(-0.940284\pi\)
0.982454 0.186504i \(-0.0597158\pi\)
\(978\) 0 0
\(979\) −104.970 −3.35486
\(980\) 0 0
\(981\) 2.83483 0.0905093
\(982\) 0 0
\(983\) − 37.8109i − 1.20598i −0.797749 0.602990i \(-0.793976\pi\)
0.797749 0.602990i \(-0.206024\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 6.96925i − 0.221834i
\(988\) 0 0
\(989\) −2.42149 −0.0769988
\(990\) 0 0
\(991\) 10.0303 0.318623 0.159311 0.987228i \(-0.449073\pi\)
0.159311 + 0.987228i \(0.449073\pi\)
\(992\) 0 0
\(993\) − 27.2142i − 0.863616i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 45.2025i − 1.43158i −0.698317 0.715788i \(-0.746067\pi\)
0.698317 0.715788i \(-0.253933\pi\)
\(998\) 0 0
\(999\) −41.4528 −1.31151
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4000.2.c.f.1249.9 12
4.3 odd 2 4000.2.c.g.1249.4 12
5.2 odd 4 4000.2.a.m.1.5 yes 6
5.3 odd 4 4000.2.a.k.1.2 6
5.4 even 2 inner 4000.2.c.f.1249.4 12
20.3 even 4 4000.2.a.n.1.5 yes 6
20.7 even 4 4000.2.a.l.1.2 yes 6
20.19 odd 2 4000.2.c.g.1249.9 12
40.3 even 4 8000.2.a.bw.1.2 6
40.13 odd 4 8000.2.a.bv.1.5 6
40.27 even 4 8000.2.a.bu.1.5 6
40.37 odd 4 8000.2.a.bx.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4000.2.a.k.1.2 6 5.3 odd 4
4000.2.a.l.1.2 yes 6 20.7 even 4
4000.2.a.m.1.5 yes 6 5.2 odd 4
4000.2.a.n.1.5 yes 6 20.3 even 4
4000.2.c.f.1249.4 12 5.4 even 2 inner
4000.2.c.f.1249.9 12 1.1 even 1 trivial
4000.2.c.g.1249.4 12 4.3 odd 2
4000.2.c.g.1249.9 12 20.19 odd 2
8000.2.a.bu.1.5 6 40.27 even 4
8000.2.a.bv.1.5 6 40.13 odd 4
8000.2.a.bw.1.2 6 40.3 even 4
8000.2.a.bx.1.2 6 40.37 odd 4